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Entropy Power Inequality

The Entropy Power

Let X be a d-dimensional random vector (r.v.) with differential entropy
h(X). The entropy power of X is

N(X) = exp
(
2
d h(X)

)
.
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Entropy Power Inequality

The Entropy Power

Let X be a d-dimensional random vector (r.v.) with differential entropy
h(X). The entropy power of X is

N(X) = exp
(
2
d h(X)

)
.

The Entropy Power Inequality (EPI)

Let {Xk}nk=1 be independent r.v.’s. Then,

N

(
n∑
k=1

Xk

)
≥

n∑
k=1

N(Xk)

and equality holds if and only if {Xk}nk=1 are Gaussians with proportional
covariances.
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Entropy Power Inequality

Applications of the EPI

Converse theorems for...

The capacity region of the Gaussian broadcast channel - Bergmans,
1974

The rate-equivocation region of the Gaussian wire-tap channel -
Leung-Yan-Cheong & Hellman, 1978

Multi-terminal rate-distortion theory (the quadratic Gaussian CEO
problem) - Oohama, 1998

The capacity region of the Gaussian broadcast MIMO channel -
Weingarten, Steinberg & Shamai, 2006
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Rényi’s Entropy Power

Rényi’s Entropy

Let X be a d-dimensional r.v. with density fX .

Let α ∈ (0, 1) ∪ (1,∞).

The (differential) Rényi entropy of X is

hα(X) =
1

1− α
log

( ∫
Rd

fαX(x) dx

)
.

Using the Lα norm, hα(X) = α
1−α log ‖fX‖α.
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Rényi’s Entropy

Let X be a d-dimensional r.v. with density fX .

Let α ∈ (0, 1) ∪ (1,∞).

The (differential) Rényi entropy of X is

hα(X) =
1

1− α
log

( ∫
Rd

fαX(x) dx

)
.

Using the Lα norm, hα(X) = α
1−α log ‖fX‖α.

h0(X) = log λ
(
supp(fX)

)
.

h1(X) = h(X) = −
∫
Rd
fX(x) log fX(x) dx.

h∞(X) = − log
(
ess sup(fX)

)
.

where λ is the Lebesgue measure in Rd.
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Rényi’s Entropy Power

Rényi’s Entropy Power

Let X be a d-dimensional r.v. with density .

Let α ∈ [0,∞].

The Rényi entropy power of X is

Nα(X) = exp
(
2
d hα(X)

)
.
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Rényi’s Entropy Power

Rényi’s Entropy Power

Let X be a d-dimensional r.v. with density .

Let α ∈ [0,∞].

The Rényi entropy power of X is

Nα(X) = exp
(
2
d hα(X)

)
.

Using the Lα norm, for α ∈ (0, 1) ∪ (1,∞),

Nα(X) = (‖fX‖α)−
α′
2d ,

where α′ = α
α−1 .

Homogeneity of order 2: Nα(λX) = λ2Nα(X), ∀λ ∈ R.

Monotonically decreasing: β ≤ α =⇒ Nβ(X) ≥ Nα(X).
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Question - R-EPI

A Rényi EPI (R-EPI)?

1 Let {Xk}nk=1 be d–dimensional independent r.v.’s with densities.

2 Let α ∈ [0,∞], n ∈ N.

Is there a positive constant c
(n,d)
α such that

Nα

(
n∑
k=1

Xk

)
≥ c(n,d)α

n∑
k=1

Nα(Xk)?
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Question - R-EPI

A Rényi EPI (R-EPI)?

1 Let {Xk}nk=1 be d–dimensional independent r.v.’s with densities.

2 Let α ∈ [0,∞], n ∈ N.

Is there a positive constant c
(n,d)
α such that

Nα

(
n∑
k=1

Xk

)
≥ c(n,d)α

n∑
k=1

Nα(Xk)?

Upper and Lower Bounds on c
(n,d)
α

For independent Gaussian random vectors with proportional
covariances, Nα (

∑n
k=1Xk) =

∑n
k=1Nα(Xk).

⇒ c
(n,d)
α ≤ 1

Trivial Bound - c
(n,d)
α ≥ 0
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Question - R-EPI

Related Work
1 Bercher and Vignat, 2002 - For every α ∈ [0,∞],

Nα (
∑n

k=1Xk) ≥ max
1≤k≤n

Nα(Xk).

2 Wang and Madiman, IEEE Trans. on Info. Theory, 2014 -
Conjectures on the optimal R-EPI.

3 Bobkov and Chistyakov, IEEE Trans., 2015 - For every α > 1,

cα = 1
eα

1
α−1 (independently of d and n).

