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Abstract

Error-correcting codes which employ iterative decoding algorithms are now consid-

ered state of the art in the field of low-complexity coding techniques. The graph-

ical representation of these codes is used to describe their algebraic structure, and

also enables a unified description of their iterative decoding algorithms over various

channels. These codes closely approach the capacity limit of many standard com-

munication channels under iterative decoding. By now, there is a large collection

of families of iteratively decoded codes including low-density parity-check (LDPC),

low-density generator-matrix (LDGM), turbo, repeat-accumulate and their variants,

zigzag, and product codes; all of them, demonstrate a rather small gap (in rate) to

capacity with feasible complexity. The outstanding performance of these codes mo-

tivates an information-theoretic study of the tradeoff between their performance and

complexity, as well as a study of the ultimate limitations of finite-length codes.

We begin our study of the performance versus complexity tradeoff by deriving

bounds on the achievable rates and the graphical complexity of binary linear block

codes under ML decoding. These bounds are derived under the assumption that the

transmission takes place over memoryless binary-input output-symmetric (MBIOS)

channels. The bounds are particularized to LDPC codes, and apply to the tradeoff be-

tween achievable rates and decoding complexity per iteration under message-passing

decoding. Further, we generalize these bounds for the case where the codes are trans-

mitted over a set of independent parallel MBIOS channels. The latter results are

applied to ensembles of punctured LDPC codes.

Secondly, we consider the number of iterations required for successful iterative

message-passing decoding of graph-based codes. The communication (this time) is

assumed to take place over the binary erasure channel, and the analysis refers to the

asymptotic case where the block length tends to infinity. We derive rigorous lower

bounds on the number of decoding iterations required to achieve a given bit erasure

probability under standard iterative message-passing decoding. These bounds are ex-

pressed in terms of the desired bit erasure probability and the gap between the design

rate of the ensemble and the channel capacity. Ensembles of LDPC codes and the

1



ABSTRACT 2

more recently introduced families of systematic and non-systematic irregular repeat-

accumulate and systematic accumulate-repeat-accumulate codes are considered. For

all these code families, we show that the number of iterations scales at least like the

inverse of the multiplicative gap to capacity; this matches a previous conjecture and

experimental results.

Finally, we consider sphere-packing lower bounds on the decoding error probability

of optimal block codes. We focus on modifications to the 1967 sphere-packing (SP67)

bounding technique to make it more attractive for codes of finite block lengths. We

derive a new sphere-packing bound (called the ISP bound) targeted at finite-length

block codes transmitted over symmetric memoryless channels. This part of the work

facilitates the assessment of the fundamental limitations of finite-length block codes,

and is therefore very applicative for the evaluation of practical coded communication

systems.



Notation

• x – Scalar.

• x – Row vector.

• X – Matrix.

• X – Set.

• xi – The i’th element of the vector x.

• | · | – Absolute value.

• || · || – Standard Euclidian norm.

• ·T – Tranpose.

• E(X) – Expectation of X.

• H(X) – Entropy of X in bits.

• H(X|Y ) – Conditional entropy of X given Y , in bits.

• h2(·) – Binary entropy function in base 2.

• f ′(x) – the first derivative of the function f with respect to x.

• f ′′(x) – the second derivative of the function f with respect to x.

• f(ε) = O
(
g(ε)

)
– there exist positive constants c and δ, such that 0 ≤ f(ε) ≤

cg(ε) for all 0 ≤ ε ≤ δ.

• f(ε) = Ω
(
g(ε)

)
– there exist positive constants c and δ, such that 0 ≤ cg(ε) ≤

f(ε) for all 0 ≤ ε ≤ δ.

• f(ε) = Θ
(
g(ε)

)
– there exist positive constants c1, c2 and δ, such that 0 ≤

c1g(ε) ≤ f(ε) ≤ c2g(ε) for all 0 ≤ ε ≤ δ.
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Chapter 1

Introduction

The mathematical foundations of information theory were laid by Shannon in 1948

[88]. One of the most surprising results introduced in this groundbreaking work is

that information can be communicated with arbitrarily small distortion at positive

rates, the highest of which is known as the channel capacity. Shannon’s solution to the

communication problem relies on using random block codes. The random nature of

these codes implies that memory requirements of the encoder, as well as the memory

and time requirements of the decoder, grow exponentially with the block length.

Therefore, while the random codes serve as a fundamental tool in an innovative

existence proof, they are of little practical use. This elementary result in information

theory led to the birth of coding theory whose aim is to design practical coding and

decoding schemes which approach the fundamental limitations set by Shannon. We

refer the reader to a recent survey paper by Costello and Forney [20] which traces the

evolution of efficient coding schemes since the landmark paper of Shannon. In the

following, we briefly describe families of error-correcting codes which are addressed

in this dissertation.

1.1 Linear Block Codes

Much of the effort of coding theorists focuses on linear block codes. These codes

facilitate a substantial reduction in the space requirement, while still maintaining

the potential of achieving reliable communications at rates arbitrarily close to the

Shannon capacity limit (see [32, Section 6.2], [110, Section 3.10]). Linear block codes

can be represented by a generator matrix whose rows form basis vectors of the code

space. Alternatively, the code may be represented by a parity-check matrix whose

rows form a basis of the vector space which is orthogonal to the code. Both of these

approaches reduce the memory requirements for storing the code to the order of the

6
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squared block length. The algebraic structure of linear block codes also enables the

application of certain shortcuts in the decoding process, making it more computa-

tionally feasible. Notable early examples of linear block codes include the well-known

codes of Hamming and Golay. Another prominent family of linear block codes are

the Reed-Solomon (RS) codes and the related Bose-Chaudhuri-Hocquenghem (BCH),

generalized RS, and alternant codes. Together with their elegant decoding algorithms,

these codes are used in a wide range of common applications. Further details on al-

gebraic coding schemes can be found in [48, 75] and references therein.

A common approach to the design of linear block codes focuses on enlarging the

minimal distance of the codes, i.e., the Hamming distance between the two clos-

est codewords. Researchers following this approach employ sophisticated algebraic

tools to construct codes with large minimum distances, whose structure enables to

increase the maximal number of channel errors which can be corrected with certainty.

However, codes constructed using this approach fail to achieve capacity-approaching

performance on many important communication channel models. Nevertheless, it

should be noted that recently new algorithms which allow list decoding of such alge-

braic codes (see e.g., [75, Chapter 9], [33]) demonstrate a remarkable improvement in

the performance of these codes over a variety of communication channels.

1.2 Gallager’s LDPC Codes

Low-density parity-check (LDPC) codes form a subclass of linear block codes. In gen-

eral, LDPC codes are linear block codes which can be represented by sparse parity-

check matrices. These codes, along with the concept of their efficient decoding algo-

rithms, were introduced by Gallager in his 1961 Ph.D. dissertation [30]. In Gallager’s

construction, the number of non-zero entries in every row of the parity-check matrix is

fixed and the same property holds for the columns of this matrix. An (n, j, k) LDPC

code is defined as a binary linear block code of length n, which is represented by

parity-check matrix containing exactly j ones in each column and k ones in each row.

Gallager provided the following procedure to construct these codes: First, divide the

columns of the parity-check matrix H into j equal-size sections, creating j submatri-

ces. Each of these submatrices will contain a single ‘1′ entry in each column. The

first submatrix is constructed so that the i’th row contains 1’s in columns (i−1)k +1

to ik, creating a sort of ‘staircase’. All the other submatrices are created by column

permutations of the first submatrix. Note that in this construction, the number of

ones in each row, k, must divide the block length n. Since each of the j submatrices

is composed of exactly n/k rows, the rate of the code satisfies R ≥ 1− j/k. Gallager
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defined the ensemble of (n, j, k) LDPC codes as the set of all codes constructed as

above, using all possible column permutations.

Consider a linear block code and refer to each code symbol as a variable. A code-

word of the linear code corresponds to an assignment of values to the code variables

which satisfies a set of linear constraints defined by the rows of the parity-check ma-

trix. ML decoding of a linear block code therefore amounts to finding the most likely

assignment based on the channel input which satisfies these constraints. Note that

for the binary codes considered by Gallager, these linear constraints amount to parity

constraints on different subsets of the code bits.

