On Projections of the Rényi Divergence on Generalized Convex Sets

M. Ashok Kumar*
Joint work with Igal Sason**

*Department of Mathematics, Indian Institute of Technology Indore.
**Andrew and Erna Viterbi Faculty of Electrical Engineering, Technion-Israel Institute of Technology.

July 15, 2016

Outline

- Forward \& reverse projections of Rényi divergence on generalized convex sets.

Outline

- Forward \& reverse projections of Rényi divergence on generalized convex sets.
- Forward projections - large deviations theory, maximum entropy principle.

Outline

- Forward \& reverse projections of Rényi divergence on generalized convex sets.
- Forward projections - large deviations theory, maximum entropy principle.
- Reverse projections - maximum likelihood estimation, robust statistics.

Outline

- Forward \& reverse projections of Rényi divergence on generalized convex sets.
- Forward projections - large deviations theory, maximum entropy principle.
- Reverse projections - maximum likelihood estimation, robust statistics.
- Orthogonality of α-linear and α-exponential families for the Rényi divergence.

Rényi Divergence

- $\mathcal{M}:=\mathcal{M}(\mathcal{A})$ - the set of all probability measures on \mathcal{A}.

Rényi Divergence

- $\mathcal{M}:=\mathcal{M}(\mathcal{A})$ - the set of all probability measures on \mathcal{A}.
- For $P, Q \in \mathcal{M}$ and $\alpha \in(0,1) \cup(1, \infty)$, the Rényi divergence from P to Q is

$$
D_{\alpha}(P \| Q)=\frac{1}{\alpha-1} \log \left(\sum_{a} P(a)^{\alpha} Q(a)^{1-\alpha}\right)
$$

Rényi Divergence

- $\mathcal{M}:=\mathcal{M}(\mathcal{A})$ - the set of all probability measures on \mathcal{A}.
- For $P, Q \in \mathcal{M}$ and $\alpha \in(0,1) \cup(1, \infty)$, the Rényi divergence from P to Q is

$$
D_{\alpha}(P \| Q)=\frac{1}{\alpha-1} \log \left(\sum_{a} P(a)^{\alpha} Q(a)^{1-\alpha}\right)
$$

For $\alpha=1$, by continuous extension

$$
D_{1}(P \| Q)=D(P \| Q)
$$

Rényi Divergence

- $\mathcal{M}:=\mathcal{M}(\mathcal{A})$ - the set of all probability measures on \mathcal{A}.
- For $P, Q \in \mathcal{M}$ and $\alpha \in(0,1) \cup(1, \infty)$, the Rényi divergence from P to Q is

$$
D_{\alpha}(P \| Q)=\frac{1}{\alpha-1} \log \left(\sum_{a} P(a)^{\alpha} Q(a)^{1-\alpha}\right)
$$

For $\alpha=1$, by continuous extension

$$
D_{1}(P \| Q)=D(P \| Q)
$$

- $D_{\alpha}(P \| Q) \geq 0$ and $D_{\alpha}(P \| Q)=0$ iff $P=Q$.

Information Projections for the Rényi Divergence

- Let $\mathcal{P} \subset \mathcal{M}$ and $Q \in \mathcal{M}$. Any $P^{*} \in \mathcal{P}$ satisfying

$$
\min _{P \in \mathcal{P}} D_{\alpha}(P \| Q)=D_{\alpha}\left(P^{*} \| Q\right)
$$

is called forward D_{α}-projection of Q on \mathcal{P}.

Information Projections for the Rényi Divergence

- Let $\mathcal{P} \subset \mathcal{M}$ and $Q \in \mathcal{M}$. Any $P^{*} \in \mathcal{P}$ satisfying

$$
\min _{P \in \mathcal{P}} D_{\alpha}(P \| Q)=D_{\alpha}\left(P^{*} \| Q\right)
$$

is called forward D_{α}-projection of Q on \mathcal{P}.

- Let $\mathcal{Q} \subset \mathcal{M}$ and $P \in \mathcal{M}$. Any $Q^{*} \in \mathcal{Q}$ satisfying

$$
\min _{Q \in \mathcal{Q}} D_{\alpha}(P \| Q)=D_{\alpha}\left(P \| Q^{*}\right)
$$

is called reverse D_{α}-projection of P on \mathcal{Q}.

