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Department of Electrical Engineering

Princeton University
New Jersey 08544, USA

E-mail: verdu@princeton.edu

Abstract—This paper gives upper and lower bounds on the
minimum error probability of Bayesian M -ary hypothesis test-
ing in terms of the Arimoto-Rényi conditional entropy of an
arbitrary order α. The improved tightness of these bounds over
their specialized versions with the Shannon conditional entropy
(α = 1) is demonstrated. In particular, in the case where M is
finite, we show how to generalize Fano’s inequality under both
the conventional and list-decision settings. As a counterpart to the
generalized Fano’s inequality, allowing M to be infinite, a lower
bound on the Arimoto-Rényi conditional entropy is derived as a
function of the minimum error probability. Explicit upper and
lower bounds on the minimum error probability are obtained as
a function of the Arimoto-Rényi conditional entropy.

Index Terms – Information measures, hypothesis testing,
Arimoto-Rényi conditional entropy, Rényi divergence, Fano’s
inequality, minimum probability of error.

I. INTRODUCTION

In Bayesian M -ary hypothesis testing, we have:
• M possible explanations, hypotheses or models for the
Y-valued data {PY |X=m,m ∈ X} where |X | =M ; and

• a prior distribution PX on X , the set of model indices.
The minimum probability of error of X given Y , denoted by
εX|Y , is achieved by the maximum-a-posteriori decision rule.
A number of bounds on εX|Y involving information measures
have been obtained in the literature, most notably:
1) Fano’s inequality [10] gives an upper bound on the condi-

tional entropy H(X|Y ) as a function of εX|Y when M is
finite.

2) Shannon’s inequality [28] (see also [34]) gives an explicit
lower bound on εX|Y as a function of H(X|Y ), also when
M is finite.

3) Tightening another bound by Shannon [27], Poor and Verdú
[23] gave a lower bound on εX|Y (generalized in [5]) as a
function of the distribution of the conditional information
(whose expected value is H(X|Y )).

4) Baladová [3], Chu and Chueh [6, (12)] and Hellman and
Raviv [14, (41)] showed that

εX|Y ≤ 1
2 H(X|Y ) bits (1)

for finitely valued random variables. It is also easy to show
that (see, e.g., [11, (21)])

εX|Y ≤ 1− exp
(
−H(X|Y )

)
. (2)

Tighter and generalized upper bounds on εX|Y were ob-
tained by Kovalevsky [19], Tebbe and Dwyer [30], and Ho
and Verdú [15, (109)].

5) Based on the fundamental tradeoff of an auxiliary binary
hypothesis test, Polyanskiy et al. [21] gave the meta-
converse implicit lower bound on εX|Y .

6) In the case M = 2, Hellman and Raviv [14] gave an upper
bound on εX|Y as a function of the prior probabilities
and the Rényi divergence of order α ∈ [0, 1] between
the two models. The special case of α = 1

2 yields the
Bhattacharyya bound [16].

7) In [9] and [33], Devijver and Vajda derived upper and lower
bounds on εX|Y as a function of the quadratic Arimoto-
Rényi conditional entropy H2(X|Y ).

8) Building up on [14], Kanaya and Han [17] showed that
in the case of independent identically distributed (i.i.d.)
observations, εX|Y n and H(X|Y n) vanish exponentially
at the same speed, which is governed by the Chernoff
information between the closest hypothesis pair.

9) Generalizing Fano’s inequality, Han and Verdú [13] gave
lower bounds on the mutual information I(X;Y ) as a func-
tion of εX|Y , one of which was generalized by Polyanskiy
and Verdú [22] to give a lower bound on the α-mutual
information.

10) In [29], Shayevitz gave a lower bound, in terms of
the Rényi divergence, on the maximal worst-case miss-
detection exponent for a binary composite hypothesis test-
ing problem when the false-alarm probability decays to
zero with the number of i.i.d. observations.

11) Tomamichel and Hayashi [31], [32] studied optimal ex-
ponents of binary composite hypothesis testing, expressed
in terms of Rényi’s information measures. A measure of
dependence was studied in [32] (see also Lapidoth and
Pfister [20]) along with its role in composite hypothesis
testing.