4 Madiman, Melbourne and Xu - Recent survey paper at
http://arxiv.org/abs/1604.04225 on EPI, R-EPI and the relation to
convex geometry.
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Sharpened Young’s Inequality and Monotonicity of Rényi Entropy

Sharpened Young’s Inequality

Let p, q, r ≥ 1 satisfy 1
p +

1
q = 1 + 1

r and let f ∈ Lp(Rd) and g ∈ Lq(Rd)
be non-negative functions. Then

‖f ∗ g‖r ≤
(
ApAq
Ar

) d
2

‖f‖p ‖g‖q,

where At = t
1
t t′−

1
t′ and t′ = t

t−1 .

Equality holds if and only if f and g are Gaussians.

Reversed for p, q, r ∈ (0, 1).
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Sharpened Young’s Inequality

Let p, q, r ≥ 1 satisfy 1
p +

1
q = 1 + 1

r and let f ∈ Lp(Rd) and g ∈ Lq(Rd)
be non-negative functions. Then

‖f ∗ g‖r ≤
(
ApAq
Ar

) d
2

‖f‖p ‖g‖q,

where At = t
1
t t′−

1
t′ and t′ = t

t−1 .

Equality holds if and only if f and g are Gaussians.

Reversed for p, q, r ∈ (0, 1).

Monotonicity of Rényi Entropy Power in its Order

Let α, β ∈ (0, 1) ∪ (1,∞) such that β ≤ α and let f ∈ Lα ∩ L1 be a
non-negative function such that ‖f‖1 = 1. Then,

‖f‖β
′

β ≤ ‖f‖
α′
α .
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Sharpened Young’s Inequality and Monotonicity of Rényi Entropy

Combining the Two Inequalities

Proposition 1: Let Pn = {t ∈ Rn : tk ≥ 0,
∑n

k=1 tk = 1} be the probability
simplex and let α > 1. If

∑n
k=1Nα(Xk) = 1, then

logNα

(
n∑
k=1

Xk

)
≥ f0(t), ∀ t ∈ Pn,

where

f0(t) =
logα
α−1 −D(t‖Nα) + α′

∑n
k=1

(
1− tk

α′

)
log
(
1− tk

α′

)
.

Nα = (Nα(X1), . . . , Nα(Xn)) .

D(t‖Nα) =
∑n

k=1 tk log
(

tk
Nα(Xk)

)
.
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Combining the Two Inequalities

Proposition 1: Let Pn = {t ∈ Rn : tk ≥ 0,
∑n

k=1 tk = 1} be the probability
simplex and let α > 1. If

∑n
k=1Nα(Xk) = 1, then

logNα

(
n∑
k=1

Xk

)
≥ f0(t), ∀ t ∈ Pn,

where

f0(t) =
logα
α−1 −D(t‖Nα) + α′

∑n
k=1

(
1− tk

α′

)
log
(
1− tk

α′

)
.

Nα = (Nα(X1), . . . , Nα(Xn)) .

D(t‖Nα) =
∑n

k=1 tk log
(

tk
Nα(Xk)

)
.

⇒ The bound can be tightened by maximizing f0(t).
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First Improvement

Theorem 1: A New R-EPI

Let

{Xk}nk=1 be d–dimensional independent r.v’s with densities.

α > 1, α′ = α
α−1 .

n ∈ N.
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First Improvement

Theorem 1: A New R-EPI

Let

{Xk}nk=1 be d–dimensional independent r.v’s with densities.

α > 1, α′ = α
α−1 .

n ∈ N.
Then, the following R-EPI holds:

Nα(

n∑
k=1

Xk) ≥ c(n)α

n∑
k=1

Nα(Xk),

with

c(n)α = α
1

α−1

(
1− 1

nα′

)nα′−1
.
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First Improvement

Theorem 1: A New R-EPI (Cont.)

Nα(

n∑
k=1

Xk) ≥ c(n)α

n∑
k=1

Nα(Xk), c(n)α = α
1

α−1

(
1− 1

nα′

)nα′−1
.

1 Improves the R-EPI by Bobkov and Chistyakov (cα = 1
eα

1
α−1 ) for

every α > 1 and n ∈ N.
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1
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every α > 1 and n ∈ N.
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First Improvement

Theorem 1: A New R-EPI (Cont.)

Nα(

n∑
k=1

Xk) ≥ c(n)α

n∑
k=1

Nα(Xk), c(n)α = α
1

α−1

(
1− 1

nα′

)nα′−1
.