Literature on Information Projections

- I. Csiszár, "I-divergence geometry of probability distributions and minimization problems," Annals of Probability, 1975.
- I. Csiszár, "Sanov property, Generalized I-projection and a conditional limit theorem," Annals of Probability, 1984.
- I. Csiszár and F. Matúš, "Information projections revisited," IEEE Trans. on IT, 2003.
- I. Csiszár and P. C. Shields, "Information Theory and Statistics: A Tutorial," FnT in COM \& IT, 2004.
- T. van Erven and P. Harremoës, "Rényi divergence and Kullback-Leibler divergence," IEEE Trans. on IT, 2014.
- M. A. Kumar and R. Sundaresan, "Minimization problems based on α-relative entropy I \& II: Forward \& Reverse Projections," IEEE Trans. on IT, 2015.

FORWARD D_{α}-PROJECTION

Forward Projection - Motivation

- Sanov's theorem:
- Suppose that X_{1}, X_{2}, \ldots are i.i.d. and $X_{1} \sim Q$. Then, if $m>\mathbb{E}\left[g\left(X_{1}\right)\right]$, for large n

$$
\operatorname{Pr}\left(\frac{1}{n} \sum_{i=1}^{n} g\left(X_{i}\right) \geq m\right) \approx \exp \left\{-n D\left(P^{*} \| Q\right)\right\}
$$

where

$$
\begin{gathered}
P^{*}=\arg \min _{P \in \mathscr{L}} D(P \| Q) \\
\mathscr{L}=\left\{P \in \mathcal{M}: \sum_{a} P(a) g(a) \geq m\right\}
\end{gathered}
$$

Forward Projection - Motivation

- Sanov's theorem:
- Suppose that X_{1}, X_{2}, \ldots are i.i.d. and $X_{1} \sim Q$. Then, if $m>\mathbb{E}\left[g\left(X_{1}\right)\right]$, for large n

$$
\operatorname{Pr}\left(\frac{1}{n} \sum_{i=1}^{n} g\left(X_{i}\right) \geq m\right) \approx \exp \left\{-n D\left(P^{*} \| Q\right)\right\}
$$

where

$$
\begin{gathered}
P^{*}=\arg \min _{P \in \mathscr{L}} D(P \| Q) \\
\mathscr{L}=\left\{P \in \mathcal{M}: \sum_{a} P(a) g(a) \geq m\right\} .
\end{gathered}
$$

- Conditional limit theorem:
- Suppose that X_{1}, X_{2}, \ldots are i.i.d. and $X_{1} \sim Q$. Then

$$
\lim _{n \rightarrow \infty} P\left\{X_{1}=a \left\lvert\, \frac{1}{n} \sum_{i=1}^{n} g\left(X_{i}\right) \geq m\right.\right\}=P^{*}(a)
$$

Tsallis' Maximum Entropy Problem

$$
\begin{align*}
& \arg \max _{\left(p_{i}\right)} S_{\alpha}(P):=\frac{1}{\alpha-1}\left(1-\sum_{a} P(a)^{\alpha}\right) \tag{1}\\
& \text { subject to } \quad \frac{\sum_{a} P(a)^{\alpha} \epsilon(a)}{\sum_{a} P(a)^{\alpha}}=U^{(\alpha)}, \tag{2}
\end{align*}
$$

Tsallis' Maximum Entropy Problem

$$
\begin{align*}
& \arg \max _{\left(p_{i}\right)} S_{\alpha}(P):=\frac{1}{\alpha-1}\left(1-\sum_{a} P(a)^{\alpha}\right) \tag{1}\\
& \text { subject to } \quad \frac{\sum_{a} P(a)^{\alpha} \epsilon(a)}{\sum_{a} P(a)^{\alpha}}=U^{(\alpha)}, \tag{2}
\end{align*}
$$