This paper (whose extended version is [25]) gives upper
and lower bounds on εX|Y not in terms of H(X|Y ) but in
terms of the Arimoto-Rényi conditional entropy Hα(X|Y ) of
an arbitrary order α. Indeed, in this paper we find pleasing
counterparts to the bounds in Items 1), 4), 6), 7), 8) and 9),
resulting in generally tighter bounds. In addition, we enlarge
the scope of the problem to consider not only εX|Y but
the probability that a list decision rule (which is allowed to
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output a set of L hypotheses) does not include the true one.
Previous work on extending Fano’s inequality to the setup of
list decision rules includes [1, Section 5] and [18, Lemma 1].

Section II introduces the basic notation and definitions of
Rényi information measures. Section III contains the main
results in the paper on the interplay between εX|Y and
Hα(X|Y ), giving counterparts to a number of those existing
results mentioned above. In particular:
1) an upper bound on Hα(X|Y ) as a function of εX|Y is

derived for positive α; it provides an implicit lower bound
on εX|Y as a function of Hα(X|Y );

2) explicit lower bounds on εX|Y are given as a function of
Hα(X|Y ) for both positive and negative α;

3) the lower bounds are extended to the list-decoding setting;
4) as a counterpart to the generalized Fano’s inequality, we

derive a lower bound on Hα(X|Y ) as a function of εX|Y
capitalizing on the Schur concavity of Rényi entropy.

Due to space limitations, all proofs are provided in [25],
which, in addition, gives upper bounds on the minimum error
probability as a function of the Rényi divergence and the
Chernoff information. In the setup of discrete memoryless
channels, we analyze in [25] the exponentially vanishing decay
of the Arimoto-Rényi conditional entropy of the transmitted
codeword given the channel output when averaged over a code
ensemble.

II. RÉNYI INFORMATION MEASURES

Definition 1: [24] Let PX be a probability distribution on a
discrete set X . The Rényi entropy of order α ∈ (0, 1)∪(1,∞)
of X is defined as

Hα(X) =
1

1− α
log
∑
x∈X

PαX(x). (3)

By its continuous extension,

H0(X) = log
∣∣{x ∈ X : PX(x) > 0}

∣∣, (4)
H1(X) = H(X), (5)

H∞(X) = log
1

pmax
(6)

where pmax is the largest of the masses of X .
Definition 2: For α ∈ (0, 1) ∪ (1,∞), the binary Rényi

entropy is defined, for p ∈ [0, 1], as

hα(p) = Hα(X) =
1

1− α
log
(
pα + (1− p)α

)
, (7)

where X is a binary random variable with probabilities p and
1− p. The continuous extension of the binary Rényi entropy
at α = 1 yields the binary entropy function:

h(p) = p log
1

p
+ (1− p) log 1

1− p
. (8)

In order to put forth generalizations of Fano’s inequality
and bounds on the error probability, we consider Arimoto’s
proposal for the conditional Rényi entropy (named, for short,
the Arimoto-Rényi conditional entropy).

Definition 3: [2] Let PXY be defined on X ×Y , where X
is a discrete random variable. The Arimoto-Rényi conditional
entropy of order α ∈ [0,∞] of X given Y is defined as
follows:

• If α ∈ (0, 1) ∪ (1,∞), then

Hα(X|Y )

=
α

1− α
log E

(∑
x∈X

PαX|Y (x|Y )

) 1
α

 (9)

=
α

1− α
log

∑
y∈Y

PY (y) exp

(
1− α
α

Hα(X|Y = y)

)
,

(10)

where (10) applies if Y is a discrete random variable.
• By its continuous extension, the Arimoto-Rényi condi-

tional entropy of orders 0, 1 and ∞ is defined as

H0(X|Y ) = ess supH0

(
PX|Y (·|Y )

)
(11)

= log max
y∈Y

∣∣suppPX|Y (·|y)
∣∣ (12)

= max
y∈Y

H0(X |Y = y), (13)

H1(X|Y ) = H(X|Y ), (14)

H∞(X|Y ) = − log E
[
max
x∈X

PX|Y (x|Y )
]

(15)

where (12) and (13) apply if Y is a discrete random
variable.

