On the Rényi Divergence, the Joint Range of Relative Entropies, and a Channel Coding Theorem

Igal Sason

Department of Electrical Engineering Technion - Israel Institute of Technology Haifa 32000, Israel

2015 IEEE International Symposium on Information Theory

Hong Kong June 14–19, 2015.

Total Variation (TV) Distance

Let P, Q be probability measures defined on the measurable space $(\mathcal{A}, \mathscr{F})$.

$$|P - Q| = 2 \sup_{\mathcal{F} \in \mathscr{F}} |P(\mathcal{F}) - Q(\mathcal{F})| = |P - Q|_1.$$

- 2

イロト イポト イヨト イヨト

Total Variation (TV) Distance

Let P, Q be probability measures defined on the measurable space $(\mathcal{A}, \mathscr{F})$.

$$|P - Q| = 2 \sup_{\mathcal{F} \in \mathscr{F}} |P(\mathcal{F}) - Q(\mathcal{F})| = |P - Q|_1.$$

The Rényi Divergence of order α Let • $P \ll Q$. • $Y \sim Q$. • $\alpha \in (0,1) \cup (1,\infty).$ $D_{\alpha}(P||Q) = \frac{1}{\alpha - 1} \log \mathbb{E}\left[\left(\frac{\mathrm{d}P}{\mathrm{d}Q}\right)^{\alpha}(Y)\right].$ If $D(P||Q) < \infty \Rightarrow D(P||Q) = \lim_{\alpha \to 1^{-}} D_{\alpha}(P||Q).$

3

イロト イポト イヨト イヨト

Exact Characterization of the Joint Range of the Relative Entropies

Question

Let

- $\varepsilon \in (0,2)$ be fixed.
- P_1, P_2 be arbitrary PDs s.t. $|P_1 P_2| \ge \varepsilon$.
- Q is an arbitrary PD s.t. $Q \ll P_1, P_2$.
- What is the achievable region of $(D(Q||P_1), D(Q||P_2))$ where none of these three distributions is fixed ?

- 3

Exact Characterization of the Joint Range of the Relative Entropies

Question

Let

- $\varepsilon \in (0,2)$ be fixed.
- P_1, P_2 be arbitrary PDs s.t. $|P_1 P_2| \ge \varepsilon$.
- Q is an arbitrary PD s.t. $Q \ll P_1, P_2$.
- What is the achievable region of $(D(Q||P_1), D(Q||P_2))$ where none of these three distributions is fixed ?
- Given an arbitrary point in this region, specify PDs P_1, P_2, Q that achieve this point.

A (10) A (10) A (10)

Possible Context

Methods of Types:

$$P_1^n(T(Q)) \doteq e^{-nD(Q||P_1)}, \quad P_2^n(T(Q)) \doteq e^{-nD(Q||P_2)}$$

 \Rightarrow Exponential decay rates for probabilities of rare events.

Э

・ロン ・四 ・ ・ ヨン

Possible Context

Methods of Types:

 $P_1^n(T(Q)) \doteq e^{-nD(Q||P_1)}, \quad P_2^n(T(Q)) \doteq e^{-nD(Q||P_2)}$

 \Rightarrow Exponential decay rates for probabilities of rare events.

Approach for Solving the Problem

- Minimizing the Rényi divergence subject to a minimal TV distance.
- Using the solution for answering the question.

- 本語 と 本語 と 本語 と 二語

Minimization of the Rényi Divergence s.t. Minimal TV Distance For $\alpha > 0$, let

$$g_{\alpha}(\varepsilon) = \inf_{P_1, P_2: |P_1 - P_2| \ge \varepsilon} D_{\alpha}(P_1 || P_2), \quad \forall \varepsilon \in [0, 2).$$

3

Minimization of the Rényi Divergence s.t. Minimal TV Distance For $\alpha > 0$, let

$$g_{\alpha}(\varepsilon) = \inf_{P_1, P_2: |P_1 - P_2| \ge \varepsilon} D_{\alpha}(P_1 || P_2), \quad \forall \, \varepsilon \in [0, 2).$$

Proposition: There is no loss of generality by restricting the minimization of $g_{\alpha}(\varepsilon)$, for $\varepsilon \in (0, 2)$, to pairs of 2-element PDs.

