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Abstract—This work introduces Rényi entropy power in-
equalities (R-EPIs) for sums of independent random vectors,
improving recent R-EPIs by Bobkov and Chistyakov. The latter
work inspired the derivation of the improved bounds.
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1. INTRODUCTION

One of the well-known inequalities in information theory
is Shannon’s celebrated entropy power inequality (EPI) [13,
Theorem 15]. Let X be a d-dimensional random vector with
density, let h(X) be its differential entropy, and let

N(X) = exp

(
2

d
h(X)

)
(1)

designate the entropy power of X . The EPI states that for
independent random vectors {Xk}nk=1

N

(
n∑
k=1

Xk

)
≥

n∑
k=1

N(Xk) (2)

where equality in (2) holds if and only if {Xk}nk=1 are
Gaussians with proportional covariances.

Due to the importance of the EPI, various insightful
information-theoretic proofs of this inequality have been
obtained (e.g., [2], [7], [14], [15]). More studies on the
theme include EPIs for discrete random variables and some
analogies (e.g., [17] and references therein), generalized EPIs
(e.g., [8], [9], [18]), reversed inequalities [5], and related
inequalities to the EPI in terms of rearrangements [16]. We
refer the reader to a very recent survey in [10].

The Rényi entropy and divergence evidence a long track
record of usefulness in information theory. For completeness,
we introduce the differential Rényi entropy and Rényi en-
tropy power which are used throughout this work.

Definition 1 (Differential Rényi entropy). Let X be
a d-dimensional random vector with density designated
by fX . The differential Rényi entropy of X of order
α ∈ (0, 1) ∪ (1,∞) is given by

hα(X) =
1

1− α
log

( ∫
Rd

fαX(x) dx

)

=
α

1− α
log ‖fX‖α. (3)

The differential Rényi entropies of orders α = 0, 1,∞
are defined as the continuous extension of hα(X) for

α ∈ (0, 1) ∪ (1,∞), which yields

h0(X) = log λ
(
supp(fX)

)
, (4)

h1(X) = h(X) = −
∫
Rd

fX(x) log fX(x) dx, (5)

h∞(X) = − log
(
ess sup(fX)

)
, (6)

where λ is the Lebesgue measure in Rd.

Definition 2 (Rényi entropy power). For a d-dimensional
random vector X with density, the Rényi entropy power of
order α ∈ [0,∞] is given by

Nα(X) = exp

(
2

d
hα(X)

)
. (7)

Since the differential Rényi entropy, hα(X), generalizes
the differential Shannon entropy, h(X), the question of
generalizing the EPI for Rényi entropy powers (call it, R-
EPI) has emerged.

Question 1. For independent random vectors {Xk} with
densities, α ∈ [0,∞] and n ∈ N, does an R-EPI of the
form

Nα

(
n∑
k=1

Xk

)
≥ c(n,d)α

n∑
k=1

Nα(Xk) (8)

hold for some positive constant c(n,d)α ?

Question 1 has been recently addressed in [4], showing
that (8) holds with

cα = 1
e α

1
α−1 , ∀α > 1 (9)

independently of the values of n and d. It is the purpose
of this paper to derive some improved R-EPIs. A study of
Question 1 for α ∈ (0, 1) is currently an open problem (see
[4, p. 709]), and this paper introduces new R-EPIs for α > 1
(the case of α = 1 refers to the EPI (2)). A conjecture with
respect to tight R-EPIs has been stated in [16, Conjecure 4.4].

In view of the close relation between the differential
Rényi entropy and the Lα norm (see (3)), inequalities from
functional analysis play a key role in proving the EPI and
the R-EPI in [4]. One of these inequalities is a sharpened
Young’s inequality which has been used by Dembo et al. [7]
in proving the EPI, and also by Bobkov and Chistyakov in
a derivation of an R-EPI [4].