One of the main novelties of [30] is the concept of applying efficient iterative decod-

ing algorithms whose complexity scales linearly with the block length. The principle

behind these algorithms is to treat each parity constraint and each variable localy.

In the first part of each iteration of the algorithm, each code variable would exploit

its corresponding channel input, as well as the information it received from the par-

ity constraints it is involved in, to produce a probability assignment for its possible

values. In the second part of the iteration, each constraint utilizes the probability

assignments received from its participating variables to produce its own estimate of

the probabilities for the possible values of each participating variable. In order to ab-

stain from ‘self persuasion’, the variables do not take into account the message from

a parity constraint when producing the message to the same constraint in the next it-

eration. Similarly, a message from a constraint to each participating variable is based

only on information provided by the other variables involved in this constraint. The

solution provided by the above local algorithm is clearly suboptimal. However, due

to the sparseness of the parity-check matrices, the algorithms yield high performance

while maintaining low complexity. Gallager suggested several iterative decoding al-

gorithms based on the above approach which differ in the way that messages from

variables to constraints and vice versa are calculated. Two of these algorithms apply

to the binary symmetric channel (BSC) and a third applies to general memoryless

binary-input output-symmetric channels (MBIOS).

1.3 The Re-Discovery of Graph-Based Codes

For more than three decades, LDPC codes and their iterative decoding algorithms

were largely ignored by the coding theory community. One of the few notable excep-

tions is the work by Tanner [100] which introduces the notion of representing LDPC

codes using graphs. The iterative decoding algorithms could now be understood as

passing messages between variable nodes and check nodes over the edges of the graph.
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The revival of graph-based codes and their iterative decoding algorithms in the mid

1990’s is largely due to the phenomenal performance of turbo codes under practi-

cal iterative decoding algorithms [15]. This breakthrough triggered the re-discovery

and generalization of LDPC codes [54], and the subsequent introduction of various

other families of graph-based codes. By now, there is a large collection of families

of graph-based codes, including LDPC, turbo, low-density generator-matrix (LDGM)

[53], repeat-accumulate (RA) and their variants [24, 40, 4], product [28], and many

other code families. All of them demonstrate excellent performance under practical

iterative decoding algorithms.

The developments in the construction of graph-based codes has also led to a

growing interest in the analytical study of the performance of efficient iterative de-

coding algorithms associated with these codes. When the graph representing the

code does not contain cycles, then the iterative algorithm of Gallager for MBIOS

channels [30] (known as the belief-propagation algorithm) is actually a bitwise max-

imum a-posteriori (MAP) decoding algorithm (See [74, Sections 2.5.1, 2.52]). A

similar message-passing algorithm with different message update rules was shown to

be an efficient blockwise MAP decoder for cycle-free codes [74, Section 2.5.5]. Un-

fortunately, it was also shown that cycle-free codes perform poorly even under MAP

decoding [103]. A prominent development in the understanding of the performance

of graph-based codes under iterative decoding algorithms was provided in [73], with

the introduction of the density-evolution (DE) technique. The core concept behind

this technique is to treat the messages passed along the edges of the graph during

the iterative decoding process as random variables, and track the evolution of their

probability density functions through the iterative process. DE analyzes the aver-

age performance over an ensemble of codes which are transmitted over an arbitrary

MBIOS channel, and it applies to the asymptotic case where the block length tends

to infinity. The analysis hinges on the fact that with probability 1, as the block length

tends to infinity, the messages passed along different edges during any finite iteration

are statistically independent from each other. This is known as the tree assumption,

and it is the key factor which makes the analysis of the message densities feasible in

the asymptotic case where we let the block length of these codes tend to infinity. It

was also shown in [73] that the performance of individual codes concentrates around

the average ensemble performance as the block length tends to infinity.

For general MBIOS channels, DE involves an infinite-dimensional analysis. The

only exception to this is the BEC, where DE is simplified to a one-dimensional analy-

sis. The extrinsic information transfer (EXIT) charts, pioneered by Stephan ten Brink

[101, 102], form a powerful tool for an efficient design of codes defined on graphs by
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tracing the convergence behavior of their iterative decoders. EXIT charts provide a

good approximative engineering tool for tracing the convergence behavior of soft-input

soft-output iterative decoders; they suggest a simplified visualization of the conver-

gence of these decoding algorithms, based on a single parameter which represents the

exchange of extrinsic information between the constituent decoders. For the BEC,

the EXIT charts coincide with the DE analysis (see [74]). More recently, generalized

extrinsic information transfer (GEXIT) charts were introduced [59]. These tools sim-

plify the analysis of the iterative decoding process in the asymptotic case where the

block length tends to infinity to a one-dimensional problem. Using GEXIT charts,

links between belief propagation and MAP decoding have been exposed [60]. The

development of these techniques relies on notions originally developed in statistical

physics.

Due to the simplicity of the DE analysis for the BEC, proper design of codes de-

fined on graphs enables to asymptotically achieve the capacity of the BEC under it-

erative message-passing decoding. Capacity-achieving sequences of LDPC ensembles

were originally introduced by Shokrollahi [94] and Luby et al. [51], and a systematic

study of capacity-achieving sequences of LDPC ensembles was presented by Oswald

and Shokrollahi [63] for the BEC. Suitable constructions of capacity-achieving en-

sembles of variants of RA codes were devised in [40], [64], [65] and [80]. All these

works rely on the DE analysis of codes defined on graphs for the BEC, and provide

an asymptotic analysis which refers to the case where one lets the block length of

these code ensembles tend to infinity. Another innovative coding technique, intro-

duced by Shokrollahi [95], enables to achieve the capacity of the BEC with encoding

and decoding complexities which scale linearly with the block length, and it has

the additional pleasing property of achieving the capacity without the knowledge of

the erasure probability of the channel. EXIT charts and Gaussian approximation

of the message densities [18] have facilitated the design of graph-based codes which

perform extremely well on a variety of common communication channels (See e.g.,

[5, 19, 23, 25, 26, 27, 37, 91] and references therein). The success of these codes has

led to an increasing use of graph-based codes in a wide range of common applications

[2, 3, 14].

The performance analysis of finite-length LDPC code ensembles whose transmis-

sion takes place over the BEC was introduced by Di et al. [22]. This analysis con-

siders sub-optimal iterative message-passing decoding as well as optimal maximum-

likelihood decoding. In [6], an efficient approach to the design of LDPC codes of

finite length was introduced by Amraoui et al.; this approach is specialized for the
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BEC, and it enables to design such code ensembles which perform well under itera-

tive decoding with a practical constraint on the block length. In [72], Richardson and

Urbanke initiated the analysis of the distribution of the number of iterations needed

for the decoding of LDPC ensembles of finite block length which are communicated

over the BEC. For general MBIOS channels, rigorous finite-length analysis of the

performance of graph-based codes under iterative decoding algorithms is still in its

infancy. A comprehensive reference on the construction and analysis of graph-based

codes is given in [74].

1.4 Motivation and Related Work

In this work, we investigate the information-theoretic limitations on the performance

versus complexity tradeoff of graph-based codes. The research is highly motivated by

the outstanding performance of these codes over a variety of communication channels,

while still preserving practical encoding and decoding complexity. The exceptional

performance of graph-based codes with short to moderate block lengths also motivates

a theoretical study of the performance limitations of finite-length block codes. The

research is driven by the following core questions:

1. How good can LDPC codes be, even under optimal decoding?

2. What are the fundamental limitations on the complexity of iterative decoding

algorithms, as a function of the gap between the code rate and the channel

capacity?

3. What are the fundamental limitations on the performance of finite-length block

codes?

