On Projections of the Rényi Divergence on Generalized Convex Sets

M. Ashok Kumar
Department of Mathematics
Indian Institute of Technology
Indore 452020, India
Email: ashokm.shree@gmail.com

Igal Sason
Andrew and Erna Viterbi Faculty of Electrical Engineering
Technion-Israel Institute of Technology
Haifa 32000, Israel
Email: sason@ee.technion.ac.il

Abstract

Motivated by a recent result by van Erven and Harremoës, we study a forward projection problem for the Rényi divergence on a particular α-convex set, termed α linear family. The solution to this problem yields a parametric family of probability measures which turns out to be an extension of the exponential family, and it is termed α exponential family. An orthogonality relationship between the α exponential and α-linear families is first established and is then used to transform the reverse projection on an α-exponential family into a forward projection on an α-linear family. The full paper version of this work is available on the arXiv at http://arxiv.org/abs/1512.02515. ${ }^{1}$

Index Terms - α-convex set, relative entropy, variational distance, forward and reverse projections, Rényi divergence, exponential and linear families.

I. Introduction

Given a probability measure Q, and a set of probability measures \mathcal{P} on an alphabet \mathcal{A}, a forward projection of Q on \mathcal{P} is a $P^{*} \in \mathcal{P}$ which minimizes the relative entropy $D(P \| Q)$ subject to $P \in \mathcal{P}$. Forward projections appear predominantly in large deviations theory (see, e.g., [4, Chapter 11] in the context of Sanov's theorem and the conditional limit theorem). The forward projection of a generalization of the relative entropy on convex sets has been proposed by Sundaresan in [17] in the context of guessing under source uncertainty, and it was further studied in [12]. In this paper we consider forward projection of Rényi divergence on some generalized convex sets. A physical motivation for such a study stems from a maximum entropy problem proposed by Tsallis in statistical physics [18], [19] (for further details about the connection of this maximum entropy problem to forward projections of the Rényi divergence, the reader is referred to [11]).

The other problem of interest in this paper is the reverse projection where the minimization is over the second argument of the divergence measure. This problem is intimately related to the maximum-likelihood estimation and robust statistics. Suppose X_{1}, \ldots, X_{n} are i.i.d. samples drawn according to a probability measure which is modeled by a parametric family of probability measures $\Pi=\left\{P_{\theta}: \theta \in \Theta\right\}$

[^0]where Θ is a parameter space, and all the members of Π are assumed to have a common finite support \mathcal{A}. The maximumlikelihood estimator of the given samples (if it exists) is the minimizer of $D\left(\hat{P} \| P_{\theta}\right)$ subject to $P_{\theta} \in \Pi$, where \hat{P} is the empirical probability measure of the observed samples [9 , Lemma 3.1]. The minimizing probability measure (if exists) is called the reverse projection of \hat{P} on Π. Other divergences that have natural connection in statistical estimation problems include Hellinger divergence of order $\frac{1}{2}$ (see, e.g., [3]), Pearson's χ^{2}-divergence, and so on. All these belong to the more general family of Hellinger divergences of order $\alpha \in(0, \infty)$ (note that these divergences are, up to a positive scaling factor, equal to the power divergences introduced by Cressie and Read [5]); these divergences form a sub-family of f-divergences which were independently introduced by Ali and Silvey [1] and Csiszár [6]. The Hellinger divergences possess a very good robustness property when a significant fraction of the observed samples are outliers; the textbooks of Basu et al. [2] and Pardo [14] provide a coverage of the developments on the study of inference based on f divergences. Since the Rényi divergence is a monotonically increasing function of the Hellinger divergence (see, e.g., [16, (1)]), minimizing a Hellinger divergence of order $\alpha \in(0, \infty)$ is equivalent to minimizing the Rényi divergence of the same order. This motivates the problem of studying reverse projections of the Rényi divergence in the context of robust statistics.
In a recent work [10, Theorem 14], van Erven and Harremoës proved a Pythagorean property for Rényi divergences of order $\alpha \in(0, \infty)$ on α-convex sets. By exploiting this property, we study forward projection of the Rényi divergence on an α-linear family. The form of forward projection suggests a parametric family of probability measures which turns out to be an extension of the exponential family, and it is termed an α-exponential family. We show an orthogonality relationship between the α-linear family and the α exponential family. Using this orthogonality property one can transform a reverse projection problem on an α-exponential family into a forward projection problem on an α-convex family.

