f-Divergence Inequalities via Functional Domination

Igal Sason Andrew and Erna Viterbi Faculty of Electrical Engineering Technion-Israel Institute of Technology Haifa 32000, Israel E-mail: sason@ee.technion.ac.il

Abstract—This paper considers derivation of f-divergence inequalities via the approach of functional domination. Bounds on an f-divergence based on one or several other f-divergences are introduced, dealing with pairs of probability measures defined on arbitrary alphabets. In addition, a variety of bounds are shown to hold under boundedness assumptions on the relative information.¹

Index Terms – f-divergence, relative entropy, relative information, reverse Pinsker inequalities, reverse Samson's inequality, total variation distance, χ^2 divergence.

I. BASIC DEFINITIONS

We assume throughout that the probability measures P and Q are defined on a common measurable space $(\mathcal{A}, \mathscr{F})$, and $P \ll Q$ denotes that P is *absolutely continuous* with respect to Q.

Definition 1: If $P \ll Q$, the relative information provided by $a \in \mathcal{A}$ according to (P, Q) is given by²

$$i_{P\parallel Q}(a) \triangleq \log \frac{\mathrm{d}P}{\mathrm{d}Q}(a).$$
 (1)

Introduced by Ali-Silvey [1] and Csiszár ([4]), a useful generalization of the relative entropy, which retains some of its major properties (and, in particular, the data processing inequality), is the class of f-divergences. A general definition of f-divergence is given in [14, p. 4398], specialized next to the case where $P \ll Q$.

Definition 2: Let $f: (0, \infty) \to \mathbb{R}$ be a convex function, and suppose that $P \ll Q$. The *f*-divergence from *P* to *Q* is given by

$$D_f(P||Q) = \int f\left(\frac{\mathrm{d}P}{\mathrm{d}Q}\right) \,\mathrm{d}Q = \mathbb{E}\big[f(Z)\big] \tag{2}$$

with

$$Z = \exp(i_{P\parallel Q}(Y)), \quad Y \sim Q. \tag{3}$$

In (2), we take the continuous extension³

$$f(0) = \lim_{t \downarrow 0} f(t) \in (-\infty, +\infty].$$
 (4)

¹This work has been supported by the Israeli Science Foundation (ISF) under Grant 12/12, by the US National Science Foundation under Grant CCF-1016625, and in part by the Center for Science of Information, an NSF Science and Technology Center under Grant CCF-0939370.

 $2\frac{dP}{dQ}$ denotes the Radon-Nikodym derivative (or density) of P with respect to Q. Logarithms have an arbitrary common base, and the exponent indicates the inverse function of the logarithm with that base.

³The convexity of $f: (0, \infty) \to \mathbb{R}$ implies its continuity on $(0, \infty)$.

Sergio Verdú Department of Electrical Engineering Princeton University New Jersey 08544, USA E-mail: verdu@princeton.edu

If p and q denote, respectively, the densities of P and Q with respect to a σ -finite measure μ (i.e., $p = \frac{dP}{d\mu}$, $q = \frac{dQ}{d\mu}$), then we can write (2) as

$$D_f(P||Q) = \int_{\{q>0\}} q f\left(\frac{p}{q}\right) d\mu.$$
(5)

Remark 1: Different functions may lead to the same f-divergence for all (P, Q): if for an arbitrary $b \in \mathbb{R}$, we have

$$f_b(t) = f_0(t) + b(t-1), \quad t \ge 0$$
 (6)

then

$$D_{f_0}(P||Q) = D_{f_b}(P||Q).$$
(7)

Relative entropy is $D_r(P||Q)$ where r is given by

$$r(t) = t \log t + (1 - t) \log e,$$
 (8)

and the total variation distance |P - Q| and χ^2 divergence $\chi^2(P||Q)$ are f-divergences with $f(t) = (t-1)^2$ and f(t) = |t-1|, respectively.

The following key property of f-divergences follows from Jensen's inequality.