- The functional $S_{\alpha}(P)$ in (1) is called Tsallis entropy

Tsallis' Maximum Entropy Problem

$$
\begin{align*}
& \arg \max _{\left(p_{i}\right)} S_{\alpha}(P):=\frac{1}{\alpha-1}\left(1-\sum_{a} P(a)^{\alpha}\right) \tag{1}\\
& \text { subject to } \quad \frac{\sum_{a} P(a)^{\alpha} \epsilon(a)}{\sum_{a} P(a)^{\alpha}}=U^{(\alpha)} \tag{2}
\end{align*}
$$

- The functional $S_{\alpha}(P)$ in (1) is called Tsallis entropy
- The constraint in (2) corresponds to an α-convex set

Tsallis' Maximum Entropy Problem

$$
\begin{align*}
& \arg \max _{\left(p_{i}\right)} S_{\alpha}(P):=\frac{1}{\alpha-1}\left(1-\sum_{a} P(a)^{\alpha}\right) \tag{1}\\
& \text { subject to } \quad \frac{\sum_{a} P(a)^{\alpha} \epsilon(a)}{\sum_{a} P(a)^{\alpha}}=U^{(\alpha)}, \tag{2}
\end{align*}
$$

- The functional $S_{\alpha}(P)$ in (1) is called Tsallis entropy
- The constraint in (2) corresponds to an α-convex set
- If $Q=U$ is uniform,

$$
D_{\alpha}(P \| U)=\log |\mathcal{A}|+\frac{1}{\alpha-1} \log \left(1-(\alpha-1) S_{\alpha}(P)\right)
$$

Thus maximization of $S_{\alpha}(P)$ is equivalent to minimization of $D_{\alpha}(P \| U)$.

α-Convex Sets

Definition $((\alpha, \lambda)$-mixture $)$
Let $P_{0}, P_{1} \in \mathcal{M}$. The (α, λ)-mixture of $\left(P_{0}, P_{1}\right)$ is the probability measure $S_{0,1}$ defined by

$$
S_{0,1}(a):=\frac{1}{Z}\left[(1-\lambda) P_{0}(a)^{\alpha}+\lambda P_{1}(a)^{\alpha}\right]^{\frac{1}{\alpha}} \quad \forall a \in \mathcal{A}
$$

where Z is a normalizing constant.

α-Convex Sets

Definition ((α, λ)-mixture)

Let $P_{0}, P_{1} \in \mathcal{M}$. The (α, λ)-mixture of $\left(P_{0}, P_{1}\right)$ is the probability measure $S_{0,1}$ defined by

$$
S_{0,1}(a):=\frac{1}{Z}\left[(1-\lambda) P_{0}(a)^{\alpha}+\lambda P_{1}(a)^{\alpha}\right]^{\frac{1}{\alpha}} \quad \forall a \in \mathcal{A}
$$

where Z is a normalizing constant.

Definition (α-convex set)
$\mathcal{P} \subset \mathcal{M}$ is said to be an α-convex set if, for every $P_{0}, P_{1} \in \mathcal{P}$ and $\lambda \in(0,1)$, the (α, λ)-mixture $S_{0,1} \in \mathcal{P}$.

Result of van Erven and Harremoës (2014)

Theorem
If P^{*} is the forward D_{α}-projection of Q on an α-convex set \mathcal{P}, then the following Pythagorean inequality holds:

$$
D_{\alpha}(P \| Q) \geq D_{\alpha}\left(P \| P^{*}\right)+D_{\alpha}\left(P^{*} \| Q\right) \quad \forall P \in \mathcal{P} .
$$

Result of van Erven and Harremoës (2014)

Theorem
If P^{*} is the forward D_{α}-projection of Q on an α-convex set \mathcal{P}, then the following Pythagorean inequality holds:

$$
D_{\alpha}(P \| Q) \geq D_{\alpha}\left(P \| P^{*}\right)+D_{\alpha}\left(P^{*} \| Q\right) \quad \forall P \in \mathcal{P} .
$$

Note that the existence of the forward projection P^{*} is not assured in this theorem.

A Sufficient Condition for Existence

Theorem
Let $\alpha \in(0, \infty), Q \in \mathcal{M}, \mathcal{P} \subseteq \mathcal{M}$ be α-convex \& closed under total variation distance. If there exists $P \in \mathcal{P}$ such that $D_{\alpha}(P \| Q)<\infty$, then there exists a forward D_{α}-projection of Q on \mathcal{P}.