1 Improves the R-EPI by Bobkov and Chistyakov (cα = 1
eα

1
α−1 ) for

every α > 1 and n ∈ N.

2 For every α > 1, it asymptotically coincides with the R-EPI by
Bobkov and Chistyakov as n→∞.

3 If α ↓ 1, it coincides with the EPI.

4 n = 2 and α→∞ ⇒ c
(n)
α tends to 1

2 which is optimal (Rogozin
1988); achieved when X1 and X2 are uniformly distributed in the
cube [0, 1]d.
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First Improvement

Theorem 1: A New R-EPI (Cont.)

α
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Figure: A plot of c
(n)
α as a function of α, for n = 2, 3, 10 and n→∞.
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Further Tightening The Bound

Motivation

Bercher and Vignat -
Nα(X1 +X2) ≥ max(Nα(X1), Nα(X2)), α ∈ [0,∞]
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Motivation

Bercher and Vignat -
Nα(X1 +X2) ≥ max(Nα(X1), Nα(X2)), α ∈ [0,∞]

Theorem 1 -
N∞(X1+X2) ≥ c(2)∞ (N∞(X1)+N∞(X2)) =

1
2 (N∞(X1)+N∞(X2))
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Nα(X1 +X2) ≥ max(Nα(X1), Nα(X2)), α ∈ [0,∞]

Theorem 1 -
N∞(X1+X2) ≥ c(2)∞ (N∞(X1)+N∞(X2)) =

1
2 (N∞(X1)+N∞(X2))

1
2 (N∞(X1) +N∞(X2)) ≤ max(N∞(X1), N∞(X2))

⇒ Bercher and Vignat’s bound is tighter for n = 2 and large enough α.
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Further Tightening The Bound

The Optimization Problem

Recall that logNα (
∑n

k=1Xk) ≥ f0(t), ∀ t ∈ Pn.

E. Ram and I. Sason (Technion) ISIT 2016, Barcelona July 10–15, 2016. 14 / 26



Further Tightening The Bound

The Optimization Problem

Recall that logNα (
∑n

k=1Xk) ≥ f0(t), ∀ t ∈ Pn.
The optimization problem is not convex

maximize f0(t1, t2, . . . , tn−1, tn)
subject to tk ≥ 0, k ∈ {1, . . . , n},∑n

k=1 tk = 1
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Recall that logNα (
∑n

k=1Xk) ≥ f0(t), ∀ t ∈ Pn.
The optimization problem is not convex

maximize f0(t1, t2, . . . , tn−1, tn)
subject to tk ≥ 0, k ∈ {1, . . . , n},∑n

k=1 tk = 1

An equivalent problem

maximize f0(t1, t2, . . . , tn−1, 1−
∑n−1

k=1 tk)
subject to tk ≥ 0, k ∈ {1, . . . , n− 1},∑n−1

k=1 tk ≤ 1

This problem can be shown to be convex by a non trivial use of the
next result from matrix theory (Bunch et al. 1978).
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Further Tightening The Bound

Rank–One Modification Theorem (Bunch et al. 1978)

Let

D ∈ Rn×n be a diagonal matrix with the eigenvalues
d1 ≤ d2 ≤ . . . ≤ dn.
z ∈ Rn such that ‖z‖2 = 1, ρ ∈ R and C = D + ρzzT .

λ1 ≤ λ2 ≤ . . . ≤ λn be the eigenvalues of C.
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Further Tightening The Bound

Rank–One Modification Theorem (Bunch et al. 1978)

Let

D ∈ Rn×n be a diagonal matrix with the eigenvalues
d1 ≤ d2 ≤ . . . ≤ dn.
z ∈ Rn such that ‖z‖2 = 1, ρ ∈ R and C = D + ρzzT .

λ1 ≤ λ2 ≤ . . . ≤ λn be the eigenvalues of C.

Then,

1 λi = di + ρµi, where
∑n

i=1 µi = 1 and µi ≥ 0 for all i ∈ {1, . . . , n}.
2 If ρ > 0, then d1 ≤ λ1 ≤ d2 ≤ λ2 ≤ . . . ≤ dn ≤ λn.

If ρ < 0, then λ1 ≤ d1 ≤ λ2 ≤ d2 ≤ . . . ≤ λn ≤ dn.