This work introduces some R-EPIs which improve recent
results in [4]. The reader is referred to the full paper version
in [11] for proofs, and further discussions on the results.



2. A NEW RÉNYI EPI

In the following, a new R-EPI is introduced. This inequal-
ity, which is expressed in closed-form, is tighter than the
R-EPI in [4, Theorem I.1].

Proposition 1. Let {Xk}nk=1 be a sequence of indepen-
dent random vectors with densities defined on Rd, and let
n ∈ N, α > 1, α′ = α

α−1 and Sn =
∑n
k=1Xk. Let

Pn = {t ∈ Rn : tk ≥ 0,
∑n
k=1 tk = 1} be the probability

simplex. Then,

logNα(Sn) ≥ f0(t), ∀ t ∈ Pn (10)

where

f0(t) =
logα

α− 1
−D(t‖Nα)

+ α′
n∑
k=1

(
1− tk

α′

)
log

(
1− tk

α′

) (11)

and

Nα = (Nα(X1), . . . , Nα(Xn)) (12)

D(t‖Nα) =

n∑
k=1

tk log

(
tk

Nα(Xk)

)
. (13)

Proof: See [11, Section III].
In view of Proposition 1, one can tighten the R-EPI in

[4, Theorem I.1] by maximizing the right side of (10). This
leads to the optimization problem

maximize f0(t)
subject to tk ≥ 0, k ∈ {1, . . . , n},∑n

k=1 tk = 1
(14)

which then yields the following R-EPI (see [11]):

Theorem 1. Let {Xk}nk=1 be independent random vectors
with densities defined on Rd, let n ∈ N, α > 1, α′ = α

α−1
and Sn =

∑n
k=1Xk. Then, the following R-EPI holds:

Nα(Sn) ≥ c(n)α

n∑
k=1

Nα(Xk) (15)

with

c(n)α = α
1

α−1

(
1− 1

nα′

)nα′−1
. (16)

Furthermore, the R-EPI in (15) has the following properties:
1) Eq. (15) improves the R-EPI in [4, Theorem I.1] for

every α > 1 and n ∈ N.
2) For all α > 1, it asymptotically coincides with the R-

EPI in [4, Theorem I.1] as n→∞.
3) In the other limiting case where α ↓ 1, it coincides

with the EPI (similarly to [4]).
4) If n = 2 and α → ∞, then c

(n)
α in (16) tends to

1
2 which is optimal; this constant is achieved when
X1 and X2 are independent random vectors which are
uniformly distributed in the cube [0, 1]d.
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Fig. 1. A plot of c(n)α in (16), as a function of α, for n = 2, 3, 10 and
n→ ∞.

Proof: See [11, Section III]. The proof relies on Propo-
sition 1 and a sub-optimal choice in the optimization prob-
lem (14).

Figure 1 plots c(n)α as a function of α, for some values of
n, verifying numerically Items 1)–4) in Theorem 1. In [4,
Theorem I.1], c(n)α is independent of n; it is given by cα in
(8) which is equal to the limit of c(n)α in (16) as n→∞ (the
solid curve in Figure 1).

Remark 1. Let X be a d-dimensional random vector with
density fX , and define

M(X) := ess sup(fX). (17)

From (6), (7) and (17), it follows that

N∞(X) := lim
α→∞

Nα(X) (18)

=M−
2
d (X). (19)

Note that from (16), since α′ → 1 as α→∞,

lim
α→∞

c(n)α =

(
1− 1

n

)n−1
. (20)

By assembling (15), (19) and (20), it follows that if
X1, . . . , Xn are independent d-dimensional random vectors
with densities then

M−
2
d (Sn) ≥

(
1− 1

n

)n−1 n∑
k=1

M−
2
d (Xk). (21)

Moreover, if d = 1, (21) can be strengthened to (see [3,
p. 105] and [12])

1

M2(Sn)
≥ 1

2

n∑
k=1

1

M2(Xk)
. (22)



3. A FURTHER TIGHTENING OF THE R-EPI

A. A Tightened R-EPI for n = 2

This sub-section forms a preparatory stage towards a tight-
ening in [11] of the R-EPI in Theorem 1 for a general n ≥ 2
independent random vectors with densities. We consider in
the following the case where n = 2, leading to a closed form
bound in this special case. To this end, the constant c(2)α in
(16) is replaced by a constant which depends not only on
α > 1, but also on the ratio Nα(X1)

Nα(X2)
.

