On Rényi Entropy Power Inequalities

Eshed Ram
Joint work with Igal Sason
Andrew and Erna Viterbi Faculty of Electrical Engineering Technion - Israel Institute of Technology Haifa 32000, Israel

2016 IEEE International Symposium on Information Theory Barcelona, Spain

$$
\text { July 10-15, } 2016 .
$$

The Entropy Power

Let X be a d-dimensional random vector (r.v.) with differential entropy $h(X)$. The entropy power of X is

$$
N(X)=\exp \left(\frac{2}{d} h(X)\right) .
$$

The Entropy Power

Let X be a d-dimensional random vector (r.v.) with differential entropy $h(X)$. The entropy power of X is

$$
N(X)=\exp \left(\frac{2}{d} h(X)\right) .
$$

The Entropy Power Inequality (EPI)
Let $\left\{X_{k}\right\}_{k=1}^{n}$ be independent r.v.'s. Then,

$$
N\left(\sum_{k=1}^{n} X_{k}\right) \geq \sum_{k=1}^{n} N\left(X_{k}\right)
$$

and equality holds if and only if $\left\{X_{k}\right\}_{k=1}^{n}$ are Gaussians with proportional covariances.

Applications of the EPI

Converse theorems for...

- The capacity region of the Gaussian broadcast channel - Bergmans, 1974
- The rate-equivocation region of the Gaussian wire-tap channel -Leung-Yan-Cheong \& Hellman, 1978
- Multi-terminal rate-distortion theory (the quadratic Gaussian CEO problem) - Oohama, 1998
- The capacity region of the Gaussian broadcast MIMO channel Weingarten, Steinberg \& Shamai, 2006

Rényi's Entropy

- Let X be a d-dimensional r.v. with density f_{X}.
- Let $\alpha \in(0,1) \cup(1, \infty)$.

The (differential) Rényi entropy of X is

$$
h_{\alpha}(X)=\frac{1}{1-\alpha} \log \left(\int_{\mathbb{R}^{d}} f_{X}^{\alpha}(x) \mathrm{d} x\right) .
$$

Using the L_{α} norm, $h_{\alpha}(X)=\frac{\alpha}{1-\alpha} \log \left\|f_{X}\right\|_{\alpha}$.

Rényi's Entropy

- Let X be a d-dimensional r.v. with density f_{X}.
- Let $\alpha \in(0,1) \cup(1, \infty)$.

The (differential) Rényi entropy of X is

$$
h_{\alpha}(X)=\frac{1}{1-\alpha} \log \left(\int_{\mathbb{R}^{d}} f_{X}^{\alpha}(x) \mathrm{d} x\right)
$$

Using the L_{α} norm, $h_{\alpha}(X)=\frac{\alpha}{1-\alpha} \log \left\|f_{X}\right\|_{\alpha}$.

- $h_{0}(X)=\log \lambda\left(\operatorname{supp}\left(f_{X}\right)\right)$.
- $h_{1}(X)=h(X)=-\int_{\mathbb{R}^{d}} f_{X}(x) \log f_{X}(x) \mathrm{d} x$.
- $h_{\infty}(X)=-\log \left(\operatorname{ess} \sup \left(f_{X}\right)\right)$.
where λ is the Lebesgue measure in \mathbb{R}^{d}.

Rényi's Entropy Power

- Let X be a d-dimensional r.v. with density .
- Let $\alpha \in[0, \infty]$.

The Rényi entropy power of X is

$$
N_{\alpha}(X)=\exp \left(\frac{2}{d} h_{\alpha}(X)\right) .
$$

Rényi's Entropy Power

- Let X be a d-dimensional r.v. with density .
- Let $\alpha \in[0, \infty]$.

The Rényi entropy power of X is

$$
N_{\alpha}(X)=\exp \left(\frac{2}{d} h_{\alpha}(X)\right)
$$

- Using the L_{α} norm, for $\alpha \in(0,1) \cup(1, \infty)$,

$$
N_{\alpha}(X)=\left(\left\|f_{X}\right\|_{\alpha}\right)^{-\frac{\alpha^{\prime}}{2 d}}
$$

where $\alpha^{\prime}=\frac{\alpha}{\alpha-1}$.

- Homogeneity of order 2: $N_{\alpha}(\lambda X)=\lambda^{2} N_{\alpha}(X), \forall \lambda \in \mathbb{R}$.
- Monotonically decreasing: $\beta \leq \alpha \Longrightarrow N_{\beta}(X) \geq N_{\alpha}(X)$.

A Rényi EPI (R-EPI)?

(1) Let $\left\{X_{k}\right\}_{k=1}^{n}$ be d-dimensional independent r.v.'s with densities.
(2) Let $\alpha \in[0, \infty], n \in \mathbb{N}$.

Is there a positive constant $c_{\alpha}^{(n, d)}$ such that

$$
N_{\alpha}\left(\sum_{k=1}^{n} X_{k}\right) \geq c_{\alpha}^{(n, d)} \sum_{k=1}^{n} N_{\alpha}\left(X_{k}\right) ?
$$

A Rényi EPI (R-EPI)?

(1) Let $\left\{X_{k}\right\}_{k=1}^{n}$ be d-dimensional independent r.v.'s with densities.
(2) Let $\alpha \in[0, \infty], n \in \mathbb{N}$.

Is there a positive constant $c_{\alpha}^{(n, d)}$ such that

$$
N_{\alpha}\left(\sum_{k=1}^{n} X_{k}\right) \geq c_{\alpha}^{(n, d)} \sum_{k=1}^{n} N_{\alpha}\left(X_{k}\right) ?
$$

Upper and Lower Bounds on $c_{\alpha}^{(n, d)}$

- For independent Gaussian random vectors with proportional covariances, $N_{\alpha}\left(\sum_{k=1}^{n} X_{k}\right)=\sum_{k=1}^{n} N_{\alpha}\left(X_{k}\right)$.
$\Rightarrow c_{\alpha}^{(n, d)} \leq 1$
- Trivial Bound - $c_{\alpha}^{(n, d)} \geq 0$

Related Work

(1) Bercher and Vignat, 2002 - For every $\alpha \in[0, \infty]$,

$$
N_{\alpha}\left(\sum_{k=1}^{n} X_{k}\right) \geq \max _{1 \leq k \leq n} N_{\alpha}\left(X_{k}\right)
$$

(2) Wang and Madiman, IEEE Trans. on Info. Theory, 2014 Conjectures on the optimal R-EPI.
(3) Bobkov and Chistyakov, IEEE Trans., 2015-For every $\alpha>1$,

$$
\left.c_{\alpha}=\frac{1}{e} \alpha^{\frac{1}{\alpha-1}} \quad \text { (independently of } d \text { and } n\right) .
$$

(9) Madiman, Melbourne and Xu - Recent survey paper at http://arxiv.org/abs/1604.04225 on EPI, R-EPI and the relation to convex geometry.

