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Outline

I Forward & reverse projections of Rényi divergence on
generalized convex sets.

I Forward projections - large deviations theory, maximum
entropy principle.

I Reverse projections - maximum likelihood estimation, robust
statistics.

I Orthogonality of α-linear and α-exponential families for the
Rényi divergence.
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Rényi Divergence

I M :=M(A) - the set of all probability measures on A.

I For P,Q ∈M and α ∈ (0, 1) ∪ (1,∞), the Rényi divergence
from P to Q is

Dα(P‖Q) =
1

α− 1
log

(∑
a

P (a)αQ(a)1−α

)
.

For α = 1, by continuous extension

D1(P‖Q) = D(P‖Q).

I Dα(P‖Q) ≥ 0 and Dα(P‖Q) = 0 iff P = Q.
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from P to Q is

Dα(P‖Q) =
1

α− 1
log

(∑
a

P (a)αQ(a)1−α

)
.

For α = 1, by continuous extension

D1(P‖Q) = D(P‖Q).

I Dα(P‖Q) ≥ 0 and Dα(P‖Q) = 0 iff P = Q.

3 / 18
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from P to Q is

Dα(P‖Q) =
1

α− 1
log

(∑
a

P (a)αQ(a)1−α

)
.

For α = 1, by continuous extension

D1(P‖Q) = D(P‖Q).

I Dα(P‖Q) ≥ 0 and Dα(P‖Q) = 0 iff P = Q.

3 / 18



Information Projections for the Rényi Divergence

I Let P ⊂M and Q ∈M. Any P ∗ ∈ P satisfying

min
P∈P

Dα(P‖Q) = Dα(P ∗‖Q)

is called forward Dα-projection of Q on P.

I Let Q ⊂M and P ∈M. Any Q∗ ∈ Q satisfying

min
Q∈Q

Dα(P‖Q) = Dα(P‖Q∗)

is called reverse Dα-projection of P on Q.
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I Let P ⊂M and Q ∈M. Any P ∗ ∈ P satisfying

min
P∈P

Dα(P‖Q) = Dα(P ∗‖Q)

is called forward Dα-projection of Q on P.

I Let Q ⊂M and P ∈M. Any Q∗ ∈ Q satisfying

min
Q∈Q

Dα(P‖Q) = Dα(P‖Q∗)

is called reverse Dα-projection of P on Q.

4 / 18



Literature on Information Projections

I I. Csiszár, “I-divergence geometry of probability distributions
and minimization problems,” Annals of Probability, 1975.

I I. Csiszár, “Sanov property, Generalized I-projection and a
conditional limit theorem,” Annals of Probability, 1984.
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FORWARD Dα-PROJECTION
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Forward Projection - Motivation
I Sanov’s theorem:

I Suppose that X1, X2, . . . are i.i.d. and X1 ∼ Q. Then, if
m > E

[
g(X1)

]
, for large n

Pr
( 1

n

n∑
i=1

g(Xi) ≥ m
)
≈ exp{−nD(P ∗‖Q)},

where
P ∗ = arg min

P∈L
D(P‖Q)

L = {P ∈M :
∑
a

P (a)g(a) ≥ m}.

I Conditional limit theorem:
I Suppose that X1, X2, . . . are i.i.d. and X1 ∼ Q. Then

lim
n→∞

P
{
X1 = a

∣∣∣ 1

n

n∑
i=1

g(Xi) ≥ m
}

= P ∗(a).
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Tsallis’ Maximum Entropy Problem

arg max
(pi)

Sα(P ) :=
1

α− 1

(
1−

∑
a

P (a)α
)

(1)

subject to

∑
a
P (a)αε(a)∑
a
P (a)α

= U (α), (2)

I The functional Sα(P ) in (1) is called Tsallis entropy

I The constraint in (2) corresponds to an α-convex set

I If Q = U is uniform,

Dα(P‖U) = log |A|+ 1

α− 1
log
(
1− (α− 1)Sα(P )

)
.

Thus maximization of Sα(P ) is equivalent to minimization of
Dα(P‖U).
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α-Convex Sets

Definition ((α, λ)-mixture)

Let P0, P1 ∈M. The (α, λ)-mixture of (P0, P1) is the probability
measure S0,1 defined by

S0,1(a) :=
1

Z

[
(1− λ)P0(a)α + λP1(a)α

] 1
α ∀a ∈ A,

where Z is a normalizing constant.

Definition (α-convex set)

P ⊂M is said to be an α-convex set if, for every P0, P1 ∈ P and
λ ∈ (0, 1), the (α, λ)-mixture S0,1 ∈ P.
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Result of van Erven and Harremoës (2014)

Theorem
If P ∗ is the forward Dα-projection of Q on an α-convex set P,
then the following Pythagorean inequality holds:

Dα(P‖Q) ≥ Dα(P‖P ∗) +Dα(P ∗‖Q) ∀P ∈ P.