The following is an outline of the paper: Section II provides preliminary material; Section III identifies the form
of forward projections on α-linear families, and it proves convergence of an iterated process for forward projections. Section IV proves an orthogonality relationship between the α-linear and α-exponential families is established, and this latter property is used to find reverse projections on α exponential families. The full paper version of this work is available at [11] which includes additional results and discussions, and all the proofs.

II. Preliminaries

Unless explicitly mentioned, it is assumed throughout the paper that probability measures are defined on a finite alphabet \mathcal{A}. Let \mathcal{M} denote the set of all probability measures on \mathcal{A}. For $P \in \mathcal{M}$, let $\operatorname{Supp}(P):=\{a \in \mathcal{A}: P(a)>0\}$; for $\mathcal{P} \subseteq \mathcal{M}$, let $\operatorname{Supp}(\mathcal{P})$ be the union of support of members of \mathcal{P}.

Definition 1 (Rényi divergence). Let $\alpha \in(0,1) \cup(1, \infty)$. For $P, Q \in \mathcal{M}$, the Rényi divergence [15] of order α from P to Q is given by

$$
\begin{equation*}
D_{\alpha}(P \| Q):=\frac{1}{\alpha-1} \log \left(\sum_{a} P(a)^{\alpha} Q(a)^{1-\alpha}\right) \tag{1}
\end{equation*}
$$

If $\alpha=1$, then

$$
\begin{equation*}
D_{1}(P \| Q):=D(P \| Q) \tag{2}
\end{equation*}
$$

which is the analytic extension of $D_{\alpha}(P \| Q)$ at $\alpha=1$.
Definition 2 ((α, λ)-mixture [10]). Let $P_{0}, P_{1} \in \mathcal{M}, \alpha \in$ $(-\infty, 0) \cup(0, \infty)$, and let $\lambda \in(0,1)$. The (α, λ)-mixture of $\left(P_{0}, P_{1}\right)$ is the probability measure $S_{0,1}$ defined by

$$
\begin{equation*}
S_{0,1}(a):=\frac{1}{Z}\left[(1-\lambda) P_{0}(a)^{\alpha}+\lambda P_{1}(a)^{\alpha}\right]^{\frac{1}{\alpha}} \tag{3}
\end{equation*}
$$

where Z is the normalizing constant in (3) such that

$$
\begin{equation*}
\sum_{a} S_{0,1}(a)=1 \tag{4}
\end{equation*}
$$

Here, for simplicity, we suppress the dependence of $S_{0,1}$ and Z on α, λ. Note that $S_{0,1}$ is well-defined as Z is always positive and finite.

Definition 3 (α-convex set). Let $\alpha \in(-\infty, 0) \cup(0, \infty)$. A set of probability measures \mathcal{P} is said to be α-convex if, for every $P_{0}, P_{1} \in \mathcal{P}$ and $\lambda \in(0,1)$, the (α, λ)-mixture $S_{0,1} \in \mathcal{P}$.

The following is a specific α-convex set which is of interest in this paper.
Definition 4 (α-linear family). Let $\alpha \in(-\infty, 0) \cup(0, \infty)$, and f_{1}, \ldots, f_{k} be real-valued functions defined on \mathcal{A}. The α-linear family determined by f_{1}, \ldots, f_{k} is defined to be the following parametric family of probability measures defined on \mathcal{A} :

$$
\begin{equation*}
\mathscr{L}_{\alpha}:=\left\{P \in \mathcal{M}: P(a)=\left[\sum_{i=1}^{k} \theta_{i} f_{i}(a)\right]^{\frac{1}{\alpha}}, \quad \underline{\theta} \in \mathbb{R}^{k}\right\} \tag{5}
\end{equation*}
$$