Sharpened Young's Inequality

Let $p, q, r \geq 1$ satisfy $\frac{1}{p}+\frac{1}{q}=1+\frac{1}{r}$ and let $f \in L^{p}\left(\mathbb{R}^{d}\right)$ and $g \in L^{q}\left(\mathbb{R}^{d}\right)$ be non-negative functions. Then

$$
\|f * g\|_{r} \leq\left(\frac{A_{p} A_{q}}{A_{r}}\right)^{\frac{d}{2}}\|f\|_{p}\|g\|_{q}
$$

where $A_{t}=t^{\frac{1}{t}} t^{\prime-\frac{1}{t^{\prime}}}$ and $t^{\prime}=\frac{t}{t-1}$.

- Equality holds if and only if f and g are Gaussians.
- Reversed for $p, q, r \in(0,1)$.

Sharpened Young's Inequality

Let $p, q, r \geq 1$ satisfy $\frac{1}{p}+\frac{1}{q}=1+\frac{1}{r}$ and let $f \in L^{p}\left(\mathbb{R}^{d}\right)$ and $g \in L^{q}\left(\mathbb{R}^{d}\right)$ be non-negative functions. Then

$$
\|f * g\|_{r} \leq\left(\frac{A_{p} A_{q}}{A_{r}}\right)^{\frac{d}{2}}\|f\|_{p}\|g\|_{q}
$$

where $A_{t}=t^{\frac{1}{t}} t^{\prime-\frac{1}{t^{\prime}}}$ and $t^{\prime}=\frac{t}{t-1}$.

- Equality holds if and only if f and g are Gaussians.
- Reversed for $p, q, r \in(0,1)$.

Monotonicity of Rényi Entropy Power in its Order

Let $\alpha, \beta \in(0,1) \cup(1, \infty)$ such that $\beta \leq \alpha$ and let $f \in L^{\alpha} \cap L^{1}$ be a non-negative function such that $\|f\|_{1}=1$. Then,

$$
\|f\|_{\beta}^{\beta^{\prime}} \leq\|f\|_{\alpha}^{\alpha^{\prime}}
$$

Combining the Two Inequalities

Proposition 1: Let $\mathcal{P}^{n}=\left\{\underline{t} \in \mathbb{R}^{n}: t_{k} \geq 0, \sum_{k=1}^{n} t_{k}=1\right\}$ be the probability simplex and let $\alpha>1$. If $\sum_{k=1}^{n} N_{\alpha}\left(X_{k}\right)=1$, then

$$
\log N_{\alpha}\left(\sum_{k=1}^{n} X_{k}\right) \geq f_{0}(\underline{t}), \forall \underline{t} \in \mathcal{P}^{n}
$$

where

- $f_{0}(\underline{t})=\frac{\log \alpha}{\alpha-1}-D\left(\underline{t} \| \underline{N}_{\alpha}\right)+\alpha^{\prime} \sum_{k=1}^{n}\left(1-\frac{t_{k}}{\alpha^{\prime}}\right) \log \left(1-\frac{t_{k}}{\alpha^{\prime}}\right)$.
- $\underline{N}_{\alpha}=\left(N_{\alpha}\left(X_{1}\right), \ldots, N_{\alpha}\left(X_{n}\right)\right)$.
- $D\left(\underline{t} \| \underline{N}_{\alpha}\right)=\sum_{k=1}^{n} t_{k} \log \left(\frac{t_{k}}{N_{\alpha}\left(X_{k}\right)}\right)$.

Combining the Two Inequalities

Proposition 1: Let $\mathcal{P}^{n}=\left\{\underline{t} \in \mathbb{R}^{n}: t_{k} \geq 0, \sum_{k=1}^{n} t_{k}=1\right\}$ be the probability simplex and let $\alpha>1$. If $\sum_{k=1}^{n} N_{\alpha}\left(X_{k}\right)=1$, then

$$
\log N_{\alpha}\left(\sum_{k=1}^{n} X_{k}\right) \geq f_{0}(\underline{t}), \forall \underline{t} \in \mathcal{P}^{n},
$$

where

- $f_{0}(\underline{t})=\frac{\log \alpha}{\alpha-1}-D\left(\underline{t} \| \underline{N}_{\alpha}\right)+\alpha^{\prime} \sum_{k=1}^{n}\left(1-\frac{t_{k}}{\alpha^{\prime}}\right) \log \left(1-\frac{t_{k}}{\alpha^{\prime}}\right)$.
- $\underline{N}_{\alpha}=\left(N_{\alpha}\left(X_{1}\right), \ldots, N_{\alpha}\left(X_{n}\right)\right)$.
- $D\left(\underline{t} \| \underline{N}_{\alpha}\right)=\sum_{k=1}^{n} t_{k} \log \left(\frac{t_{k}}{N_{\alpha}\left(X_{k}\right)}\right)$.
\Rightarrow The bound can be tightened by maximizing $f_{0}(\underline{t})$.

Theorem 1: A New R-EPI

Let

- $\left\{X_{k}\right\}_{k=1}^{n}$ be d-dimensional independent r.v's with densities.
- $\alpha>1, \alpha^{\prime}=\frac{\alpha}{\alpha-1}$.
- $n \in \mathbb{N}$.

Theorem 1: A New R-EPI

Let

- $\left\{X_{k}\right\}_{k=1}^{n}$ be d-dimensional independent r.v's with densities.
- $\alpha>1, \alpha^{\prime}=\frac{\alpha}{\alpha-1}$.
- $n \in \mathbb{N}$.

