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Abstract—This paper starts with a study of the minimum
of the Rényi divergence, of an arbitrary order α > 0, subject
to a fixed (or minimal) value of the total variation distance.
Relying on the solution of this minimization problem, we
determine the exact region of the points

(
D(Q||P1), D(Q||P2)

)
where P1 and P2 are any probability distributions whose total
variation distance is not below a fixed value, and the probability
distribution Q is arbitrary (none of these three distributions is
assumed to be fixed). It is further shown that all the points of
this convex region are attained by a triple of 2-element prob-
ability distributions. As a byproduct of this characterization,
we provide a geometric interpretation of the minimal Chernoff
information subject to a minimal total variation distance. A
full paper version, which includes more results and proofs, is
available at http://arxiv.org/abs/1501.03616.

1. INTRODUCTION

Rényi measures play an important role in various studies
in information theory and statistical inference (see, e.g., [1],
[3], [5], [6], [7], [8], [9], [16], [17], [18]).

This work starts with a study of the minimum of the
Rényi divergence Dα(P∥Q), of an arbitrary order α > 0,
subject to a fixed (or minimal) value of the total variation
distance between the probability distributions (PDs) P and
Q. The solution of this minimization problem is obtained
by adapting some arguments from [10] which considered
the minimization of the relative entropy (a.k.a. Kullback-
Leibler divergence) subject to a fixed value of the total
variation distance. For orders α ∈ (0, 1), our analysis further
relies on the Lagrange duality and a solution of the KKT
equations where strong duality is first asserted for the studied
problem. The use of Lagrange duality significantly simplifies
the computational task of the studied minimization problem
for α ∈ (0, 1), whose solution for this sub-interval of α is of
special interest in the continuation of this work. The exact
expression for the minimal Rényi divergence generalizes
previous studies of the minimization of the relative entropy
under the same constraint on the total variation distance (see
[10], [12], [14]). The exact expression for this minimum is
also compared with known Pinsker-type lower bounds on the
Rényi divergence [13].

Relying on the solution of this minimization problem, this
paper provides an exact characterization of the achievable
region of

(
D(Q||P1), D(Q||P2)

)
when the PDs P1 and P2

are any pair of PDs with a total variation distance of at
least ε ∈ (0, 1), and Q is any PD which is absolutely

continuous w.r.t. P1 and P2. This problem is motivated
by the significance of the relative entropy in a variety of
fundamental problems in information theory and statistics.
These include, e.g., the characterization of the gap of the
lossless compression rate to the entropy of the source when
there exists a mismatch between the assumed distribution of
the compressor and the true distribution of the source; the
relative entropy is also fundamental in the characterization of
the best achievable error exponent for a Bayesian probability
of error, being strongly related to the important information-
theoretic measure of the Chernoff information.

The exact characterization of the considered achievable
region also provides a geometric interpretation of the minimal
Chernoff information subject to a minimal total variation
distance. Every point in this region is shown to be achievable
by a triple of 2-element PDs P1, P2 and Q, and their exact
calculation is specified exactly by relying on the previous
solved problem of the minimum of the Rényi divergence
subject to a minimal total variation distance. The task of
the numerical computation of this region is demonstrated to
be very easy. Note that the considered problem is different
from the characterization of joint ranges of points of f -
divergences, which was studied in [11].

This paper is structured as follows: Section 2 solves the
minimization problem for the Rényi divergence under a fixed
total variation distance, and Section 3 provides an exact char-
acterization of

(
D(Q||P1), D(Q||P2)

)
under a constraint on

the minimal total variation distance between P1 and P2. A
full paper version, which includes more results and proofs,
is available in [16].

We end this section by shortly introducing the definitions
of the total variation distance and the Rényi divergence, to
set the notation used in this work.

Definition 1 (Total variation distance). Let P and Q be
two PDs defined on a measurable space (X ,F). The total
variation distance between P and Q is defined by

dTV(P,Q) , sup
A∈F

|P (A)−Q(A)| (1)

which can be simplified in the discrete setting, where X is
a countable set, to

dTV(P,Q) =
1

2

∑
x

∣∣P (x)−Q(x)
∣∣ = ||P −Q||1

2
(2)



so, the total variation distance is equal to one-half the l1-
distance between P and Q. In the continuous setting, PDs
are replaced by probability density functions, and the sum in
(2) is replaced by an integral.