3 If dj 6= di and zi, ρ 6= 0, then the inequalities are strict, and for every

i ∈ {1, . . . , n}, λi is a zero of W (x) = 1 + ρ
∑n

j=1
z2i

dj−x .
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Further Tightening The Bound

Applying The Rank–One Modification Theorem

1 The Rank–One Modification Theorem is used to prove that the
Hessian matrix of f0(t1, t2, . . . , tn−1, 1−

∑n−1
k=1 tk) is negative

semi-definite.
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k=1 tk) is negative

semi-definite.
⇒ f0(t1, t2, . . . , tn−1, 1−

∑n−1
k=1 tk) is concave.

2 The optimization problem

maximize f0(t1, t2, . . . , tn−1, 1−
∑n−1

k=1 tk)
subject to tk ≥ 0, k ∈ {1, . . . , n− 1},∑n−1

k=1 tk ≤ 1

is convex.

3 The solution can be found by solving the KKT conditions.
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Further Tightening The Bound

Theorem 2

Let X1, . . . , Xn be d–dimensional independent r.v’s with densities.

Assume, w.l.g, that Nα(Xk) ≤ Nα(Xn), k ∈ {1, . . . , n− 1}.
Let ck =

Nα(Xk)
Nα(Xn)

, k ∈ {1, . . . , n− 1}.

let tn ∈ [0, 1] be the unique solution of tn +
∑n−1

k=1 ψk(tn) = 1 with

ψk(x) =
α′−
√
α′2−4ck x(α′−x)

2 , x ∈ [0, 1].

Define tk = ψk(tn), k ∈ {1, . . . , n− 1}.
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Assume, w.l.g, that Nα(Xk) ≤ Nα(Xn), k ∈ {1, . . . , n− 1}.
Let ck =

Nα(Xk)
Nα(Xn)

, k ∈ {1, . . . , n− 1}.

let tn ∈ [0, 1] be the unique solution of tn +
∑n−1

k=1 ψk(tn) = 1 with

ψk(x) =
α′−
√
α′2−4ck x(α′−x)

2 , x ∈ [0, 1].

Define tk = ψk(tn), k ∈ {1, . . . , n− 1}.

Then, the following R-EPI holds:

Nα

(
n∑
k=1

Xk

)
≥ ef0(t1,...,tn)

n∑
k=1

Nα(Xk),

with f0 defined in Proposition 1.
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Further Tightening The Bound

Theorem 2 (Cont.)

Nα

(
n∑
k=1

Xk

)
≥ ef0(t1,...,tn)

n∑
k=1

Nα(Xk).

Improves the R-EPI in Theorem 1 unless Nα(Xk) is independent of k;
in the latter case, the two R-EPIs coincide.
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Improves the R-EPI in Theorem 1 unless Nα(Xk) is independent of k;
in the latter case, the two R-EPIs coincide.

Improves the BV bound (Nα (
∑n

k=1Xk) ≥ max
1≤k≤n

Nα(Xk)). Both

bounds asymptotically coincide as α→∞ if and only if∑n−1
k=1 N∞(Xk) ≤ N∞(Xn).

E. Ram and I. Sason (Technion) ISIT 2016, Barcelona July 10–15, 2016. 18 / 26



Further Tightening The Bound

Theorem 2 (Cont.)

Nα

(
n∑
k=1

Xk

)
≥ ef0(t1,...,tn)

n∑
k=1

Nα(Xk).

Improves the R-EPI in Theorem 1 unless Nα(Xk) is independent of k;
in the latter case, the two R-EPIs coincide.

Improves the BV bound (Nα (
∑n

k=1Xk) ≥ max
1≤k≤n

Nα(Xk)). Both

bounds asymptotically coincide as α→∞ if and only if∑n−1
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Further Tightening The Bound

Theorem 2 (Cont.)

Nα

(
n∑
k=1

Xk

)
≥ ef0(t1,...,tn)

n∑
k=1

Nα(Xk).

Improves the R-EPI in Theorem 1 unless Nα(Xk) is independent of k;
in the latter case, the two R-EPIs coincide.

Improves the BV bound (Nα (
∑n

k=1Xk) ≥ max
1≤k≤n

Nα(Xk)). Both

bounds asymptotically coincide as α→∞ if and only if∑n−1
k=1 N∞(Xk) ≤ N∞(Xn).

It coincides with the EPI as α ↓ 1.

For n = 2 it leads to a closed-form bound in the next Corollary.
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Further Tightening The Bound

Further Tightening The Bound for n = 2

Corollary 1: Let

X1 and X2 be d–dimensional independent r.v’s with densities.

α > 1, α′ = α
α−1 .