Proposition 1: If $f: (0, \infty) \to \mathbb{R}$ is convex and f(1) = 0, $P \ll Q$, then

$$D_f(P||Q) \ge 0. \tag{9}$$

If, furthermore, f is strictly convex at t = 1, then equality in (9) holds if and only if P = Q.

The reader is referred to [19] for a survey on general properties of f-divergences, and also to the textbook by Liese and Vajda [13].

The full paper version of this work, which includes several other approaches for the derivation of f-divergence inequalities, is available in [17].

II. FUNCTIONAL DOMINATION

Let f and g be convex functions on $(0, \infty)$ with f(1) = g(1) = 0, and let P and Q be probability measures defined on a measurable space $(\mathcal{A}, \mathscr{F})$. If, for $\alpha > 0$, $f(t) \le \alpha g(t)$ for all $t \in (0, \infty)$ then, it follows from Definition 2 that

$$D_f(P||Q) \le \alpha \, D_g(P||Q). \tag{10}$$

This simple observation leads to a proof of several inequalities with the aid of Remark 1.

A. Basic Tool

We start this section by proving a general result, which will be helpful in proving various tight bounds among f-divergences.

- Theorem 1: Let $P \ll Q$, and assume
- f is convex on $(0, \infty)$ with f(1) = 0;
- g is convex on $(0, \infty)$ with g(1) = 0;
- g(t) > 0 for all $t \in (0, 1) \cup (1, \infty)$.

Denote the function $\kappa : (0,1) \cup (1,\infty) \to \mathbb{R}$

$$\kappa(t) = \frac{f(t)}{g(t)}, \quad t \in (0,1) \cup (1,\infty)$$
(11)

and

$$\bar{\kappa} = \sup_{t \in (0,1) \cup (1,\infty)} \kappa(t).$$
(12)

Then,

a)

$$D_f(P||Q) \le \bar{\kappa} D_g(P||Q). \tag{13}$$

b) If, in addition, f'(1) = g'(1) = 0, then

$$\sup_{P \neq Q} \frac{D_f(P \| Q)}{D_g(P \| Q)} = \bar{\kappa}.$$
(14)

Proof: See [17, Theorem 1].

Remark 2: Beyond the restrictions in Theorem 1a), the only operative restriction imposed by Theorem 1b) is the differentiability of the functions f and g at t = 1. Indeed, we can invoke Remark 1 and add f'(1)(1-t) to f(t), without changing D_f (and likewise with g) and thereby satisfying the condition in Theorem 1b); the stationary point at 1 must be a minimum of both f and g because of the assumed convexity, which implies their non-negativity on $(0, \infty)$.

Remark 3: It is useful to generalize Theorem 1b) by dropping the assumption on the existence of the derivatives at 1. As it is explained in [17], it is enough to require that the left derivatives of f and g at 1 be equal to 0. Analogously, if $\bar{\kappa} = \sup_{0 < t < 1} \kappa(t)$, it is enough to require that the right derivatives of f and g at 1 be equal to 0.

B. Relationships Among D(P||Q), $\chi^2(P||Q)$ and |P-Q|

Theorem 2:

a) If $P \ll Q$ and $c_1, c_2 \ge 0$, then

$$D(P||Q) \le (c_1 |P - Q| + c_2 \chi^2(P||Q)) \log e$$
 (15)

holds if $(c_1, c_2) = (0, 1)$ and $(c_1, c_2) = (\frac{1}{4}, \frac{1}{2})$. Furthermore, if $c_1 = 0$ then $c_2 = 1$ is optimal, and if $c_2 = \frac{1}{2}$ then $c_1 = \frac{1}{4}$ is optimal.

b) If $P \ll Q$ and $P \neq Q$, then

$$\frac{D(P\|Q) + D(Q\|P)}{\chi^2(P\|Q) + \chi^2(Q\|P)} \le \frac{1}{2} \log e$$
(16)

and the constant in the right side of (16) is the best possible.

Proof: See [17, Theorem 2].