Definition 2 (Rényi divergence). Let α ∈ [0,∞) \ {1}, and
let P and Q be two discrete PDs. The Rényi divergence of
order α of P from Q, which are both defined on a countable
set X , is

Dα(P ||Q) =
1

α− 1
log

∑
x∈X

Pα(x)Q1−α(x) (3)

with the convention that if α > 1 and Q(x) = 0 then
Pα(x)Q1−α(x) equals 0 or ∞ if P (x) = 0 or P (x) > 0,
respectively. For α = 1, the Rényi divergence is defined to be
the relative entropy D(P ||Q) =

∑
x∈X P (x) log

(
P (x)
Q(x)

)
.

If D(P ||Q) < ∞, it can be verified by the use of
L’Hôpital’s rule that D(P ||Q) = limα→1− Dα(P ||Q). Prop-
erties of the Rényi divergence are provided in [8].

2. THE MINIMUM OF THE RÉNYI DIVERGENCE SUBJECT
TO A FIXED TOTAL VARIATION DISTANCE

The task of minimizing an arbitrary symmetric f -
divergence for a fixed total variation distance has been
studied in [12], leading to a closed-form solution of this
optimization problem. Although the Rényi divergence is not
an f -divergence, it is a function of an f -divergence; however,
this f -divergence is asymmetric, except for the case where
α = 1

2 , so the closed-form expression in [12] cannot be
utilized to obtain a tight lower bound on the Rényi divergence
subject to a fixed total variation distance.

In this section, we derive a tight lower bound on the Rényi
divergence Dα(P1||P2) subject to a fixed total variation
distance between P1 and P2. We further show that this lower
bound is attained by a pair of 2-element PDs P1 and P2, and
both distributions are obtained for a given order α ∈ (0,∞)
and a total variation distance dTV(P1, P2) = ε ∈ [0, 1)
(note that if ε = 1 then Supp(P1) ∩ Supp(P2) = ∅, and
consequently Dα(P1||P2) = ∞). For orders α ∈ (0, 1), the
new tight lower bound is compared with existing Pinsker-type
lower bounds on the Rényi divergence [13]. The special case
where α = 1, which is particularized to the minimization
of the Kullback-Leibler divergence subject to a fixed total
variation distance, has been studied extensively, and three
equivalent forms of the solution to this optimization problem
have been derived in [10], [12] and [14].

In [13, Corollaries 6 and 9], Gilardoni derived Pinsker-type
lower bounds on the Rényi divergence of order α ∈ (0, 1)
in terms of the total variation distance. Among these two
bounds, the improved lower bound is

Dα(P ||Q) ≥ 2αε2 +
4

9
α(1 + 5α− 5α2)ε4, ∀α ∈ (0, 1)

(4)
where ε , dTV(P,Q) denotes the total variation distance
between P and Q. Note that in the limit where ε → 1, this
lower bound converges to a finite value that is at most 22

9 .

This, however, is an artifact of the lower bound in light of
the following simple observation:

Lemma 1.

lim
ε→1−

inf
P,Q : dTV(P,Q)=ε

Dα(P ||Q) = ∞, ∀α > 0. (5)

Proof. See [16, Appendix I.A].

Lemma 1 motivates a study of the exact characterization
of the infimum (or minimum) of the Rényi divergence for a
fixed total variation distance. In the following, we derive a
tight lower bound which is shown to be achievable by pairs
of 2-element PDs for any fixed value ε ∈ [0, 1) of the total
variation distance.

For α > 0, let

gα(ε) , inf
P1,P2 : dTV(P1,P2)=ε

Dα(P1||P2), ∀ ε ∈ [0, 1). (6)

Since gα(ε) is monotonic non-decreasing in ε ∈ [0, 1), it can
be expressed for α ∈ (0,∞) as

gα(ε) = inf
P1,P2 : dTV(P1,P2)≥ε

Dα(P1||P2), ∀ ε ∈ [0, 1).

Remark 1. For α ∈ [0, 1], since Dα(P ||Q) is jointly convex
in (P,Q), the same arguments in [10] yield that gα is a
convex function, and the infimum in (6) is a minimum.

In the following, we provide an expression for the function
gα in (6). Following [10, Section 2] that characterizes the
minimum of the Kullback-Leibler divergence in terms of
the total variation distance, we first extend their argument
to obtain the following lemma:

Lemma 2. For an arbitrary α > 0, there is no loss of gener-
ality by restricting the minimization of the Rényi divergence
of order α, subject to a fixed total variation distance, to pairs
of 2-element PDs.

Proof. See [16, Appendix I.B]. It relies on the data process-
ing inequality for the Rényi divergence of any order α > 0
(see [8, Theorem 9]).

The following proposition provides an expression for gα
for an arbitrary positive α.

