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Abstract—Motivated by a recent result by van Erven and
Harremoës, we study a forward projection problem for the
Rényi divergence on a particular α-convex set, termed α-
linear family. The solution to this problem yields a para-
metric family of probability measures which turns out to be
an extension of the exponential family, and it is termed α-
exponential family. An orthogonality relationship between the α-
exponential and α-linear families is first established and is then
used to transform the reverse projection on an α-exponential
family into a forward projection on an α-linear family. The
full paper version of this work is available on the arXiv at
http://arxiv.org/abs/1512.02515.1

Index Terms – α-convex set, relative entropy, variational
distance, forward and reverse projections, Rényi divergence,
exponential and linear families.

I. INTRODUCTION

Given a probability measure Q, and a set of probability
measures P on an alphabet A, a forward projection of Q
on P is a P ∗ ∈ P which minimizes the relative entropy
D(P‖Q) subject to P ∈ P . Forward projections appear
predominantly in large deviations theory (see, e.g., [4, Chap-
ter 11] in the context of Sanov’s theorem and the conditional
limit theorem). The forward projection of a generalization
of the relative entropy on convex sets has been proposed by
Sundaresan in [17] in the context of guessing under source
uncertainty, and it was further studied in [12]. In this paper
we consider forward projection of Rényi divergence on some
generalized convex sets. A physical motivation for such a
study stems from a maximum entropy problem proposed by
Tsallis in statistical physics [18], [19] (for further details
about the connection of this maximum entropy problem to
forward projections of the Rényi divergence, the reader is
referred to [11]).

The other problem of interest in this paper is the reverse
projection where the minimization is over the second argu-
ment of the divergence measure. This problem is intimately
related to the maximum-likelihood estimation and robust
statistics. Suppose X1, . . . , Xn are i.i.d. samples drawn ac-
cording to a probability measure which is modeled by a
parametric family of probability measures Π = {Pθ : θ ∈ Θ}

1This work was done while the first author was a post-doctoral fellow at
the Andrew and Erna Viterbi faculty of electrical engineering, Technion–
Israel Institute of Technology, Haifa 32000, Israel.

where Θ is a parameter space, and all the members of Π are
assumed to have a common finite support A. The maximum-
likelihood estimator of the given samples (if it exists) is the
minimizer of D(P̂‖Pθ) subject to Pθ ∈ Π, where P̂ is the
empirical probability measure of the observed samples [9,
Lemma 3.1]. The minimizing probability measure (if exists)
is called the reverse projection of P̂ on Π. Other divergences
that have natural connection in statistical estimation problems
include Hellinger divergence of order 1

2 (see, e.g., [3]),
Pearson’s χ2-divergence, and so on. All these belong to
the more general family of Hellinger divergences of order
α ∈ (0,∞) (note that these divergences are, up to a positive
scaling factor, equal to the power divergences introduced by
Cressie and Read [5]); these divergences form a sub-family of
f -divergences which were independently introduced by Ali
and Silvey [1] and Csiszár [6]. The Hellinger divergences
possess a very good robustness property when a significant
fraction of the observed samples are outliers; the textbooks
of Basu et al. [2] and Pardo [14] provide a coverage of
the developments on the study of inference based on f -
divergences. Since the Rényi divergence is a monotonically
increasing function of the Hellinger divergence (see, e.g., [16,
(1)]), minimizing a Hellinger divergence of order α ∈ (0,∞)
is equivalent to minimizing the Rényi divergence of the
same order. This motivates the problem of studying reverse
projections of the Rényi divergence in the context of robust
statistics.

In a recent work [10, Theorem 14], van Erven and Har-
remoës proved a Pythagorean property for Rényi divergences
of order α ∈ (0,∞) on α-convex sets. By exploiting this
property, we study forward projection of the Rényi diver-
gence on an α-linear family. The form of forward projection
suggests a parametric family of probability measures which
turns out to be an extension of the exponential family, and
it is termed an α-exponential family. We show an orthog-
onality relationship between the α-linear family and the α-
exponential family. Using this orthogonality property one can
transform a reverse projection problem on an α-exponential
family into a forward projection problem on an α-convex
family.

