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Strong Product of Graphs

Let G and H be two graphs. The strong product G X H is a graph with
@ vertex set: V(GXH) = V(G) x V(H),

@ two distinct vertices (g, h) and (¢',h’) in GX H are adjacent if one of
the following three conditions holds:

@ g=g¢ and {h,h'} € E(H),

@ {9.9'} €E(G)and h =1,

@ {9,¢'} € E(G) and {h,h'} € E(H).
Strong products are commutative and associative.
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Strong Product of Graphs

Let G and H be two graphs. The strong product G X H is a graph with
o vertex set: V(GX H) = V(G) x V(H),

e two distinct vertices (g, h) and (¢, 1) in GXI H are adjacent if one of
the following three conditions holds:

@ g=¢ and {h,h'} € E(H),
@ {g9,¢/} €E(G) and h =1/,
@ {g9,9'} € E(G) and {h,h'} € E(H).

Strong products are commutative and associative.

Strong Powers of Graphs

Let

GF* 2 GX...RG, keN (1.1)

G appears k times

denote the k-fold strong power of a graph G.
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Shannon Capacity of a Graph (Cont.)

@ The Shannon capacity of a graph G is given by

O(G) = sup /o (GH*)

keN

= kli>no10 {/ a(GRF). (2.1)

where a(-) denotes the independence number of the graph.

U
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Shannon Capacity of a Graph (Cont.)

@ The Shannon capacity of a graph G is given by

O(G) = sup /o (GH*)

keN

= kli_)noloyk/a(ka). (2.1)

where a(-) denotes the independence number of the graph.
The last equality holds by Fekete's Lemma: the sequence {a/(G¥¥)}2 is
super-multiplicative, i.e.,

a(GRtk2)y > o (GRF1Y o (GHE2), (2.2)

.
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Shannon Capacity of a Graph (Cont.)

@ The Shannon capacity of a graph G is given by

O(G) = sup /o (GH*)

keN

= kli_)noloyk/a(ka). (2.1)

where a(-) denotes the independence number of the graph.
The last equality holds by Fekete's Lemma: the sequence {a/(G¥¥)}2 is
super-multiplicative, i.e.,

a(GRtk2)y > o (GRF1Y o (GHE2), (2.2)

>

Alas, the Shannon capacity can be rarely computed exactly !
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Lovész ¥-function ¥(G)

@ A is the n x n adjacency matrix of G (n = |V(G)|);
@ J, is the all-ones n x n matrix;
@ S is the set of all n x n positive semidefinite matrices.

Semidefinite program (SDP), with strong duality, for computing 9(G):

maximize Trace(BJ,,)
subject to

B e S}, Trace(B) =1,
Ai,j =1 = Bi,j =0, 1,7€ [n]

Computational complexity: 3 algorithm (based on the ellipsoid method)
that numerically computes 9(G), for every graph G, with precision of r
decimal digits, and polynomial-time in n and r.
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Lovasz Bound on the Shannon Capacity of Graphs (1979)

Theorem 2.1

For every finite, simple and undirected graph G,

0(G) < 9(G). (2.3)
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Schrijver's 9¥-function ¥'(G)

@ A is the n x n adjacency matrix of G (n = |V(G)|);
@ J, is the all-ones n x n matrix;
@ S is the set of all n x n positive semidefinite matrices.

Semidefinite program (SDP), with strong duality, for computing ¥'(G):

maximize Trace(BJ,)
subject to

B € S?, Trace(B) =1,
Bi,j > 07 Za] € [n]7
Aij=1= Bj; =0, 4j€ln]

Computational complexity: 3 algorithm (based on the ellipsoid method)
that numerically computes 9'(G), for every graph G, with precision of r
decimal digits, and polynomial-time in n and r.
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For every graph G,

a(G) < ¥(G) < 9(G). (2.4)
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Can the upper bound on the Shannon capacity,
0(G) <9(G)

be improved to

0(G) < V/(G)?
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Can the upper bound on the Shannon capacity,
O(G) < ¥(G)

be improved to

0(G) < V/(G)?

Our work resolves this query regarding the variant of the 9J-function by
Schrijver (1978). The answer is negative.

|. Sason, Technion, Israel August 25, 2025



Example 2.3 (I.S., '25)
Let G be the Gilbert graph on 32 vertices, where
V(G) = {01, EG)={uve{0,1}°: 1 <dn(uv) <2},

so, every two vertices are adjacent if and only if the Hamming distance of
their corresponding 5-tuples binary vectors is either 1 or 2.
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their corresponding 5-tuples binary vectors is either 1 or 2.
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Example 2.3 (I.S., '25)
Let G be the Gilbert graph on 32 vertices, where
V(G = {01, EG)={uwre{0.1}: 1 <duuv) <2},

so, every two vertices are adjacent if and only if the Hamming distance of
their corresponding 5-tuples binary vectors is either 1 or 2.

o G is 15-regular, vertex-transitive, edge-transitive, distance-regular.

@ The complement Gis 16-regular, vertex-transitive, but not
edge-transitive nor distance-regular.

@ «o(G) = 4. An example of such a maximal independent set of G:

{(1,0,0,1,0), (0,1,1,1,0), (0,0,0,0,1), (1,1,1,0,1)}.
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Example 2.3 (I.S., '25)
Let G be the Gilbert graph on 32 vertices, where
V(G = {01, EG)={wre{0.1}: 1 <duuv) <2},

so, every two vertices are adjacent if and only if the Hamming distance of
their corresponding 5-tuples binary vectors is either 1 or 2.

o G is 15-regular, vertex-transitive, edge-transitive, distance-regular.