Proposition 1. Let α > 0 and ε ∈ [0, 1). The function gα in
(6) satisfies

gα(ε) = min
p,q∈[0,1] : |p−q|≥ε

dα(p∥q) (7)

where

dα(p∥q) ,
log

(
pαq1−α + (1− p)α(1− q)1−α

)
α− 1

(8)

is the Rényi divergence Dα(P∥Q) from the 2-element PD
P = (p, 1− p) to Q = (q, 1− q).

Proof. Eq. (7) follows from Lemma 2 where Dα(P1||P2) is
minimized over all pairs of 2-element PDs P1 = (p, 1− p),
P2 = (q, 1− q) with |p− q| = dTV(P1, P2) ≥ ε.



Corollary 1. For α = 1
2 and α = 2, gα admits the following

closed-form expressions:

g 1
2
(ε) = − log(1− ε2), (9)

and

g2(ε) =

{
log(1 + 4ε2), if ε ∈

[
0, 1

2

]
,

log
(

1
1−ε

)
, if ε ∈

(
1
2 , 1

)
.

(10)

Furthermore, for α ∈ (0, 1) and ε ∈ [0, 1), we have

gα(ε) =

(
α

1− α

)
g1−α(ε), (11)

and
gα(ε) ≥ c1(α) log

(
1

1− ε

)
+ c2(α), (12)

where c1(α) , min
{
1, α

1−α

}
, and c2(α) , − log(2)

1−α .

Proof. See [16, Appendix II].
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Fig. 1. A plot of the minimum of the Rényi divergence Dα(P1||P2) of
order α = 0.90 subject to a fixed total variation distance between P1 and
P2. This tight lower bound is compared with the two Pinsker-type lower
bounds in [13, Corollaries 6 and 9].

An alternative simplified form for the optimization prob-
lem in Proposition 1 is provided in the following for orders
α ∈ (0, 1). Hence, Proposition 1 applies to every α > 0,
whereas the following is restricted to α ∈ (0, 1).

Proposition 2. Let α ∈ (0, 1) and ε ∈ (0, 1) denote,
respectively, the order of the Rényi divergence and the
fixed value of the total variation distance. A solution of the
minimization problem for gα in Proposition 1 is obtained by
calculating the objective function of (7) while p = q+ε, and
q ∈ (0, 1− ε) is the unique solution of the equation

fα,ε(q) =
1− α

α
(13)

where

fα,ε(q) ,

(
1− ε

1−q

)α−1

−
(
1 + ε

q

)α−1

(
1 + ε

q

)α

−
(
1− ε

1−q

)α , ∀q ∈ (0, 1−ε).

(14)
is a strictly monotonic increasing, positive and continuous
function, and

lim
q→0+

fα,ε(q) = 0, lim
q→(1−ε)−

fα,ε(q) = +∞. (15)

Proof. See [16, Appendix III]. The proof relies on Lagrange
duality and KKT conditions, while strong duality is first
asserted by verifying the satisfiability of Slater’s condition
(see [2, Chapter 5]).

Remark 2. Since fα,ε : (0, 1−ε) → (0,∞) and this function
is strictly monotonic increasing, the task of numerically
solving equation (13) and finding its unique solution is easy.

Remark 3. It should be noted that, in light of Remark 2,
the running time of our computer program for a numerical
calculation of gα(ε) with Proposition 2, for α ∈ (0, 1), has
been considerably reduced (by a factor of 100) in comparison
to its direct computation with Proposition 1 (note, however,
that Proposition 1 applies to every α ∈ (0,∞)). This
significant reduction in the computational complexity is very
helpful in Section 3. A high-precision computation of gα(ε)
with Proposition 2 requires about 1 msec on a standard PC.

3. THE ACHIEVABLE REGION OF (D(Q||P1), D(Q||P2))
FOR ARBITRARY Q,P1, P2 SUBJECT TO A MINIMAL
TOTAL VARIATION DISTANCE BETWEEN P1 AND P2

In this section, we address the following question:

Question 1. What is the achievable region of all the points(
D(Q||P1), D(Q||P2)

)
when P1 and P2 are arbitrary PDs

whose total variation distance is at least ε ∈ (0, 1), and Q is
any PD that is absolutely continuous w.r.t. P1, P2 ?