We follow an innovative approach for characterizing the complexity of iterative

decoders suggested by Khandekar and McEliece (see [42, 43, 56]). Their questions

and conjectures were related to the tradeoff between the asymptotically achievable

rates and the complexity under iterative message-passing decoding; they initiated

a study of the encoding and decoding complexity of graph-based codes in terms of

the achievable gap (in rate) to capacity. They conjectured that for a large class of

channels, if the design rate of a suitably designed ensemble forms a fraction 1 − ε of

the channel capacity, then the decoding complexity scales like 1
ε
ln 1

ε
. The logarithmic

term in this expression was attributed to the decoding complexity per iteration, and

the number of iterations was conjectured to scale like 1
ε
. There is one exception:

For the BEC, the complexity under the iterative message-passing decoding algorithm
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behaves like ln 1
ε

(see [51], [80], [81] and [94]). This is true since the absolute reliability

provided by the BEC allows every edge in the graph to be used only once during

the iterative decoding. Hence, for the BEC, the number of iterations performed by

the decoder serves mainly to measure the delay in the decoding process, while the

decoding complexity is closely related to the complexity of the Tanner graph which

is chosen to represent the code.

In his thesis [30], Gallager proved that right-regular LDPC codes (i.e., LDPC

codes with a constant degree (aR) of the parity-check nodes) cannot achieve the

channel capacity on a BSC, even under ML decoding. This inherent gap to capacity

is well approximated by an expression which decreases to zero exponentially fast in

aR. Richardson et al. [71] have extended this result, and proved that the same

conclusion holds if aR designates the maximal right degree of an irregular ensemble.

Sason and Urbanke later observed in [81] that the result still holds when considering

the average right degree. Gallager’s bound [30, Theorem 3.3] provides an upper bound

on the rate of right-regular LDPC codes which achieve reliable communications over

the BSC. Burshtein et al. have generalized Gallager’s bound for general ensembles of

LDPC codes transmitted over general MBIOS channels [17]; to this end, they relied

on a two-level quantization to the log-likelihood ratio (LLR) of these channels which

essentially equates the available channel information to that of a physically degraded

BSC.

Consider the number of ones in a parity-check matrix which represents a binary

linear block code, and normalize it per information bit (i.e., with respect to the dimen-

sion of the code). This quantity (which is defined as the density of the parity-check

matrix) is equal to the normalized number of left to right (or right to left) messages

per information bit which are passed in the corresponding bipartite graph during a

single iteration of the message-passing decoder. In [81], Sason and Urbanke consid-

ered the sparseness of parity-check matrices of binary linear block codes as a function

of their gap to capacity (where, in general, this gap depends on the channel and on

the decoding algorithm). An information-theoretic lower bound on the asymptotic

density of parity-check matrices was derived in [81, Theorem 2.1] where this bound

applies to every MBIOS channel and every sequence of binary linear block codes

achieving a fraction 1 − ε of the channel capacity with vanishing bit error probabil-

ity. It holds for an arbitrary representation of these codes by full-rank parity-check

matrices, and is of the form
K1+K2 ln 1

ε

1−ε
where K1 and K2 are constants which only

depend on the channel. Though the logarithmic behavior of this lower bound is in

essence correct (due to a logarithmic behavior of the upper bound on the asymptotic

parity-check density in [81, Theorem 2.2]), the lower bound in [81, Theorem 2.1] is
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not tight (with the exception of the BEC, as demonstrated in [81, Theorem 2.3], and

possibly also the BSC).

In numerous modern applications (see e.g. [2, 3]) the code rate may vary according

to the level of noise currently present in the communication channel. The standard

technique to achieve these varying transmission rates relies on using one base code and

puncturing the encoder output according to a puncturing pattern associated with the

desired rate. The main advantage of this method is that the same encoder and decoder

are used, regardless of the communication rate. The performance of punctured LDPC

codes under ML decoding was studied in [39] via analyzing the asymptotic growth

rate of their average weight distributions and using upper bounds on the decoding

error probability under ML decoding. Based on this analysis, it was proved that for

any MBIOS channel, capacity-achieving codes of any desired rate can be constructed

by puncturing the code bits of ensembles of LDPC codes whose design rate (before

puncturing) is sufficiently low. The performance of punctured LDPC codes over the

AWGN channel was studied in [35] under iterative message-passing decoding. Ha and

McLaughlin studied in [35] two methods for puncturing LDPC codes where the first

method assumes random puncturing of the code bits at a fixed rate, and the second

method assumes possibly different puncturing rates for each subset of code bits which

corresponds to variable nodes of a fixed degree. For the second approach, called

‘intentional puncturing’, the degree distributions of the puncturing patterns were

optimized in [34, 35] where it was aimed to minimize the threshold under iterative

decoding for a given design rate via the Gaussian approximation. Exact values of

these optimized puncturing patterns were also calculated by the DE analysis, and

they show good agreement with results obtained by the Gaussian approximation. The

results in [34, 35] exemplify the usefulness of punctured LDPC codes for a relatively

wide range of rates, and therefore, they are suitable for rate-compatible coding.

The bounds in [80, 81] and Chapters 2 and 3 of this dissertation show that the

graphical complexity of capacity-approaching ensembles of un-punctured LDPC and

systematic irregular repeat-accumulate (IRA) codes tends to infinity as the gap to

capacity vanishes. We note that this result is mainly due to the relatively simple

graphical structure of these codes. An additional degree of freedom which is obtained

by introducing state nodes in the graph (e.g., punctured bits) was exploited in [64]

and [65] to construct capacity-achieving ensembles of graph-based codes for the BEC

which achieve an improved tradeoff between complexity and achievable rates. Surpris-

ingly, these capacity-achieving ensembles under iterative decoding were demonstrated

to maintain a bounded complexity per information bit regardless of the erasure prob-

ability of the BEC. A similar result of bounded complexity for capacity-achieving
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ensembles over the BEC was also obtained in [38].

Sphere-packing bounds are lower bounds on the decoding error probability of opti-

mal block codes. These bounds are expressed in terms of the block length, code rate,

and communication channel. The 1959 sphere-packing (SP59) bound of Shannon [89]

serves for the evaluation of the performance limits of block codes whose transmission

takes place over an AWGN channel. This bound does not take into account the mod-

ulation used, but only assumes that the signals are of equal energy. It is often used

as a reference for quantifying the sub-optimality of error-correcting codes under some

practical decoding algorithms. The 1967 sphere-packing (SP67) bound, derived by

Shannon, Gallager and Berlekamp [87], applies to optimal block codes transmitted

over arbitrary discrete memoryless channels. Like the random coding bound of Gal-

lager [31], the SP67 bound decays to zero exponentially with the block length for all

rates below the channel capacity. Further, the error exponent of the SP67 bound is

tight at the portion of the rate region between the critical rate (Rc) and the channel

capacity; for all rates in this range, the error exponents of the SP67 and the random

coding bounds coincide (see [87, Part 1]). In spite of its exponential behavior, the

SP67 bound appears to be loose for codes of small to moderate block lengths. This

weakness is due to the original focus in [87] on asymptotic analysis. In [109], Valem-

bois and Fossorier revisit the derivation of the SP67 bound in order to improve its

tightness for finite-length block codes (especially, for codes of short to moderate block

lengths). As a side-effect of this improvement, the validity of the bound in [109] is

extended to memoryless continuous-output channels (e.g., the binary-input AWGN

channel). The remarkable improvement of their bound over the classical SP67 bound

was exemplified in [109]; moreover, it provides an interesting alternative to the SP59

bound which is particularized for the AWGN channel [89].