Minimization of the Rényi Divergence s.t. Minimal TV Distance For $\alpha > 0$, let

$$g_{\alpha}(\varepsilon) = \inf_{P_1, P_2: |P_1 - P_2| \ge \varepsilon} D_{\alpha}(P_1 || P_2), \quad \forall \, \varepsilon \in [0, 2).$$

Proposition: There is no loss of generality by restricting the minimization of $g_{\alpha}(\varepsilon)$, for $\varepsilon \in (0,2)$, to pairs of 2-element PDs. Hence,

$$g_{\alpha}(\varepsilon) = \min_{p,q \in [0,1]: |p-q| \ge \frac{\varepsilon}{2}} d_{\alpha}(p \| q)$$

where

$$d_{\alpha}(p||q) \triangleq \frac{\log\left(p^{\alpha}q^{1-\alpha} + (1-p)^{\alpha}(1-q)^{1-\alpha}\right)}{\alpha - 1}.$$

The minimizing probability distributions: $P_1 = (p, 1-p)$, $P_2 = (q, 1-q)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

An identity for the Rényi divergence For $\alpha \in (0,1) \cup (1,\infty) \setminus \{1\}$ $D_{\alpha}(P_1 || P_2) = D(Q || P_2) + \frac{\alpha}{1-\alpha} \cdot D(Q || P_1) + \frac{1}{\alpha-1} \cdot D(Q || Q_{\alpha})$

where Q_{α} is given by

$$Q_{\alpha}(x) \triangleq \frac{P_1^{\alpha}(x) P_2^{1-\alpha}(x)}{\sum_u P_1^{\alpha}(u) P_2^{1-\alpha}(u)}, \quad \forall x \in \mathsf{Supp}(P_1).$$

イロト イポト イヨト イヨト 二日

An identity for the Rényi divergence For $\alpha \in (0,1) \cup (1,\infty) \setminus \{1\}$ $D_{\alpha}(P_1 || P_2) = D(Q || P_2) + \frac{\alpha}{1-\alpha} \cdot D(Q || P_1) + \frac{1}{\alpha-1} \cdot D(Q || Q_{\alpha})$

where Q_{α} is given by

$$Q_{\alpha}(x) \triangleq \frac{P_1^{\alpha}(x) P_2^{1-\alpha}(x)}{\sum_u P_1^{\alpha}(u) P_2^{1-\alpha}(u)}, \quad \forall x \in \mathsf{Supp}(P_1).$$

This comes as a direct calculation, following a result by Shayevitz (ISIT '11) where for $\alpha > 1$

$$D_{\alpha}(P_1 \| P_2) = \max_{Q \ll P_1} \left\{ D(Q \| P_2) + \frac{\alpha}{\alpha - 1} \cdot D(Q \| P_1) \right\}$$

and the max is replaced by min for $\alpha \in (0,1)$.

イロト 不得下 イヨト イヨト 二日

The boundary is determined by letting α increase continuously in (0,1), and drawing the straight lines in the plane of $(D(Q||P_1), D(Q||P_2))$:

$$D(Q||P_2) + \frac{\alpha}{1-\alpha} \cdot D(Q||P_1) = g_\alpha(\varepsilon), \quad \forall \, \alpha \in (0,1).$$

Every point on the boundary is a tangent point to one of the straight lines.

< 回 > < 三 > < 三 >

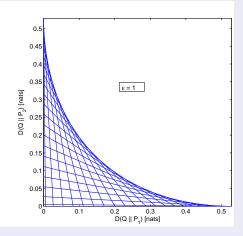


Figure: The achievable region of $(D(Q||P_1), D(Q||P_2))$ where $|P_1 - P_2| \ge 1$ is the upper envelope of the straight lines.

The triple of 2-element PDs P_1, P_2 and Q that achieves an arbitrary point on the boundary of this region is determined as follows:

• Find the slope s of the tangent line (s < 0), and determine $\alpha \in (0, 1)$ such that $-\frac{\alpha}{1-\alpha} = s \Rightarrow \alpha = -\frac{s}{1-s}$.

- ロ ト - 4 同 ト - 4 回 ト - - 回

The triple of 2-element PDs P_1, P_2 and Q that achieves an arbitrary point on the boundary of this region is determined as follows:

- Find the slope s of the tangent line (s < 0), and determine $\alpha \in (0, 1)$ such that $-\frac{\alpha}{1-\alpha} = s \implies \alpha = -\frac{s}{1-s}$.
- Determine the 2-element PDs $P_1 = (p, 1-p), P_2 = (q, 1-q)$ such that $d_{\alpha}(p||q) = g_{\alpha}(\varepsilon)$.

イロト イポト イヨト イヨト 二日

The triple of 2-element PDs P_1, P_2 and Q that achieves an arbitrary point on the boundary of this region is determined as follows:

- Find the slope s of the tangent line (s < 0), and determine $\alpha \in (0, 1)$ such that $-\frac{\alpha}{1-\alpha} = s \implies \alpha = -\frac{s}{1-s}$.
- Determine the 2-element PDs $P_1 = (p, 1-p), P_2 = (q, 1-q)$ such that $d_{\alpha}(p||q) = g_{\alpha}(\varepsilon)$.
- Calculate the 2-element PD $Q = Q_{\alpha}$ (as above) for the calculated α , p and q.