A Sufficient Condition for Existence

Theorem
Let $\alpha \in(0, \infty), Q \in \mathcal{M}, \mathcal{P} \subseteq \mathcal{M}$ be α-convex \& closed under total variation distance. If there exists $P \in \mathcal{P}$ such that $D_{\alpha}(P \| Q)<\infty$, then there exists a forward D_{α}-projection of Q on \mathcal{P}.

Proof outline:

- $\alpha>1$: Similar to Csiszár 1975, but relies on a new Apollonius theorem for the Hellinger divergences:

$$
\begin{aligned}
& (1-\lambda)\left(\mathscr{H}_{\alpha}\left(P_{0} \| Q\right)-\mathscr{H}_{\alpha}\left(P_{0} \| S_{0,1}\right)\right) \\
& +\lambda\left(\mathscr{H}_{\alpha}\left(P_{1} \| Q\right)-\mathscr{H}_{\alpha}\left(P_{1} \| S_{0,1}\right)\right) \geq \mathscr{H}_{\alpha}\left(S_{0,1} \| Q\right)
\end{aligned}
$$

where

$$
\mathscr{H}_{\alpha}(P \| Q):=\frac{1}{\alpha-1}\left(\sum_{a} P(a)^{\alpha} Q(a)^{1-\alpha}-1\right)
$$

A Sufficient Condition for Existence

Theorem
Let $\alpha \in(0, \infty), Q \in \mathcal{M}, \mathcal{P} \subseteq \mathcal{M}$ be α-convex \& closed under total variation distance. If there exists $P \in \mathcal{P}$ such that $D_{\alpha}(P \| Q)<\infty$, then there exists a forward D_{α}-projection of Q on \mathcal{P}.

Proof outline:

- $\alpha>1$: Similar to Csiszár 1975, but relies on a new Apollonius theorem for the Hellinger divergences:

$$
\begin{aligned}
& (1-\lambda)\left(\mathscr{H}_{\alpha}\left(P_{0} \| Q\right)-\mathscr{H}_{\alpha}\left(P_{0} \| S_{0,1}\right)\right) \\
& +\lambda\left(\mathscr{H}_{\alpha}\left(P_{1} \| Q\right)-\mathscr{H}_{\alpha}\left(P_{1} \| S_{0,1}\right)\right) \geq \mathscr{H}_{\alpha}\left(S_{0,1} \| Q\right)
\end{aligned}
$$

where

$$
\mathscr{H}_{\alpha}(P \| Q):=\frac{1}{\alpha-1}\left(\sum_{a} P(a)^{\alpha} Q(a)^{1-\alpha}-1\right)
$$

- $\alpha<1$: Exploits Banach-Aloaglu theorem from functional analysis (for asserting compactness of a set).

Forward projection on α-linear Family

We focus on α-linear family:

$$
\mathscr{L}_{\alpha}=\left\{P \in \mathcal{M}: \sum_{a} P(a)^{\alpha} f_{i}(a)=0, \quad i=1, \ldots, k\right\} .
$$

Forward projection on α-linear Family

We focus on α-linear family:

$$
\mathscr{L}_{\alpha}=\left\{P \in \mathcal{M}: \sum_{a} P(a)^{\alpha} f_{i}(a)=0, \quad i=1, \ldots, k\right\}
$$

Theorem
If \mathcal{A} is finite and $\alpha>1$, then $\operatorname{Supp}\left(P^{*}\right)=\operatorname{Supp}\left(\mathscr{L}_{\alpha}\right)$ and the Pythagorean equality holds.

$$
D_{\alpha}(P \| Q)=D_{\alpha}\left(P \| P^{*}\right)+D_{\alpha}\left(P^{*} \| Q\right) \quad \forall P \in \mathscr{L}_{\alpha}
$$

Forward projection on α-linear Family

We focus on α-linear family:

$$
\mathscr{L}_{\alpha}=\left\{P \in \mathcal{M}: \sum_{a} P(a)^{\alpha} f_{i}(a)=0, \quad i=1, \ldots, k\right\}
$$