Then, the following R-EPI holds:

$$
N_{\alpha}\left(\sum_{k=1}^{n} X_{k}\right) \geq c_{\alpha}^{(n)} \sum_{k=1}^{n} N_{\alpha}\left(X_{k}\right)
$$

with

$$
c_{\alpha}^{(n)}=\alpha^{\frac{1}{\alpha-1}}\left(1-\frac{1}{n \alpha^{\prime}}\right)^{n \alpha^{\prime}-1}
$$

Theorem 1: A New R-EPI (Cont.)

$$
N_{\alpha}\left(\sum_{k=1}^{n} X_{k}\right) \geq c_{\alpha}^{(n)} \sum_{k=1}^{n} N_{\alpha}\left(X_{k}\right), \quad c_{\alpha}^{(n)}=\alpha^{\frac{1}{\alpha-1}}\left(1-\frac{1}{n \alpha^{\prime}}\right)^{n \alpha^{\prime}-1} .
$$

(1) Improves the R-EPI by Bobkov and Chistyakov ($c_{\alpha}=\frac{1}{e} \alpha^{\frac{1}{\alpha-1}}$) for every $\alpha>1$ and $n \in \mathbb{N}$.

Theorem 1: A New R-EPI (Cont.)

$$
N_{\alpha}\left(\sum_{k=1}^{n} X_{k}\right) \geq c_{\alpha}^{(n)} \sum_{k=1}^{n} N_{\alpha}\left(X_{k}\right), \quad c_{\alpha}^{(n)}=\alpha^{\frac{1}{\alpha-1}}\left(1-\frac{1}{n \alpha^{\prime}}\right)^{n \alpha^{\prime}-1} .
$$

(1) Improves the R-EPI by Bobkov and Chistyakov ($c_{\alpha}=\frac{1}{e} \alpha^{\frac{1}{\alpha-1}}$) for every $\alpha>1$ and $n \in \mathbb{N}$.
(2) For every $\alpha>1$, it asymptotically coincides with the R-EPI by Bobkov and Chistyakov as $n \rightarrow \infty$.

Theorem 1: A New R-EPI (Cont.)

$$
N_{\alpha}\left(\sum_{k=1}^{n} X_{k}\right) \geq c_{\alpha}^{(n)} \sum_{k=1}^{n} N_{\alpha}\left(X_{k}\right), \quad c_{\alpha}^{(n)}=\alpha^{\frac{1}{\alpha-1}}\left(1-\frac{1}{n \alpha^{\prime}}\right)^{n \alpha^{\prime}-1}
$$

(1) Improves the R-EPI by Bobkov and Chistyakov $\left(c_{\alpha}=\frac{1}{e} \alpha^{\frac{1}{\alpha-1}}\right)$ for every $\alpha>1$ and $n \in \mathbb{N}$.
(2) For every $\alpha>1$, it asymptotically coincides with the R-EPI by Bobkov and Chistyakov as $n \rightarrow \infty$.
(3) If $\alpha \downarrow 1$, it coincides with the EPI.

Theorem 1: A New R-EPI (Cont.)

$$
N_{\alpha}\left(\sum_{k=1}^{n} X_{k}\right) \geq c_{\alpha}^{(n)} \sum_{k=1}^{n} N_{\alpha}\left(X_{k}\right), \quad c_{\alpha}^{(n)}=\alpha^{\frac{1}{\alpha-1}}\left(1-\frac{1}{n \alpha^{\prime}}\right)^{n \alpha^{\prime}-1}
$$

(1) Improves the R-EPI by Bobkov and Chistyakov $\left(c_{\alpha}=\frac{1}{e} \alpha^{\frac{1}{\alpha-1}}\right)$ for every $\alpha>1$ and $n \in \mathbb{N}$.
(2) For every $\alpha>1$, it asymptotically coincides with the R-EPI by Bobkov and Chistyakov as $n \rightarrow \infty$.
(3) If $\alpha \downarrow 1$, it coincides with the EPI.
(9) $n=2$ and $\alpha \rightarrow \infty \Rightarrow c_{\alpha}^{(n)}$ tends to $\frac{1}{2}$ which is optimal (Rogozin 1988); achieved when X_{1} and X_{2} are uniformly distributed in the cube $[0,1]^{d}$.

Theorem 1: A New R-EPI (Cont.)

Figure: A plot of $c_{\alpha}^{(n)}$ as a function of α, for $n=2,3,10$ and $n \rightarrow \infty$.

Motivation

- Bercher and Vignat -

$$
N_{\alpha}\left(X_{1}+X_{2}\right) \geq \max \left(N_{\alpha}\left(X_{1}\right), N_{\alpha}\left(X_{2}\right)\right), \alpha \in[0, \infty]
$$

Motivation

- Bercher and Vignat -

$$
N_{\alpha}\left(X_{1}+X_{2}\right) \geq \max \left(N_{\alpha}\left(X_{1}\right), N_{\alpha}\left(X_{2}\right)\right), \alpha \in[0, \infty]
$$

- Theorem 1 -

$$
N_{\infty}\left(X_{1}+X_{2}\right) \geq c_{\infty}^{(2)}\left(N_{\infty}\left(X_{1}\right)+N_{\infty}\left(X_{2}\right)\right)=\frac{1}{2}\left(N_{\infty}\left(X_{1}\right)+N_{\infty}\left(X_{2}\right)\right)
$$

Motivation

- Bercher and Vignat -

$$
N_{\alpha}\left(X_{1}+X_{2}\right) \geq \max \left(N_{\alpha}\left(X_{1}\right), N_{\alpha}\left(X_{2}\right)\right), \alpha \in[0, \infty]
$$

- Theorem 1 -

$$
N_{\infty}\left(X_{1}+X_{2}\right) \geq c_{\infty}^{(2)}\left(N_{\infty}\left(X_{1}\right)+N_{\infty}\left(X_{2}\right)\right)=\frac{1}{2}\left(N_{\infty}\left(X_{1}\right)+N_{\infty}\left(X_{2}\right)\right)
$$

- $\frac{1}{2}\left(N_{\infty}\left(X_{1}\right)+N_{\infty}\left(X_{2}\right)\right) \leq \max \left(N_{\infty}\left(X_{1}\right), N_{\infty}\left(X_{2}\right)\right)$