イロト イポト イヨト イヨト 二日

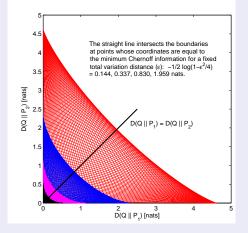


Figure: The boundary of the achievable region of $(D(Q||P_1), D(Q||P_2))$ where the TV distance $|P_1 - P_2|$ is at least $\varepsilon = 1.00, 1.40, 1.80, 1.98$.

• Consider a binary linear block code of length N and rate $R = \frac{\log(M)}{N}$ where M designates the number of codewords.

- Consider a binary linear block code of length N and rate $R = \frac{\log(M)}{N}$ where M designates the number of codewords.
- Let $S_0 = 0$ and, for $l \in \{1, ..., N\}$, let S_l be the number of non-zero codewords of Hamming weight l.

過す イヨト イヨト

- Consider a binary linear block code of length N and rate $R = \frac{\log(M)}{N}$ where M designates the number of codewords.
- Let $S_0 = 0$ and, for $l \in \{1, ..., N\}$, let S_l be the number of non-zero codewords of Hamming weight l.
- Assume that the transmission of the code takes place over a memoryless, binary-input and output-symmetric channel.

< 回 > < 三 > < 三 >

- Consider a binary linear block code of length N and rate $R = \frac{\log(M)}{N}$ where M designates the number of codewords.
- Let $S_0 = 0$ and, for $l \in \{1, ..., N\}$, let S_l be the number of non-zero codewords of Hamming weight l.
- Assume that the transmission of the code takes place over a memoryless, binary-input and output-symmetric channel.
- Assume that the code is maximum-likelihood (ML) decoded.

Theorem: A New Upper Bound (Cont.)

The block error probability satisfies

$$P_{\mathsf{e}} = P_{\mathsf{e}|0} \le \exp\left(-N \sup_{r \ge 1} \max_{0 \le \rho \le \frac{1}{r}} \left[E_0\left(\rho, \underline{q} = \left(\frac{1}{2}, \frac{1}{2}\right)\right) -\rho\left(rR + \frac{D_s(P_N || Q_N)}{N}\right)\right]\right)$$

where

- $s \triangleq s(r) = \frac{r}{r-1}$ for $r \ge 1$ (with the convention that $s = \infty$ for r = 1),
- Q_N is the binomial distribution with parameter $\frac{1}{2}$ and N i.i.d. trials,
- P_N is the PMF defined by $P_N(l) = \frac{S_l}{M-1}$ for $l \in \{0, \dots, N\}$,
- $D_s(\cdot \| \cdot)$ is the Rényi divergence of order s,
- $E_0(\rho, \underline{q})$ is the Gallager random coding error exponent.

3

イロト イポト イヨト イヨト

Special Case: The Shulman-Feder Bound

Loosening the bound by taking $r=1 \ \Rightarrow s=\infty$ gives

$$P_{\mathsf{e}} \leq \exp\left(-N E_{\mathsf{r}}\left(R + \frac{1}{N} \log \max_{0 \leq l \leq N} \frac{S_l}{e^{-N(\log 2 - R)} \binom{N}{l}}\right)\right)$$

which coincides with the Shulman-Feder bound.

3

- 4 週 ト - 4 三 ト - 4 三 ト

Novelty of the Bound & Proof

- The proof of this theorem has an overlap with a bound by Shamai and Sason (2002).
- The bound is also valid for code ensembles, while referring to the average distance spectrum.
- The novelty is the use of the Rényi divergence of order s ≥ 1, instead of the Kullback-Leibler divergence as a lower bound.
- This reveals a need for an optimization of the error exponent: If $r \ge 1$ is increased, $s = \frac{r}{r-1} \ge 1$ is decreased, and $D_s(P_N || Q_N)$ is decreased (unless it is 0; note that P_N, Q_N do not depend on r, s).

- 4 同下 4 三下 4 三下

Novelty of the Bound & Proof

- The proof of this theorem has an overlap with a bound by Shamai and Sason (2002).
- The bound is also valid for code ensembles, while referring to the average distance spectrum.
- The novelty is the use of the Rényi divergence of order s ≥ 1, instead of the Kullback-Leibler divergence as a lower bound.
- This reveals a need for an optimization of the error exponent: If $r \ge 1$ is increased, $s = \frac{r}{r-1} \ge 1$ is decreased, and $D_s(P_N || Q_N)$ is decreased (unless it is 0; note that P_N, Q_N do not depend on r, s).

Numerical Results

Numerical results for the binary-input AWGN channel support that the new bound provides an improvement over the Shulman-Feder bound. For high rate codes, there is an improvement over the tangential-sphere bound.

3

イロト イポト イヨト イヨト

Full Paper Version

http://arxiv.org/abs/1501.03616.

Submitted to the IEEE Trans. on Information Theory, February 2015.

3

< 回 > < 三 > < 三 >