For typographical convenience, we have suppressed the dependence of \mathscr{L}_{α} in f_{1}, \ldots, f_{k}. It is easy to see that \mathscr{L}_{α} is an
α-convex set. Without loss of generality, we shall assume that f_{1}, \ldots, f_{k}, as $|\mathcal{A}|$-dimensional vectors, are mutually orthogonal (otherwise, by the Gram-Schmidt procedure, these vectors can be orthogonalized without affecting the corresponding α-linear family in (5)). Let \mathcal{F} be the subspace of $\mathbb{R}^{|\mathcal{A}|}$ spanned by f_{1}, \ldots, f_{k}, and let \mathcal{F}^{\perp} denote the orthogonal complement of \mathcal{F}. Hence, there exist $f_{k+1}, \ldots, f_{|\mathcal{A}|}$ such that $f_{1}, \ldots, f_{|\mathcal{A}|}$ are mutually orthogonal as $|\mathcal{A}|$-dimensional vectors, and $\mathcal{F}^{\perp}=\operatorname{Span}\left\{f_{k+1}, \ldots, f_{|\mathcal{A}|}\right\}$. Consequently, from (5), for $\alpha \in(0,1) \cup(1, \infty)$,
$\left.\mathscr{L}_{\alpha}=\left\{P \in \mathcal{M}: \sum_{a} P(a)^{\alpha} f_{i}(a)=0, k+1 \leq i \leq|\mathcal{A}|\right\}\right\}$.

From (6), it is clear that the set \mathscr{L}_{α} is closed. Since it is also bounded, it is compact.

III. Forward Projection on α-Linear family

Let us first recall the Pythagorean property for a Rényi divergence on an α-convex set. As in the case of relative entropy [9] and relative α-entropy [13], the Pythagorean property is crucial in establishing orthogonality properties. In the sequel, we assume that Q is a probability measure with $\operatorname{Supp}(Q)=\mathcal{A}$.

In a recent work, van Erven and Harremoës proved a Pythagorean inequality for Rényi divergences on α-convex sets under the assumption that the forward projection exists (see [10, Theorem 14]). Continuing this study, a sufficient condition for the existence of forward projection is proved in [11] for probability measures on a general alphabet. The following result extends the existence result in [8] for the forward projection of the relative entropy.

Theorem 1 (Existence of forward D_{α}-projection). Let $\alpha \in$ $(0, \infty)$, and let Q be an arbitrary probability measure defined on a set \mathcal{A}. Let \mathcal{P} be an α-convex set of probability measures defined on \mathcal{A}, and assume that \mathcal{P} is closed with respect to the total variation distance. If there exists $P \in \mathcal{P}$ such that $D_{\alpha}(P \| Q)<\infty$, then there exists a forward D_{α}-projection of Q on \mathcal{P}.

Proof: See [11]. For $\alpha \in(1, \infty)$, the proof relies on a new Apollonius theorem for the Hellinger divergence, and for $\alpha \in(0,1)$, the proof relies on the Banach-Alaoglu theorem from functional analysis.
Proposition 1 (The Pythagorean property). Let $\alpha \in(0,1) \cup$ $(1, \infty)$, let $\mathcal{P} \subseteq \mathcal{M}$ be an α-convex set, and $Q \in \mathcal{M}$.
(a) If P^{*} is a forward D_{α}-projection of Q on \mathcal{P}, then

$$
\begin{equation*}
D_{\alpha}(P \| Q) \geq D_{\alpha}\left(P \| P^{*}\right)+D_{\alpha}\left(P^{*} \| Q\right) \tag{7}
\end{equation*}
$$

for all $P \in \mathcal{P}$. Furthermore, if $\alpha>1$, then $\operatorname{Supp}\left(P^{*}\right)=$ $\operatorname{Supp}(\mathcal{P})$.
(b) Conversely, if (7) is satisfied for some $P^{*} \in \mathcal{P}$, then P^{*} is the (unique) forward D_{α}-projection of Q on \mathcal{P}.
Proof: See [11].