Remark 4: Inequality (15) strengthens the bound in [9, (2.8)],

$$D(P||Q) \le \frac{1}{2} \left(|P - Q| + \chi^2(P||Q) \right) \log e.$$
 (17)

Note that the short outline of the suggested proof in [9, p. 710] leads not (17) but to the weaker upper bound $|P - Q| + \frac{1}{2}\chi^2(P||Q)$ nats.

C. An Alternative Proof of Samson's Inequality

For the purpose of this sub-section, we introduce *Marton's divergence* [15]:

$$d_2^2(P,Q) = \min \mathbb{E}\left[\mathbb{P}^2[X \neq Y \mid Y]\right]$$
(18)

where the minimum is over all probability measures P_{XY} with respective marginals $P_X = P$ and $P_Y = Q$. From [15, pp. 558–559]

$$d_2^2(P,Q) = D_s(P||Q)$$
(19)

with

$$s(t) = (t-1)^2 \, 1\{t < 1\}.$$
⁽²⁰⁾

Note that Marton's divergence satisfies the triangle inequality [15, Lemma 3.1], and $d_2(P,Q) = 0$ implies P = Q; however, due to its asymmetry, it is not a distance measure.

An analog of Pinsker's inequality, which comes in handy for the proof of Marton's conditional transportation inequality [3, Lemma 8.4], is the following bound due to Samson [16, Lemma 2]:

Theorem 3: If $P \ll Q$, then

$$d_2^2(P,Q) + d_2^2(Q,P) \le \frac{2}{\log e} D(P || Q).$$
 (21)

In [17, Section 3.D], we provide an alternative proof of Theorem 3, in view of Theorem 1b), with the following advantages:

a) This proof yields the optimality of the constant in (21), i.e., we prove that

$$\sup_{P \neq Q} \frac{d_2^2(P,Q) + d_2^2(Q,P)}{D(P \| Q)} = \frac{2}{\log e}$$
(22)

where the supremum is over all probability measures P, Qsuch that $P \neq Q$ and $P \ll Q$.

b) A simple adaptation of this proof results in a reverse inequality to (21), which holds under the boundedness assumption of the relative information (see Section III-D).

D. Ratio of f-Divergence to Total Variation Distance

Let $f: (0, \infty) \to \mathbb{R}$ be a convex function with f(1) = 0, and let $f^*: (0, \infty) \to \mathbb{R}$ be given by

$$f^{\star}(t) = t f\left(\frac{1}{t}\right) \tag{23}$$

for all t > 0. Note that f^* is also convex, $f^*(1) = 0$, and $D_f(P||Q) = D_{f^*}(Q||P)$ if $P \ll Q$. By definition, we take

$$f^{\star}(0) = \lim_{t \downarrow 0} f^{\star}(t) = \lim_{u \to \infty} \frac{f(u)}{u}.$$
 (24)

Vajda [18, Theorem 2] showed that the range of an f-divergence is given by

$$0 \le D_f(P \| Q) \le f(0) + f^*(0) \tag{25}$$

where every value in this range is attainable by a suitable pair of probability measures $P \ll Q$. Recalling Remark 1, note that $f_b(0) + f_b^*(0) = f(0) + f^*(0)$ with $f_b(\cdot)$ defined in (6). Basu *et al.* [2, Lemma 11.1] strengthened (25), showing that

$$D_f(P||Q) \le \frac{1}{2} \left(f(0) + f^*(0) \right) |P - Q|.$$
 (26)

If f(0) and $f^{\star}(0)$ are finite, (26) yields a counterpart to a result by Csiszár (see [6, Theorem 3.1]) which implies that if $f: (0, \infty) \to \mathbb{R}$ is a strictly convex function, then there exists a real-valued function ψ_f such that $\lim_{x \downarrow 0} \psi_f(x) = 0$, and

$$|P-Q| \le \psi_f \big(D_f(P \| Q) \big). \tag{27}$$

Next, we demonstrate that the constant in (26) cannot be improved.