βα = min{Nα(X1),Nα(X2)}
max{Nα(X1),Nα(X2)} , d(x‖y) = x log

(
x
y

)
+(1− x) log

(
1−x
1−y

)
.

tα =


α′(βα+1)−2βα−

√
(α′ (βα+1))2−8α′βα+4βα
2(1−βα) if βα < 1

1
2 if βα = 1

The following R-EPI holds:

Nα(X1 +X2) ≥ cα
(
Nα(X1) +Nα(X2)

)
,

with
cα = α

1
α−1 exp

{
−d
(
tα
∥∥ βα
βα+1

)} (
1− tα

α′

)α′−tα (1− 1−tα
α′

)α′−1+tα .
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Further Tightening The Bound

Corollary 1 (Cont.)

Nα(X1 +X2) ≥ cα
(
Nα(X1) +Nα(X2)

)
.

All the properties of our tightest bound in Theorem 2 hold:

Improves the bound in Theorem 1 for n = 2. Both bounds coincide if
and only if Nα(X1) = Nα(X2).
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Improves the bound in Theorem 1 for n = 2. Both bounds coincide if
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Improves the bound by Bercher and Vignat (2002). Both bounds
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Further Tightening The Bound

Corollary 1 (Cont.)

Nα(X1 +X2) ≥ cα
(
Nα(X1) +Nα(X2)

)
.

All the properties of our tightest bound in Theorem 2 hold:

Improves the bound in Theorem 1 for n = 2. Both bounds coincide if
and only if Nα(X1) = Nα(X2).

Improves the bound by Bercher and Vignat (2002). Both bounds
asymptotically coincide as α→∞.

α ↓ 1 ⇒ the bound coincides with the EPI.

In addition,

α→∞ ⇒ the bound is tight and achieved by two independent
d-dimensional random vectors uniformly distributed in the cubes
[0,
√
N1]

d and [0,
√
N2]

d.
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Further Tightening The Bound

Corollary 1 (Cont.)
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Figure: A comparison of the R-EPIs, for n = 2.
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Summary

Summary

Three improved R-EPIs for independent random vectors in Rd:

Nα (
∑n

k=1Xk) ≥ c
(n)
α,d

∑n
k=1Nα(Xk), α ∈ (1,∞).
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Summary

Summary

Three improved R-EPIs for independent random vectors in Rd:

Nα (
∑n

k=1Xk) ≥ c
(n)
α,d

∑n
k=1Nα(Xk), α ∈ (1,∞).

1 Theorem 1
I c

(n)
α = α

1
α−1

(
1− 1

nα′

)nα′−1
with α′ = α

α−1 .

I Improves the R-EPI by Bobkov & Chistyakov (cα = 1
eα

1
α−1 for α > 1).

I It coincides with the EPI if α ↓ 1;
I for n = 2, it is asymptotically tight by letting α→∞.
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(n)
α = α
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(
1− 1

nα′

)nα′−1
with α′ = α

α−1 .

I Improves the R-EPI by Bobkov & Chistyakov (cα = 1
eα

1
α−1 for α > 1).

I It coincides with the EPI if α ↓ 1;
I for n = 2, it is asymptotically tight by letting α→∞.

2 Theorem 2
I It can be calculated efficiently via a simple numerical algorithm;
I Tighter than Theorem 1, and all previously reported bounds.
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Summary

Summary

Three improved R-EPIs for independent random vectors in Rd:

Nα (
∑n

k=1Xk) ≥ c
(n)
α,d

∑n
k=1Nα(Xk), α ∈ (1,∞).

1 Theorem 1
I c

(n)
α = α

1
α−1

(
1− 1

nα′

)nα′−1
with α′ = α

α−1 .

I Improves the R-EPI by Bobkov & Chistyakov (cα = 1
eα

1
α−1 for α > 1).

I It coincides with the EPI if α ↓ 1;
I for n = 2, it is asymptotically tight by letting α→∞.

2 Theorem 2
I It can be calculated efficiently via a simple numerical algorithm;
I Tighter than Theorem 1, and all previously reported bounds.

3 Corollary 1 (n = 2):
I Closed form bound;
I Best known R-EPI for Nα(X1 +X2) with α > 1.
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Summary

Summary (Cont.)

Theorem 1 is obtained by tightening the recent R-EPI by Bobkov and
Chistyakov with the same analytical tools:

Monotonicity of Nα(X) in α,

The sharpened Young’s inequality.
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Summary

Summary (Cont.)