Remark 1. The Pythagorean property (7) holds for probability measures defined on a general alphabet \mathcal{A}, as proved in [10, Theorem 14]. The novelty here is in the last assertion of (a), which extends the result for relative entropy in [9, Theorem 3.1], for which \mathcal{A} needs to be finite.

Corollary 1. Let $\alpha \in(0, \infty)$. If a forward D_{α}-projection on an α-convex set exists, then it is unique.

Proof: For $\alpha=1$, since an α-convex set is particularized to a convex set, this result is known in view of [9, p. 23]. Next, consider the case where $\alpha \neq 1$. Let P_{1}^{*} and P_{2}^{*} be forward D_{α}-projections of Q on an α-convex set \mathcal{P}. Applying Proposition 1 we have

$$
D_{\alpha}\left(P_{2}^{*} \| Q\right) \geq D_{\alpha}\left(P_{2}^{*} \| P_{1}^{*}\right)+D_{\alpha}\left(P_{1}^{*} \| Q\right)
$$

Since $D_{\alpha}\left(P_{1}^{*} \| Q\right)=D_{\alpha}\left(P_{2}^{*} \| Q\right)$, we must have $D_{\alpha}\left(P_{2}^{*} \| P_{1}^{*}\right)=0$ which implies that $P_{1}^{*}=P_{2}^{*}$.

The last assertion in Proposition 1a) states that $\operatorname{Supp}\left(P^{*}\right)=\operatorname{Supp}(\mathcal{P})$ if $\alpha \in(1, \infty)$. The following counterexample, taken from [11], illustrates that this equality does not necessarily hold for $\alpha \in(0,1)$.
Example 1. Let $\mathcal{A}=\{1,2,3,4\}, \quad \alpha=\frac{1}{2}, \quad f: \mathcal{A} \rightarrow \mathbb{R}$ be given by

$$
\begin{equation*}
f(1)=1, f(2)=-3, f(3)=-5, f(4)=-6 \tag{8}
\end{equation*}
$$

and let $Q(a)=\frac{1}{4}$ for all $a \in \mathcal{A}$. Consider the following α-linear family:

$$
\begin{equation*}
\mathcal{P}:=\left\{P \in \mathcal{M}: \sum_{a} P(a)^{\alpha} f(a)=0\right\} . \tag{9}
\end{equation*}
$$

Let

$$
\begin{equation*}
P^{*}(1)=\frac{9}{10}, P^{*}(2)=\frac{1}{10}, P^{*}(3)=0, P^{*}(4)=0 \tag{10}
\end{equation*}
$$

It is easy to check that $P^{*} \in \mathcal{P}$. Furthermore, setting $\theta^{*}=\frac{1}{5}$ and $Z=\frac{2}{5}$ yields that for $a \in\{1,2,3\}$

$$
\begin{equation*}
P^{*}(a)^{1-\alpha}=Z^{\alpha-1}\left[Q(a)^{1-\alpha}+(1-\alpha) f(a) \theta^{*}\right] \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
P^{*}(4)^{1-\alpha}>Z^{\alpha-1}\left[Q(4)^{1-\alpha}+(1-\alpha) f(4) \theta^{*}\right] \tag{12}
\end{equation*}
$$

From (9), (11) and (12), it follows that for every $P \in \mathcal{P}$

$$
\begin{equation*}
\sum_{a \in \mathcal{A}} P(a)^{\alpha} P^{*}(a)^{1-\alpha} \geq Z^{\alpha-1} \sum_{a \in \mathcal{A}} P(a)^{\alpha} Q(a)^{1-\alpha} \tag{13}
\end{equation*}
$$

Furthermore, it can be also verified that

$$
\begin{equation*}
Z^{\alpha-1} \sum_{a \in \mathcal{A}} P^{*}(a)^{\alpha} Q(a)^{1-\alpha}=1 \tag{14}
\end{equation*}
$$