Theorem 4: If $f: (0, \infty) \to \mathbb{R}$ is convex with f(1) = 0, then

$$\sup_{P \neq Q} \frac{D_f(P \| Q)}{|P - Q|} = \frac{1}{2} \left(f(0) + f^*(0) \right)$$
(28)

where the supremum is over all probability measures P, Q such that $P \ll Q$ and $P \neq Q$.

Remark 5: Csiszár [5, Theorem 2] showed that if f(0) and $f^*(0)$ are finite and $P \ll Q$, then there exists a constant $C_f > 0$ which depends only on f such that $D_f(P||Q) \leq C_f \sqrt{|P-Q|}$. Note that, if |P-Q| < 1, then this inequality is superseded by (26) where the constant is not only explicit but is the best possible according to Theorem 4.

A direct application of Theorem 4 yields

Corollary 1:

$$\sup_{P \neq Q} \frac{d_2^2(P,Q)}{|P-Q|} = \frac{1}{2},$$
(29)

$$\sup_{P \neq Q} \frac{d_2^2(P,Q) + d_2^2(Q,P)}{|P - Q|} = 1$$
(30)

where the supremum in (29) is over all $P \ll Q$ with $P \neq Q$, and the supremum in (30) is over all $P \ll Q$ with $P \neq Q$.

Proof: See [17, Corollary 1].

Remark 6: The results in (29) and (30) form counterparts of (22).

III. BOUNDED RELATIVE INFORMATION

In this section we show that it is possible to find bounds among f-divergences without requiring a strong condition of functional domination (see Section II) as long as the relative information is upper and/or lower bounded almost surely.

A. Definition of β_1 and β_2 .

ŀ

The following notation is used throughout the rest of the paper. Given a pair of probability measures (P, Q) on the same measurable space, denote $\beta_1, \beta_2 \in [0, 1]$ by

$$\beta_1 = \exp\left(-D_{\infty}(P||Q)\right),\tag{31}$$

$$\beta_2 = \exp\left(-D_\infty(Q\|P)\right) \tag{32}$$

with the convention that if $D_{\infty}(P||Q) = \infty$, then $\beta_1 = 0$, and if $D_{\infty}(Q||P) = \infty$, then $\beta_2 = 0$. Note that if $\beta_1 > 0$, then $P \ll Q$, while $\beta_2 > 0$ implies $Q \ll P$. Furthermore, if $P \ll Q$, then with $Y \sim Q$,

$$\beta_1 = \operatorname{ess\,inf} \frac{\mathrm{d}Q}{\mathrm{d}P} \left(Y\right) = \left(\operatorname{ess\,sup} \frac{\mathrm{d}P}{\mathrm{d}Q} \left(Y\right)\right)^{-1}, \qquad (33)$$

$$\beta_2 = \operatorname{ess\,inf} \frac{\mathrm{d}P}{\mathrm{d}Q} \left(Y\right) = \left(\operatorname{ess\,sup} \frac{\mathrm{d}Q}{\mathrm{d}P} \left(Y\right)\right)^{-1}.$$
 (34)

The following examples illustrate important cases in which β_1 and β_2 are positive.

Example 1: (*Gaussian distributions.*) Let P and Q be Gaussian probability measures with equal means, and variances σ_0^2 and σ_1^2 respectively. Then,

$$\beta_1 = \frac{\sigma_0}{\sigma_1} 1\{\sigma_0 \le \sigma_1\},\tag{35}$$

$$\beta_2 = \frac{\sigma_1}{\sigma_0} 1\{\sigma_1 \le \sigma_0\}.$$
(36)

Example 2: (*Shifted Laplace distributions.*) Let P and Q be the probability measures whose probability density functions are, respectively, given by $f_{\lambda}(\cdot - a_0)$ and $f_{\lambda}(\cdot - a_1)$ with

$$f_{\lambda}(x) = \frac{\lambda}{2} \exp(-\lambda |x|), \quad x \in \mathbb{R}$$
 (37)

where $\lambda > 0$. In this case, (37) gives

$$\frac{\mathrm{d}P}{\mathrm{d}Q}\left(x\right) = \exp\left(\lambda(|x-a_1|-|x-a_0|)\right), \quad x \in \mathbb{R}$$
(38)

which yields

$$\beta_1 = \beta_2 = \exp(-\lambda |a_1 - a_0|) \in (0, 1].$$
 (39)

B. Basic Tool

Since $\beta_1 = 1 \Leftrightarrow \beta_2 = 1 \Leftrightarrow P = Q$, it is advisable to avoid trivialities by excluding that case.