1.5 This Dissertation

In Chapter 2, we introduce upper bounds on the achievable rates of binary linear block

codes under ML decoding. We also derive lower bounds on the asymptotic density of

an arbitrary presentation of their parity-check matrices as a function of the achievable

gap (in rate) to capacity. These bounds are derived under the assumption that the

transmission takes place over an MBIOS channel, and they refer to the case where the

block length of the codes tends to infinity. The derivation of the bounds is motivated

by the desire to improve previously reported bounds (see [17, Theorems 1 and 2]

and [81, Theorem 2.1]) whose derivation relies on a two-level quantization of the

LLR which therefore takes partial advantage of the available channel information.
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An analysis based on a two-level quantization of the LLR, which in essence relies on

information available from a physically degraded BSC in place of the actual MBIOS

channel, is first modified to an analysis based on information from a quantized chan-

nel which better reflects the statistics of the actual communication channel (though

the quantized information is still degraded w.r.t. the original information provided

by the channel). The number of quantization levels of the LLR for the new channel

used in the analysis is set to an arbitrary integer power of 2, and the calculation of

these bounds is subject to an optimization of these quantization levels, as to obtain

the tightest bounds within their form. The analysis is then modified to rely on the

conditional pdf of the LLR at the output of the original MBIOS channel, and utilizes

information available from an equivalent channel (without degrading the channel in-

formation). This second approach clearly leads to bounds which are uniformly tighter

than the bounds derived via analysis of quantized channel information, and are sur-

prisingly also easier to calculate. The significance of the bounds, using both quantized

and un-quantized information, stems from a comparison between these bounds; such

a comparison gives some insight on the effect of the number of quantization levels of

the LLR (even if they are optimally determined) on the achievable rates, as compared

to the ideal case where no quantization is performed. Chapter 2 is a reprint of the

journal paper [118] (some of these results were also published in the conference papers

[116, 84]).

In Chapter 3, we generalize the bounds introduced in Chapter 2 to the scenario

where the codes are transmitted over the set of statistically independent parallel

MBIOS channels. In this setup, each code bit is assigned to one specific communi-

cation channel. The transmission of punctured codes over a single channel can be

regarded as a special case of communication of the original code over a set of parallel

channels (which are defined by the puncturing rates applied to subsets of the code

bits). We therefore apply the bounds on the achievable rates and decoding complex-

ity of LDPC codes over parallel channels to the case of transmission of ensembles

of punctured LDPC codes over an MBIOS channel. We state puncturing theorems

related to achievable rates and decoding complexity of punctured LDPC codes. For

ensembles of punctured LDPC codes, the calculation of bounds on their thresholds

under ML decoding and their exact thresholds under iterative decoding (based on

DE analysis) is of interest in the sense that it enables one to distinguish between

the loss due to iterative decoding and the loss due to the structure of the ensem-

bles. This chapter concludes with a diagram which shows interconnections between

the theorems introduced in Chapters 2,3 and some other previously reported results

[17, 65, 69, 67, 81]. Chapter 3 is a reprint of the journal paper [85] (the results are



CHAPTER 1. INTRODUCTION 16

also presented in part in the conference papers [83, 84]).

In Chapter 4, the number of iterations which is required for successful message-

passing decoding of some important families of graph-based code ensembles (including

LDPC and variations of RA codes) is considered. We present lower bounds on the

number of decoding iterations for the case where the transmission of the code ensem-

bles takes place over a BEC. These bounds refer to the asymptotic case where we

let the block length tend to infinity. The bounds derived in this chapter are easily

evaluated and are expressed in terms of some basic parameters of the ensemble which

include the fraction of degree-2 variable nodes, the target bit erasure probability and

the gap between the channel capacity and the design rate of the ensemble. It is

demonstrated that the number of iterations which is required for successful message-

passing decoding scales at least like the inverse of the gap to capacity, provided that

the fraction of degree-2 variable nodes of the ensembles does not vanish (this condition

is shown to hold for capacity-achieving LDPC ensembles under mild requirements,

as shown in [76]). This asymptotic scaling of the lower bound on the number of

iterations holds for various families of turbo-like code ensembles. Note that this is in

contrast to the limitations on the graphical complexity, which scales differently for

these different code families (see [64, 65, 80, 81]). The behavior of the lower bounds

derived in Chapter 4 matches well with the experimental results and the conjectures

on the number of iterations and complexity, as provided by Khandekar and McEliece

(see [43, 42, 56]). The analysis in Chapter 4 relies on EXIT charts and on the area

theorem for the BEC [9]. The analysis of the number of iterations for variations of RA

codes also relies on the ‘graph reduction’ technique introduced in [64, Section II.C.2].

This chapter is a preprint of [86].

In Chapter 5 we focus on sphere-packing lower bounds on the decoding error

probability of optimal block codes. We derive an improved sphere-packing bound

(referred to as the ‘ISP bound’). This bound applies to block codes transmitted

over memoryless symmetric channels, and it significantly improves the tightness of

the bounding techniques in [87] and [109], especially for codes of short to moderate

block lengths (note, however, that the classical bound in [87] holds regardless of the

channel symmetry). The key factor behind this improvement is the application of the

channel symmetry to sidestep the intermediate stages of analyzing the maximal error

probability of fixed composition codes as in [87] and [109]. Hence, the derivation in

Chapter 5 directly considers the average error probability of arbitrary block codes.

The ISP bound is applied to the BEC and to M-ary phase shift keying (PSK) modu-

lated signals transmitted over the i.i.d. Rayleigh-fading and AWGN channels. For the

latter channel, its tightness is also compared with the SP59 bound. The numerical
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instability of existing algorithms for the numerical calculation of the SP59 for codes of

moderate to large block lengths motivates the derivation of an alternative algorithm

in Section 5.4 which facilitates the exact calculation of the this bound, irrespectively

of the block length. Chapter 5 is a preprint of the submitted paper [119] (parts of

these results were also published in the conference papers [82, 117]).



Chapter 2

Parity-Check Density versus

Performance of Binary Linear

Block Codes over Memoryless

Symmetric Channels: New Bounds

and Applications

This chapter is a reprint of

• G. Wiechman and I. Sason, “Parity-check density versus performance of binary

linear block codes over memoryless symmetric channels: New bounds and ap-

plications,” IEEE Trans. on Information Theory, vol. 53, no. 2 pp. 550-579,

February 2007.

Chapter Overview: The moderate complexity of low-density parity-check (LDPC)

codes under iterative decoding is attributed to the sparseness of their parity-check

matrices. It is therefore of interest to consider how sparse parity-check matrices of

binary linear block codes can be as a function of their achievable rates and their

gap to capacity. The remarkable performance of LDPC codes under practical and

sub-optimal decoding algorithms makes it also interesting to investigate the inherent

loss in performance which is attributed to the sub-optimality of iterative decoding,

as well as the limitation imposed by the structure of the code. This paper addresses

these two questions by introducing upper bounds on the achievable rates of binary

linear block codes under maximum-likelihood (ML) decoding, and lower bounds on

the asymptotic density of their parity-check matrices as a function of the achievable

gap (in rate) to capacity; these bounds assume that the transmission takes place over a

18
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memoryless binary-input output-symmetric channel. The new bounds improve some

previously reported results, and are applied to ensembles of LDPC codes. The upper

bounds on the achievable rates enable to assess the inherent gap in rate to capacity

due to the structure of the ensemble, where this gap cannot be reduced even under

ML decoding. The lower bounds on the asymptotic parity-check density are helpful

in assessing the tradeoff between the asymptotic performance of LDPC codes and

their decoding complexity (per iteration) under message-passing decoding.

2.1 Introduction

Error-correcting codes which employ iterative decoding algorithms are now considered

state of the art in the field of low-complexity coding techniques. In [43], Khandekar

and McEliece have suggested to study the encoding and decoding complexities of

ensembles of iteratively decoded codes on graphs as a function of the gap between

their achievable rates and capacity. They conjectured that if the achievable rate under

iterative message-passing decoding is a fraction 1 − ε of the channel capacity, then

for a wide class of channels, the encoding complexity scales like ln 1
ε

and the decoding

complexity scales like 1
ε
ln 1

ε
. The only exception is the binary erasure channel (BEC)

where the decoding complexity behaves like ln 1
ε

(same as encoding complexity) due to

the absolute reliability of the messages passed through the edges of the graph (hence,

every edge can be used only once during the iterative decoding).

Low-density parity-check (LDPC) codes are efficiently decoded due to the sparse-

ness of their parity-check matrices. In his thesis [30], Gallager proved that right-

regular LDPC codes (i.e., LDPC codes with a constant degree (aR) of the parity-check

nodes) cannot achieve the channel capacity on a binary symmetric channel (BSC),

even under maximum-likelihood (ML) decoding. This inherent gap to capacity is

well approximated by an expression which decreases to zero exponentially fast in aR.