The following is an outline of the paper: Section II
provides preliminary material; Section III identifies the form



of forward projections on α-linear families, and it proves
convergence of an iterated process for forward projections.
Section IV proves an orthogonality relationship between the
α-linear and α-exponential families is established, and this
latter property is used to find reverse projections on α-
exponential families. The full paper version of this work
is available at [11] which includes additional results and
discussions, and all the proofs.

II. PRELIMINARIES

Unless explicitly mentioned, it is assumed throughout
the paper that probability measures are defined on a finite
alphabet A. LetM denote the set of all probability measures
on A. For P ∈M, let Supp(P ) := {a ∈ A : P (a) > 0}; for
P ⊆ M, let Supp(P) be the union of support of members
of P .

Definition 1 (Rényi divergence). Let α ∈ (0, 1) ∪ (1,∞).
For P,Q ∈ M, the Rényi divergence [15] of order α from
P to Q is given by

Dα(P‖Q) :=
1

α− 1
log

(∑
a

P (a)αQ(a)1−α
)
. (1)

If α = 1, then

D1(P‖Q) := D(P‖Q), (2)

which is the analytic extension of Dα(P‖Q) at α = 1.

Definition 2 ((α, λ)-mixture [10]). Let P0, P1 ∈ M, α ∈
(−∞, 0) ∪ (0,∞), and let λ ∈ (0, 1). The (α, λ)-mixture of
(P0, P1) is the probability measure S0,1 defined by

S0,1(a) :=
1

Z

[
(1− λ)P0(a)α + λP1(a)α

] 1
α

, (3)

where Z is the normalizing constant in (3) such that∑
a

S0,1(a) = 1. (4)

Here, for simplicity, we suppress the dependence of S0,1

and Z on α, λ. Note that S0,1 is well-defined as Z is always
positive and finite.

Definition 3 (α-convex set). Let α ∈ (−∞, 0)∪(0,∞). A set
of probability measures P is said to be α-convex if, for every
P0, P1 ∈ P and λ ∈ (0, 1), the (α, λ)-mixture S0,1 ∈ P .

The following is a specific α-convex set which is of interest
in this paper.

Definition 4 (α-linear family). Let α ∈ (−∞, 0) ∪ (0,∞),
and f1, . . . , fk be real-valued functions defined on A. The
α-linear family determined by f1, . . . , fk is defined to be the
following parametric family of probability measures defined
on A:

Lα :=
{
P ∈M : P (a) =

[ k∑
i=1

θifi(a)
] 1
α

, θ ∈ Rk
}

(5)

For typographical convenience, we have suppressed the de-
pendence of Lα in f1, . . . , fk. It is easy to see that Lα is an

α-convex set. Without loss of generality, we shall assume that
f1, . . . , fk, as |A|-dimensional vectors, are mutually orthogo-
nal (otherwise, by the Gram-Schmidt procedure, these vectors
can be orthogonalized without affecting the corresponding
α-linear family in (5)). Let F be the subspace of R|A|
spanned by f1, . . . , fk, and let F⊥ denote the orthogonal
complement of F . Hence, there exist fk+1, . . . , f|A| such
that f1, . . . , f|A| are mutually orthogonal as |A|-dimensional
vectors, and F⊥ = Span{fk+1, . . . , f|A|}. Consequently,
from (5), for α ∈ (0, 1) ∪ (1,∞),

Lα =
{
P ∈M :

∑
a

P (a)αfi(a) = 0, k + 1 ≤ i ≤ |A|}
}
.

(6)

From (6), it is clear that the set Lα is closed. Since it is also
bounded, it is compact.

III. FORWARD PROJECTION ON α-LINEAR FAMILY

Let us first recall the Pythagorean property for a Rényi
divergence on an α-convex set. As in the case of relative
entropy [9] and relative α-entropy [13], the Pythagorean
property is crucial in establishing orthogonality properties.
In the sequel, we assume that Q is a probability measure
with Supp(Q) = A.