Although not nearly as important, sometimes in the context
of finitely valued random variables, it is useful to consider the
unconditional and conditional Rényi entropies of negative or-
ders α ∈ (−∞, 0) in (3) and (9) respectively. Basic properties
of Hα(X|Y ) appear in [12] and [25].

The third Rényi information measure used in this paper is
the binary Rényi divergence.

Definition 4: For α ∈ (0, 1) ∪ (1,∞), the binary Rényi
divergence is defined as the continuous extension to [0, 1]2

of

dα(p‖q) = 1
α−1 log

(
pαq1−α + (1− p)α(1− q)1−α

)
. (16)

By analytic continuation in α, for (p, q) ∈ (0, 1)2,

d0(p‖q) = 0, (17)

d1(p‖q) = d(p‖q) = p log
p

q
+ (1− p) log 1− p

1− q
, (18)

d∞(p‖q) = logmax

{
p

q
,
1− p
1− q

}
(19)

where d(·‖·) in (18) denotes the binary relative entropy.
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III. ARIMOTO-RÉNYI CONDITIONAL ENTROPY AND
ERROR PROBABILITY

A. Upper bound on the Arimoto-Rényi conditional entropy:
Generalized Fano’s inequality

The minimum error probability εX|Y can be achieved by
maximum-a-posteriori decision rule L∗ : Y → X :

εX|Y = min
L : Y→X

P[X 6= L(Y )] (20)

= P[X 6= L∗(Y )] (21)

= 1− E
[
max
x∈X

PX|Y (x|Y )

]
(22)

≤ 1− pmax (23)

where (23) is the minimum error probability achievable among
blind decision rules that disregard the observations.

Fano’s inequality links the decision theoretic uncertainty
εX|Y and the information theoretic uncertainty H(X|Y )
through

H(X|Y ) ≤ logM − d
(
εX|Y ‖1− 1

M

)
(24)

= h(εX|Y ) + εX|Y log(M − 1). (25)

Although the form of Fanos inequality in (24) is not nearly
as popular as (25), it turns out to be the version that admits
an elegant generalization to the Arimoto-Renyi conditional
entropy. It is straightforward to obtain (25) by averaging
a conditional version with respect to the observation. This
simple route to the desired result is not viable in the case
of Hα(X|Y ) since it is not an average of Rényi entropies
of conditional distributions. The conventional proof of Fano’s
inequality in [7, pp. 38–39] based on the use of the chain rule
for entropy is also doomed to failure for the Arimoto-Rényi
conditional entropy of order α 6= 1 since it does not satisfy
the chain rule.

Before we generalize Fano’s inequality by linking εX|Y
with Hα(X|Y ) for α ∈ [0,∞), note that for α = ∞, the
following identity holds in view of (22):

εX|Y = 1− exp
(
−H∞(X|Y )

)
. (26)

Theorem 1: Let PXY be a probability measure defined on
X × Y with |X | =M <∞. For all α ∈ (0,∞),

Hα(X|Y ) ≤ logM − dα
(
εX|Y ‖1− 1

M

)
. (27)

Equality holds in (27) if and only if

PX|Y (x|y) =
{ εX|Y

M−1 , x 6= L∗(y)
1− εX|Y , x = L∗(y). (28)

for all y ∈ S such that PY (S) = 1, where L∗ is a deterministic
MAP decision rule (see (21)).

Proof: See [25, Theorem 3].
In information theoretic problems, it is common to en-

counter the case in which X and Y are actually vectors of
dimension n. Fano’s inequality ensures that vanishing error
probability implies vanishing normalized conditional entropy

as n → ∞. As we see next, the picture with the Arimoto-
Rényi conditional entropy is more nuanced.

Theorem 2: Let {Xn} be a sequence of random variables,
with Xn taking values on Xn for n ∈ N and assume that
there exists an integer M ≥ 2 such that |Xn| ≤ Mn for all
n.1 Let {Yn} be an arbitrary sequence of random variables,
for which εXn|Yn → 0 as n→∞. The following results hold
for Hα(Xn|Yn):
a) if α ∈ (1,∞], then Hα(Xn|Yn)→ 0;
b) if α = 1, then 1

n H(Xn|Yn)→ 0;
c) if α ∈ [0, 1), then 1

n Hα(Xn|Yn) is upper bounded by
logM ; nevertheless, it does not necessarily tend to 0.

