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Strong Product of Graphs

Let G and H be two graphs. The strong product G⊠ H is a graph with

vertex set: V(G⊠ H) = V(G)× V(H),

two distinct vertices (g, h) and (g′, h′) in G⊠ H are adjacent if one of
the following three conditions holds:
(1) g = g′ and {h, h′} ∈ E(H),

(2) {g, g′} ∈ E(G) and h = h′,

(3) {g, g′} ∈ E(G) and {h, h′} ∈ E(H).

Strong products are commutative and associative.
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Strong products are commutative and associative.

Strong Powers of Graphs

Let

G⊠ k ≜ G⊠ . . .⊠ G︸ ︷︷ ︸
G appears k times

, k ∈ N (1.1)

denote the k-fold strong power of a graph G.
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Shannon Capacity of a Graph (Cont.)

The Shannon capacity of a graph G is given by

Θ(G) = sup
k∈N

k

√
α(G⊠ k)

= lim
k→∞

k

√
α(G⊠ k). (2.1)

where α(·) denotes the independence number of the graph.
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where α(·) denotes the independence number of the graph.
The last equality holds by Fekete’s Lemma: the sequence {α(G⊠ k)}∞k=1 is
super-multiplicative, i.e.,

α(G⊠ (k1+k2)) ≥ α(G⊠ k1) α(G⊠ k2). (2.2)

Alas, the Shannon capacity can be rarely computed exactly !
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Lovász ϑ-function ϑ(G)

A is the n× n adjacency matrix of G (n ≜ |V(G)|);
Jn is the all-ones n× n matrix;

Sn
+ is the set of all n× n positive semidefinite matrices.

Semidefinite program (SDP), with strong duality, for computing ϑ(G):

maximize Trace(BJn)
subject to{
B ∈ Sn

+, Trace(B) = 1,

Ai,j = 1 ⇒ Bi,j = 0, i, j ∈ [n].

Computational complexity: ∃ algorithm (based on the ellipsoid method)
that numerically computes ϑ(G), for every graph G, with precision of r

decimal digits, and polynomial-time in n and r.
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Lovász Bound on the Shannon Capacity of Graphs (1979)

Theorem 2.1

For every finite, simple and undirected graph G,

Θ(G) ≤ ϑ(G). (2.3)
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Schrijver’s ϑ-function ϑ′(G)

A is the n× n adjacency matrix of G (n ≜ |V(G)|);
Jn is the all-ones n× n matrix;

Sn
+ is the set of all n× n positive semidefinite matrices.

Semidefinite program (SDP), with strong duality, for computing ϑ′(G):

maximize Trace(BJn)
subject to
B ∈ Sn

+, Trace(B) = 1,

Bi,j ≥ 0, i, j ∈ [n],

Ai,j = 1 ⇒ Bi,j = 0, i, j ∈ [n].

Computational complexity: ∃ algorithm (based on the ellipsoid method)
that numerically computes ϑ′(G), for every graph G, with precision of r

decimal digits, and polynomial-time in n and r.
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Theorem 2.2

For every graph G,

α(G) ≤ ϑ′(G) ≤ ϑ(G). (2.4)
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Question

Can the upper bound on the Shannon capacity,

Θ(G) ≤ ϑ(G)

be improved to
Θ(G) ≤ ϑ′(G)?
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Question

Can the upper bound on the Shannon capacity,

Θ(G) ≤ ϑ(G)

be improved to
Θ(G) ≤ ϑ′(G)?

Our work resolves this query regarding the variant of the ϑ-function by
Schrijver (1978). The answer is negative.
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Example 2.3 (I.S., ’25)

Let G be the Gilbert graph on 32 vertices, where

V(G) = {0, 1}5, E(G) =
{
u, v ∈ {0, 1}5 : 1 ≤ dH(u, v) ≤ 2

}
,

so, every two vertices are adjacent if and only if the Hamming distance of
their corresponding 5-tuples binary vectors is either 1 or 2.
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Example 2.3 (I.S., ’25)

Let G be the Gilbert graph on 32 vertices, where

V(G) = {0, 1}5, E(G) =
{
u, v ∈ {0, 1}5 : 1 ≤ dH(u, v) ≤ 2

}
,

so, every two vertices are adjacent if and only if the Hamming distance of
their corresponding 5-tuples binary vectors is either 1 or 2.

G is 15-regular, vertex-transitive, edge-transitive, distance-regular.

The complement G is 16-regular, vertex-transitive, but not
edge-transitive nor distance-regular.

α(G) = 4. An example of such a maximal independent set of G:{
(1, 0, 0, 1, 0), (0, 1, 1, 1, 0), (0, 0, 0, 0, 1), (1, 1, 1, 0, 1)

}
.

Solving the SDP problem for ϑ′(G) gives

ϑ′(G) = 4 = α(G).
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Example 2.3 (cont. - I.S., ’25)

G is 15-regular and edge-transitive on 32 vertices, with
λmin(G) = −3, so

ϑ(G) = − nλmin(G)

d(G)− λmin(G)
= 32·3

15+3 = 51
3 .
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= 32·3

15+3 = 51
3 .