In a recent work, van Erven and Harremoës proved a
Pythagorean inequality for Rényi divergences on α-convex
sets under the assumption that the forward projection exists
(see [10, Theorem 14]). Continuing this study, a sufficient
condition for the existence of forward projection is proved
in [11] for probability measures on a general alphabet. The
following result extends the existence result in [8] for the
forward projection of the relative entropy.

Theorem 1 (Existence of forward Dα-projection). Let α ∈
(0,∞), and let Q be an arbitrary probability measure defined
on a set A. Let P be an α-convex set of probability measures
defined on A, and assume that P is closed with respect to
the total variation distance. If there exists P ∈ P such that
Dα(P‖Q) < ∞, then there exists a forward Dα-projection
of Q on P .

Proof: See [11]. For α ∈ (1,∞), the proof relies on a
new Apollonius theorem for the Hellinger divergence, and for
α ∈ (0, 1), the proof relies on the Banach-Alaoglu theorem
from functional analysis.

Proposition 1 (The Pythagorean property). Let α ∈ (0, 1)∪
(1,∞), let P ⊆M be an α-convex set, and Q ∈M.

(a) If P ∗ is a forward Dα-projection of Q on P , then

Dα(P‖Q) ≥ Dα(P‖P ∗) +Dα(P ∗‖Q) (7)

for all P ∈ P . Furthermore, if α > 1, then Supp(P ∗) =
Supp(P).

(b) Conversely, if (7) is satisfied for some P ∗ ∈ P , then
P ∗ is the (unique) forward Dα-projection of Q on P .

Proof: See [11].



Remark 1. The Pythagorean property (7) holds for proba-
bility measures defined on a general alphabet A, as proved
in [10, Theorem 14]. The novelty here is in the last assertion
of (a), which extends the result for relative entropy in [9,
Theorem 3.1], for which A needs to be finite.

Corollary 1. Let α ∈ (0,∞). If a forward Dα-projection on
an α-convex set exists, then it is unique.

Proof: For α = 1, since an α-convex set is particularized
to a convex set, this result is known in view of [9, p. 23].
Next, consider the case where α 6= 1. Let P ∗1 and P ∗2 be
forward Dα-projections of Q on an α-convex set P . Applying
Proposition 1 we have

Dα(P ∗2 ‖Q) ≥ Dα(P ∗2 ‖P ∗1 ) +Dα(P ∗1 ‖Q).

Since Dα(P ∗1 ‖Q) = Dα(P ∗2 ‖Q), we must have
Dα(P ∗2 ‖P ∗1 ) = 0 which implies that P ∗1 = P ∗2 .

The last assertion in Proposition 1a) states that
Supp(P ∗) = Supp(P) if α ∈ (1,∞). The following coun-
terexample, taken from [11], illustrates that this equality does
not necessarily hold for α ∈ (0, 1).

Example 1. Let A = {1, 2, 3, 4}, α = 1
2 , f : A → R be

given by

f(1) = 1, f(2) = −3, f(3) = −5, f(4) = −6 (8)

and let Q(a) = 1
4 for all a ∈ A. Consider the following

α-linear family:

P :=
{
P ∈M :

∑
a

P (a)αf(a) = 0
}
. (9)

Let

P ∗(1) = 9
10 , P

∗(2) = 1
10 , P

∗(3) = 0, P ∗(4) = 0. (10)

It is easy to check that P ∗ ∈ P . Furthermore, setting θ∗ = 1
5

and Z = 2
5 yields that for a ∈ {1, 2, 3}

P ∗(a)1−α = Zα−1
[
Q(a)1−α + (1− α) f(a) θ∗

]
, (11)

and

P ∗(4)1−α > Zα−1
[
Q(4)1−α + (1− α) f(4) θ∗

]
. (12)

From (9), (11) and (12), it follows that for every P ∈ P∑
a∈A

P (a)αP ∗(a)1−α ≥ Zα−1
∑
a∈A

P (a)αQ(a)1−α. (13)