Assembling (13) and (14) yields

$$
\begin{equation*}
\sum_{a \in \mathcal{A}} P(a)^{\alpha} P^{*}(a)^{1-\alpha} \geq \frac{\sum_{a \in \mathcal{A}} P(a)^{\alpha} Q(a)^{1-\alpha}}{\sum_{a \in \mathcal{A}} P^{*}(a)^{\alpha} Q(a)^{1-\alpha}} \tag{15}
\end{equation*}
$$

which is equivalent to (7). Hence, Proposition 1b) implies that P^{*} is the forward D_{α}-projection of Q on \mathcal{P}. Note,
however, that $\operatorname{Supp}\left(P^{*}\right) \neq \operatorname{Supp}(\mathcal{P})$; to this end, from (9), it can be verified numerically that
$P=(0.984688,0.00568298,0.0041797,0.00544902) \in \mathcal{P}$
which implies that $\operatorname{Supp}\left(P^{*}\right)=\{1,2\} \subset \mathcal{A}$ whereas $\operatorname{Supp}(\mathcal{P})=\mathcal{A}$.

We shall now focus our attention on forward $D_{\alpha^{-}}$ projections on α-linear families.

Theorem 2 (Pythagorean equality). Let $\alpha>1$, and let P^{*} be the forward D_{α}-projection of Q on an α-linear family \mathscr{L}_{α}. Then, P^{*} satisfies (7) with equality, i.e.,

$$
\begin{equation*}
D_{\alpha}(P \| Q)=D_{\alpha}\left(P \| P^{*}\right)+D_{\alpha}\left(P^{*} \| Q\right), \quad \forall P \in \mathscr{L}_{\alpha} \tag{17}
\end{equation*}
$$

Proof: See [11].
In [8, Theorem 3.2], Csiszár proposed a convergent iterative process for finding the forward projection for the relative entropy on a finite intersection of linear families. This result is generalized in this work for the Rényi divergence of order $\alpha \in(0, \infty)$ on a finite intersection of α-linear families.
Theorem 3 (Iterative projections). Let $\alpha \in(1, \infty)$. Suppose that $\mathscr{L}_{\alpha}^{(1)}, \ldots, \mathscr{L}_{\alpha}^{(m)}$ are α-linear families, and let

$$
\begin{equation*}
\mathcal{P}:=\bigcap_{n=1}^{m} \mathscr{L}_{\alpha}^{(n)} \tag{18}
\end{equation*}
$$

where \mathcal{P} is assumed to be a non-empty set. Let $P_{0}=Q$, and let P_{n} for $n \in \mathbb{N}$ be the forward D_{α}-projection of P_{n-1} on $\mathscr{L}_{\alpha}^{\left(i_{n}\right)}$ with $i_{n}=n \bmod (m)$. Then, $P_{n} \rightarrow P^{*}$ (a pointwise convergence) as we let $n \rightarrow \infty$.

Proof: See [11].
We next identify the form of the forward D_{α}-projection on an α-linear family.

Theorem 4 (Forward projection on an α-linear family). Let $\alpha \in(0,1) \cup(1, \infty)$, and let P^{*} be the forward D_{α}-projection of Q on an α-linear family \mathscr{L}_{α}. Suppose that

$$
\begin{equation*}
\operatorname{Supp}\left(P^{*}\right)=\operatorname{Supp}\left(\mathscr{L}_{\alpha}\right)=\mathcal{A} \tag{19}
\end{equation*}
$$

Then,
(a) P^{*} satisfies (17).
(b) There exists $\theta^{*}=\left(\theta_{k+1}^{*}, \ldots, \theta_{|\mathcal{A}|}^{*}\right) \in \mathbb{R}^{|\mathcal{A}|-k}$ such that, for all $a \in \mathcal{A}$,

$$
\begin{align*}
& P^{*}(a) \\
& =Z\left(\theta^{*}\right)^{-1}\left[Q(a)^{1-\alpha}+(1-\alpha) \sum_{i=k+1}^{|\mathcal{A}|} \theta_{i}^{*} f_{i}(a)\right]^{\frac{1}{1-\alpha}} \tag{20}
\end{align*}
$$

where $Z\left(\theta^{*}\right)$ is a normalizing constant in (20).
Proof: See [11].
Remark 2. In view of Example 1, the assumption in (19) does not necessarily hold for $\alpha \in(0,1)$. However, due to

Proposition 1, this assumption necessarily holds for every $\alpha \in(1, \infty)$.