Theorem 5: Let f and g satisfy the assumptions in Theorem 1, and assume that $(\beta_1, \beta_2) \in [0, 1)^2$. Then,

$$D_f(P\|Q) \le \kappa^* \ D_g(P\|Q) \tag{40}$$

where

$$\kappa^{\star} = \sup_{\beta \in (\beta_2, 1) \cup (1, \beta_1^{-1})} \kappa(\beta) \tag{41}$$

and $\kappa(\cdot)$ is defined in (11).

Note that if $\beta_1 = \beta_2 = 0$, then Theorem 5 does not improve upon Theorem 1a).

Remark 7: In the application of Theorem 5, it is often convenient to make use of the freedom afforded by Remark 1 and choose the corresponding offsets such that:

- the positivity property of g required by Theorem 5 is satisfied;
- the lowest κ^* is obtained.

Remark 8: Similarly to the proof of Theorem 1b), under the conditions therein, one can verify that the constants in Theorem 5 are the best possible among all probability measures P, Q with given $(\beta_1, \beta_2) \in [0, 1)^2$.

Remark 9: Note that if we swap the assumptions on f and g in Theorem 5, the same result translates into

$$\inf_{\beta \in (\beta_2, 1) \cup (1, \beta_1^{-1})} \kappa(\beta) \cdot D_g(P \| Q) \le D_f(P \| Q).$$
(42)

Furthermore, provided both f and g are positive (except at t = 1) and κ is monotonically increasing, Theorem 5 and (42) result in

$$\kappa(\beta_2) D_g(P \| Q) \le D_f(P \| Q) \tag{43}$$

$$\leq \kappa(\beta_1^{-1}) D_q(P \| Q). \tag{44}$$

In this case, if $\beta_1 > 0$, sometimes it is convenient to replace $\beta_1 > 0$ with $\beta'_1 \in (0, \beta_1)$ at the expense of loosening the bound. A similar observation applies to β_2 .

Example 3: If $f(t) = (t-1)^2$ and g(t) = |t-1|, we get

$$\chi^{2}(P||Q) \le \max\{\beta_{1}^{-1} - 1, 1 - \beta_{2}\} |P - Q|.$$
(45)

C. Bounds on $\frac{D(P||Q)}{D(Q||P)}$

The remaining part of this section is devoted to various applications of Theorem 5. From this point, we make use of the definition of $r: (0, \infty) \rightarrow [0, \infty)$ in (8).

An illustrative application of Theorem 5 gives upper and lower bounds on the ratio of relative entropies.

Theorem 6: Let $P \ll Q$, $P \neq Q$, and $(\beta_1, \beta_2) \in (0, 1)^2$. Let $\kappa: (0, 1) \cup (1, \infty) \rightarrow (0, \infty)$ be defined as

$$\kappa(t) = \frac{t \log t + (1 - t) \log e}{(t - 1) \log e - \log t}.$$
(46)

Then,

$$\kappa(\beta_2) \le \frac{D(P \| Q)}{D(Q \| P)} \le \kappa(\beta_1^{-1}).$$
(47)

Proof: See [17, Theorem 6].

D. Reverse Samson's Inequality

The next result gives a counterpart to Samson's inequality (21).

