On Projections of the Rényi Divergence on Generalized Convex Sets

M. Ashok Kumar Department of Mathematics Indian Institute of Technology Indore 452020, India Email: ashokm.shree@gmail.com Igal Sason

Andrew and Erna Viterbi Faculty of Electrical Engineering Technion-Israel Institute of Technology Haifa 32000, Israel Email: sason@ee.technion.ac.il

Abstract—Motivated by a recent result by van Erven and Harremoës, we study a forward projection problem for the Rényi divergence on a particular α -convex set, termed α linear family. The solution to this problem yields a parametric family of probability measures which turns out to be an extension of the exponential family, and it is termed α exponential family. An orthogonality relationship between the α exponential and α -linear families is first established and is then used to transform the reverse projection on an α -exponential family into a forward projection on an α -linear family. The full paper version of this work is available on the arXiv at http://arxiv.org/abs/1512.02515.¹

Index Terms – α -convex set, relative entropy, variational distance, forward and reverse projections, Rényi divergence, exponential and linear families.

I. INTRODUCTION

Given a probability measure Q, and a set of probability measures \mathcal{P} on an alphabet \mathcal{A} , a forward projection of Qon \mathcal{P} is a $P^* \in \mathcal{P}$ which minimizes the relative entropy $D(P \| Q)$ subject to $P \in \mathcal{P}$. Forward projections appear predominantly in large deviations theory (see, e.g., [4, Chapter 11] in the context of Sanov's theorem and the conditional limit theorem). The forward projection of a generalization of the relative entropy on convex sets has been proposed by Sundaresan in [17] in the context of guessing under source uncertainty, and it was further studied in [12]. In this paper we consider forward projection of Rényi divergence on some generalized convex sets. A physical motivation for such a study stems from a maximum entropy problem proposed by Tsallis in statistical physics [18], [19] (for further details about the connection of this maximum entropy problem to forward projections of the Rényi divergence, the reader is referred to [11]).

The other problem of interest in this paper is the *reverse* projection where the minimization is over the second argument of the divergence measure. This problem is intimately related to the maximum-likelihood estimation and robust statistics. Suppose X_1, \ldots, X_n are i.i.d. samples drawn according to a probability measure which is modeled by a parametric family of probability measures $\Pi = \{P_{\theta} : \theta \in \Theta\}$

where Θ is a parameter space, and all the members of Π are assumed to have a common finite support A. The maximumlikelihood estimator of the given samples (if it exists) is the minimizer of $D(\hat{P} \| P_{\theta})$ subject to $P_{\theta} \in \Pi$, where \hat{P} is the empirical probability measure of the observed samples [9, Lemma 3.1]. The minimizing probability measure (if exists) is called the reverse projection of \hat{P} on Π . Other divergences that have natural connection in statistical estimation problems include Hellinger divergence of order $\frac{1}{2}$ (see, e.g., [3]), Pearson's χ^2 -divergence, and so on. All these belong to the more general family of Hellinger divergences of order $\alpha \in (0,\infty)$ (note that these divergences are, up to a positive scaling factor, equal to the power divergences introduced by Cressie and Read [5]); these divergences form a sub-family of f-divergences which were independently introduced by Ali and Silvey [1] and Csiszár [6]. The Hellinger divergences possess a very good robustness property when a significant fraction of the observed samples are outliers; the textbooks of Basu et al. [2] and Pardo [14] provide a coverage of the developments on the study of inference based on fdivergences. Since the Rényi divergence is a monotonically increasing function of the Hellinger divergence (see, e.g., [16, (1)]), minimizing a Hellinger divergence of order $\alpha \in (0, \infty)$ is equivalent to minimizing the Rényi divergence of the same order. This motivates the problem of studying reverse projections of the Rényi divergence in the context of robust statistics.

In a recent work [10, Theorem 14], van Erven and Harremoës proved a Pythagorean property for Rényi divergences of order $\alpha \in (0, \infty)$ on α -convex sets. By exploiting this property, we study forward projection of the Rényi divergence on an α -linear family. The form of forward projection suggests a parametric family of probability measures which turns out to be an extension of the exponential family, and it is termed an α -exponential family. We show an orthogonality relationship between the α -linear family and the α exponential family. Using this orthogonality property one can transform a reverse projection problem on an α -exponential family into a forward projection problem on an α -convex family.