Theorem
If \mathcal{A} is finite and $\alpha>1$, then $\operatorname{Supp}\left(P^{*}\right)=\operatorname{Supp}\left(\mathscr{L}_{\alpha}\right)$ and the Pythagorean equality holds.

$$
D_{\alpha}(P \| Q)=D_{\alpha}\left(P \| P^{*}\right)+D_{\alpha}\left(P^{*} \| Q\right) \quad \forall P \in \mathscr{L}_{\alpha}
$$

Theorem
If P^{*} is the forward D_{α}-projection on \mathscr{L}_{α}, and if $\operatorname{Supp}\left(P^{*}\right)=\operatorname{Supp}\left(\mathscr{L}_{\alpha}\right)$, then

$$
P^{*}(a)=Z^{-1}\left[Q(a)^{1-\alpha}+(1-\alpha) \sum_{i=1}^{k} \theta_{i}^{*} f_{i}(a)\right]^{\frac{1}{1-\alpha}}
$$

for some $\theta^{*}=\left(\theta_{1}^{*}, \ldots, \theta_{k}^{*}\right) \in \mathbb{R}^{k}$, and a normalizing constant Z.

α-Exponential Family

- Can write

$$
P^{*}(a)=Z^{-1} e_{\alpha}\left(\ln _{\alpha}(Q(a))+\sum_{i=1}^{k} \theta_{i} f_{i}(a)\right)
$$

where e_{α} and $\ln _{\alpha}$ are, respectively, the α-exponential and α-logarithmic functions:

$$
\begin{aligned}
& e_{\alpha}(x):= \begin{cases}\exp (x) & \text { if } \alpha=1, \\
(\max \{1+(1-\alpha) x, 0\})^{\frac{1}{1-\alpha}} & \text { if } \alpha \in(0,1) \cup(1, \infty),\end{cases} \\
& \ln _{\alpha}(x):= \begin{cases}\ln (x) & \text { if } \alpha=1, \\
\frac{x^{1-\alpha}-1}{1-\alpha} & \text { if } \alpha \in(0,1) \cup(1, \infty) .\end{cases}
\end{aligned}
$$

α-Exponential Family

- Can write

$$
P^{*}(a)=Z^{-1} e_{\alpha}\left(\ln _{\alpha}(Q(a))+\sum_{i=1}^{k} \theta_{i} f_{i}(a)\right)
$$

where e_{α} and $\ln _{\alpha}$ are, respectively, the α-exponential and α-logarithmic functions:

$$
\begin{aligned}
e_{\alpha}(x) & := \begin{cases}\exp (x) & \text { if } \alpha=1, \\
(\max \{1+(1-\alpha) x, 0\})^{\frac{1}{1-\alpha}} & \text { if } \alpha \in(0,1) \cup(1, \infty),\end{cases} \\
\ln _{\alpha}(x) & := \begin{cases}\ln (x) & \text { if } \alpha=1, \\
\frac{x^{1-\alpha}-1}{1-\alpha} & \text { if } \alpha \in(0,1) \cup(1, \infty) .\end{cases}
\end{aligned}
$$

- α-exponential family extends the usual exponential family:

$$
\mathscr{E}_{\alpha}:=\left\{P \in \mathcal{M}: P(a)=Z(\theta)^{-1} e_{\alpha}\left(\ln _{\alpha}(Q(a))+\sum_{i=1}^{k} \theta_{i} f_{i}(a)\right)\right\}
$$

Convergence of an Iterative Process

Theorem
Let $\alpha \in(1, \infty)$. Suppose that $\mathscr{L}_{\alpha}^{(1)}, \ldots, \mathscr{L}_{\alpha}^{(m)}$ are α-linear families, and let

$$
\mathscr{L}_{\alpha}:=\bigcap_{n=1}^{m} \mathscr{L}_{\alpha}^{(n)} .
$$

Let $P_{0}=Q$, and let P_{n} be the forward D_{α}-projection of P_{n-1} on $\mathscr{L}_{\alpha}^{\left(i_{n}\right)}$ with $i_{n}=n \bmod (m)$ for $n=1,2, \ldots$ Then, $P_{n} \rightarrow P^{*}$.