For $\alpha \in(0, \infty)$, the forward D_{α}-projection on an α linear family \mathscr{L}_{α} motivates the definition of the following parametric family of probability measures. Let $Q \in \mathcal{M}$, and let

$$
\begin{align*}
\mathscr{E}_{\alpha}=\{ & P \in \mathcal{M}: \\
& P(a)=\frac{1}{Z(\theta)}\left[Q(a)^{1-\alpha}+(1-\alpha) \sum_{i=k+1}^{|\mathcal{A}|} \theta_{i} f_{i}(a)\right]^{\frac{1}{1-\alpha}} \\
& \left.\theta=\left(\theta_{k+1}, \ldots, \theta_{|\mathcal{A}|}\right) \in \mathbb{R}^{|\mathcal{A}|-k}\right\} \tag{21}
\end{align*}
$$

It is easy to see that \mathscr{E}_{α} is an $(1-\alpha)$-convex set. Also, the family \mathscr{E}_{α} generalizes the exponential family in [9, p. 24]:

$$
\begin{gather*}
\mathscr{E}=\left\{P \in \mathcal{M}: P(a)=Z(\theta)^{-1} Q(a) \exp \left(\sum_{i=k+1}^{|\mathcal{A}|} \theta_{i} f_{i}(a)\right)\right. \\
\left.\theta=\left(\theta_{k+1}, \ldots, \theta_{|\mathcal{A}|}\right) \in \mathbb{R}^{|\mathcal{A}|-k}\right\} \tag{22}
\end{gather*}
$$

This extension is demonstrated in [11]. We shall call the family \mathscr{E}_{α} an α-exponential family. ${ }^{2}$ It is easy to see that the reference measure Q in the definition of \mathscr{E}_{α} is always a member of \mathscr{E}_{α}. As in the case of the exponential family, the α-exponential family \mathscr{E}_{α} also depends on the reference measure Q only in a loose manner. Any other member of \mathscr{E}_{α} could very well play the role of Q in defining the family. The proof is very similar to the one for the α-power-law family in [13, Proposition 22]. It should also be noted that, for $\alpha \in(1, \infty)$, all members of \mathscr{E}_{α} have the same support (i.e., same as the support of Q).

IV. ORTHOGONALITY OF α-LINEAR AND α-EXPONENTIAL FAMILIES

We first make precise the notion of orthogonality between two sets of probability measures with respect to $D_{\alpha}(\alpha>0)$.
Definition 5 (Orthogonal sets of probability measures). Let $\alpha \in(0,1) \cup(1, \infty)$, and let \mathcal{P} and \mathcal{Q} be sets of probability measures. We say that \mathcal{P} is α-orthogonal to \mathcal{Q} at P^{*} if the following hold:
(i) $\mathcal{P} \cap \mathcal{Q}=\left\{P^{*}\right\}$
(ii) $D_{\alpha}(P \| Q)=D_{\alpha}\left(P \| P^{*}\right)+D_{\alpha}\left(P^{*} \| Q\right)$ for every $P \in \mathcal{P}$ and $Q \in \mathcal{Q}$.

Note that, when $\alpha=1$, this refers to the orthogonality between the linear and exponential families, which is essentially [9, Corollary 3.1].

We are now ready to state the second main result in [11] namely, the orthogonality between \mathscr{L}_{α} and \mathscr{E}_{α}.

[^1]Theorem 5 (Orthogonality of \mathscr{L}_{α} and \mathscr{E}_{α}). Let $\alpha \in(1, \infty)$, let \mathscr{L}_{α} and \mathscr{E}_{α} be given by (5) and (21), respectively, and let P^{*} be the forward D_{α}-projection of Q on \mathscr{L}_{α}. Then,
(a) \mathscr{L}_{α} is α-orthogonal to $\operatorname{cl}\left(\mathscr{E}_{\alpha}\right)$ at P^{*}.
(b) If $\operatorname{Supp}\left(\mathscr{L}_{\alpha}\right)=\mathcal{A}$, then \mathscr{L}_{α} is α-orthogonal to \mathscr{E}_{α} at P^{*}.