Define the binary relative entropy function as the contin-
uous extension to [0, 1]2 of

d(x‖y) = x log

(
x

y

)
+ (1− x) log

(
1− x
1− y

)
. (23)

Proposition 2. Let X1 and X2 be independent random vec-
tors with densities defined on Rd, and let Nα(X1), Nα(X2)
be their Rényi entropy powers of order α > 1. Let

α′ =
α

α− 1
, (24)

βα =
min{Nα(X1), Nα(X2)}
max{Nα(X1), Nα(X2)}

, (25)

tα =


α′(βα+1)−

√
(α′ (βα+1))2−8α′βα+4βα−2

2(βα−1) if βα < 1

1
2 if βα = 1.

(26)

Then, the following R-EPI holds:

Nα(X1 +X2) ≥ cα
(
Nα(X1) +Nα(X2)

)
(27)

with

cα =α
1

α−1 exp

(
−d
(
tα
∥∥ βα
βα + 1

))
(
1− tα

α′

)α′−tα (
1− 1− tα

α′

)α′−1+tα
.

(28)

The R-EPI in (27) satisfies the following properties:
1) Eq. (27) improves the bound in (15) for n = 2, and both

bounds coincide if and only if Nα(X1) = Nα(X2).
2) Eq. (27) improves the bound [1]

Nα(X1 +X2) ≥ max
{
Nα(X1), Nα(X2)

}
(29)

and the bounds in (27) and (29) asymptotically coincide
as α→∞.

3) In the limit where α → ∞, the bound is tight and
it is achieved by letting X1 and X2 be independent
d-dimensional random vectors which are uniformly
distributed in the cubes [0,

√
N1]

d and [0,
√
N2]

d, re-
spectively; in this case, N∞(Xk) = Nk for k = 1, 2.

4) In the limit where α ↓ 1, it coincides with the EPI
which is tight when X1 and X2 are independent
Gaussian random vectors.

Proof: See [11, Section IV.A].
Figure 2 plots the four bounds presented so far for n = 2:

the abbreviations ’BC’ and ’BV’ stand, respectively, for the
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Fig. 2. A comparison of the R-EPIs, for n = 2, according to the BC
and BV bounds in [4] and [1], respectively, Theorem 1, and the tightest
bound for n = 2 in Proposition 2. The bounds are shown in a symmetric
case where (Nα(X1), Nα(X2)) = (10, 10) and an asymmetric case where
(Nα(X1), Nα(X2)) = (6, 14).

bounds in [4] (see (9)) and [1] (see (29)), and this figure also
refers to the improvement of the BC bound in Theorem 1,
and the tightest bound among the four in Proposition 2. Note
that the bound in Proposition 2 asymptotically coincides with
the BV bound as α → ∞, and with the EPI as α ↓ 1. The
bounds are exemplified in Figure 2 for a symmetric case
where (Nα(X1), Nα(X2)) = (10, 10), and an asymmetric
case where (Nα(X1), Nα(X2)) = (6, 14); note that, in both
cases, Nα(X1) +Nα(X2) = 20.

B. A Generalization of the Tightened R-EPI for n ≥ 2

This sub-section introduces (without proof) a non-trivial
generalization of the R-EPI in Proposition 2 for n ≥ 2
independent random vectors with probability densities.