The following is an outline of the paper: Section II provides preliminary material; Section III identifies the form

¹This work was done while the first author was a post-doctoral fellow at the Andrew and Erna Viterbi faculty of electrical engineering, Technion–Israel Institute of Technology, Haifa 32000, Israel.

of forward projections on α -linear families, and it proves convergence of an iterated process for forward projections. Section IV proves an orthogonality relationship between the α -linear and α -exponential families is established, and this latter property is used to find reverse projections on α exponential families. The full paper version of this work is available at [11] which includes additional results and discussions, and all the proofs.

II. PRELIMINARIES

Unless explicitly mentioned, it is assumed throughout the paper that probability measures are defined on a finite alphabet \mathcal{A} . Let \mathcal{M} denote the set of all probability measures on \mathcal{A} . For $P \in \mathcal{M}$, let $\text{Supp}(P) := \{a \in \mathcal{A} : P(a) > 0\}$; for $\mathcal{P} \subseteq \mathcal{M}$, let $\text{Supp}(\mathcal{P})$ be the union of support of members of \mathcal{P} .

Definition 1 (Rényi divergence). Let $\alpha \in (0, 1) \cup (1, \infty)$. For $P, Q \in \mathcal{M}$, the *Rényi divergence* [15] of order α from P to Q is given by

$$D_{\alpha}(P||Q) := \frac{1}{\alpha - 1} \log \left(\sum_{a} P(a)^{\alpha} Q(a)^{1 - \alpha} \right).$$
(1)

If $\alpha = 1$, then

$$D_1(P||Q) := D(P||Q),$$
 (2)

which is the analytic extension of $D_{\alpha}(P||Q)$ at $\alpha = 1$.

Definition 2 $((\alpha, \lambda)$ -mixture [10]). Let $P_0, P_1 \in \mathcal{M}, \alpha \in (-\infty, 0) \cup (0, \infty)$, and let $\lambda \in (0, 1)$. The (α, λ) -mixture of (P_0, P_1) is the probability measure $S_{0,1}$ defined by

$$S_{0,1}(a) := \frac{1}{Z} \left[(1-\lambda)P_0(a)^{\alpha} + \lambda P_1(a)^{\alpha} \right]^{\frac{1}{\alpha}}, \qquad (3)$$

where Z is the normalizing constant in (3) such that

$$\sum_{a} S_{0,1}(a) = 1.$$
 (4)

Here, for simplicity, we suppress the dependence of $S_{0,1}$ and Z on α, λ . Note that $S_{0,1}$ is well-defined as Z is always positive and finite.

Definition 3 (α -convex set). Let $\alpha \in (-\infty, 0) \cup (0, \infty)$. A set of probability measures \mathcal{P} is said to be α -convex if, for every $P_0, P_1 \in \mathcal{P}$ and $\lambda \in (0, 1)$, the (α, λ) -mixture $S_{0,1} \in \mathcal{P}$.

The following is a specific α -convex set which is of interest in this paper.

Definition 4 (α -linear family). Let $\alpha \in (-\infty, 0) \cup (0, \infty)$, and f_1, \ldots, f_k be real-valued functions defined on \mathcal{A} . The α -linear family determined by f_1, \ldots, f_k is defined to be the following parametric family of probability measures defined on \mathcal{A} :

$$\mathscr{L}_{\alpha} := \left\{ P \in \mathcal{M} \colon P(a) = \left[\sum_{i=1}^{k} \theta_{i} f_{i}(a) \right]^{\frac{1}{\alpha}}, \quad \underline{\theta} \in \mathbb{R}^{k} \right\}$$
(5)

For typographical convenience, we have suppressed the dependence of \mathscr{L}_{α} in f_1, \ldots, f_k . It is easy to see that \mathscr{L}_{α} is an