Furthermore, it can be also verified that

Zα−1
∑
a∈A

P ∗(a)αQ(a)1−α = 1. (14)

Assembling (13) and (14) yields∑
a∈A

P (a)αP ∗(a)1−α ≥
∑
a∈A P (a)αQ(a)1−α∑
a∈A P

∗(a)αQ(a)1−α
, (15)

which is equivalent to (7). Hence, Proposition 1b) implies
that P ∗ is the forward Dα-projection of Q on P . Note,

however, that Supp(P ∗) 6= Supp(P); to this end, from (9), it
can be verified numerically that

P = (0.984688, 0.00568298, 0.0041797, 0.00544902) ∈ P
(16)

which implies that Supp(P ∗) = {1, 2} ⊂ A whereas
Supp(P) = A.

We shall now focus our attention on forward Dα-
projections on α-linear families.

Theorem 2 (Pythagorean equality). Let α > 1, and let P ∗

be the forward Dα-projection of Q on an α-linear family
Lα. Then, P ∗ satisfies (7) with equality, i.e.,

Dα(P‖Q) = Dα(P‖P ∗) +Dα(P ∗‖Q), ∀P ∈ Lα. (17)

Proof: See [11].
In [8, Theorem 3.2], Csiszár proposed a convergent itera-

tive process for finding the forward projection for the relative
entropy on a finite intersection of linear families. This result
is generalized in this work for the Rényi divergence of order
α ∈ (0,∞) on a finite intersection of α-linear families.

Theorem 3 (Iterative projections). Let α ∈ (1,∞). Suppose
that L

(1)
α , . . . ,L

(m)
α are α-linear families, and let

P :=

m⋂
n=1

L (n)
α (18)

where P is assumed to be a non-empty set. Let P0 = Q, and
let Pn for n ∈ N be the forward Dα-projection of Pn−1 on
L

(in)
α with in = nmod (m). Then, Pn → P ∗ (a pointwise

convergence) as we let n→∞.

Proof: See [11].
We next identify the form of the forward Dα-projection

on an α-linear family.

Theorem 4 (Forward projection on an α-linear family). Let
α ∈ (0, 1)∪(1,∞), and let P ∗ be the forward Dα-projection
of Q on an α-linear family Lα. Suppose that

Supp(P ∗) = Supp(Lα) = A. (19)

Then,
(a) P ∗ satisfies (17).
(b) There exists θ∗ = (θ∗k+1, . . . , θ

∗
|A|) ∈ R|A|−k such that,

for all a ∈ A,

P ∗(a)

= Z(θ∗)−1
[
Q(a)1−α + (1− α)

|A|∑
i=k+1

θ∗i fi(a)

] 1
1−α

(20)

where Z(θ∗) is a normalizing constant in (20).

Proof: See [11].

Remark 2. In view of Example 1, the assumption in (19)
does not necessarily hold for α ∈ (0, 1). However, due to



Proposition 1, this assumption necessarily holds for every
α ∈ (1,∞).

For α ∈ (0,∞), the forward Dα-projection on an α-
linear family Lα motivates the definition of the following
parametric family of probability measures. Let Q ∈M, and
let

Eα =
{
P ∈M :

P (a) =
1

Z(θ)

[
Q(a)1−α + (1− α)

|A|∑
i=k+1

θifi(a)
] 1

1−α
,

θ = (θk+1, . . . , θ|A|) ∈ R|A|−k
}
. (21)

It is easy to see that Eα is an (1− α)-convex set. Also, the
family Eα generalizes the exponential family in [9, p. 24]:

E =

{
P ∈M : P (a) = Z(θ)−1Q(a) exp

( |A|∑
i=k+1

θifi(a)

)
,

θ = (θk+1, . . . , θ|A|) ∈ R|A|−k
}
. (22)

This extension is demonstrated in [11]. We shall call the
family Eα an α-exponential family.2 It is easy to see that
the reference measure Q in the definition of Eα is always
a member of Eα. As in the case of the exponential family,
the α-exponential family Eα also depends on the reference
measure Q only in a loose manner. Any other member of
Eα could very well play the role of Q in defining the family.
The proof is very similar to the one for the α-power-law
family in [13, Proposition 22]. It should also be noted that,
for α ∈ (1,∞), all members of Eα have the same support
(i.e., same as the support of Q).