The present section provides an exact characterization of
this achievable region by relying on the results of Section 2,
and the following lemma:

Lemma 3. Let P1 and P2 be mutually absolutely continuous
probability measures, and let Q be a third probability measure
such that Q ≪ P1. Then, for an arbitrary α > 0,

Dα(P1||P2) = D(Q||P2)+
α

1− α
·D(Q||P1)+

1

α− 1
·D(Q||Qα)

(16)
where Qα is given by

Qα(x) ,
Pα
1 (x)P

1−α
2 (x)∑

u P
α
1 (u)P

1−α
2 (u)

, ∀x ∈ Supp(P1). (17)

As a corollary of Lemma 3, the following tight inequal-
ity holds, which is attributed to Shayevitz (see [18, Sec-
tion IV.B.8]). It will be useful for the continuation of this
section, jointly with the results in Section 2.



Corollary 2. If α ∈ (0, 1) then
α

1− α
·D(Q||P1) +D(Q||P2) ≥ Dα(P1||P2) (18)

with equality if and only if Q = Qα. For α > 1, inequal-
ity (18) is reversed with the same necessary and sufficient
condition for an equality.

Remark 4. Corollary 2 with the optimizing PD Qα in (17)
strengthens [17, Eq. (6)] in the sense that it was stated there
that, for α > 1,

Dα(P1||P2) = max
Q≪P1

{
D(Q||P2) +

α

α− 1
·D(Q||P1)

}
(19)

where the max is replaced by min for α ∈ (0, 1). Equal-
ity (19) was proved in [17] by the method of types, and the
optimizing PD Q = Qα was stated in [18, Section IV.B.8].
The identity in Lemma 3 leads directly to the maximizing/
minimizing PD Q = Qα (due to the non-negativity of the
relative entropy). The knowledge of the maximizing PD in
(17) is necessary for the characterization of the achievable
region studied in this section.

The region that includes all the achievable points
of

(
D(Q||P1), D(Q||P2)

)
is determined as follows: let

dTV(P1, P2) ≥ ε for a fixed ε ∈ (0, 1), and let α ∈ (0, 1) be
chosen arbitrarily. By the tight lower bound in Section 2, we
have

Dα(P1||P2) ≥ gα(ε) (20)

where gα is expressed in (7) or by the efficient algorithm
in Proposition 2. For α ∈ (0, 1) and for a fixed value of
ε ∈ (0, 1), let p = pα and q = qα in (0, 1) be set to
achieve the global minimum in (7) (note that, without loss of
generality, one can assume that p ≥ q since if (p, q) achieves
the minimum in (7) then also (1−p, 1−q) achieves the same
minimum). Consequently, the lower bound in (20) is attained
by the pair of 2-element PDs (see Lemma 2)

P1 = (pα, 1− pα), P2 = (qα, 1− qα). (21)

From Corollary 2 and Eqs. (20) and (21), it follows that for
every α ∈ (0, 1)

gα(ε) ≤ D(Q||P2) +
α

1− α
·D(Q||P1) (22)

where equality in (22) holds if P1 and P2 are the 2-element
PDs in (21), and Q is the respective PD in (17). Hence,
there exists a triple of 2-element PDs P1, P2, Q that satisfy
(22) with equality, and they are easy to calculate for every
α ∈ (0, 1) and ε ∈ (0, 1).

Remark 5. Similarly to (22), since dTV(P1, P2) =
dTV(P2, P1), it follows from (22) that

gα(ε) ≤ D(Q||P1) +
α

1− α
·D(Q||P2). (23)

By multiplying both sides of inequality (23) by 1−α
α and

relying on the skew-symmetry property in (11), it follows
that (23) is equivalent to

g1−α(ε) ≤ D(Q||P2) +
1− α

α
·D(Q||P1)

which is inequality (22) when α ∈ (0, 1) is replaced by 1−α.
Hence, since (22) holds for every α ∈ (0, 1), there is no
additional information in (23).

Proposition 3. The intersection of the half spaces that are
given in (22), where the parameter α varies continuously in
(0,1), determines the joint range of

(
D(Q||P1), D(Q||P2)

)
addressed in Question 1. Furthermore, all the points in this
region are obtained by triples of 2-element PDs P1, P2, Q.

Proof. The boundary of this region is determined by letting α
increase continuously in (0,1), and by drawing the following
straight lines in the plane of

(
D(Q||P1), D(Q||P2)

)
:

D(Q||P2)+
α

1− α
·D(Q||P1) = gα(ε), ∀α ∈ (0, 1). (24)

Once the boundary of this region is determined by the
envelope of all the straight lines in (24), every point on
the boundary of this region is a tangent point to one of the
straight lines in (24). Furthermore, the triple of 2-element
PDs P1, P2 and Q that achieves an arbitrary point on the
boundary of this region is determined as follows:

• Find the slope s of the tangent line (s < 0), and
determine α ∈ (0, 1) such that − α