Proof: See [25, Theorem 4].

B. List decoding

In this section we consider the case where the decision rule
outputs a list of choices. The extension of Fano’s inequality
to list decoding was initiated in [1, Section 5]. It is useful for
proving converse results in conjunction with the blowing-up
lemma ([8, Lemma 1.5.4]). The main idea of the successful
combination of these two tools is that, given an arbitrary code,
one can blow-up the decoding sets in such a way that the
probability of decoding error can be as small as desired for
sufficiently large blocklength; since the blown-up decoding
sets are no longer disjoint, the resulting setup is a list decoder
with subexponential list size.

A generalization of Fano’s inequality for list decoding of
size L is2

H(X|Y ) ≤ logM − d
(
PL‖1− L

M

)
, (29)

where PL denotes the probability of X not being in the list. As
we noted before, averaging a conditional version with respect
to the observation is not viable in the case of Hα(X|Y ) with
α 6= 1. A pleasing generalization of (29) to the Arimoto-Rényi
conditional entropy does indeed hold as the following result
shows.

Theorem 3: Let PXY be a probability measure defined on
X × Y where |X | = M . Consider a decision rule3 L : Y →(X
L

)
, and denote the decoding error probability by

PL = P
[
X /∈ L(Y )

]
. (30)

Then, for all α ∈ (0, 1) ∪ (1,∞),

Hα(X|Y ) ≤ logM − dα
(
PL‖1− L

M

)
(31)

=
1

1− α
log
(
L1−α (1− PL)α + (M − L)1−α PαL

)
(32)

with equality in (31) if and only if

PX|Y (x|y) =
{

PL
M−L , x /∈ L(y)
1−PL
L , x ∈ L(y). (33)

1Note that this encompasses the conventional setting in which Xn = An.
2See [18, Lemma 1] for a weaker version of (29).
3
(X
L

)
stands for the set of all the subsets of X with cardinality L, with

L ≤ |X |.
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Proof: See [25, Theorem 8].
Theorem 4: Let PXY be a probability measure defined on

X × Y with |X | =M <∞, which satisfies

PX|Y (x|y) > 0, (x, y) ∈ X × Y, (34)

and let L : Y →
(X
L

)
. Then, for all α ∈ (−∞, 0), the

probability that the decoding list does not include the correct
decision satisfies

PL ≥ exp

(
1− α
α

[
Hα(X|Y )− log(M − L)

])
. (35)

Proof: See [25, Theorem 9].
Theorem 5: Let PXY be a probability measure defined on

X × Y which satisfies (34), with X being finite or countably
infinite, and let L : Y →

(X
L

)
. Then, for all α ∈ (1,∞),

PL ≥ 1− exp

(
1− α
α

[
Hα(X|Y )− logL

])
. (36)

Proof: See [25, Theorem 10].
Remark 1: The implicit lower bound on εX|Y given by the

generalized Fano’s inequality in (31) is tighter than the explicit
lower bound in (36).

C. Lower bounds on the Arimoto-Rényi conditional entropy

The major existing lower bounds on the Shannon condi-
tional entropy H(X|Y ) as a function of the minimum error
probability εX|Y are:
1) In view of [15, Theorem 11], (1) (shown in [3, Theorem 1],

[6, (12)] and [14, (41)] for finite alphabets) holds for a
general discrete random variable X . As an example where
(1) holds with equality, let X and Y be random variables
defined on {0, 1} with PX(0) = η ∈

(
0, 12
]
, PY |X(1|0) =

1, and PY |X(1|1) = η
1−η . Then, εX|Y = η and H(X|Y ) =

2η bits.
2) Due to Kovalevsky [19], Tebbe and Dwyer [30] (see also

[11]) in the finite alphabet case, and to Ho and Verdú [15,
(109)] in the general case,

φ
(
εX|Y

)
≤ H(X|Y ) (37)

where φ : [0, 1) → [0,∞) is the piecewise linear function
that is defined on the interval t ∈

[
1− 1

k , 1−
1
k+1

)
as

φ(t) = t k(k + 1) log

(
k + 1

k

)
+ (1− k2) log(k + 1) + k2 log k

(38)

where k is an arbitrary positive integer. Note that (37) is
tighter than (1) since φ(t) ≥ 2t log 2.