Proof: See [11].
Remark 3. In view of Example 1 , if $\alpha \in(0,1)$, then $\operatorname{Supp}\left(P^{*}\right)$ is not necessarily equal to $\operatorname{Supp}\left(\mathscr{L}_{\alpha}\right)$; this is consistent with Theorem 5 which is stated only for $\alpha \in(1, \infty)$. Nevertheless, in view of the proof of Theorem 2, the following holds for $\alpha \in(0,1)$: if $\operatorname{Supp}\left(P^{*}\right)=\operatorname{Supp}\left(\mathscr{L}_{\alpha}\right)=\mathcal{A}$, then \mathscr{L}_{α} is α-orthogonal to \mathscr{E}_{α} at P^{*}.

In [11], Theorem 5 and Remark 3 are applied to find a reverse projection on an α-exponential family. Before we proceed, we now make precise the definition of a reverse D_{α}-projection.
Definition 6 (Reverse D_{α}-projection). Let $P \in \mathcal{M}, \mathcal{Q} \subseteq \mathcal{M}$, and $\alpha>0$. If there exists $Q^{*} \in \mathcal{Q}$ which attains the global minimum of $D_{\alpha}(P \| Q)$ over all $Q \in \mathcal{Q}$ and $D_{\alpha}\left(P \| Q^{*}\right)<$ ∞, then Q^{*} is said to be a reverse D_{α}-projection of P on \mathcal{Q}.
Theorem 6. Let $\alpha \in(0,1) \cup(1, \infty)$, and let \mathscr{E}_{α} be an α-exponential family determined by $Q, f_{k+1}, \ldots, f_{|\mathcal{A}|}$. Let X_{1}, \ldots, X_{n} be i.i.d. samples drawn at random according to a probability measure in \mathscr{E}_{α}. Let \hat{P}_{n} be the empirical probability measure of X_{1}, \ldots, X_{n}, and let P_{n}^{*} be the forward D_{α}-projection of Q on the α-linear family
$\mathscr{L}_{\alpha}^{(n)}:=\left\{P \in \mathcal{M}: \sum_{a} P(a) \hat{f}_{i}(a)=0, k+1 \leq i \leq|\mathcal{A}|\right\}$,
where

$$
\begin{equation*}
\hat{f}_{i}(a):=f_{i}(a)-\hat{\eta}_{i}^{(n)} Q(a)^{1-\alpha}, \quad \forall a \in \mathcal{A} \tag{24}
\end{equation*}
$$

with

$$
\begin{equation*}
\hat{\eta}_{i}^{(n)}:=\frac{\sum_{a} \hat{P}_{n}(a) f_{i}(a)}{\sum_{a} \hat{P}_{n}(a)^{\alpha} Q(a)^{1-\alpha}}, \quad i \in\{k+1, \ldots,|\mathcal{A}|\} \tag{25}
\end{equation*}
$$

Then, the following hold:
(a) If $\operatorname{Supp}\left(P_{n}^{*}\right)=\operatorname{Supp}\left(\mathscr{L}_{\hat{P}_{n}}^{(n)}\right)=\mathcal{A}$, then P_{n}^{*} is the reverse D_{α}-projection of \hat{P}_{n} on \mathscr{E}_{α}.
(b) For $\alpha \in(1, \infty)$, if $\operatorname{Supp}\left(\mathscr{L}_{\alpha}^{(n)}\right) \neq \mathcal{A}$, then the reverse D_{α}-projection of \hat{P}_{n} on \mathscr{E}_{α} does not exist. Nevertheless, P_{n}^{*} is the reverse D_{α}-projection of \hat{P}_{n} on $\operatorname{cl}\left(\mathscr{E}_{\alpha}\right)$.
Proof: See [11].

Acknowledgment

This work has been supported by the Israeli Science Foundation (ISF) under Grant 12/12.