 α -convex set. Without loss of generality, we shall assume that f_1, \ldots, f_k , as $|\mathcal{A}|$ -dimensional vectors, are mutually orthogonal (otherwise, by the Gram-Schmidt procedure, these vectors can be orthogonalized without affecting the corresponding α -linear family in (5)). Let \mathcal{F} be the subspace of $\mathbb{R}^{|\mathcal{A}|}$ spanned by f_1, \ldots, f_k , and let \mathcal{F}^{\perp} denote the orthogonal complement of \mathcal{F} . Hence, there exist $f_{k+1}, \ldots, f_{|\mathcal{A}|}$ such that $f_1, \ldots, f_{|\mathcal{A}|}$ are mutually orthogonal as $|\mathcal{A}|$ -dimensional vectors, and $\mathcal{F}^{\perp} = \text{Span}\{f_{k+1}, \ldots, f_{|\mathcal{A}|}\}$. Consequently, from (5), for $\alpha \in (0, 1) \cup (1, \infty)$,

$$\mathscr{L}_{\alpha} = \Big\{ P \in \mathcal{M} \colon \sum_{a} P(a)^{\alpha} f_i(a) = 0, \ k+1 \le i \le |\mathcal{A}| \Big\} \Big\}.$$
(6)

From (6), it is clear that the set \mathscr{L}_{α} is closed. Since it is also bounded, it is compact.

III. FORWARD PROJECTION ON α -LINEAR FAMILY

Let us first recall the Pythagorean property for a Rényi divergence on an α -convex set. As in the case of relative entropy [9] and relative α -entropy [13], the Pythagorean property is crucial in establishing orthogonality properties. In the sequel, we assume that Q is a probability measure with $\text{Supp}(Q) = \mathcal{A}$.

In a recent work, van Erven and Harremoës proved a Pythagorean inequality for Rényi divergences on α -convex sets under the assumption that the forward projection exists (see [10, Theorem 14]). Continuing this study, a sufficient condition for the existence of forward projection is proved in [11] for probability measures on a general alphabet. The following result extends the existence result in [8] for the forward projection of the relative entropy.

Theorem 1 (Existence of forward D_{α} -projection). Let $\alpha \in (0, \infty)$, and let Q be an arbitrary probability measure defined on a set \mathcal{A} . Let \mathcal{P} be an α -convex set of probability measures defined on \mathcal{A} , and assume that \mathcal{P} is closed with respect to the total variation distance. If there exists $P \in \mathcal{P}$ such that $D_{\alpha}(P||Q) < \infty$, then there exists a forward D_{α} -projection of Q on \mathcal{P} .

Proof: See [11]. For $\alpha \in (1, \infty)$, the proof relies on a new Apollonius theorem for the Hellinger divergence, and for $\alpha \in (0, 1)$, the proof relies on the Banach-Alaoglu theorem from functional analysis.

Proposition 1 (The Pythagorean property). Let $\alpha \in (0, 1) \cup (1, \infty)$, let $\mathcal{P} \subseteq \mathcal{M}$ be an α -convex set, and $Q \in \mathcal{M}$.

(a) If P^* is a forward D_{α} -projection of Q on \mathcal{P} , then

$$D_{\alpha}(P||Q) \ge D_{\alpha}(P||P^*) + D_{\alpha}(P^*||Q)$$
 (7)

for all $P \in \mathcal{P}$. Furthermore, if $\alpha > 1$, then $\text{Supp}(P^*) = \text{Supp}(\mathcal{P})$.

(b) Conversely, if (7) is satisfied for some P^{*} ∈ P, then P^{*} is the (unique) forward D_α-projection of Q on P.

Remark 1. The Pythagorean property (7) holds for probability measures defined on a general alphabet A, as proved in [10, Theorem 14]. The novelty here is in the last assertion of (a), which extends the result for relative entropy in [9, Theorem 3.1], for which A needs to be finite.

Corollary 1. Let $\alpha \in (0, \infty)$. If a forward D_{α} -projection on an α -convex set exists, then it is unique.

Proof: For $\alpha = 1$, since an α -convex set is particularized to a convex set, this result is known in view of [9, p. 23]. Next, consider the case where $\alpha \neq 1$. Let P_1^* and P_2^* be forward D_{α} -projections of Q on an α -convex set \mathcal{P} . Applying Proposition 1 we have

$$D_{\alpha}(P_2^* \| Q) \ge D_{\alpha}(P_2^* \| P_1^*) + D_{\alpha}(P_1^* \| Q).$$

Since $D_{\alpha}(P_1^* || Q) = D_{\alpha}(P_2^* || Q)$, we must have $D_{\alpha}(P_2^* || P_1^*) = 0$ which implies that $P_1^* = P_2^*$.