Richardson et al. [71] have extended this result, and proved that the same conclusion

holds if aR designates the maximal right degree. Sason and Urbanke later observed in

[81] that the result still holds when considering the average right degree. Gallager’s

bound [30, Theorem 3.3] provides an upper bound on the rate of right-regular LDPC

codes which achieve reliable communications over the BSC. Burshtein et al. have

generalized Gallager’s bound for general ensembles of LDPC codes transmitted over

memoryless binary-input output-symmetric (MBIOS) channels [17]; to this end, they

applied a two-level quantization to the log-likelihood ratio (LLR) of these channels

which essentially turns them into a BSC.

Consider the number of ones in a parity-check matrix which represents a binary
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linear block code, and normalize it per information bit (i.e., with respect to the

dimension of the code). This quantity (which will be later defined as the density of

the parity-check matrix) is equal to the normalized number of left to right (or right

to left) messages per information bit which are passed in the corresponding bipartite

graph during a single iteration of the message-passing decoder. In [81], Sason and

Urbanke considered how sparse parity-check matrices of binary linear block codes

can be, as a function of their gap to capacity (where this gap depends in general on

the channel and on the decoding algorithm). An information-theoretic lower bound

on the asymptotic density of parity-check matrices was derived in [81, Theorem 2.1]

where this bound applies to every MBIOS channel and every sequence of binary linear

block codes achieving a fraction 1−ε of the channel capacity with vanishing bit error

probability. It holds for an arbitrary representation of these codes by full-rank parity-

check matrices, and is of the form
K1+K2 ln 1

ε

1−ε
where K1 and K2 are constants which only

depend on the channel. Though the logarithmic behavior of this lower bound is in

essence correct (due to a logarithmic behavior of the upper bound on the asymptotic

parity-check density in [81, Theorem 2.2]), the lower bound in [81, Theorem 2.1] is

not tight (with the exception of the BEC, as demonstrated in [81, Theorem 2.3], and

possibly also the BSC). The derivation of the bounds in this paper was motivated

by the desire to improve the results in [17, Theorems 1 and 2] and [81, Theorem 2.1]

which are based on a two-level quantization of the LLR. The new bounding techniques

introduced in this paper provide new upper bounds on the achievable rates of LDPC

codes over MBIOS channels, and new lower bounds on their asymptotic parity-check

density.

In [60], Measson et al. derived an upper bound on the thresholds under ML

decoding of LDPC ensembles transmitted over the BEC. Their general approach

relies on extrinsic information transfer (EXIT) charts, having a surprising and deep

connection with the maximum a posteriori (MAP) threshold due to the area theorem

for the BEC. Generalized extrinsic information transfer (GEXIT) charts were recently

introduced by Measson et al. [58]; GEXIT charts form a generalization of the concept

of EXIT charts, and they satisfy the area theorem for an arbitrary MBIOS channel

(see [74, Section 3.4.10]). This conservation law enables one to get upper bounds

on the thresholds of turbo-like ensembles under bit-MAP decoding. The bound was

shown to be tight for the BEC [60], and is conjectured to be tight in general for

MBIOS channels [58].

A new method for analyzing LDPC codes and low-density generator-matrix (LDGM)

codes under bit-MAP decoding is introduced by Montanari in [62]. The method is

based on a rigorous approach to spin glasses, and allows a construction of lower bounds
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on the entropy of the transmitted message conditioned on the received one. The cal-

culation of this bound is rather complicated, and its complexity grows exponentially

with the maximal right and left degrees (see [62, Eqs. (6.2) and (6.3)]); this imposes a

considerable difficulty in its calculation (especially, for continuous-output channels).

Since the bounds in [60, 62] are derived for ensembles of codes, they are probabilistic

in their nature; based on concentration arguments, they hold asymptotically in prob-

ability 1 as the block length goes to infinity. Based on heuristic statistical mechanics

calculations, it was conjectured that the bounds in [62], which hold for general LDPC

and LDGM ensembles over MBIOS channels, are tight.

We derive in this paper new bounds on the achievable rates and the asymp-

totic parity-check density of sequences of binary linear block codes. These bounds,

which are efficiently calculated in software, apply to arbitrary sequences of codes

whose transmission takes place over an MBIOS channel. It is emphasized that the

information-theoretic bounds in [17, 81] and this paper are valid for every sequence

of binary linear block codes, in contrast to high probability results. As examples for

the latter category of probabilistic bounds which apply to ensembles, the reader is

referred to the recent bounds of Montanari [62] under MAP decoding, the bound of

Measson et al. for the BEC under MAP decoding [60], and the previously derived

bound of Shokrollahi, relying on density evolution analysis for the BEC [93]. Shokrol-

lahi proved in [93] that when the codes are communicated over a BEC, the growth

rate of the average right degree (i.e., the average degree of the parity-check nodes

in a bipartite Tanner graph) is at least logarithmic in terms of the gap to capacity.

The statement in [93] is a high probability result which assumes a sub-optimal (itera-

tive) decoding algorithm, whereas the statements in [17, 81] and this paper are valid

even under ML decoding. As mentioned above, the bounds in [60, 62] refer to MAP

decoding, but they form high probability results as the block length gets large.

The significance of the bounds in this paper is demonstrated in two respects. The

new upper bounds on the achievable rates of binary linear block codes tighten pre-

viously reported bounds by Burshtein et al. [17]; therefore, they enable to obtain

tighter upper bounds on the thresholds of sequences of binary linear block codes un-

der ML decoding. These bounds are applied to LDPC codes, and the improvement

in their tightness is exemplified numerically. Comparing the new upper bounds on

the achievable rates with thresholds provided by a density-evolution analysis gives

rigorous bounds on the inherent loss in performance due to the sub-optimality of

message-passing decoding (as compared to soft-decision ML decoding), and also en-

ables to assess the limitation imposed by the structure of the codes (or ensembles).

The new lower bounds on the asymptotic parity-check density tighten the lower bound
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in [81, Theorem 2.1]. Since the parity-check density can be interpreted as the com-

plexity per iteration under message-passing decoding, then tightening the reported

lower bound on the parity-check density [81] gives insight on the tradeoff between the

asymptotic performance and decoding complexity of LDPC codes.

In this paper, preliminary material is presented in Section 2.2, and the theorems

are introduced and proved in Sections 2.3 and 2.4. The derivation of the bounds

in Section 2.3 was motivated by the desire to generalize the results in [17, Theo-

rems 1 and 2] and [81, Theorem 2.1]. A two-level quantization of the LLR, in essence

replacing the arbitrary MBIOS channel by a physically degraded BSC, is modified in

Section 2.3 to a quantized channel which better reflects the statistics of the original

channel (though the quantized channel is still physically degraded w.r.t. the original

channel). The number of quantization levels of the LLR for the new channel is an

arbitrary integer power of 2, and the calculation of these bounds is subject to an

optimization of the quantization levels, as to obtain the tightest bounds within their

form. In Section 2.4, the analysis relies on the conditional pdf of the LLR at the out-

put of an MBIOS channel, and operates on an equivalent channel without quantizing

the LLR. This second approach leads in Section 2.4 to bounds which are uniformly

tighter than the bounds derived in Section 2.3 and are easier to calculate. The signifi-

cance of the quantized and un-quantized bounds in Sections 2.3 and 2.4, respectively,

stems from a comparison between these bounds which gives insight on the effect of

the number of quantization levels of the LLR (even if they are optimally determined)

on the achievable rates, as compared to the ideal case where no quantization is done.

Numerical results are exemplified in Section 2.5. Finally, in Section 2.6, we summa-

rize and present interesting issues which deserve further research. Four appendices

provide further technical details referring to the proofs in Sections 2.3 and 2.4.