Theorem 7: Let $(\beta_1, \beta_2) \in (0, 1)^2$. Then,

$$\inf \frac{d_2^2(P,Q) + d_2^2(Q,P)}{D(P||Q)} = \min \left\{ \kappa(\beta_1^{-1}), \, \kappa(\beta_2) \right\}$$
(48)

where the infimum is over all $P \ll Q$ with given (β_1, β_2) , and where $\kappa \colon (0, 1) \cup (1, \infty) \to \left(0, \frac{2}{\log e}\right)$ is given by

$$\kappa(t) = \frac{(t-1)^2}{r(t) \max\{1, t\}}, \quad t \in (0, 1) \cup (1, \infty).$$
(49)

E. Local Behavior of f-Divergences

Another application of Theorem 5 shows that the local behavior of f-divergences differs by only a constant, provided that the first distribution approaches the reference measure in a certain strong sense.

Theorem 8: Suppose that $\{P_n\}$, a sequence of probability measures defined on a measurable space $(\mathcal{A}, \mathscr{F})$, converges to Q (another probability measure on the same space) in the sense that, for $Y \sim Q$,

$$\lim_{n \to \infty} \operatorname{ess\,sup} \frac{\mathrm{d}P_n}{\mathrm{d}Q} \left(Y \right) = 1 \tag{50}$$

where it is assumed that $P_n \ll Q$ for all sufficiently large n. If f and g are convex on $(0, \infty)$ and they are positive except at t = 1 (where they are 0), then

$$\lim_{n \to \infty} D_f(P_n \| Q) = \lim_{n \to \infty} D_g(P_n \| Q) = 0,$$
 (51)

and

$$\min\{\kappa(1^{-}), \kappa(1^{+})\} \le \lim_{n \to \infty} \frac{D_f(P_n \| Q)}{D_g(P_n \| Q)} \le \max\{\kappa(1^{-}), \kappa(1^{+})\}$$
(52)

where we have indicated the left and right limits of the function $\kappa(\cdot)$, defined in (11), at 1 by $\kappa(1^-)$ and $\kappa(1^+)$, respectively. *Proof:* See [17, Theorem 9].

Corollary 2: Let $\{P_n \ll Q\}$ converge to Q in the sense of (50). Then, $D(P_n || Q)$ and $D(Q || P_n)$ vanish as $n \to \infty$ with

$$\lim_{n \to \infty} \frac{D(P_n \| Q)}{D(Q \| P_n)} = 1.$$
 (53)

Corollary 3: Let $\{P_n \ll Q\}$ converge to Q in the sense of (50). Then, $\chi^2(P_n || Q)$ and $D(P_n || Q)$ vanish as $n \to \infty$ with

$$\lim_{n \to \infty} \frac{D(P_n \| Q)}{\chi^2(P_n \| Q)} = \frac{1}{2} \log e.$$
 (54)

Note that (54) is known in the finite alphabet case [7, Theorem 4.1]).

F. Strengthened Jensen's inequality

Bounding away from zero a certain density between two probability measures enables the following strengthened version of Jensen's inequality, which generalizes a result in [11, Theorem 1].

Lemma 1: Let $f: \mathbb{R} \to \mathbb{R}$ be a convex function, $P_1 \ll P_0$ be probability measures defined on a measurable space $(\mathcal{A}, \mathscr{F})$, and fix an arbitrary random transformation $P_{Z|X}: \mathcal{A} \to \mathbb{R}$. Denote⁴ $P_0 \to P_{Z|X} \to P_{Z_0}$, and $P_1 \to P_{Z|X} \to P_{Z_1}$. Then,

$$\beta \left(\mathbb{E} \left[f(\mathbb{E}[Z_0|X_0]) \right] - f(\mathbb{E}[Z_0]) \right) \\ \leq \mathbb{E} \left[f(\mathbb{E}[Z_1|X_1]) \right] - f(\mathbb{E}[Z_1])$$
(55)

⁴We follow the notation in [20] where $P_0 \rightarrow P_{Z|X} \rightarrow P_{Z_0}$ means that the marginal probability measures of the joint distribution $P_0 P_{Z|X}$ are P_0 and P_{Z_0} .

where $X_0 \sim P_0$, $X_1 \sim P_1$, and

$$\beta \triangleq \operatorname{ess\,inf} \frac{\mathrm{d}P_1}{\mathrm{d}P_0} \left(X_0 \right). \tag{56}$$

Proof: See [17, Lemma 1].