The analysis which leads to the generalized R-EPI in
[11, Section IV.B] relies on a sharpened Young’s inequality,
Hölder’s inequality, convex optimization (Lagrange duality
and KKT conditions), and Fact 1 below which provides some
useful and interesting properties from matrix theory [6].

Fact 1. Let D ∈ Rn×n be a diagonal matrix with the
eigenvalues d1 ≤ d2 ≤ . . . ≤ dn. Let z ∈ Rn such that
‖z‖2 = 1 and let ρ ∈ R. Let λ1 ≤ λ2 ≤ . . . ≤ λn be the
eigenvalues of the rank-one modification of D which is given
by C = D + ρzzT . Then,

1) λi = di + ρµi, where
∑n
i=1 µi = 1 and µi ≥ 0 for all

i ∈ {1, . . . , n}.
2) If ρ > 0, then the following interlacing property holds:

d1 ≤ λ1 ≤ d2 ≤ λ2 ≤ . . . ≤ dn ≤ λn (30)

and, if ρ < 0, then

λ1 ≤ d1 ≤ λ2 ≤ d2 ≤ . . . ≤ λn ≤ dn. (31)



3) If all eigenvalues of D are different, all the entries of
z are non-zero, and ρ 6= 0, then inequalities (30) and
(31) are strict, and for i ∈ {1, . . . , n}, the eigenvalue
λi is a zero of

W (x) = 1 + ρ

n∑
j=1

z2i
dj − x

. (32)

The generalization of Proposition 2 for n ≥ 2 is introduced
in the following:

Theorem 2. Let X1, . . . , Xn be independent random vectors
with densities defined on Rd, let Nα(X1), . . . , Nα(Xn) be
their Rényi entropy powers of order α > 1, and let α′ = α

α−1 .
Let the indices of X1, . . . , Xn be ordered such that

Nα(Xk) ≤ Nα(Xn), k ∈ {1, . . . , n− 1}. (33)

Let

ck =
Nα(Xk)

Nα(Xn)
, k ∈ {1, . . . , n− 1} (34)

and let tn ∈ [0, 1] be the unique solution of the equation

tn +

n−1∑
k=1

ψk(tn) = 1 (35)

with

ψk(x) =
α′ −

√
α′2 − 4ck x(α′ − x)

2
, x ∈ [0, 1]. (36)

Define

tk = ψk(tn), k ∈ {1, . . . , n− 1}. (37)

Then, the following R-EPI holds:

Nα

(
n∑
k=1

Xk

)
≥ ef0(t1,...,tn)

n∑
k=1

Nα(Xk) (38)

with f0 given in (11). Furthermore, the R-EPI in (38) satisfies
the following properties:

1) It improves the R-EPI in Theorem 1 unless Nα(Xk)
is independent of k; in the latter case, the two R-EPIs
coincide.

2) It improves the BV bound in [1] which states that

Nα

(
n∑
k=1

Xk

)
≥ max

1≤k≤n
Nα(Xk) (39)

and the bounds in (38) and (39) asymptotically coincide
as α→∞ if and only if

n−1∑
k=1

N∞(Xk) ≤ N∞(Xn) (40)

where N∞(X) is defined in (19).
3) For n = 2, it coincides with the closed-form expression

of the R-EPI in Proposition 2.
4) It coincides with the EPI and the two R-EPIs in [4,

Theorem I.1] and Theorem 1 as α ↓ 1.

Theorem 2 provides the tightest version of R-EPIs in our
work, and it forms a major part of [11]. The lower bound
in Theorem 2 is not given in closed form (in contrast to its
specialization in Proposition 2 for two independent random
vectors); however, an efficient algorithm for the calculation
of the generalized R-REPI in Theorem 2 is provided in [11,
Section IV.B], and it is exemplified numerically in Section 4.