- Similar to Csiszár 1975.

REVERSE D_{α}-PROJECTION

Maximum Likelihood Estimation

- Assume X_{1}, \ldots, X_{n} i.i.d. samples drawn according to some member of $\mathbb{E}=\left\{P_{\theta}: \theta \in \Theta\right\}$.

Maximum Likelihood Estimation

- Assume X_{1}, \ldots, X_{n} i.i.d. samples drawn according to some member of $\mathbb{E}=\left\{P_{\theta}: \theta \in \Theta\right\}$.
- Let \hat{P} be the empirical measure of X_{1}, \ldots, X_{n}.

Maximum Likelihood Estimation

- Assume X_{1}, \ldots, X_{n} i.i.d. samples drawn according to some member of $\mathbb{E}=\left\{P_{\theta}: \theta \in \Theta\right\}$.
- Let \hat{P} be the empirical measure of X_{1}, \ldots, X_{n}.

$$
\begin{aligned}
\frac{\prod_{i=1}^{n} P_{\theta}\left(X_{i}\right)}{\prod_{i=1}^{n} \hat{P}\left(X_{i}\right)} & =\prod_{a \in \mathcal{A}}\left(\frac{P_{\theta}(a)}{\hat{P}(a)}\right)^{n \hat{P}(a)} \\
& =\exp \left\{n \sum_{a \in \mathcal{A}} \hat{P}(a) \log \left(\frac{P_{\theta}(a)}{\hat{P}(a)}\right)\right\} \\
& =\exp \left\{-n D\left(\hat{P} \| P_{\theta}\right)\right\}
\end{aligned}
$$

Maximum Likelihood Estimation

- Assume X_{1}, \ldots, X_{n} i.i.d. samples drawn according to some member of $\mathbb{E}=\left\{P_{\theta}: \theta \in \Theta\right\}$.
- Let \hat{P} be the empirical measure of X_{1}, \ldots, X_{n}.

$$
\begin{aligned}
\frac{\prod_{i=1}^{n} P_{\theta}\left(X_{i}\right)}{\prod_{i=1}^{n} \hat{P}\left(X_{i}\right)} & =\prod_{a \in \mathcal{A}}\left(\frac{P_{\theta}(a)}{\hat{P}(a)}\right)^{n \hat{P}(a)} \\
& =\exp \left\{n \sum_{a \in \mathcal{A}} \hat{P}(a) \log \left(\frac{P_{\theta}(a)}{\hat{P}(a)}\right)\right\} \\
& =\exp \left\{-n D\left(\hat{P} \| P_{\theta}\right)\right\}
\end{aligned}
$$

- Thus MLE is a reverse projection

Maximum Likelihood Estimation

- Assume X_{1}, \ldots, X_{n} i.i.d. samples drawn according to some member of $\mathbb{E}=\left\{P_{\theta}: \theta \in \Theta\right\}$.
- Let \hat{P} be the empirical measure of X_{1}, \ldots, X_{n}.

$$
\begin{aligned}
\frac{\prod_{i=1}^{n} P_{\theta}\left(X_{i}\right)}{\prod_{i=1}^{n} \hat{P}\left(X_{i}\right)} & =\prod_{a \in \mathcal{A}}\left(\frac{P_{\theta}(a)}{\hat{P}(a)}\right)^{n \hat{P}(a)} \\
& =\exp \left\{n \sum_{a \in \mathcal{A}} \hat{P}(a) \log \left(\frac{P_{\theta}(a)}{\hat{P}(a)}\right)\right\} \\
& =\exp \left\{-n D\left(\hat{P} \| P_{\theta}\right)\right\}
\end{aligned}
$$

- Thus MLE is a reverse projection
- Reverse projection of Rényi divergence on α-convex sets corresponds to a robust version of MLE when some fraction of samples are outliers (Pardo 2006, Basu et al. 2011).

Robust estimation on α-exponential family and the duality

Theorem
Let X_{1}, \ldots, X_{n} be i.i.d. samples drawn according to a distribution from \mathscr{E}_{α}, an α-exponential family, and let \hat{P} be its empirical probability measure.