Remark 10: Letting Z = X, and choosing P_0 so that $\beta = 0$ (e.g., P_1 is a restriction of P_0 to an event of P_0 -probability less than 1), (55) becomes Jensen's inequality $f(\mathbb{E}[X_1]) \leq \mathbb{E}[f(X_1)]$.

Lemma 1 finds the following application to the derivation of f-divergence inequalities.

Theorem 9: Let $f: (0, \infty) \to \mathbb{R}$ be a convex function with f(1) = 0. Fix $P \ll Q$ on the same space with $(\beta_1, \beta_2) \in [0, 1)^2$ and let $X \sim P$. Then,

$$\beta_2 D_f(P \| Q) \le \mathbb{E} \left[f \left(\exp(\iota_{P \| Q}(X)) \right) \right] - f \left(1 + \chi^2(P \| Q) \right)$$
$$\le \beta_1^{-1} D_f(P \| Q).$$
(57)

Specializing Theorem 9 to the convex function on $(0,\infty)$ where $f(t) = -\log t$ sharpens the inequality

$$D(P||Q) \le \log(1 + \chi^2(P||Q))$$
 (58)

$$\leq \chi^2(P \| Q) \log e. \tag{59}$$

under the assumption of bounded relative information.

Theorem 10: Fix $P \ll Q$ such that $(\beta_1, \beta_2) \in (0, 1)^2$. Then,

$$\beta_2 D(Q \| P) \le \log(1 + \chi^2(P \| Q)) - D(P \| Q)$$
 (60)

$$\leq \beta_1^{-1} D(Q \| P). \tag{61}$$

IV. REVERSE PINSKER INEQUALITIES

It is not possible to lower bound |P-Q| solely in terms of D(P||Q) since for an arbitrary small $\epsilon > 0$ and an arbitrary large $\lambda > 0$, we can construct examples with $|P-Q| < \epsilon$ and $\lambda < D(P||Q) < \infty$. As in Section III, the following result involves the bounds on the relative information.

Theorem 11: If $\beta_1 \in (0,1)$ and $\beta_2 \in [0,1)$, then,

$$D(P||Q) \le \frac{1}{2} \left(\varphi(\beta_1^{-1}) - \varphi(\beta_2) \right) |P - Q|$$
 (62)

where $\varphi \colon [0,\infty) \to [0,\infty)$ is given by

$$\varphi(t) = \begin{cases} 0 & t = 0\\ \frac{t \log t}{t-1} & t \in (0,1) \cup (1,\infty)\\ \log e & t = 1. \end{cases}$$
(63)

Proof: See [17, Theorem 23].

Remark 11: Note that for Theorem 11 to give a nontrivial result, it is necessary that the relative information be upper bounded, namely $\beta_1 > 0$. However, we still get a nontrivial bound if $\beta_2 = 0$.

In the following, we assume that P and Q are probability measures defined on a common finite set A, and Q is strictly positive on A with $|A| \ge 2$.

Theorem 12: Let $Q_{min} = \min_{a \in \mathcal{A}} Q(a)$, then

$$D(P||Q) \le \log\left(1 + \frac{|P - Q|^2}{2Q_{\min}}\right).$$
 (64)

Furthermore, if $Q \ll P$ and β_2 is defined as in (32), then the following tightened bound holds:

$$D(P||Q) \le \log\left(1 + \frac{|P - Q|^2}{2Q_{\min}}\right) - \frac{1}{2}\beta_2|P - Q|^2\log e.$$
(65)

Proof: See [17, Theorem 25].

Remark 12: The result in (64) improves the inequality by Csiszár and Talata [8, p. 1012]:

$$D(P||Q) \le \left(\frac{\log e}{Q_{\min}}\right) \cdot |P - Q|^2.$$
(66)

For further reverse Pinsker Inequalities and some of their implications, see [17, Section 6].