In view of (26), since Hα(X|Y ) is monotonically decreas-
ing in α, one can readily obtain the following bound:

Hα(X|Y ) ≥ log
1

1− εX|Y
(39)

for α ∈ [0,∞] with equality if α =∞.
The next result gives a counterpart to Theorem 1, and a

generalization of (37).

Theorem 6: If α ∈ (0, 1) ∪ (1,∞), then
α

1− α
log gα(εX|Y ) ≤ Hα(X|Y ), (40)

where the piecewise linear function gα : [0, 1) → Dα, with
Dα = [1,∞) for α ∈ (0, 1) and Dα = (0, 1] for α ∈ (1,∞),
is defined by

gα(t) =
(
k(k + 1)

1
α − k

1
α (k + 1)

)
t+ k

1
α
+1 − (k − 1)(k + 1)

1
α

(41)

on the interval t ∈
[
1− 1

k , 1−
1
k+1

)
for an arbitrary positive

integer k.
Proof: See [25, Theorem 11].

Remark 2: The most useful domain of applicability of
Theorem 6 is εX|Y ∈ [0, 12 ], in which case the lower bound
specializes to (k = 1)

α

1− α
log
(
1 +

(
2

1
α − 2

)
εX|Y

)
≤ Hα(X|Y ) (42)

which yields (1) as α→ 1.
Remark 3: Theorem 6 generalizes (37) since

lim
α→1

α

1− α
log gα(τ) = φ(τ), (43)

for all τ ∈ [0, 1] with φ defined in (38).
Remark 4: As α→∞, (40) is asymptotically tight.
Remark 5: Theorem 6 gives a tighter bound than (39),

unless εX|Y ∈ { 12 ,
2
3 ,

3
4 , . . .

M−1
M } (M is allowed to be ∞

here) in which case they are identical, and independent of α
(see Figure 1).
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Fig. 1. Upper and lower bounds on Hα(X|Y ) in Theorems 1 and 6,
respectively, as a function of εX|Y ∈ [0, 1 − 1

M
] for α = 1

4
(solid lines)

and α = 4 (dash-dotted lines) with M = 8.

The following result is illustrated by Figure 1.
Theorem 7: Let M ∈ {2, 3, . . .} be finite, and let the upper

and lower bounds on Hα(X|Y ) as a function of εX|Y , as
given in Theorems 1 and 6, be denoted by uα,M (·) and lα(·),
respectively. Then,
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a) these bounds coincide if and only if X is a deterministic
function of the observation Y or X is equiprobable on the
set X and independent of Y ;

b) the limit of the ratio of the upper-to-lower bounds when
εX|Y → 0 is given by

lim
εX|Y→0

uα,M (εX|Y )

lα(εX|Y )
=

{
∞, α ∈ (0, 1)
1

2−2 1
α
, α ∈ (1,∞). (44)

Proof: See [25, Appendix B].
The following result is a consequence of Theorem 6:
Theorem 8: Let k ∈ N, and α ∈ (0, 1)∪ (1,∞). If log k ≤

Hα(X|Y ) < log(k + 1), then

εX|Y ≤
exp

(
1−α
α Hα(X|Y )

)
− k 1

α+1 + (k − 1)(k + 1)
1
α

k(k + 1)
1
α − k 1

α (k + 1)
.

(45)

Furthermore, the upper bound on εX|Y as a function of
Hα(X|Y ) is asymptotically tight in the limit where α→∞.

Proof: See [25, Theorem 12].
Remark 6: By letting α → 1 in the right side of (45), the

bound by Ho and Verdú [15, (109)] is recovered:

εX|Y ≤
H(X|Y ) + (k2 − 1) log(k + 1)− k2 log k

k(k + 1) log
(
k+1
k

) (46)

if log k ≤ H(X|Y ) < log(k + 1) for an arbitrary k ∈ N.
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