Robust estimation on α-exponential family and the duality

Theorem
Let X_{1}, \ldots, X_{n} be i.i.d. samples drawn according to a distribution from \mathscr{E}_{α}, an α-exponential family, and let \hat{P} be its empirical probability measure. Let P^{*} be the forward D_{α}-projection of Q on

$$
\begin{gathered}
\mathscr{L}_{\alpha}=\left\{P \in \mathcal{M}: \sum_{a} P(a)^{\alpha}\left[f_{i}(a)-\hat{\eta}_{i}^{(n)} Q(a)^{1-\alpha}\right]=0, i=1, \ldots, k\right\}, \\
\hat{\eta}_{i}^{(n)}=\frac{\sum_{a} \hat{P}(a)^{\alpha} f_{i}(a)}{\sum_{a} \hat{P}(a)^{\alpha} Q(a)^{1-\alpha}} .
\end{gathered}
$$

Robust estimation on α-exponential family and the duality

Theorem

Let X_{1}, \ldots, X_{n} be i.i.d. samples drawn according to a distribution from \mathscr{E}_{α}, an α-exponential family, and let \hat{P} be its empirical probability measure. Let P^{*} be the forward D_{α}-projection of Q on

$$
\begin{gathered}
\mathscr{L}_{\alpha}=\left\{P \in \mathcal{M}: \sum_{a} P(a)^{\alpha}\left[f_{i}(a)-\hat{\eta}_{i}^{(n)} Q(a)^{1-\alpha}\right]=0, i=1, \ldots, k\right\}, \\
\hat{\eta}_{i}^{(n)}=\frac{\sum_{a} \hat{P}(a)^{\alpha} f_{i}(a)}{\sum_{a} \hat{P}(a)^{\alpha} Q(a)^{1-\alpha}} .
\end{gathered}
$$

- α-linear and α-exponential families are orthogonal: If $\operatorname{Supp}\left(P^{*}\right)=\operatorname{Supp}\left(\mathscr{L}_{\alpha}\right)$, then $\mathscr{L}_{\alpha} \cap \mathscr{E}_{\alpha}=\left\{P^{*}\right\}$, and

$$
D_{\alpha}\left(P \| P_{\theta}\right)=D_{\alpha}\left(P \| P^{*}\right)+D_{\alpha}\left(P^{*} \| P_{\theta}\right) \quad \forall P \in \mathscr{L}_{\alpha} \quad \forall P_{\theta} \in \mathscr{E}_{\alpha} .
$$

Robust estimation on α-exponential family and the duality

Theorem

Let X_{1}, \ldots, X_{n} be i.i.d. samples drawn according to a distribution from \mathscr{E}_{α}, an α-exponential family, and let \hat{P} be its empirical probability measure. Let P^{*} be the forward D_{α}-projection of Q on

$$
\begin{gathered}
\mathscr{L}_{\alpha}=\left\{P \in \mathcal{M}: \sum_{a} P(a)^{\alpha}\left[f_{i}(a)-\hat{\eta}_{i}^{(n)} Q(a)^{1-\alpha}\right]=0, i=1, \ldots, k\right\}, \\
\hat{\eta}_{i}^{(n)}=\frac{\sum_{a} \hat{P}(a)^{\alpha} f_{i}(a)}{\sum_{a} \hat{P}(a)^{\alpha} Q(a)^{1-\alpha}} .
\end{gathered}
$$

- α-linear and α-exponential families are orthogonal: If $\operatorname{Supp}\left(P^{*}\right)=\operatorname{Supp}\left(\mathscr{L}_{\alpha}\right)$, then $\mathscr{L}_{\alpha} \cap \mathscr{E}_{\alpha}=\left\{P^{*}\right\}$, and

$$
D_{\alpha}\left(P \| P_{\theta}\right)=D_{\alpha}\left(P \| P^{*}\right)+D_{\alpha}\left(P^{*} \| P_{\theta}\right) \quad \forall P \in \mathscr{L}_{\alpha} \quad \forall P_{\theta} \in \mathscr{E}_{\alpha} .
$$