We note that the statements in this paper refer to the case where the parity-check

matrices are full rank. Though it seems like a mild requirement for specific linear

codes, this poses a problem when considering ensembles of LDPC codes. In the latter

case, a parity-check matrix, referring to a randomly chosen bipartite graph with a

given pair of degree distributions, may not be full rank.1 Fortunately, as we later

explain in this paper (see Section 2.5), the statements still hold for ensembles when

we replace the code rate with the design rate.

1One can construct LDPC ensembles where the design rate is strictly less than the asymptotic
rate as the block length goes to infinity; this can be done by simply repeating a non-vanishing
fraction of the rows of a parity-check matrix, so that the design rate becomes strictly less than the
rate, regardless of the block length.
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2.2 Preliminaries

We introduce here some definitions and theorems from [17, 81] which serve as prelim-

inary material for the rest of the paper. Definitions 2.1 and 2.2 are taken from [81,

Section 2].

Definition 2.1 [Capacity-Approaching Codes] Let {Cm} be a sequence of codes,

and denote the rate of the code Cm by Rm. Assume that for every m, the codewords

of the code Cm are transmitted with equal probability over a channel whose capacity

is C. This sequence is said to achieve a fraction 1 − ε of the channel capacity with

vanishing bit error probability if limm→∞ Rm = (1 − ε)C, and there exists a decoding

algorithm under which the average bit error probability of the code Cm tends to zero

in the limit where m → ∞.

Definition 2.2 [Parity-Check Density] Let C be a binary linear code of rate R

and block length n, which is represented by a parity-check matrix H . We define

the density of H , call it ∆ = ∆(H), as the normalized number of ones in H per

information bit. The total number of ones in H is therefore equal to nR∆.

Definition 2.3 [Log-Likelihood Ratio (LLR)] Let us consider an MBIOS channel

whose conditional pdf is pY |X where X and Y designate the channel input and output,

respectively. The log-likelihood ratio (LLR) at the output of the channel is

LLR(y) , ln

(
pY |X(y|0)

pY |X(y|1)

)
.

Throughout the paper, we assume that all the codewords of a binary linear block

code are equally likely to be transmitted. Also, the function h2 designates the binary

entropy function to base 2, i.e., h2(x) = −x log2(x) − (1 − x) log2(1 − x).

Theorem 2.1 [An Upper Bound on the Achievable Rates for Reliable Com-

munication over MBIOS Channels] [17, Theorem 2]: Consider a sequence {Cm}
of binary linear block codes of rate Rm, and assume that their block length tends to

infinity as m → ∞. Let Hm be a full-rank parity-check matrix of the code Cm, and

assume that Γk,m designates the fraction of the parity-check equations involving k

variables. Let

Γk , lim
m→∞

Γk,m, R , lim
m→∞

Rm (2.1)

where these limits are assumed to exist. Suppose that the transmission of these codes

takes place over an MBIOS channel with capacity C bits per channel use, and let

w ,
1

2

∫ ∞

−∞
min

(
f(y), f(−y)

)
dy (2.2)
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where f(y) , pY |X(y|0) designates the conditional pdf of the output of the MBIOS

channel when zero is transmitted. Then, a necessary condition for vanishing block

error probability as m → ∞ is

R ≤ 1 − 1 − C
∑

k

{
Γk h2

(
1 − (1 − 2w)k

2

)} .

Theorem 2.2 [Lower Bounds on the Asymptotic Parity-Check Density with

Two-Level Quantization] [81, Theorem 2.1]: Let {Cm} be a sequence of binary lin-

ear block codes achieving a fraction 1− ε of the capacity of an MBIOS channel with

vanishing bit error probability. Denote ∆m as the density of a full-rank parity-check

matrix of the code Cm. Then, the asymptotic density satisfies

lim inf
m→∞

∆m >
K1 + K2 ln 1

ε

1 − ε
(2.3)

where

K1 =
(1 − C) ln

(
1

2 ln 2
1−C

C

)

2C ln
(

1
1−2w

) , K2 =
1 − C

2C ln
(

1
1−2w

) (2.4)

and w is defined in (2.2). For a BEC with erasure probability p, the coefficients K1

and K2 in (2.4) are improved to

K1 =
p ln

(
p

1−p

)

(1 − p) ln
(

1
1−p

) , K2 =
p

(1 − p) ln
(

1
1−p

) . (2.5)

The bounds in this paper are applied to low-density parity-check (LDPC) codes.

In general, LDPC codes are linear block codes which are represented by a sparse

parity-check matrix H . This matrix can be represented in an equivalent form by a

bipartite graph G whose variable nodes (appearing on the left of G) represent the code

bits, and whose parity-check nodes (appearing on the right of G) represent the linear

constraints defined by H . In such a bipartite graph, an edge connects a variable node

with a parity-check node if and only if the corresponding code bit is involved in the

parity-check equation; the degree of a node is defined as the number of edges which

are adjacent to it.

Following standard notation, let λi and ρi denote the fraction of edges attached to

variable and parity-check nodes of degree i, respectively. In a similar manner, let Λi

and Γi denote the fraction of variable and parity-check nodes of degree i, respectively.

The LDPC ensemble is characterized by a triple (n, λ, ρ) where n designates the block

length of the codes, and the polynomials

λ(x) ,

∞∑

i=1

λix
i−1, ρ(x) ,

∞∑

i=1

ρix
i−1



CHAPTER 2. PARITY-CHECK DENSITY: SINGLE CHANNEL 25

represent, respectively, the left and right degree distributions (d.d.) from the edge

perspective. Equivalently, this ensemble can be also characterized by the triple

LDPC(n, Λ, Γ) where the polynomials

Λ(x) ,

∞∑

i=1

Λix
i, Γ(x) ,

∞∑

i=1

Γix
i

represent, respectively, the left and right d.d. from the node perspective. We denote

by LDPC(n, λ, ρ) (or LDPC(n, Λ, Γ)) the ensemble of codes whose bipartite graphs

are constructed according to the corresponding pairs of degree distributions. One

can switch between degree distributions w.r.t. to the nodes and edges of a bipartite

graph, using the following equations [74]:

Λ(x) =

∫ x

0

λ(u)du

∫ 1

0

λ(u)du

, Γ(x) =

∫ x

0

ρ(u)du

∫ 1

0

ρ(u)du

(2.6)

λ(x) =
Λ′(x)

Λ′(1)
, ρ(x) =

Γ′(x)

Γ′(1)
. (2.7)

An important characteristic of an ensemble of LPDC codes is its design rate. For an

LDPC ensemble whose codes are represented by parity-check matrices of dimension

c × n, the design rate is defined to be Rd , 1 − c
n
. This serves as a lower bound

on the actual rate of any code from this ensemble, and is equal to the actual rate if

the parity-check matrix of a code is full rank (i.e., the linear constraints which define

this code are linearly independent). For an ensemble of LDPC codes, the design rate

is given in terms of the degree distributions (either w.r.t. the edges or nodes of a

graph), and it can be expressed in two equivalent forms:

Rd = 1 −

∫ 1

0

ρ(x)dx

∫ 1

0

λ(x)dx

= 1 − Λ′(1)

Γ′(1)
. (2.8)

A sufficient condition for the asymptotic convergence of the rate of codes from an

LDPC ensemble to its design rate was recently stated in [60, Lemma 7].

Lemma 2.1 [A sufficiency condition for the equality between the design

rate and asymptotic rate for ensembles of LDPC codes] [60, Lemma 7]: Let

C be a code which is chosen uniformly at random from the ensemble LDPC(n, Λ, Γ),

let R be the rate of C, and let Rd be the design rate of this ensemble. Consider the
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function

Ψ(Λ,Γ)(u) , −Λ′(1) log2

[
1 + uv

(1 + u)(1 + v)

]

+

∞∑

i=1

Λi log2

[
1 + ui

2(1 + u)i

]
+

Λ′(1)

Γ′(1)

∞∑

i=1

Γi log2

[
1 +

(
1 − v

1 + v

)i
]

where

v ,

( ∞∑

i=1

λi

1 + ui

)−1( ∞∑

i=1

λiu
i−1

1 + ui

)
.