Motivation

- Bercher and Vignat -

$$
N_{\alpha}\left(X_{1}+X_{2}\right) \geq \max \left(N_{\alpha}\left(X_{1}\right), N_{\alpha}\left(X_{2}\right)\right), \alpha \in[0, \infty]
$$

- Theorem 1 -

$$
N_{\infty}\left(X_{1}+X_{2}\right) \geq c_{\infty}^{(2)}\left(N_{\infty}\left(X_{1}\right)+N_{\infty}\left(X_{2}\right)\right)=\frac{1}{2}\left(N_{\infty}\left(X_{1}\right)+N_{\infty}\left(X_{2}\right)\right)
$$

- $\frac{1}{2}\left(N_{\infty}\left(X_{1}\right)+N_{\infty}\left(X_{2}\right)\right) \leq \max \left(N_{\infty}\left(X_{1}\right), N_{\infty}\left(X_{2}\right)\right)$
\Rightarrow Bercher and Vignat's bound is tighter for $n=2$ and large enough α.

The Optimization Problem

Recall that $\log N_{\alpha}\left(\sum_{k=1}^{n} X_{k}\right) \geq f_{0}(\underline{t}), \forall \underline{t} \in \mathcal{P}^{n}$.

The Optimization Problem

Recall that $\log N_{\alpha}\left(\sum_{k=1}^{n} X_{k}\right) \geq f_{0}(\underline{t}), \forall \underline{t} \in \mathcal{P}^{n}$.

- The optimization problem is not convex

$$
\begin{array}{ll}
\operatorname{maximize} & f_{0}\left(t_{1}, t_{2}, \ldots, t_{n-1}, t_{n}\right) \\
\text { subject to } & t_{k} \geq 0, \quad k \in\{1, \ldots, n\}, \\
& \sum_{k=1}^{n} t_{k}=1
\end{array}
$$

The Optimization Problem

Recall that $\log N_{\alpha}\left(\sum_{k=1}^{n} X_{k}\right) \geq f_{0}(\underline{t}), \forall \underline{t} \in \mathcal{P}^{n}$.

- The optimization problem is not convex

$$
\begin{array}{ll}
\operatorname{maximize} & f_{0}\left(t_{1}, t_{2}, \ldots, t_{n-1}, t_{n}\right) \\
\text { subject to } & t_{k} \geq 0, \quad k \in\{1, \ldots, n\}, \\
& \sum_{k=1}^{n} t_{k}=1
\end{array}
$$

- An equivalent problem

$$
\begin{array}{ll}
\operatorname{maximize} & f_{0}\left(t_{1}, t_{2}, \ldots, t_{n-1}, 1-\sum_{k=1}^{n-1} t_{k}\right) \\
\text { subject to } & t_{k} \geq 0, \quad k \in\{1, \ldots, n-1\}, \\
& \sum_{k=1}^{n-1} t_{k} \leq 1
\end{array}
$$

The Optimization Problem

Recall that $\log N_{\alpha}\left(\sum_{k=1}^{n} X_{k}\right) \geq f_{0}(\underline{t}), \forall \underline{t} \in \mathcal{P}^{n}$.

- The optimization problem is not convex

$$
\begin{array}{ll}
\operatorname{maximize} & f_{0}\left(t_{1}, t_{2}, \ldots, t_{n-1}, t_{n}\right) \\
\text { subject to } & t_{k} \geq 0, \quad k \in\{1, \ldots, n\}, \\
& \sum_{k=1}^{n} t_{k}=1
\end{array}
$$

- An equivalent problem

$$
\begin{array}{ll}
\operatorname{maximize} & f_{0}\left(t_{1}, t_{2}, \ldots, t_{n-1}, 1-\sum_{k=1}^{n-1} t_{k}\right) \\
\text { subject to } & t_{k} \geq 0, \quad k \in\{1, \ldots, n-1\}, \\
& \sum_{k=1}^{n-1} t_{k} \leq 1
\end{array}
$$

- This problem can be shown to be convex by a non trivial use of the next result from matrix theory (Bunch et al. 1978).

Rank-One Modification Theorem (Bunch et al. 1978)

Let

- $D \in \mathbb{R}^{n \times n}$ be a diagonal matrix with the eigenvalues $d_{1} \leq d_{2} \leq \ldots \leq d_{n}$.
- $z \in \mathbb{R}^{n}$ such that $\|z\|_{2}=1, \rho \in \mathbb{R}$ and $C=D+\rho z z^{T}$.
- $\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{n}$ be the eigenvalues of C.

Rank-One Modification Theorem (Bunch et al. 1978)

Let

- $D \in \mathbb{R}^{n \times n}$ be a diagonal matrix with the eigenvalues $d_{1} \leq d_{2} \leq \ldots \leq d_{n}$.
- $z \in \mathbb{R}^{n}$ such that $\|z\|_{2}=1, \rho \in \mathbb{R}$ and $C=D+\rho z z^{T}$.
- $\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{n}$ be the eigenvalues of C.

Then,
(1) $\lambda_{i}=d_{i}+\rho \mu_{i}$, where $\sum_{i=1}^{n} \mu_{i}=1$ and $\mu_{i} \geq 0$ for all $i \in\{1, \ldots, n\}$.
(2) If $\rho>0$, then $d_{1} \leq \lambda_{1} \leq d_{2} \leq \lambda_{2} \leq \ldots \leq d_{n} \leq \lambda_{n}$. If $\rho<0$, then $\lambda_{1} \leq d_{1} \leq \lambda_{2} \leq d_{2} \leq \ldots \leq \lambda_{n} \leq d_{n}$.
(3) If $d_{j} \neq d_{i}$ and $z_{i}, \rho \neq 0$, then the inequalities are strict, and for every $i \in\{1, \ldots, n\}, \lambda_{i}$ is a zero of $W(x)=1+\rho \sum_{j=1}^{n} \frac{z_{i}^{2}}{d_{j}-x}$.