The last assertion in Proposition 1a) states that $\operatorname{Supp}(P^*) = \operatorname{Supp}(\mathcal{P})$ if $\alpha \in (1, \infty)$. The following counterexample, taken from [11], illustrates that this equality does not necessarily hold for $\alpha \in (0, 1)$.

Example 1. Let $\mathcal{A} = \{1, 2, 3, 4\}$, $\alpha = \frac{1}{2}$, $f : \mathcal{A} \to \mathbb{R}$ be given by

$$f(1) = 1, f(2) = -3, f(3) = -5, f(4) = -6$$
 (8)

and let $Q(a) = \frac{1}{4}$ for all $a \in A$. Consider the following α -linear family:

$$\mathcal{P} := \Big\{ P \in \mathcal{M} \colon \sum_{a} P(a)^{\alpha} f(a) = 0 \Big\}.$$
(9)

Let

$$P^*(1) = \frac{9}{10}, P^*(2) = \frac{1}{10}, P^*(3) = 0, P^*(4) = 0.$$
 (10)

It is easy to check that $P^* \in \mathcal{P}$. Furthermore, setting $\theta^* = \frac{1}{5}$ and $Z = \frac{2}{5}$ yields that for $a \in \{1, 2, 3\}$

$$P^*(a)^{1-\alpha} = Z^{\alpha-1} \Big[Q(a)^{1-\alpha} + (1-\alpha) f(a) \theta^* \Big], \quad (11)$$

and

$$P^{*}(4)^{1-\alpha} > Z^{\alpha-1} \Big[Q(4)^{1-\alpha} + (1-\alpha) f(4) \theta^{*} \Big].$$
 (12)

From (9), (11) and (12), it follows that for every $P \in \mathcal{P}$

$$\sum_{a \in \mathcal{A}} P(a)^{\alpha} P^*(a)^{1-\alpha} \ge Z^{\alpha-1} \sum_{a \in \mathcal{A}} P(a)^{\alpha} Q(a)^{1-\alpha}.$$
 (13)

Furthermore, it can be also verified that

$$Z^{\alpha-1} \sum_{a \in \mathcal{A}} P^*(a)^{\alpha} Q(a)^{1-\alpha} = 1.$$
 (14)

Assembling (13) and (14) yields

$$\sum_{a \in \mathcal{A}} P(a)^{\alpha} P^*(a)^{1-\alpha} \ge \frac{\sum_{a \in \mathcal{A}} P(a)^{\alpha} Q(a)^{1-\alpha}}{\sum_{a \in \mathcal{A}} P^*(a)^{\alpha} Q(a)^{1-\alpha}}, \quad (15)$$

which is equivalent to (7). Hence, Proposition 1b) implies that P^* is the forward D_{α} -projection of Q on \mathcal{P} . Note, however, that $Supp(P^*) \neq Supp(\mathcal{P})$; to this end, from (9), it can be verified numerically that

$$P = (0.984688, 0.00568298, 0.0041797, 0.00544902) \in \mathcal{P}$$
(16)

which implies that $Supp(P^*) = \{1,2\} \subset \mathcal{A}$ whereas $Supp(\mathcal{P}) = \mathcal{A}$.

We shall now focus our attention on forward D_{α} -projections on α -linear families.

Theorem 2 (Pythagorean equality). Let $\alpha > 1$, and let P^* be the forward D_{α} -projection of Q on an α -linear family \mathscr{L}_{α} . Then, P^* satisfies (7) with equality, i.e.,

$$D_{\alpha}(P||Q) = D_{\alpha}(P||P^*) + D_{\alpha}(P^*||Q), \quad \forall P \in \mathscr{L}_{\alpha}.$$
(17)
Proof: See [11].

In [8, Theorem 3.2], Csiszár proposed a convergent iterative process for finding the forward projection for the relative entropy on a finite intersection of linear families. This result is generalized in this work for the Rényi divergence of order $\alpha \in (0, \infty)$ on a finite intersection of α -linear families.