- Thus, $\arg \min _{P_{\theta} \in \mathscr{E}_{\alpha}} D_{\alpha}\left(\hat{P} \| P_{\theta}\right)$

Robust estimation on α-exponential family and the duality

Theorem

Let X_{1}, \ldots, X_{n} be i.i.d. samples drawn according to a distribution from \mathscr{E}_{α}, an α-exponential family, and let \hat{P} be its empirical probability measure. Let P^{*} be the forward D_{α}-projection of Q on

$$
\begin{gathered}
\mathscr{L}_{\alpha}=\left\{P \in \mathcal{M}: \sum_{a} P(a)^{\alpha}\left[f_{i}(a)-\hat{\eta}_{i}^{(n)} Q(a)^{1-\alpha}\right]=0, i=1, \ldots, k\right\}, \\
\hat{\eta}_{i}^{(n)}=\frac{\sum_{a} \hat{P}(a)^{\alpha} f_{i}(a)}{\sum_{a} \hat{P}(a)^{\alpha} Q(a)^{1-\alpha}} .
\end{gathered}
$$

- α-linear and α-exponential families are orthogonal: If $\operatorname{Supp}\left(P^{*}\right)=\operatorname{Supp}\left(\mathscr{L}_{\alpha}\right)$, then $\mathscr{L}_{\alpha} \cap \mathscr{E}_{\alpha}=\left\{P^{*}\right\}$, and

$$
D_{\alpha}\left(P \| P_{\theta}\right)=D_{\alpha}\left(P \| P^{*}\right)+D_{\alpha}\left(P^{*} \| P_{\theta}\right) \quad \forall P \in \mathscr{L}_{\alpha} \quad \forall P_{\theta} \in \mathscr{E}_{\alpha} .
$$

- Thus, $\arg \min _{P_{\theta} \in \mathscr{E}_{\alpha}} D_{\alpha}\left(\hat{P} \| P_{\theta}\right)=P^{*}$

Robust estimation on α-exponential family and the duality

Theorem

Let X_{1}, \ldots, X_{n} be i.i.d. samples drawn according to a distribution from \mathscr{E}_{α}, an α-exponential family, and let \hat{P} be its empirical probability measure. Let P^{*} be the forward D_{α}-projection of Q on

$$
\begin{gathered}
\mathscr{L}_{\alpha}=\left\{P \in \mathcal{M}: \sum_{a} P(a)^{\alpha}\left[f_{i}(a)-\hat{\eta}_{i}^{(n)} Q(a)^{1-\alpha}\right]=0, i=1, \ldots, k\right\}, \\
\hat{\eta}_{i}^{(n)}=\frac{\sum_{a} \hat{P}(a)^{\alpha} f_{i}(a)}{\sum_{a} \hat{P}(a)^{\alpha} Q(a)^{1-\alpha}} .
\end{gathered}
$$

- α-linear and α-exponential families are orthogonal: If $\operatorname{Supp}\left(P^{*}\right)=\operatorname{Supp}\left(\mathscr{L}_{\alpha}\right)$, then $\mathscr{L}_{\alpha} \cap \mathscr{E}_{\alpha}=\left\{P^{*}\right\}$, and

$$
D_{\alpha}\left(P \| P_{\theta}\right)=D_{\alpha}\left(P \| P^{*}\right)+D_{\alpha}\left(P^{*} \| P_{\theta}\right) \quad \forall P \in \mathscr{L}_{\alpha} \quad \forall P_{\theta} \in \mathscr{E}_{\alpha} .
$$

- Thus, $\arg \min _{P_{\theta} \in \mathscr{E}_{\alpha}} D_{\alpha}\left(\hat{P} \| P_{\theta}\right)=P^{*}=\arg \min _{P \in \mathscr{L}_{\alpha}} D_{\alpha}(P \| Q)$.

Summary

- Sufficient condition for the existence of forward projection on α-convex sets
- Pythagorean equality on α-linear family for $\alpha>1$
- Convergence of iterated projection on an intersection of α-linear families
- Form of forward projection on α-linear family
- Orthogonality of α-linear and α-exponential families
- Full version: http://arxiv.org/abs/1512.02515.