Applying The Rank-One Modification Theorem

(1) The Rank-One Modification Theorem is used to prove that the Hessian matrix of $f_{0}\left(t_{1}, t_{2}, \ldots, t_{n-1}, 1-\sum_{k=1}^{n-1} t_{k}\right)$ is negative semi-definite.

Applying The Rank-One Modification Theorem

(1) The Rank-One Modification Theorem is used to prove that the Hessian matrix of $f_{0}\left(t_{1}, t_{2}, \ldots, t_{n-1}, 1-\sum_{k=1}^{n-1} t_{k}\right)$ is negative semi-definite.
$\Rightarrow \quad f_{0}\left(t_{1}, t_{2}, \ldots, t_{n-1}, 1-\sum_{k=1}^{n-1} t_{k}\right)$ is concave.

Applying The Rank-One Modification Theorem

(1) The Rank-One Modification Theorem is used to prove that the Hessian matrix of $f_{0}\left(t_{1}, t_{2}, \ldots, t_{n-1}, 1-\sum_{k=1}^{n-1} t_{k}\right)$ is negative semi-definite.
$\Rightarrow \quad f_{0}\left(t_{1}, t_{2}, \ldots, t_{n-1}, 1-\sum_{k=1}^{n-1} t_{k}\right)$ is concave.
(2) The optimization problem

$$
\begin{array}{ll}
\operatorname{maximize} & f_{0}\left(t_{1}, t_{2}, \ldots, t_{n-1}, 1-\sum_{k=1}^{n-1} t_{k}\right) \\
\text { subject to } & t_{k} \geq 0, \quad k \in\{1, \ldots, n-1\} \\
& \sum_{k=1}^{n-1} t_{k} \leq 1
\end{array}
$$

is convex.

Applying The Rank-One Modification Theorem

(1) The Rank-One Modification Theorem is used to prove that the Hessian matrix of $f_{0}\left(t_{1}, t_{2}, \ldots, t_{n-1}, 1-\sum_{k=1}^{n-1} t_{k}\right)$ is negative semi-definite.
$\Rightarrow \quad f_{0}\left(t_{1}, t_{2}, \ldots, t_{n-1}, 1-\sum_{k=1}^{n-1} t_{k}\right)$ is concave.
(2) The optimization problem

$$
\begin{array}{ll}
\operatorname{maximize} & f_{0}\left(t_{1}, t_{2}, \ldots, t_{n-1}, 1-\sum_{k=1}^{n-1} t_{k}\right) \\
\text { subject to } & t_{k} \geq 0, \quad k \in\{1, \ldots, n-1\} \\
& \sum_{k=1}^{n-1} t_{k} \leq 1
\end{array}
$$

is convex.
(3) The solution can be found by solving the KKT conditions.

Theorem 2

- Let X_{1}, \ldots, X_{n} be d-dimensional independent r.v's with densities.
- Assume, w.l.g, that $N_{\alpha}\left(X_{k}\right) \leq N_{\alpha}\left(X_{n}\right), \quad k \in\{1, \ldots, n-1\}$.
- Let $c_{k}=\frac{N_{\alpha}\left(X_{k}\right)}{N_{\alpha}\left(X_{n}\right)}, \quad k \in\{1, \ldots, n-1\}$.
- let $t_{n} \in[0,1]$ be the unique solution of $t_{n}+\sum_{k=1}^{n-1} \psi_{k}\left(t_{n}\right)=1$ with $\psi_{k}(x)=\frac{\alpha^{\prime}-\sqrt{\alpha^{\prime 2}-4 c_{k} x\left(\alpha^{\prime}-x\right)}}{2}, \quad x \in[0,1]$.
- Define $t_{k}=\psi_{k}\left(t_{n}\right), \quad k \in\{1, \ldots, n-1\}$.

Theorem 2

- Let X_{1}, \ldots, X_{n} be d-dimensional independent r.v's with densities.
- Assume, w.l.g, that $N_{\alpha}\left(X_{k}\right) \leq N_{\alpha}\left(X_{n}\right), \quad k \in\{1, \ldots, n-1\}$.
- Let $c_{k}=\frac{N_{\alpha}\left(X_{k}\right)}{N_{\alpha}\left(X_{n}\right)}, \quad k \in\{1, \ldots, n-1\}$.
- let $t_{n} \in[0,1]$ be the unique solution of $t_{n}+\sum_{k=1}^{n-1} \psi_{k}\left(t_{n}\right)=1$ with $\psi_{k}(x)=\frac{\alpha^{\prime}-\sqrt{\alpha^{\prime 2}-4 c_{k} x\left(\alpha^{\prime}-x\right)}}{2}, \quad x \in[0,1]$.
- Define $t_{k}=\psi_{k}\left(t_{n}\right), \quad k \in\{1, \ldots, n-1\}$.

Then, the following R-EPI holds:

$$
N_{\alpha}\left(\sum_{k=1}^{n} X_{k}\right) \geq e^{f_{0}\left(t_{1}, \ldots, t_{n}\right)} \sum_{k=1}^{n} N_{\alpha}\left(X_{k}\right)
$$

with f_{0} defined in Proposition 1.

Theorem 2 (Cont.)

$$
N_{\alpha}\left(\sum_{k=1}^{n} X_{k}\right) \geq e^{f_{0}\left(t_{1}, \ldots, t_{n}\right)} \sum_{k=1}^{n} N_{\alpha}\left(X_{k}\right)
$$

- Improves the R-EPI in Theorem 1 unless $N_{\alpha}\left(X_{k}\right)$ is independent of k; in the latter case, the two R-EPIs coincide.

Theorem 2 (Cont.)

$$
N_{\alpha}\left(\sum_{k=1}^{n} X_{k}\right) \geq e^{f_{0}\left(t_{1}, \ldots, t_{n}\right)} \sum_{k=1}^{n} N_{\alpha}\left(X_{k}\right)
$$

- Improves the R-EPI in Theorem 1 unless $N_{\alpha}\left(X_{k}\right)$ is independent of k; in the latter case, the two R-EPIs coincide.
- Improves the BV bound $\left(N_{\alpha}\left(\sum_{k=1}^{n} X_{k}\right) \geq \max _{1 \leq k \leq n} N_{\alpha}\left(X_{k}\right)\right)$. Both bounds asymptotically coincide as $\alpha \rightarrow \infty$ if and only if $\sum_{k=1}^{n-1} N_{\infty}\left(X_{k}\right) \leq N_{\infty}\left(X_{n}\right)$.