Note that the existence of the forward projection P ∗ is not
assured in this theorem.
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A Sufficient Condition for Existence

Theorem
Let α ∈ (0,∞), Q ∈M, P ⊆M be α-convex & closed under total
variation distance. If there exists P ∈ P such that Dα(P‖Q) <∞,
then there exists a forward Dα-projection of Q on P.

Proof outline:
I α > 1: Similar to Csiszár 1975, but relies on a new Apollonius

theorem for the Hellinger divergences:

(1− λ)
(
Hα(P0‖Q)−Hα(P0‖S0,1)

)
+ λ

(
Hα(P1‖Q)−Hα(P1‖S0,1)

)
≥Hα(S0,1‖Q),

where

Hα(P‖Q) :=
1

α− 1

(∑
a

P (a)αQ(a)1−α − 1
)
.

I α < 1: Exploits Banach-Aloaglu theorem from functional
analysis (for asserting compactness of a set).
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Forward projection on α-linear Family

We focus on α-linear family:

Lα =
{
P ∈M :

∑
a

P (a)αfi(a) = 0, i = 1, . . . , k
}
.

Theorem
If A is finite and α > 1, then Supp(P ∗) = Supp(Lα) and the
Pythagorean equality holds.

Dα(P‖Q) = Dα(P‖P ∗) +Dα(P ∗‖Q) ∀P ∈ Lα.

Theorem
If P ∗ is the forward Dα-projection on Lα, and if
Supp(P ∗) = Supp(Lα), then

P ∗(a) = Z−1
[
Q(a)1−α + (1− α)

k∑
i=1

θ∗i fi(a)

] 1
1−α

,

for some θ∗ = (θ∗1, . . . , θ
∗
k) ∈ Rk, and a normalizing constant Z.
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α-Exponential Family
I Can write

P ∗(a) = Z−1 eα

(
lnα(Q(a)) +

k∑
i=1

θifi(a)
)
,

where eα and lnα are, respectively, the α-exponential and
α-logarithmic functions:

eα(x) :=

exp(x) if α = 1,(
max

{
1 + (1− α)x, 0

}) 1
1−α

if α ∈ (0, 1) ∪ (1,∞),

lnα(x) :=

{
ln(x) if α = 1,
x1−α−1
1−α if α ∈ (0, 1) ∪ (1,∞).

I α-exponential family extends the usual exponential family:

Eα :=

{
P ∈M : P (a) = Z(θ)−1 eα

(
lnα(Q(a)) +

k∑
i=1

θifi(a)
)}

.
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Convergence of an Iterative Process

Theorem
Let α ∈ (1,∞). Suppose that L

(1)
α , . . . ,L

(m)
α are α-linear

families, and let

Lα :=

m⋂
n=1

L (n)
α .

Let P0 = Q, and let Pn be the forward Dα-projection of Pn−1 on

L
(in)
α with in = nmod (m) for n = 1, 2, . . . . Then, Pn → P ∗.

I Similar to Csiszár 1975.
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REVERSE Dα-PROJECTION
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Maximum Likelihood Estimation

I Assume X1, . . . , Xn i.i.d. samples drawn according to some
member of E = {Pθ : θ ∈ Θ}.

I Let P̂ be the empirical measure of X1, . . . , Xn.∏n
i=1 Pθ(Xi)∏n
i=1 P̂ (Xi)

=
∏
a∈A

(
Pθ(a)

P̂ (a)

)nP̂ (a)

= exp

{
n
∑
a∈A

P̂ (a) log

(
Pθ(a)

P̂ (a)

)}
= exp{−nD(P̂‖Pθ)}.

I Thus MLE is a reverse projection

I Reverse projection of Rényi divergence on α-convex sets
corresponds to a robust version of MLE when some fraction
of samples are outliers (Pardo 2006, Basu et al. 2011).
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Robust estimation on α-exponential family and the duality

Theorem
Let X1, . . . , Xn be i.i.d. samples drawn according to a distribution
from Eα, an α-exponential family, and let P̂ be its empirical
probability measure.

Let P ∗ be the forward Dα-projection of Q on

Lα = {P ∈M :
∑
a

P (a)α[fi(a)−η̂i(n)Q(a)1−α] = 0, i = 1, . . . , k},

η̂i
(n) =

∑
a P̂ (a)αfi(a)∑

a P̂ (a)αQ(a)1−α
.

I α-linear and α-exponential families are orthogonal: If
Supp(P ∗) = Supp(Lα), then Lα ∩ Eα = {P ∗}, and

Dα(P‖Pθ) = Dα(P‖P ∗) +Dα(P ∗‖Pθ) ∀P ∈ Lα ∀Pθ ∈ Eα.

I Thus, arg min
Pθ∈Eα

Dα(P̂‖Pθ) = P ∗ = arg min
P∈Lα

Dα(P‖Q).
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Summary

I Sufficient condition for the existence of forward projection on
α-convex sets

I Pythagorean equality on α-linear family for α > 1

I Convergence of iterated projection on an intersection of
α-linear families

I Form of forward projection on α-linear family

I Orthogonality of α-linear and α-exponential families

I Full version: http://arxiv.org/abs/1512.02515.
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