Theorem 1 is obtained by tightening the recent R-EPI by Bobkov and
Chistyakov with the same analytical tools:

Monotonicity of Nα(X) in α,

The sharpened Young’s inequality.

Theorem 2, providing a further improvement of the R-EPI, also relies on
the following analytical tools:

Solution of the Karush-Kuhn-Tucker (KKT) equations of the related
optimization problem;

Strong Lagrange duality in convex optimization where convexity is
asserted by invoking a theorem in matrix theory regarding the
rank-one modification of a real-valued symmetric matrix.
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Summary

Applications

It is our hope that the various important applications of the EPI in
information theory, together with the applicability of Rényi measures, will
encourage the study of potential applications of Rényi EPIs.
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Summary

Applications

It is our hope that the various important applications of the EPI in
information theory, together with the applicability of Rényi measures, will
encourage the study of potential applications of Rényi EPIs.

Full Paper Version

E. Ram and I. Sason, “On Rényi Entropy Power Inequalities,” submitted
to the IEEE Trans. on Information Theory in January 2016, and revised in
June 2016. http://arxiv.org/abs/1601.06555.
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Backup

A Discussion for α ∈ (0, 1)

α ∈ (0, 1) =⇒ α′ < 0 (α′ = α
α−1).

Reverse Sharpened Young’s Inequality: for 0 < α, ν1, ν2 < 1 such
that 1

α′ =
1
ν′1

+ 1
ν′2

and f, g ≥ 0,

‖f ∗ g‖α ≥
(
Aν1Aν2
Aα

) d
2

‖f‖ν1 ‖g‖ν2 .

α ∈ (0, 1) =⇒ 0 < α < ν1, ν2 =⇒ Nα(Xk) ≥ Nνk(Xk).
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Backup

A Discussion for α ∈ (0, 1)

α ∈ (0, 1) =⇒ α′ < 0 (α′ = α
α−1).

Reverse Sharpened Young’s Inequality: for 0 < α, ν1, ν2 < 1 such
that 1

α′ =
1
ν′1

+ 1
ν′2

and f, g ≥ 0,

‖f ∗ g‖α ≥
(
Aν1Aν2
Aα

) d
2

‖f‖ν1 ‖g‖ν2 .

α ∈ (0, 1) =⇒ 0 < α < ν1, ν2 =⇒ Nα(Xk) ≥ Nνk(Xk).

Question

In view of these reversed inequalities, can we derive a reversed R-EPI for
α ∈ (0, 1) ?

(Technion) Backup 25 / 26



Backup

Discussion for α ∈ (0, 1) (Cont.)

Unfortunately, our bounding technique is not extendable for
α ∈ (0, 1). Since α′ < 0 then −2α′

d > 0, and with A = 1
Aα

∏n
k=1Aνk :

Nα

(
n∑
k=1

Xk

)
= (‖fX1 ∗ . . . ∗ fXn‖α)

− 2α′
d

≥ A−
2α′

d
∏n
k=1 (‖fXk‖νk)

− 2α′
d .
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d .

I The reverse Young’s inequality still leads to a lower bound.
I 2nd reverse inequality =⇒ an upper bound to a lower bound :(.
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Backup

Discussion for α ∈ (0, 1) (Cont.)

Unfortunately, our bounding technique is not extendable for
α ∈ (0, 1). Since α′ < 0 then −2α′

d > 0, and with A = 1
Aα

∏n
k=1Aνk :

Nα

(
n∑
k=1

Xk

)
= (‖fX1 ∗ . . . ∗ fXn‖α)

− 2α′
d

≥ A−
2α′

d
∏n
k=1 (‖fXk‖νk)

− 2α′
d .

I The reverse Young’s inequality still leads to a lower bound.
I 2nd reverse inequality =⇒ an upper bound to a lower bound :(.

The Bercher & Vignat (BV) bound still holds for α ∈ (0, 1):

Nα

(∑n
k=1Xk

)
≥ max

1≤k≤n
Nα(Xk).

For independent Gaussian random vectors with proportional
covariances, Nα (

∑n
k=1Xk) =

∑n
k=1Nα(Xk) also for α ∈ (0, 1).

=⇒ 1
n ≤ c

(n,d)
α ≤ 1 for α ∈ (0, 1).

(Technion) Backup 26 / 26


	Entropy Power Inequality
	Rényi's Entropy Power
	Question - R-EPI
	Sharpened Young's Inequality and Monotonicity of Rényi Entropy
	First Improvement
	Further Tightening The Bound
	Summary 
	Appendix
	Backup 