Theorem 3 (Iterative projections). Let $\alpha \in (1, \infty)$. Suppose that $\mathscr{L}_{\alpha}^{(1)}, \ldots, \mathscr{L}_{\alpha}^{(m)}$ are α -linear families, and let

$$\mathcal{P} := \bigcap_{n=1}^{m} \mathscr{L}_{\alpha}^{(n)} \tag{18}$$

where \mathcal{P} is assumed to be a non-empty set. Let $P_0 = Q$, and let P_n for $n \in \mathbb{N}$ be the forward D_{α} -projection of P_{n-1} on $\mathscr{L}_{\alpha}^{(i_n)}$ with $i_n = n \mod (m)$. Then, $P_n \to P^*$ (a pointwise convergence) as we let $n \to \infty$.

We next identify the form of the forward D_{α} -projection on an α -linear family.

Theorem 4 (Forward projection on an α -linear family). Let $\alpha \in (0, 1) \cup (1, \infty)$, and let P^* be the forward D_{α} -projection of Q on an α -linear family \mathscr{L}_{α} . Suppose that

$$\operatorname{Supp}(P^*) = \operatorname{Supp}(\mathscr{L}_{\alpha}) = \mathcal{A}.$$
 (19)

Then,

- (a) P^* satisfies (17).
- (b) There exists $\theta^* = (\theta_{k+1}^*, \dots, \theta_{|\mathcal{A}|}^*) \in \mathbb{R}^{|\mathcal{A}|-k}$ such that, for all $a \in \mathcal{A}$,

$$P^{*}(a) = Z(\theta^{*})^{-1} \left[Q(a)^{1-\alpha} + (1-\alpha) \sum_{i=k+1}^{|\mathcal{A}|} \theta_{i}^{*} f_{i}(a) \right]^{\frac{1}{1-\alpha}}$$
(20)

where $Z(\theta^*)$ is a normalizing constant in (20).

Remark 2. In view of Example 1, the assumption in (19) does not necessarily hold for $\alpha \in (0, 1)$. However, due to

Proposition 1, this assumption necessarily holds for every $\alpha \in (1, \infty)$.

For $\alpha \in (0,\infty)$, the forward D_{α} -projection on an α linear family \mathscr{L}_{α} motivates the definition of the following parametric family of probability measures. Let $Q \in \mathcal{M}$, and let

$$\mathscr{E}_{\alpha} = \left\{ P \in \mathcal{M} : \right.$$

$$P(a) = \frac{1}{Z(\theta)} \Big[Q(a)^{1-\alpha} + (1-\alpha) \sum_{i=k+1}^{|\mathcal{A}|} \theta_i f_i(a) \Big]^{\frac{1}{1-\alpha}}$$

$$\theta = (\theta_{k+1}, \dots, \theta_{|\mathcal{A}|}) \in \mathbb{R}^{|\mathcal{A}|-k} \Big\}.$$
(21)

It is easy to see that \mathscr{E}_{α} is an $(1 - \alpha)$ -convex set. Also, the family \mathscr{E}_{α} generalizes the *exponential family* in [9, p. 24]:

$$\mathscr{E} = \left\{ P \in \mathcal{M} \colon P(a) = Z(\theta)^{-1} Q(a) \exp\left(\sum_{i=k+1}^{|\mathcal{A}|} \theta_i f_i(a)\right), \\ \theta = (\theta_{k+1}, \dots, \theta_{|\mathcal{A}|}) \in \mathbb{R}^{|\mathcal{A}|-k} \right\}.$$
(22)

This extension is demonstrated in [11]. We shall call the family \mathscr{E}_{α} an α -exponential family.² It is easy to see that the reference measure Q in the definition of \mathscr{E}_{α} is always a member of \mathscr{E}_{α} . As in the case of the exponential family, the α -exponential family \mathscr{E}_{α} also depends on the reference measure Q only in a loose manner. Any other member of \mathscr{E}_{α} could very well play the role of Q in defining the family. The proof is very similar to the one for the α -power-law family in [13, Proposition 22]. It should also be noted that, for $\alpha \in (1, \infty)$, all members of \mathscr{E}_{α} have the same support (i.e., same as the support of Q).

IV. ORTHOGONALITY OF α -LINEAR AND α -EXPONENTIAL FAMILIES

We first make precise the notion of orthogonality between two sets of probability measures with respect to D_{α} ($\alpha > 0$).