Assume that the function Ψ(Λ,Γ) achieves its global maximum in the range u ∈ [0,∞)

at u = 1. Then, there exists a constant B > 0 such that, for any ξ > 0 and

n > n0(ξ, Λ, Γ),

Pr{|R − Rd| > ξ} ≤ e−Bnξ .

Moreover, there exists C > 0 such that, for n > n0(ξ, Λ, Γ)

E {|R − Rd|} ≤ C log n

n
.

In Section 2.5, we rely on this lemma in order to verify that the asymptotic rates of

codes randomly chosen (with uniform distribution) from various ensembles of LDPC

codes tend in probability 1 to the design rates of these ensembles.

2.3 Approach I: Bounds Based on Quantization of

the LLR

In this section, we introduce bounds on the achievable rates and the asymptotic

parity-check density of sequences of binary linear block codes. The bounds generalize

previously reported results in [17] and [81] which were based on a symmetric two-level

quantization of the LLR. This is achieved by extending the concept of quantization

to an arbitrary integer power of 2; to this end, the analysis relies on the Galois

field GF(2d) where d ∈ N. In Section 2.3.1, we demonstrate the results and their

proofs for a four-level quantization. In Section 2.3.2, we extend the results to a

symmetric quantization with a number of levels which is an arbitrary integer power

of 2. This order of presentation was chosen since many concepts which are helpful for

the generalization in Section 2.3.2 are written in a simplified notation for the four-

level quantization, along with all the relevant lemmas for the general case which are

already introduced in the derivation of the bound with four-level quantization. This

also shortens considerably the proof for the general quantization in Section 2.3.2.
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2.3.1 Bounds for Four-Levels of Quantization

As a preparatory step towards developing bounds on the parity-check density and

the rate of binary linear block codes, we present a lower bound on the conditional

entropy of a transmitted codeword given the received sequence at the output of an

arbitrary MBIOS channel.

Proposition 2.1 Let C be a binary linear block code of length n and rate R, and

assume that its transmission takes place over an MBIOS channel whose conditional

pdf is given by pY |X . Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) designate the

transmitted codeword and received sequence, respectively. For an arbitrary positive

l ∈ R
+, let us define the probabilities p0, p1, p2, p3 as follows:

p0 , Pr{LLR(Y ) > l |X = 0}

p1 , Pr{LLR(Y ) ∈ (0, l] |X = 0} +
1

2
Pr{LLR(Y ) = 0 |X = 0}

p2 , Pr{LLR(Y ) ∈ [−l, 0) |X = 0} +
1

2
Pr{LLR(Y ) = 0 |X = 0}

p3 , Pr{LLR(Y ) < −l |X = 0}. (2.9)

For an arbitrary full-rank parity-check matrix of the code C, let Γk designate the

fraction of parity-check equations involving k variables. Then, the conditional entropy

of the transmitted codeword given the received sequence satisfies

H(X|Y)

n
≥ 1 − C − (1 − R) ·

·
∑

k

{
Γk

k∑

t=0

(
k

t

)
(p1 + p2)

t(p0 + p3)
k−t

·h2

(
1 −

(
1 − 2p2

p1+p2

)t(
1 − 2p3

p0+p3

)k−t

2

)}
. (2.10)

Remark 2.1 Note that the input vector X is chosen uniformly from the codewords

of a binary linear block code. Each input bit Xi therefore either gets the values 0 or 1

with probability 1
2

or is set to zero (due to the linearity of the code). In the following

proof, we assume that all the code symbols get the values 0 or 1 with equal probability.

By slightly modifying the proof, it is simple to show that the bound also holds for the

other case where some of the code bits are set to zero. Without mentioning explicitly,

the same assumption will be taken in the proofs of Propositions 2.2 and 2.3.

Proof: Considering an MBIOS channel whose conditional pdf is given by pY |X , we

introduce a new physically degraded channel. It is a binary-input, quaternary-output
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symmetric channel (see Figure 2.1). To this end, let l ∈ R
+ be an arbitrary positive

number, and let α be a primitive element of the Galois field GF(22) (so α2 = 1 + α).

The set of the elements of this field is {0, 1, α, 1 + α}. Let Xi and Yi designate the

random variables referring to the input and output of the original channel at time

i (where i = 1, 2, . . . , n). We define the degraded channel as a channel with four

quantization levels of the LLR. The output of the degraded channel at time i, Zi, is

calculated from the output Yi of the original channel as follows:

• If LLR(Yi) > l, then Zi = 0.

• If 0 < LLR(Yi) ≤ l, then Zi = α.

• If −l ≤ LLR(Yi) < 0, then Zi = 1 + α.

• If LLR(Yi) < −l, then Zi = 1.

• If LLR(Yi) = 0, then Zi is chosen as α or 1 + α with equal probability (1
2
).

1

00

1

p1

α

p2

p1

p3

p3

p2

1 + α

p0

p0

Z

N

X

Figure 2.1: The channel model in the left plot is a physically degraded channel used
for the derivation of the bound with four levels of quantization. The element α
denotes a primitive element in GF(22). This channel model is equivalent to a

channel with an additive noise in GF(22) (see right plot).

From the definition of the degraded channel in Figure 2.1, this channel has an

additive noise in GF(22) and is also binary-input output-symmetric. It follows that

the transition probabilities of the degraded channel are

p0 = Pr(Z = 0 |X = 0) = Pr(Z = 1 |X = 1)

p1 = Pr(Z = α |X = 0) = Pr(Z = 1 + α |X = 1)

p2 = Pr(Z = 1 + α |X = 0) = Pr(Z = α |X = 1)

p3 = Pr(Z = 1 |X = 0) = Pr(Z = 0 |X = 1)
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where pj is introduced in (2.9) for 0 ≤ j ≤ 3, and the symmetry in these transition

probabilities holds since the original channel is MBIOS.

Since C is a binary linear block code of length n and rate R, and the codewords

are transmitted with equal probability then

H(X) = nR. (2.11)

Also, since the channel is memoryless, then

H(Y|X) = nH(Y |X). (2.12)

We designate the output sequence of the degraded channel by Z = (Z1, . . . , Zn).

Since the mapping from Yi to the degraded output Zi (i = 1, 2, · · · , n) is memoryless,

then H(Z|Y) = nH(Z|Y ) and

H(Y) = H(Z) − H(Z|Y) + H(Y|Z)

= H(Z) − nH(Z|Y ) + H(Y|Z) (2.13)

H(Y|Z) ≤
n∑

i=1

H(Yi|Zi)

= nH(Y |Z)

= n [H(Y ) − H(Z) + H(Z|Y )] . (2.14)

Applying the above towards a lower bound on the conditional entropy H(X|Y), we

get

H(X|Y) = H(X) + H(Y|X)− H(Y)

= nR + nH(Y |X) − H(Y)

= nR + nH(Y |X) − H(Z) − H(Y|Z) + nH(Z|Y )

≥ nR + nH(Y |X) − H(Z) − n [H(Y ) − H(Z) + H(Z|Y )] + nH(Z|Y )

= nR − H(Z) + nH(Z) − n [H(Y ) − H(Y |X)]

= nR − H(Z) + nH(Z) − nI(X; Y )

≥ nR − H(Z) + nH(Z) − nC (2.15)

where the second equality relies on (2.11) and (2.12), the third equality relies on

(2.13), the first inequality relies on (2.14), and I(X; Y ) ≤ C is used for the last

transition (where C designates the capacity of the original channel).

In order to obtain a lower bound on H(X|Y) from (2.15), we calculate the entropy

of the random variable Z, and derive an upper bound on the entropy of the random
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vector Z. This finally provides the lower bound in (2.10). Observing that the degraded

channel is additive over GF(22), we denote the additive noise by

Ni = Θi + Ωiα, i ∈ {1, . . . , n}

where Θ = (Θ1, . . . , Θn) and Ω = (Ω1, . . . , Ωn) are random vectors over GF(2). Note

that Θ and Ω are statistically independent of the transmitted codeword X. Since the

code is binary, it follows that

Zi = Φi + Ωiα (2.16)

where Φi , Θi + Xi. This gives

H(Z) = H(Φ, Ω)

= H(Ω) + H(Φ|Ω)

= H(Ω) + 1 (2.17)

where the last equality follows since C is a binary linear block code which implies that

the input X is equally likely to be zero or one; since Ω is independent of X, then Φ

is equally likely to be zero or one given the value of Ω.