@ The complement Gis 16-regular, vertex-transitive, but not
edge-transitive nor distance-regular.

@ «o(G) = 4. An example of such a maximal independent set of G:
{(1,0,0,1,0), (0,1,1,1,0), (0,0,0,0,1), (1,1,1,0,1)}.

@ Solving the SDP problem for ¢'(G) gives

9(G) = 4 = a(G).

|. Sason, Technion, Israel August 25, 2025 9/12



Example 2.3 (cont. - I.S., '25)
@ G is 15-regular and edge-transitive on 32 vertices, with
Amin(G) = —3, so

nAmin(G) — 323 _ 5l
d(G) _ Amin(G) 15+3 3

9(G) = —

August 25, 2025
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Example 2.3 (cont. - I.S., '25)

@ G is 15-regular and edge-transitive on 32 vertices, with
Amin(G) = =3, so

_ NAmin(G) _ 323 _ (1
ﬂ(G) - d(G) _ Amln(G) — 15+3 T 53'

@ Hence, for this graph,
4 =a(G) =9(G) <¥(G) = 5%,

so ¥/(G) coincides with the independence number of G, and it is
strictly smaller than ¥(G).
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Example 2.3 (cont. - I.S., '25)

@ G is 15-regular and edge-transitive on 32 vertices, with
Amin(G) = —3, so
NAmin (G) 32:3
¥(G) = — = =5
( ) d(G) _ Amln(G) 15+3

@ Hence, for this graph,
4 =a(G) =9(G) <¥(G) = 5%,

so ¥/(G) coincides with the independence number of G, and it is

strictly smaller than ¥(G).
@ It can be verified that
a(GXG) = 20,

and the strong product graph GX G has 368,640 such maximal

independent sets of size 20.

1
5o
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Example 2.3 (cont. - I.S., '25)

@ An example of a maximal independent set (of size 20) for G X G:
{((1,1,0,0,0),(1,1,1,1,1)), ((1,0,1,0,0),(1,1,0,0,0)),
((0,1,1,0,0), (0,0,1,1,0)), ((1,1,1,0,0),(0,0,0,0,1))
((1,0,0,1,0),(0,0,1,0,1)), ((0,1,0,1,0),(1,0,0,0,0))
((1,1,0,1,0), (0,1,0,1,0)), ((0,0,1,1,0),(0,1,0,1,1))
((1,0,1,1,0),(1,0,1,1,0)), ((0,1,1,1,0),(1,1,1,0,1)),
((1,0,0,0,1),(0,0,0,1,0)), ((0,1,0,0,1),(0,1,0,0,1)),
(( ), ( ), (( ) ( )
(( ) ( ), (( ) ( )
(( ) ( ), (( ) ( )
(( ) ( ), (( ) ( )

b )

) )
) 9

)

1,1,0,0,1),(1,0,1,0,0 0,0,1,0,1),(1,0,1,0,1
1,0,1,0,1),(0,1,1,1,1 0,1,1,0,1),(1,1,0,1,0
0,0,0,1,1),(1,1,1,1,0 1,0,0,1,1),(1,1,0,0,1
0,1,0,1,1),(0,0,1,1,1 0,0,1,1,1),(0,0,0,0,0))}.

) )

) 9
) )

)
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Example 2.3 (cont. - I.S., '25)

@ An example of a maximal independent set (of size 20) for G X G:

{((1,1,0,0,0), (

((0,1,1,0,0), (0,0,1,1,0
((1,0,0,1,0), (0,0,1,0,1
((1,1,0,1,0),(0,1,0,1,0
((1,0,1,1,0),(1,0,1,1,0
((1,0,0,0,1), (

((1,1,0,0,1),(1,0,1,0,0
((1,0,1,0,1),(0,1,1,1,1
((0,0,0,1,1),(1,1,1,1,0
((0,1,0,1,1),(0,0,1,1,1

o Consequently, we get

1,1,1,1,1)), ((1,0,1,0,0),(1,1,0,0,0)),
), ((1,1,1,0,0),(0,0,0,0,1))
), ((0,1,0,1,0),(1,0,0,0,0))
), ((0,0,1,1,0),(0,1,0,1,1))
), ((0,1,1,1,0),(1,1,1,0,1))
0,0,0,1,0)), ((0,1,0,0,1),(0,1,0,0,1)),
) (( ) ( )
): (( ) ( )
) (( ) ( )
) (( ) ( )

) )

) )
) 9

)

0,0,1,0,1),(1,0,1,0,1
0,1,1,0,1),(1,1,0,1,0
1,0,0,1,1),(1,1,0,0,1

) )

) 9
) )

)

G) > /a(GXG) = v20 > 4 = ¥'(G).

0,0,1,1,1),(0,0,0,0,0))}.
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Summary and Takeaways

@ Shannon capacity ©(G) is notoriously difficult to compute.

@ Lovasz's J(G) provides a polynomial-time computable upper bound:
O(G) < ¥(G).

@ Schrijver's variant ¢'(G) gives a polynomial-time upper bound on the
independence number of a graph, but does not upper bound O(G).

@ This resolves a 1978 query.

@ Concrete example: Gilbert graph on 32 vertices, where O(G) > ¢'(G).

Journal Paper
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