REFERENCES

- S. M. Ali and S. D. Silvey, "A general class of coefficients of divergence of one distribution from another," *Journal of the Royal Statistics Society*, series B, vol. 28, no. 1, pp. 131–142, 1966.
- [2] A. Basu, H. Shioya and C. Park, "Statistical Inference: The Minimum Distance Approach," *Chapman & Hall/ CRC Monographs on Statistics* and Applied Probability, vol. 120, CRC Press, Boca Raton, Florida, USA, 2011.
- [3] S. Boucheron, G. Lugosi, and P. Massart, Concentration Inequalities: A Nonasymptotic Theory of Independence, Oxford University Press, 2013.
- [4] I. Csiszár, "Eine Informationstheoretische Ungleichung und ihre Anwendung auf den Bewis der Ergodizität von Markhoffschen Ketten," *Publ. Math. Inst. Hungar. Acad. Sci.*, vol. 8, pp. 85–108, January 1963.
- [5] I. Csiszár, "On topological properties of *f*-divergences," *Studia Scientiarum Mathematicarum Hungarica*, vol. 2, pp. 329–339, 1967.
- [6] I. Csiszár, "A class of measures of informativity of observation channels," *Periodica Mathematicarum Hungarica*, vol. 2, no. 1, pp. 191–23, March 1972.
- [7] I. Csiszár and P. C. Shields, "Information Theory and Statistics: A Tutorial", *Foundations and Trends in Communications and Information Theory*, vol. 1, no. 4, 2004.
- [8] I. Csiszár and Z. Talata, "Context tree estimation for not necessarily finite memory processes, via BIC and MDL," *IEEE Trans. on Information Theory*, vol. 52, no. 3, pp. 1007–1016, March 2006.
- [9] P. Diaconis and L. Saloff-Coste, "Logarithmic Sobolev inequalities for finite Markov chains," *Annals of Applied Probability*, vol. 6, pp. 695– 750, 1996.
- [10] S. S. Dragomir, "Upper and lower bounds for Csiszár f-divergence in terms of the Kullback-Leibler distance and applications," *Inequalities* for Csiszár f-Divergence in Information Theory, RGMIA Monographs, 2000.
- [11] S. S. Dragomir, "Bounds for the normalized Jensen functional," *Bulletin of the Australian Mathematical Society*, vol. 74, no. 3, pp. 471–478, 2006.
- [12] A. Guntuboyina, S. Saha and G. Schiebinger, "Sharp inequalities for f-divergences," *IEEE Trans. on Information Theory*, vol. 60, no. 1, pp. 104–121, Jan. 2014.
- [13] F. Liese and I. Vajda, *Convex Statistical Distances*, Teubner-Texte Zur Mathematik, vol. 95, Germany, 1987.
- [14] F. Liese and I. Vajda, "On divergences and informations in statistics and information theory," *IEEE Trans. on Information Theory*, vol. 52, no. 10, pp. 4394–4412, October 2006.
- [15] K. Marton, "A measure concentration inequality for contracting Markov chains," *Geometric and Functional Analysis*, vol. 6, pp. 556–571, 1996.
- [16] P. M. Samson, "Concentration of measure inequalities for Markov chains and φ-mixing processes," *Annals of Probability*, vol. 28, no. 1, pp. 416– 461, January 2000.
- [17] I. Sason and S. Verdú, "f-divergence inequalities," to appear in the IEEE Trans. on Information Theory, vol. 62, 2016. Available at http://arxiv.org/abs/1508.00335.
- [18] I. Vajda, "On f-divergence and singularity of probability measures," *Periodica Mathematica Hungarica*, vol. 2, no. 1–4, pp. 223–234, 1972.
- [19] I. Vajda, "On metric divergences of probability measures," *Kybernetika*, vol. 45, no. 6, pp. 885–900, 2009.
- [20] S. Verdú, Information Theory, in preparation.