Definition 5 (Orthogonal sets of probability measures). Let $\alpha \in (0, 1) \cup (1, \infty)$, and let \mathcal{P} and \mathcal{Q} be sets of probability measures. We say that \mathcal{P} is α -orthogonal to \mathcal{Q} at P^* if the following hold:

- (i) $\mathcal{P} \cap \mathcal{Q} = \{P^*\}$
- (ii) $D_{\alpha}(P||Q) = D_{\alpha}(P||P^*) + D_{\alpha}(P^*||Q)$ for every $P \in \mathcal{P}$ and $Q \in \mathcal{Q}$.

Note that, when $\alpha = 1$, this refers to the orthogonality between the linear and exponential families, which is essentially [9, Corollary 3.1].

We are now ready to state the second main result in [11] namely, the orthogonality between \mathscr{L}_{α} and \mathscr{E}_{α} .

Theorem 5 (Orthogonality of \mathscr{L}_{α} and \mathscr{E}_{α}). Let $\alpha \in (1, \infty)$, let \mathscr{L}_{α} and \mathscr{E}_{α} be given by (5) and (21), respectively, and let P^* be the forward D_{α} -projection of Q on \mathscr{L}_{α} . Then,

- (a) \mathscr{L}_{α} is α -orthogonal to $\operatorname{cl}(\mathscr{E}_{\alpha})$ at P^* .
- (b) If Supp(L_α) = A, then L_α is α-orthogonal to E_α at P^{*}.

Remark 3. In view of Example 1, if $\alpha \in (0, 1)$, then Supp (P^*) is not necessarily equal to Supp (\mathscr{L}_{α}) ; this is consistent with Theorem 5 which is stated only for $\alpha \in (1, \infty)$. Nevertheless, in view of the proof of Theorem 2, the following holds for $\alpha \in (0, 1)$: if Supp $(P^*) = \text{Supp}(\mathscr{L}_{\alpha}) = \mathcal{A}$, then \mathscr{L}_{α} is α -orthogonal to \mathscr{E}_{α} at P^* .

In [11], Theorem 5 and Remark 3 are applied to find a reverse projection on an α -exponential family. Before we proceed, we now make precise the definition of a reverse D_{α} -projection.

Definition 6 (Reverse D_{α} -projection). Let $P \in \mathcal{M}$, $\mathcal{Q} \subseteq \mathcal{M}$, and $\alpha > 0$. If there exists $Q^* \in \mathcal{Q}$ which attains the global minimum of $D_{\alpha}(P||Q)$ over all $Q \in \mathcal{Q}$ and $D_{\alpha}(P||Q^*) < \infty$, then Q^* is said to be a reverse D_{α} -projection of P on \mathcal{Q} .

Theorem 6. Let $\alpha \in (0,1) \cup (1,\infty)$, and let \mathscr{E}_{α} be an α -exponential family determined by $Q, f_{k+1}, \ldots, f_{|\mathcal{A}|}$. Let X_1, \ldots, X_n be i.i.d. samples drawn at random according to a probability measure in \mathscr{E}_{α} . Let \hat{P}_n be the empirical probability measure of X_1, \ldots, X_n , and let P_n^* be the forward D_{α} -projection of Q on the α -linear family

$$\mathscr{L}^{(n)}_{\alpha} := \Big\{ P \in \mathcal{M} \colon \sum_{a} P(a)\hat{f}_{i}(a) = 0, \ k+1 \le i \le |\mathcal{A}| \Big\},$$
(23)

where

$$\hat{f}_i(a) := f_i(a) - \hat{\eta}_i^{(n)} Q(a)^{1-\alpha}, \quad \forall a \in \mathcal{A}$$
(24)

with

$$\hat{\eta}_{i}^{(n)} := \frac{\sum_{a} \hat{P}_{n}(a) f_{i}(a)}{\sum_{a} \hat{P}_{n}(a)^{\alpha} Q(a)^{1-\alpha}}, \quad i \in \{k+1, \dots, |\mathcal{A}|\}.$$
(25)

Then, the following hold:

- (a) If Supp(P_n^{*}) = Supp(ℒ_α⁽ⁿ⁾) = A, then P_n^{*} is the reverse D_α-projection of P̂_n on 𝔅_α.
 (b) For α ∈ (1,∞), if Supp(ℒ_α⁽ⁿ⁾) ≠ A, then the
- (b) For α ∈ (1,∞), if Supp(𝔅⁽ⁿ⁾_α) ≠ 𝔅, then the reverse D_α-projection of P̂_n on 𝔅_α does not exist. Nevertheless, P^{*}_n is the reverse D_α-projection of P̂_n on cl(𝔅_α).