Theorem 2 (Cont.)

$$
N_{\alpha}\left(\sum_{k=1}^{n} X_{k}\right) \geq e^{f_{0}\left(t_{1}, \ldots, t_{n}\right)} \sum_{k=1}^{n} N_{\alpha}\left(X_{k}\right)
$$

- Improves the R-EPI in Theorem 1 unless $N_{\alpha}\left(X_{k}\right)$ is independent of k; in the latter case, the two R-EPIs coincide.
- Improves the BV bound $\left(N_{\alpha}\left(\sum_{k=1}^{n} X_{k}\right) \geq \max _{1 \leq k \leq n} N_{\alpha}\left(X_{k}\right)\right)$. Both bounds asymptotically coincide as $\alpha \rightarrow \infty$ if and only if $\sum_{k=1}^{n-1} N_{\infty}\left(X_{k}\right) \leq N_{\infty}\left(X_{n}\right)$.
- It coincides with the EPI as $\alpha \downarrow 1$.

Theorem 2 (Cont.)

$$
N_{\alpha}\left(\sum_{k=1}^{n} X_{k}\right) \geq e^{f_{0}\left(t_{1}, \ldots, t_{n}\right)} \sum_{k=1}^{n} N_{\alpha}\left(X_{k}\right)
$$

- Improves the R-EPI in Theorem 1 unless $N_{\alpha}\left(X_{k}\right)$ is independent of k; in the latter case, the two R-EPIs coincide.
- Improves the BV bound $\left(N_{\alpha}\left(\sum_{k=1}^{n} X_{k}\right) \geq \max _{1 \leq k \leq n} N_{\alpha}\left(X_{k}\right)\right)$. Both bounds asymptotically coincide as $\alpha \rightarrow \infty$ if and only if $\sum_{k=1}^{n-1} N_{\infty}\left(X_{k}\right) \leq N_{\infty}\left(X_{n}\right)$.
- It coincides with the EPI as $\alpha \downarrow 1$.
- For $n=2$ it leads to a closed-form bound in the next Corollary.

Further Tightening The Bound for $n=2$

Corollary 1: Let

- X_{1} and X_{2} be d-dimensional independent r.v's with densities.
- $\alpha>1, \alpha^{\prime}=\frac{\alpha}{\alpha-1}$.
- $\beta_{\alpha}=\frac{\min \left\{N_{\alpha}\left(X_{1}\right), N_{\alpha}\left(X_{2}\right)\right\}}{\max \left\{N_{\alpha}\left(X_{1}\right), N_{\alpha}\left(X_{2}\right)\right\}}, \quad d(x \| y)=x \log \left(\frac{x}{y}\right)+(1-x) \log \left(\frac{1-x}{1-y}\right)$.
- $t_{\alpha}=\left\{\begin{array}{cc}\frac{\alpha^{\prime}\left(\beta_{\alpha}+1\right)-2 \beta_{\alpha}-\sqrt{\left(\alpha^{\prime}\left(\beta_{\alpha}+1\right)\right)^{2}-8 \alpha^{\prime} \beta_{\alpha}+4 \beta_{\alpha}}}{2\left(1-\beta_{\alpha}\right)} & \text { if } \beta_{\alpha}<1 \\ \frac{1}{2} & \text { if } \beta_{\alpha}=1\end{array}\right.$

The following R-EPI holds:

$$
N_{\alpha}\left(X_{1}+X_{2}\right) \geq c_{\alpha}\left(N_{\alpha}\left(X_{1}\right)+N_{\alpha}\left(X_{2}\right)\right)
$$

with

$$
c_{\alpha}=\alpha^{\frac{1}{\alpha-1}} \exp \left\{-d\left(t_{\alpha} \| \frac{\beta_{\alpha}}{\beta_{\alpha}+1}\right)\right\}\left(1-\frac{t_{\alpha}}{\alpha^{\prime}}\right)^{\alpha^{\prime}-t_{\alpha}}\left(1-\frac{1-t_{\alpha}}{\alpha^{\prime}}\right)^{\alpha^{\prime}-1+t_{\alpha}}
$$

Corollary 1 (Cont.)

$$
N_{\alpha}\left(X_{1}+X_{2}\right) \geq c_{\alpha}\left(N_{\alpha}\left(X_{1}\right)+N_{\alpha}\left(X_{2}\right)\right)
$$

All the properties of our tightest bound in Theorem 2 hold:

- Improves the bound in Theorem 1 for $n=2$. Both bounds coincide if and only if $N_{\alpha}\left(X_{1}\right)=N_{\alpha}\left(X_{2}\right)$.

Corollary 1 (Cont.)

$$
N_{\alpha}\left(X_{1}+X_{2}\right) \geq c_{\alpha}\left(N_{\alpha}\left(X_{1}\right)+N_{\alpha}\left(X_{2}\right)\right)
$$

All the properties of our tightest bound in Theorem 2 hold:

- Improves the bound in Theorem 1 for $n=2$. Both bounds coincide if and only if $N_{\alpha}\left(X_{1}\right)=N_{\alpha}\left(X_{2}\right)$.
- Improves the bound by Bercher and Vignat (2002). Both bounds asymptotically coincide as $\alpha \rightarrow \infty$.

Corollary 1 (Cont.)

$$
N_{\alpha}\left(X_{1}+X_{2}\right) \geq c_{\alpha}\left(N_{\alpha}\left(X_{1}\right)+N_{\alpha}\left(X_{2}\right)\right)
$$

All the properties of our tightest bound in Theorem 2 hold:

- Improves the bound in Theorem 1 for $n=2$. Both bounds coincide if and only if $N_{\alpha}\left(X_{1}\right)=N_{\alpha}\left(X_{2}\right)$.
- Improves the bound by Bercher and Vignat (2002). Both bounds asymptotically coincide as $\alpha \rightarrow \infty$.
- $\alpha \downarrow 1 \Rightarrow$ the bound coincides with the EPI.