Hence, for this graph,

4 = α(G) = ϑ′(G) < ϑ(G) = 51
3 ,

so ϑ′(G) coincides with the independence number of G, and it is
strictly smaller than ϑ(G).
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G is 15-regular and edge-transitive on 32 vertices, with
λmin(G) = −3, so

ϑ(G) = − nλmin(G)

d(G)− λmin(G)
= 32·3

15+3 = 51
3 .

Hence, for this graph,

4 = α(G) = ϑ′(G) < ϑ(G) = 51
3 ,

so ϑ′(G) coincides with the independence number of G, and it is
strictly smaller than ϑ(G).

It can be verified that

α(G⊠ G) = 20,

and the strong product graph G⊠ G has 368, 640 such maximal
independent sets of size 20.
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Example 2.3 (cont. - I.S., ’25)

An example of a maximal independent set (of size 20) for G⊠ G:{
((1, 1, 0, 0, 0), (1, 1, 1, 1, 1)), ((1, 0, 1, 0, 0), (1, 1, 0, 0, 0)),

((0, 1, 1, 0, 0), (0, 0, 1, 1, 0)), ((1, 1, 1, 0, 0), (0, 0, 0, 0, 1)),

((1, 0, 0, 1, 0), (0, 0, 1, 0, 1)), ((0, 1, 0, 1, 0), (1, 0, 0, 0, 0)),

((1, 1, 0, 1, 0), (0, 1, 0, 1, 0)), ((0, 0, 1, 1, 0), (0, 1, 0, 1, 1)),

((1, 0, 1, 1, 0), (1, 0, 1, 1, 0)), ((0, 1, 1, 1, 0), (1, 1, 1, 0, 1)),

((1, 0, 0, 0, 1), (0, 0, 0, 1, 0)), ((0, 1, 0, 0, 1), (0, 1, 0, 0, 1)),

((1, 1, 0, 0, 1), (1, 0, 1, 0, 0)), ((0, 0, 1, 0, 1), (1, 0, 1, 0, 1)),

((1, 0, 1, 0, 1), (0, 1, 1, 1, 1)), ((0, 1, 1, 0, 1), (1, 1, 0, 1, 0)),

((0, 0, 0, 1, 1), (1, 1, 1, 1, 0)), ((1, 0, 0, 1, 1), (1, 1, 0, 0, 1)),

((0, 1, 0, 1, 1), (0, 0, 1, 1, 1)), ((0, 0, 1, 1, 1), (0, 0, 0, 0, 0))
}
.
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Example 2.3 (cont. - I.S., ’25)

An example of a maximal independent set (of size 20) for G⊠ G:{
((1, 1, 0, 0, 0), (1, 1, 1, 1, 1)), ((1, 0, 1, 0, 0), (1, 1, 0, 0, 0)),

((0, 1, 1, 0, 0), (0, 0, 1, 1, 0)), ((1, 1, 1, 0, 0), (0, 0, 0, 0, 1)),

((1, 0, 0, 1, 0), (0, 0, 1, 0, 1)), ((0, 1, 0, 1, 0), (1, 0, 0, 0, 0)),

((1, 1, 0, 1, 0), (0, 1, 0, 1, 0)), ((0, 0, 1, 1, 0), (0, 1, 0, 1, 1)),

((1, 0, 1, 1, 0), (1, 0, 1, 1, 0)), ((0, 1, 1, 1, 0), (1, 1, 1, 0, 1)),

((1, 0, 0, 0, 1), (0, 0, 0, 1, 0)), ((0, 1, 0, 0, 1), (0, 1, 0, 0, 1)),

((1, 1, 0, 0, 1), (1, 0, 1, 0, 0)), ((0, 0, 1, 0, 1), (1, 0, 1, 0, 1)),

((1, 0, 1, 0, 1), (0, 1, 1, 1, 1)), ((0, 1, 1, 0, 1), (1, 1, 0, 1, 0)),

((0, 0, 0, 1, 1), (1, 1, 1, 1, 0)), ((1, 0, 0, 1, 1), (1, 1, 0, 0, 1)),

((0, 1, 0, 1, 1), (0, 0, 1, 1, 1)), ((0, 0, 1, 1, 1), (0, 0, 0, 0, 0))
}
.

Consequently, we get

Θ(G) ≥
√
α(G⊠ G) =

√
20 > 4 = ϑ′(G).
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Summary and Takeaways

Shannon capacity Θ(G) is notoriously difficult to compute.

Lovász’s ϑ(G) provides a polynomial-time computable upper bound:

Θ(G) ≤ ϑ(G).

Schrijver’s variant ϑ′(G) gives a polynomial-time upper bound on the
independence number of a graph, but does not upper bound Θ(G).

This resolves a 1978 query.

Concrete example: Gilbert graph on 32 vertices, where Θ(G) > ϑ′(G).
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