ACKNOWLEDGMENT

This work has been supported by the Israeli Science Foundation (ISF) under Grant 12/12.

²We emphasize that the α -power-law family proposed in [13, Definition 8] is different extension of the exponential family \mathscr{E} .

REFERENCES

- S. M. Ali and S. D. Silvey, "A general class of coefficients of divergence of one distribution from another," *Journal of the Royal Statistics Society*, series B, vol. 28, no. 1, pp. 131–142, 1966.
- [2] A. Basu, H. Shioya and C. Park, "Statistical Inference: The Minimum Distance Approach," *Chapman & Hall/ CRC Monographs on Statistics* and Applied Probability, vol. 120, CRC Press, Boca Raton, Florida, USA, June 2011.
- [3] R. Beran, "Minimum Hellinger distance estimates for parametric models," *Annals of Statistics*, vol. 5, no. 3, pp. 445–463, 1977.
- [4] T. M. Cover and J. A. Thomas, *Elements of Information Theory*, John Wiley and Sons, second edition, 2006.
- [5] N. Cressie and T. R. C. Read, "Multinomial Goodness-of-fit Tests," Journal of the Royal Statistical Society B, no. 46, pp. 440–464, 1984.
- [6] I. Csiszár, "Eine Informationstheoretische Ungleichung und ihre Anwendung auf den Bewis der Ergodizität von Markhoffschen Ketten," *Publ. Math. Inst. Hungar. Acad. Sci.*, vol. 8, pp. 85–108, January 1963.
- [7] I. Csiszár, "Information-type measures of difference of probability distributions and indirect observations," *Studia Scientiarum Mathematicarum Hungarica*, vol. 2, pp. 299–318, 1967.
- [8] I. Csiszár, "I-divergence geometry of probability distributions and minimization problems," *Annals of Probability*, vol. 3, pp. 146–158, 1975.
- [9] I. Csiszár and P. C. Shields, "Information Theory and Statistics: A Tutorial," *Foundations and Trends in Communications and Information Theory*, vol. 1, no. 4, pp. 417–528, 2004.

- [10] T. van Erven and P. Harremoës, "Rényi divergence and Kullback-Leibler divergence," *IEEE Trans. on Information Theory*, vol. 60, no. 7, pp. 3797–3820, July 2014.
- [11] M. A. Kumar and I. Sason, "Projection theorems for the Rényi divergence on α-convex sets," preprint, http://arxiv.org/abs/1512.02515.
- [12] M. A. Kumar and R. Sundaresan, "Minimization problems based on α-relative entropy I: Forward Projection," *IEEE Trans. on Information Theory*, vol. 61, no. 9, pp. 5063–5080, September 2015.
- [13] M. A. Kumar and R. Sundaresan, "Minimization problems based on α-relative entropy II: Reverse Projection," *IEEE Trans. on Information Theory*, vol. 61, no. 9, pp. 5081–5095, September 2015.
- [14] L. Pardo, "Statistical Inference based on Divergences," CRC/Chapman-Hall, 2006.
- [15] A. Rényi, "On measures of entropy and information," Proceedings of the 4th Berekely Symposium on Probability Theory and Mathematical Statistics, pp. 547–561, Berekeley, California, USA, 1961.
- [16] I. Sason, "On the Rényi divergence, joint range of relative entropies, and a channel coding theorem," *IEEE Trans. on Information Theory*, vol. 62, no. 1, pp. 23–34, January 2016.
- [17] R. Sundaresan, "A measure of discrimination and its geometric properties," *Proceedings of the IEEE 2002 International Symposium on Information Theory*, p. 264, Laussane, Switzerland, June 2002.
- [18] C. Tsallis, "Possible generalization of Bolzmann-Gibbs statistics," *Journal of Statistical Physics*, vol. 52, no. 1-2, 1988.
- [19] C. Tsallis, R. S. Mendes and A. R. Plastino, "The role of constraints within generalized nonextensive statistics," *Physica A*, vol. 261, pp. 534–554, 1998.