Corollary 1 (Cont.)

$$
N_{\alpha}\left(X_{1}+X_{2}\right) \geq c_{\alpha}\left(N_{\alpha}\left(X_{1}\right)+N_{\alpha}\left(X_{2}\right)\right)
$$

All the properties of our tightest bound in Theorem 2 hold:

- Improves the bound in Theorem 1 for $n=2$. Both bounds coincide if and only if $N_{\alpha}\left(X_{1}\right)=N_{\alpha}\left(X_{2}\right)$.
- Improves the bound by Bercher and Vignat (2002). Both bounds asymptotically coincide as $\alpha \rightarrow \infty$.
- $\alpha \downarrow 1 \Rightarrow$ the bound coincides with the EPI.

In addition,

- $\alpha \rightarrow \infty \Rightarrow$ the bound is tight and achieved by two independent d-dimensional random vectors uniformly distributed in the cubes $\left[0, \sqrt{N_{1}}\right]^{d}$ and $\left[0, \sqrt{N_{2}}\right]^{d}$.

Corollary 1 (Cont.)

Figure: A comparison of the R-EPIs, for $n=2$.

Summary

Three improved R-EPIs for independent random vectors in \mathbb{R}^{d} :

$$
N_{\alpha}\left(\sum_{k=1}^{n} X_{k}\right) \geq c_{\alpha, d}^{(n)} \sum_{k=1}^{n} N_{\alpha}\left(X_{k}\right), \quad \alpha \in(1, \infty)
$$

Summary

Three improved R-EPIs for independent random vectors in \mathbb{R}^{d} :

$$
N_{\alpha}\left(\sum_{k=1}^{n} X_{k}\right) \geq c_{\alpha, d}^{(n)} \sum_{k=1}^{n} N_{\alpha}\left(X_{k}\right), \quad \alpha \in(1, \infty)
$$

(1) Theorem 1
$c_{\alpha}^{(n)}=\alpha^{\frac{1}{\alpha-1}}\left(1-\frac{1}{n \alpha^{\prime}}\right)^{n \alpha^{\prime}-1}$ with $\alpha^{\prime}=\frac{\alpha}{\alpha-1}$.
Improves the R-EPI by Bobkov \& Chistyakov $\left(c_{\alpha}=\frac{1}{e} \alpha^{\frac{1}{\alpha-1}}\right.$ for $\left.\alpha>1\right)$.
It coincides with the EPI if $\alpha \downarrow 1$;
for $n=2$, it is asymptotically tight by letting $\alpha \rightarrow \infty$.

Summary

Three improved R-EPIs for independent random vectors in \mathbb{R}^{d} :

$$
N_{\alpha}\left(\sum_{k=1}^{n} X_{k}\right) \geq c_{\alpha, d}^{(n)} \sum_{k=1}^{n} N_{\alpha}\left(X_{k}\right), \quad \alpha \in(1, \infty)
$$

(1) Theorem 1
$c_{\alpha}^{(n)}=\alpha^{\frac{1}{\alpha-1}}\left(1-\frac{1}{n \alpha^{\prime}}\right)^{n \alpha^{\prime}-1}$ with $\alpha^{\prime}=\frac{\alpha}{\alpha-1}$.
Improves the R-EPI by Bobkov \& Chistyakov $\left(c_{\alpha}=\frac{1}{e} \alpha^{\frac{1}{\alpha-1}}\right.$ for $\left.\alpha>1\right)$.
It coincides with the EPI if $\alpha \downarrow 1$;
for $n=2$, it is asymptotically tight by letting $\alpha \rightarrow \infty$.
(2) Theorem 2

- It can be calculated efficiently via a simple numerical algorithm;

Tighter than Theorem 1, and all previously reported bounds.

Summary

Three improved R-EPIs for independent random vectors in \mathbb{R}^{d} :

$$
N_{\alpha}\left(\sum_{k=1}^{n} X_{k}\right) \geq c_{\alpha, d}^{(n)} \sum_{k=1}^{n} N_{\alpha}\left(X_{k}\right), \quad \alpha \in(1, \infty)
$$

(1) Theorem 1

$$
c_{\alpha}^{(n)}=\alpha^{\frac{1}{\alpha-1}}\left(1-\frac{1}{n \alpha^{\prime}}\right)^{n \alpha^{\prime}-1} \text { with } \alpha^{\prime}=\frac{\alpha}{\alpha-1}
$$

Improves the R-EPI by Bobkov \& Chistyakov $\left(c_{\alpha}=\frac{1}{e} \alpha^{\frac{1}{\alpha-1}}\right.$ for $\left.\alpha>1\right)$.
It coincides with the EPI if $\alpha \downarrow 1$;
for $n=2$, it is asymptotically tight by letting $\alpha \rightarrow \infty$.
(2) Theorem 2

- It can be calculated efficiently via a simple numerical algorithm;

Tighter than Theorem 1, and all previously reported bounds.
(3) Corollary $1(n=2)$:

Closed form bound;
Best known R-EPI for $N_{\alpha}\left(X_{1}+X_{2}\right)$ with $\alpha>1$.

Summary (Cont.)

Theorem 1 is obtained by tightening the recent R-EPI by Bobkov and Chistyakov with the same analytical tools:

- Monotonicity of $N_{\alpha}(X)$ in α,
- The sharpened Young's inequality.

Summary (Cont.)

Theorem 1 is obtained by tightening the recent R-EPI by Bobkov and Chistyakov with the same analytical tools:

- Monotonicity of $N_{\alpha}(X)$ in α,
- The sharpened Young's inequality.

Theorem 2, providing a further improvement of the R-EPI, also relies on the following analytical tools:

- Solution of the Karush-Kuhn-Tucker (KKT) equations of the related optimization problem;
- Strong Lagrange duality in convex optimization where convexity is asserted by invoking a theorem in matrix theory regarding the rank-one modification of a real-valued symmetric matrix.

Applications

It is our hope that the various important applications of the EPI in information theory, together with the applicability of Rényi measures, will encourage the study of potential applications of Rényi EPIs.

Applications

It is our hope that the various important applications of the EPI in information theory, together with the applicability of Rényi measures, will encourage the study of potential applications of Rényi EPIs.