1−α = s (see (24)).
This gives that α = − s

1−s .
• Determine the 2-element PDs P1 = (p, 1 − p), P2 =

(q, 1− q) such that Dα(P1||P2) = gα(ε) (see Prop. 2).
• Calculate the respective PD Q = Qα in (17).
Every point on the plane

(
D(Q||P1), D(Q||P2)

)
, which is

below the envelope of all the straight lines in (24) (i.e., the
colored regions in Fig. 2) is not achievable by any triple of
PDs P1, P2 and Q with dTV(P1, P2) ≥ ε. This is because
every such a point violates at least one of the inequality
constraints in (22). On the other hand, every point which is
above this envelope is achievable by a triple of 2-element
PDs P1, P2, Q. To verify the last claim, first note that it
has been demonstrated to hold for all the points on the
boundary. Furthermore, based on the set of inequalities in
(22) for α ∈ (0, 1) and ε ∈ [0, 1), choose an arbitrary interior
point in the convex region which is above the envelope. Note
that gα(·) is a strictly monotonic increasing and continuous
function in (0, 1); it also tends to infinity as we let ε
tend to 1 (see Lemma 1). This implies that the achievable
region of

(
D(Q||P1), D(Q||P2)

)
, subject to the constraint

where D(P1||P2) ≥ ε, shrinks continuously as the value of
ε ∈ (0, 1) is increased, and it therefore lies on the boundary
of the respective achievable region for some ε′ > ε. One
can find, accordingly, the 2-element PDs P1, P2 and Q in a
similar way to the 3-item procedure which was stated earlier
in this proof where ε is replaced by ε′. This therefore shows
that all points on the boundary of this region, as well as
all the interior points to the right of this boundary (i.e., the
points above the envelope of all the straight lines in (24))
are achievable by 2-element PDs; furthermore, none of the
points below this envelope is achievable.

As it is shown in Fig. 2, the boundaries of these achievable
regions become less curvy as ε → 1.



Geometric Interpretation of the Chernoff information

We consider in the following the point in Fig. 2 which
is specified, in the plane of

(
D(Q||P1), D(Q||P2)

)
, by the

intersection of the straight line D(Q||P1) = D(Q||P2) with
the boundary of the achievable region for a fixed value of
ε ∈ (0, 1). Based on the above explanation (see the third
item after equation (24)), this intersection point satisfies the
equality D(Qα||P1) = D(Qα||P2) for some α ∈ (0, 1), 2-
element PDs P1, P2 with dTV(P1, P2) = ε, and Qα in (17).
The two equal coordinates of this intersection point are there-
fore equal to the Chernoff information C(P1, P2) (see [4,
Section 11.9]). Due to the symmetry of the achievable region
w.r.t. the line D(Q||P1) = D(Q||P2) (this symmetry follows
from the symmetry of the total variation distance where
dTV(P1, P2) = dTV(P2, P1)), the slope of the tangent line to
the boundary at this intersection point is s = −1 (see Fig. 2).
This yields that α = − s

1−s = 1
2 , and from Corollary 1 we

have gα(ε) = − log(1 − ε2) for ε ∈ [0, 1). Hence, from
(24) with α = 1

2 , the equal coordinates of this intersection
point are D(Q||P1) = D(Q||P2) = −1

2 log(1 − ε2). Based
on [15, Proposition 2], this value is equal to the minimum
of the Chernoff information subject to a fixed total variation
distance ε ∈ [0, 1). In the following, we also calculate the
three PDs P1, P2 and Q that achieve this intersection point.
Eq. (7) with α = 1

2 gives that

−2 log
(√

pq +
√
(1− p)(1− q)

)
= − log(1− ε2)

subject to the constraints p, q ∈ [0, 1] and |p − q| ≥ ε. A
possible solution of this equation is p = 1+ε

2 and q = 1−ε
2 , so

the respective 2-element PDs are given by P1 =
(

1+ε
2 , 1−ε

2

)
,

P2 =
(

1−ε
2 , 1+ε

2

)
and, from (17), Q =

(
1
2 ,

1
2

)
. As a byprod-

uct of the characterization of this achievable region, we
provide a geometric interpretation of the minimal Chernoff
information subject to a minimal total variation distance.

The straight line D(Q||P1) = D(Q||P2), in the plane of
Fig. 2, intersects the boundaries of the respective regions at
points whose coordinates are equal to the minimum Chernoff
information for the fixed total variation distance (ε). The
equal coordinates of each of these 4 intersection points,
referring to ε = 0.50, 0.70, 0.90, 0.99, are − 1

2 log(1− ε2) =
0.144, 0.337, 0.830, 1.959 nats, respectively (see Fig. 2).
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