IV. ORTHOGONALITY OF α-LINEAR AND
α-EXPONENTIAL FAMILIES

We first make precise the notion of orthogonality between
two sets of probability measures with respect to Dα (α > 0).

Definition 5 (Orthogonal sets of probability measures). Let
α ∈ (0, 1) ∪ (1,∞), and let P and Q be sets of probability
measures. We say that P is α-orthogonal to Q at P ∗ if the
following hold:
(i) P ∩Q = {P ∗}

(ii) Dα(P‖Q) = Dα(P‖P ∗)+Dα(P ∗‖Q) for every P ∈ P
and Q ∈ Q.

Note that, when α = 1, this refers to the orthogonality
between the linear and exponential families, which is essen-
tially [9, Corollary 3.1].

We are now ready to state the second main result in [11]
namely, the orthogonality between Lα and Eα.

2We emphasize that the α-power-law family proposed in [13, Definition 8]
is different extension of the exponential family E .

Theorem 5 (Orthogonality of Lα and Eα). Let α ∈ (1,∞),
let Lα and Eα be given by (5) and (21), respectively, and let
P ∗ be the forward Dα-projection of Q on Lα. Then,

(a) Lα is α-orthogonal to cl(Eα) at P ∗.
(b) If Supp(Lα) = A, then Lα is α-orthogonal to Eα at

P ∗.

Proof: See [11].

Remark 3. In view of Example 1, if α ∈ (0, 1), then
Supp(P ∗) is not necessarily equal to Supp(Lα); this is con-
sistent with Theorem 5 which is stated only for α ∈ (1,∞).
Nevertheless, in view of the proof of Theorem 2, the follow-
ing holds for α ∈ (0, 1): if Supp(P ∗) = Supp(Lα) = A,
then Lα is α-orthogonal to Eα at P ∗.

In [11], Theorem 5 and Remark 3 are applied to find a
reverse projection on an α-exponential family. Before we
proceed, we now make precise the definition of a reverse
Dα-projection.

Definition 6 (Reverse Dα-projection). Let P ∈M, Q ⊆M,
and α > 0. If there exists Q∗ ∈ Q which attains the global
minimum of Dα(P‖Q) over all Q ∈ Q and Dα(P‖Q∗) <
∞, then Q∗ is said to be a reverse Dα-projection of P on
Q.

Theorem 6. Let α ∈ (0, 1) ∪ (1,∞), and let Eα be an
α-exponential family determined by Q, fk+1, . . . , f|A|. Let
X1, . . . , Xn be i.i.d. samples drawn at random according to
a probability measure in Eα. Let P̂n be the empirical prob-
ability measure of X1, . . . , Xn, and let P ∗n be the forward
Dα-projection of Q on the α-linear family

L (n)
α :=

{
P ∈M :

∑
a

P (a)f̂i(a) = 0, k + 1 ≤ i ≤ |A|
}
,

(23)

where

f̂i(a) := fi(a)− η̂(n)i Q(a)1−α, ∀ a ∈ A (24)

with

η̂
(n)
i :=

∑
a P̂n(a)fi(a)∑

a P̂n(a)αQ(a)1−α
, i ∈ {k + 1, . . . , |A|}.

(25)

Then, the following hold:
(a) If Supp(P ∗n) = Supp(L

(n)
α ) = A, then P ∗n is the

reverse Dα-projection of P̂n on Eα.
(b) For α ∈ (1,∞), if Supp(L

(n)
α ) 6= A, then the

reverse Dα-projection of P̂n on Eα does not exist.
Nevertheless, P ∗n is the reverse Dα-projection of P̂n
on cl(Eα).

Proof: See [11].
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