REFERENCES

[1] S. M. Ali and S. D. Silvey, "A general class of coefficients of divergence of one distribution from another," Journal of the Royal Statistics Society, series B, vol. 28, no. 1, pp. 131-142, 1966.
[2] A. Basu, H. Shioya and C. Park, "Statistical Inference: The Minimum Distance Approach," Chapman \& Hall/ CRC Monographs on Statistics and Applied Probability, vol. 120, CRC Press, Boca Raton, Florida, USA, June 2011.
[3] R. Beran, "Minimum Hellinger distance estimates for parametric models," Annals of Statistics, vol. 5, no. 3, pp. 445-463, 1977.
[4] T. M. Cover and J. A. Thomas, Elements of Information Theory, John Wiley and Sons, second edition, 2006.
[5] N. Cressie and T. R. C. Read, "Multinomial Goodness-of-fit Tests," Journal of the Royal Statistical Society B, no. 46, pp. 440-464, 1984.
[6] I. Csiszár, "Eine Informationstheoretische Ungleichung und ihre Anwendung auf den Bewis der Ergodizität von Markhoffschen Ketten," Publ. Math. Inst. Hungar. Acad. Sci., vol. 8, pp. 85-108, January 1963.
[7] I. Csiszár, "Information-type measures of difference of probability distributions and indirect observations," Studia Scientiarum Mathematicarum Hungarica, vol. 2, pp. 299-318, 1967.
[8] I. Csiszár, "I-divergence geometry of probability distributions and minimization problems," Annals of Probability, vol. 3, pp. 146-158, 1975.
[9] I. Csiszár and P. C. Shields, "Information Theory and Statistics: A Tutorial," Foundations and Trends in Communications and Information Theory, vol. 1, no. 4, pp. 417-528, 2004.
[10] T. van Erven and P. Harremoës, "Rényi divergence and KullbackLeibler divergence," IEEE Trans. on Information Theory, vol. 60, no. 7, pp. 3797-3820, July 2014.
[11] M. A. Kumar and I. Sason, "Projection theorems for the Rényi divergence on α-convex sets," preprint, http://arxiv.org/abs/1512.02515.
[12] M. A. Kumar and R. Sundaresan, "Minimization problems based on α-relative entropy I: Forward Projection," IEEE Trans. on Information Theory, vol. 61, no. 9, pp. 5063-5080, September 2015.
[13] M. A. Kumar and R. Sundaresan, "Minimization problems based on α-relative entropy II: Reverse Projection," IEEE Trans. on Information Theory, vol. 61, no. 9, pp. 5081-5095, September 2015.
[14] L. Pardo, "Statistical Inference based on Divergences," CRC/Chapman-Hall, 2006.
[15] A. Rényi, "On measures of entropy and information," Proceedings of the 4th Berekely Symposium on Probability Theory and Mathematical Statistics, pp. 547-561, Berekeley, California, USA, 1961.
[16] I. Sason, "On the Rényi divergence, joint range of relative entropies, and a channel coding theorem," IEEE Trans. on Information Theory, vol. 62, no. 1, pp. 23-34, January 2016.
[17] R. Sundaresan, "A measure of discrimination and its geometric properties," Proccedings of the IEEE 2002 International Symposium on Information Theory, p. 264, Laussane, Switzerland, June 2002.
[18] C. Tsallis, "Possible generalization of Bolzmann-Gibbs statistics," Journal of Statistical Physics, vol. 52, no. 1-2, 1988.
[19] C. Tsallis, R. S. Mendes and A. R. Plastino, "The role of constraints within generalized nonextensive statistics," Physica A, vol. 261, pp. 534-554, 1998.

[^0]: ${ }^{1}$ This work was done while the first author was a post-doctoral fellow at the Andrew and Erna Viterbi faculty of electrical engineering, TechnionIsrael Institute of Technology, Haifa 32000, Israel.

[^1]: ${ }^{2}$ We emphasize that the α-power-law family proposed in [13, Definition 8] is different extension of the exponential family \mathscr{E}.