4. EXAMPLE: THE RÉNYI ENTROPY DIFFERENCE
BETWEEN DATA AND ITS FILTERING

Let {X(n)} be i.i.d. d-dimensional random vectors (note
that the entries of a vector X(n) need not be independent),
with arbitrary densities on Rd. Let

Y (n) =

L−1∑
k=0

HkX(n− k) (41)

be the filtered data at the output of a finite impulse response
(FIR) filter where H0, . . . ,HL−1 are fixed non-singular d×d
matrices.

In the following, the tightness of R-EPIs is exempli-
fied by obtaining universal lower bounds on the difference
hα
(
Y (n)

)
− hα

(
X(n)

)
, being also compared with the ac-

tual value of this difference when the i.i.d. inputs are d-
dimensional Gaussian random vectors with i.i.d. entries.

For k ∈ {0, . . . , L− 1} and every n, we have

hα
(
HkX(n− k)

)
= hα

(
X(n)

)
+ log

∣∣det(Hk)
∣∣ (42)

and

Nα
(
HkX(n− k)

)
=
∣∣det(Hk)

∣∣ 2d Nα(X(n)
)
. (43)

In view of (42), (43), and the R-EPI of Theorem 2, it
follows that for every n, α > 1

hα
(
Y (n)

)
− hα

(
X(n)

)
≥ d

2

(
logα

α− 1
+

L−1∑
k=0

g(tk)

)
+

L−1∑
k=0

tk log
∣∣det(Hk)

∣∣ (44)

where the function g is given by

g(x) = (α′ − x) log
(
1− x

α′

)
− x log x, x ∈ [0, 1] (45)

and the sequence {tk}L−1k=0 is calculated by (35)–(37).
In view of the analysis in [11], it is easy to verify that

the R-EPI in Theorem 1 is equivalent to the following looser
bound, which is expressed in closed form:

hα
(
Y (n)

)
− hα

(
X(n)

)
≥ d

2
· log

(
L−1∑
k=0

∣∣det(Hk)
∣∣ 2d)

+
d

2

(
logα

α− 1
+

(
Lα

α− 1
− 1

)
log

(
1− α− 1

Lα

))
.

(46)



The R-EPI of [4, Theorem I.1] leads to the following
loosened bound in comparison to (46):

hα
(
Y (n)

)
− hα

(
X(n)

)
≥ d

2

[
log

(
L−1∑
k=0

∣∣det(Hk)
∣∣ 2d)+

logα

α− 1
− log e

]
.

(47)

and, finally, the BV bound in [1] leads to the following
loosening in comparison to (44):

hα
(
Y (n)

)
− hα

(
X(n)

)
≥ log

(
max

0≤k≤L−1

∣∣det(Hk)
∣∣) .

(48)

The differential Rényi entropy of order α 6= 1 for a d-
dimensional multivariate Gaussian distribution is given by

hα
(
X(n)

)
=

d logα

2(α− 1)
+ 1

2 log
(
(2π)d det

(
Cov(X(n))

))
(49)

Hence, for the specific case where the entries of the Gaussian
random vector X(n) are i.i.d.

hα
(
Y (n)

)
− hα

(
X(n)

)
= 1

2 log

(
det

(
L−1∑
k=0

HkH
T
k

))
.

(50)
Example 1. Let

Y (n) = 2X(n)−X(n− 1)−X(n− 2) (51)

for every n where {X(n)} are i.i.d. random variables, and
consider the difference h2(Y ) − h2(X) in the quadratic
differential Rényi entropy. In this example α = 2, d = 1,
L = 3, and H0 = 2, H1 = −1, H2 = −1. The lower bounds
in (44), (46), (47), (48) are equal to 0.8195, 0.7866, 0.6931
and 0.7425 nats, respectively (recall that the first and second
lower bounds correspond to Theorems 2 and 1, respectively,
and the third and fourth lower bounds correspond to [4] and
[1] respectively). These lower bounds are compared to the
achievable value in (50), for an i.i.d. Gaussian input, which
is equal to 0.8959 nats.
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