Full Paper Version

E. Ram and I. Sason, "On Rényi Entropy Power Inequalities," submitted to the IEEE Trans. on Information Theory in January 2016, and revised in June 2016. http://arxiv.org/abs/1601.06555.

A Discussion for $\alpha \in(0,1)$

- $\alpha \in(0,1) \Longrightarrow \alpha^{\prime}<0 \quad\left(\alpha^{\prime}=\frac{\alpha}{\alpha-1}\right)$.
- Reverse Sharpened Young's Inequality: for $0<\alpha, \nu_{1}, \nu_{2}<1$ such that $\frac{1}{\alpha^{\prime}}=\frac{1}{\nu_{1}^{\prime}}+\frac{1}{\nu_{2}^{\prime}}$ and $f, g \geq 0$,

$$
\|f * g\|_{\alpha} \geq\left(\frac{A_{\nu_{1}} A_{\nu_{2}}}{A_{\alpha}}\right)^{\frac{d}{2}}\|f\|_{\nu_{1}}\|g\|_{\nu_{2}}
$$

- $\alpha \in(0,1) \Longrightarrow 0<\alpha<\nu_{1}, \nu_{2} \Longrightarrow N_{\alpha}\left(X_{k}\right) \geq N_{\nu_{k}}\left(X_{k}\right)$.

A Discussion for $\alpha \in(0,1)$

- $\alpha \in(0,1) \Longrightarrow \alpha^{\prime}<0 \quad\left(\alpha^{\prime}=\frac{\alpha}{\alpha-1}\right)$.
- Reverse Sharpened Young's Inequality: for $0<\alpha, \nu_{1}, \nu_{2}<1$ such that $\frac{1}{\alpha^{\prime}}=\frac{1}{\nu_{1}^{\prime}}+\frac{1}{\nu_{2}^{\prime}}$ and $f, g \geq 0$,

$$
\|f * g\|_{\alpha} \geq\left(\frac{A_{\nu_{1}} A_{\nu_{2}}}{A_{\alpha}}\right)^{\frac{d}{2}}\|f\|_{\nu_{1}}\|g\|_{\nu_{2}}
$$

- $\alpha \in(0,1) \Longrightarrow 0<\alpha<\nu_{1}, \nu_{2} \Longrightarrow N_{\alpha}\left(X_{k}\right) \geq N_{\nu_{k}}\left(X_{k}\right)$.

Question

In view of these reversed inequalities, can we derive a reversed R-EPI for $\alpha \in(0,1)$?

Discussion for $\alpha \in(0,1)$ (Cont.)

- Unfortunately, our bounding technique is not extendable for $\alpha \in(0,1)$. Since $\alpha^{\prime}<0$ then $-\frac{2 \alpha^{\prime}}{d}>0$, and with $A=\frac{1}{A_{\alpha}} \prod_{k=1}^{n} A_{\nu_{k}}$:

$$
\begin{aligned}
N_{\alpha}\left(\sum_{k=1}^{n} X_{k}\right) & =\left(\left\|f_{X_{1}} * \ldots * f_{X_{n}}\right\|_{\alpha}\right)^{-\frac{2 \alpha^{\prime}}{d}} \\
& \geq A^{-\frac{2 \alpha^{\prime}}{d}} \prod_{k=1}^{n}\left(\left\|f_{X_{k}}\right\|_{\nu_{k}}\right)^{-\frac{2 \alpha^{\prime}}{d}}
\end{aligned}
$$

Discussion for $\alpha \in(0,1)$ (Cont.)

- Unfortunately, our bounding technique is not extendable for $\alpha \in(0,1)$. Since $\alpha^{\prime}<0$ then $-\frac{2 \alpha^{\prime}}{d}>0$, and with $A=\frac{1}{A_{\alpha}} \prod_{k=1}^{n} A_{\nu_{k}}$:

$$
\begin{aligned}
N_{\alpha}\left(\sum_{k=1}^{n} X_{k}\right) & =\left(\left\|f_{X_{1}} * \ldots * f_{X_{n}}\right\|_{\alpha}\right)^{-\frac{2 \alpha^{\prime}}{d}} \\
& \geq A^{-\frac{2 \alpha^{\prime}}{d}} \prod_{k=1}^{n}\left(\left\|f_{X_{k}}\right\|_{\nu_{k}}\right)^{-\frac{2 \alpha^{\prime}}{d}}
\end{aligned}
$$

The reverse Young's inequality still leads to a lower bound. 2nd reverse inequality \Longrightarrow an upper bound to a lower bound :(.

Discussion for $\alpha \in(0,1)$ (Cont.)

- Unfortunately, our bounding technique is not extendable for $\alpha \in(0,1)$. Since $\alpha^{\prime}<0$ then $-\frac{2 \alpha^{\prime}}{d}>0$, and with $A=\frac{1}{A_{\alpha}} \prod_{k=1}^{n} A_{\nu_{k}}$:

$$
\begin{aligned}
N_{\alpha}\left(\sum_{k=1}^{n} X_{k}\right) & =\left(\left\|f_{X_{1}} * \ldots * f_{X_{n}}\right\|_{\alpha}\right)^{-\frac{2 \alpha^{\prime}}{d}} \\
& \geq A^{-\frac{2 \alpha^{\prime}}{d}} \prod_{k=1}^{n}\left(\left\|f_{X_{k}}\right\|_{\nu_{k}}\right)^{-\frac{2 \alpha^{\prime}}{d}}
\end{aligned}
$$

The reverse Young's inequality still leads to a lower bound. 2nd reverse inequality \Longrightarrow an upper bound to a lower bound :(.

- The Bercher \& Vignat (BV) bound still holds for $\alpha \in(0,1)$:

$$
N_{\alpha}\left(\sum_{k=1}^{n} X_{k}\right) \geq \max _{1 \leq k \leq n} N_{\alpha}\left(X_{k}\right)
$$

- For independent Gaussian random vectors with proportional covariances, $N_{\alpha}\left(\sum_{k=1}^{n} X_{k}\right)=\sum_{k=1}^{n} N_{\alpha}\left(X_{k}\right)$ also for $\alpha \in(0,1)$.
- $\Longrightarrow \frac{1}{n} \leq c_{\alpha}^{(n, d)} \leq 1$ for $\alpha \in(0,1)$.