We now derive an upper bound on the entropy H(Z). Based on (2.16), it is easy

to verify the following chain of equalities:

H(Z) = H(Z1, . . . , Zn)

= H(Φ1, . . . , Φn, Ω1, . . . , Ωn)

= H(Ω1, . . . , Ωn) + H(Φ1, . . . , Φn |Ω1, . . . , Ωn)

= n H(Ω) + H(Φ1, . . . , Φn |Ω1, . . . , Ωn) (2.18)

where the last equality follows since the degraded channel in Figure 2.1 is memoryless.

Let us define the syndrome at the output of the degraded channel as

S , (Φ1, . . . , Φn) HT

where H is a full-rank parity-check matrix of the binary linear block code C. We note

that the calculation of the syndrome only takes into account the Φ-components of

the vector Z in (2.16). Also note that since XHT = 0 for every codeword X, then

S = (Θ1, . . . , Θn) HT which is independent of the transmitted codeword. Let us define

M as the index of the vector (Φ1, . . . , Φn) in the coset referring to the syndrome S.

Since each coset has exactly 2nR elements which are equally likely, then H(M) = nR,

and

H(Φ1, . . . , Φn |Ω1, . . . , Ωn) = H(S, M |Ω1, . . . , Ωn)

≤ H(M) + H(S |Ω1, . . . , Ωn)

= nR + H(S |Ω1, . . . , Ωn). (2.19)
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Considering a parity-check equation involving k variables, let {i1, . . . , ik} be the set of

indices of the variables involved in this parity-check equation. The relevant component

of the syndrome S which refers to this parity-check equation is equal to zero or one if

and only if the Hamming weight sub-vector (Θi1 , . . . , Θik) is even or odd, respectively.

It is clear from Figure 2.1 that for an index i for which Ωi = 1, Θi is equal to one in

probability p2

p1+p2
. Similarly, for an index i for which Ωi = 0, then Θi is equal to one

in probability p3

p0+p3
.

Given that the Hamming weight of the vector (Ωi1 , . . . , Ωik) is t, then the proba-

bility of an even Hamming weight of the random vector (Θi1, . . . , Θik) is equal to

q1(t, k) q2(t, k) +
(
1 − q1(t, k)

) (
1 − q2(t, k)

)

where q1(t, k) designates the probability that among the t indices i for which Ωi = 1,

the random variable Θi is equal to 1 an even number of times, and q2(t, k) designates

the probability that the same happens for the k− t indices i for which Φi = 0. Based

on the discussion above, it follows that

q1(t, k) =
∑

i even

{(
t

i

)(
p1

p1 + p2

)t−i(
p2

p1 + p2

)i
}

=
1 +

(
1 − 2p2

p1+p2

)t

2

q2(t, k) =
∑

i even

{(
k − t

i

)(
p0

p0 + p3

)k−t−i(
p3

p0 + p3

)i
}

=
1 +

(
1 − 2p3

p0+p3

)k−t

2
.

Hence, the probability that the vector (Θi1 , Θi2, . . . , Θik) is of even Hamming weight

is

q1(t, k) q2(t, k) +
(
1 − q1(t, k)

) (
1 − q2(t, k)

)
=

1 +
(
1 − 2p2

p1+p2

)t (
1 − 2p3

p0+p3

)k−t

2
.

We conclude that given a vector ω ∈ {0, 1}k of Hamming weight t

H
(
Si | (Ωi1 , . . . , Ωik) = ω

)
= h2




1 +
(
1 − 2p2

p1+p2

)t (
1 − 2p3

p0+p3

)k−t

2


 .

This yields that if the calculation of a component Si (i = 1, . . . , n(1 − R)) in the

syndrome S relies on a parity-check equation involving k variables, then

H(Si |Ω1, . . . , Ωn)

= H(Si |Ωi1, . . . , Ωik)

=
∑

ω∈{0,1}k

Pr
(
(Ωi1 , . . . , Ωik) = ω

)
· H (Si | (Ωi1 , . . . , Ωik) = ω)
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=

k∑

t=0

(
k

t

)
(p1 + p2)

t(p0 + p3)
k−th2




1 +
(
1 − 2p2

p1+p2

)t (
1 − 2p3

p0+p3

)k−t

2




=

k∑

t=0

(
k

t

)
(p1 + p2)

t(p0 + p3)
k−th2




1 −
(
1 − 2p2

p1+p2

)t (
1 − 2p3

p0+p3

)k−t

2




where the third equality turns to averaging over the Hamming weight of (Ωi1 , . . . , Ωik)

(note that each component is Bernoulli distributed with Pr(Ωi = 0) = p0 + p3), and

the last equality follows from the symmetry of the binary entropy function (where

h2(x) = h2(1 − x) for x ∈ [0, 1]). Let Γk designate the fraction of parity-check

equations in the full-rank parity-check matrix which involve k variables, so their total

number is n(1 − R)Γk and

H(S |Φ1, Φ2, . . . , Φn)

≤
n(1−R)∑

i=1

H(Si |Φ1, Φ2, . . . , Φn)

= n(1 − R)
∑

k

{
Γk

k∑

t=0

(
k

t

)
(p1 + p2)

t(p0 + p3)
k−t

·h2

(
1 −

(
1 − 2p2

p1+p2

)t(
1 − 2p3

p0+p3

)k−t

2

)}
. (2.20)

By combining (2.18)–(2.20), an upper bound on the entropy of the random vector Z

follows:

H(Z) ≤ nR + nH(Ω)

+n(1 − R)
∑

k

{
Γk

k∑

t=0

(
k

t

)
(p1 + p2)

t(p0 + p3)
k−t

·h2

(
1 −

(
1 − 2p2

p1+p2

)t(
1 − 2p3

p0+p3

)k−t

2

)}
.(2.21)

The substitution of (2.17) and (2.21) in (2.15) finally provides the lower bound on

the conditional entropy H(X |Y) in (2.10).

The following theorem tightens the lower bound on the parity-check density of

an arbitrary sequence of binary linear block codes given in [81, Theorem 2.1]. It is

based on a four-level quantization of the LLR at the output of an MBIOS channel

(as opposed to the two-level quantization of the LLR used in [81]).
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Theorem 2.3 [“Four-Level Quantization” Lower Bound on the Asymptotic

Parity-Check Density of Binary Linear Block Codes] Let {Cm} be a sequence

of binary linear block codes achieving a fraction 1 − ε of the capacity of an MBIOS

channel with vanishing bit error probability. Let Hm be an arbitrary full-rank parity-

check matrix of the code Cm, and denote its density by ∆m. Then, the asymptotic

density satisfies

lim inf
m→∞

∆m >
K1 + K2 ln 1

ε

1 − ε
(2.22)

where

K1 = K2 ln

(
1

2 ln 2

1 − C

C

)
, K2 = − 1 − C

C ln
(

(p1−p2)2

p1+p2
+ (p0−p3)2

p0+p3

) (2.23)

and p0, p1, p2, p3 are defined in (2.9) in terms of l ∈ R
+. The optimal value of l is

given implicitly as a solution to the equation

p2
2 + e−lp2

1

(p1 + p2)2
=

p2
3 + e−lp2

0

(p0 + p3)2
(2.24)

where such a solution always exists.2

Proof: Derivation of the lower bound in (2.22) and (2.23):

Lemma 2.2 Let C be a binary linear block code of length n and rate R. Let Pb

designate the average bit error probability of the code C which is associated with an

arbitrary decoding algorithm and channel, and let X and Y designate the transmitted

codeword and received sequence, respectively. Then

H(X |Y)

n
≤ R h2(Pb). (2.25)

Proof: The lemma is proved in Appendix 2.A.1.

Lemma 2.3 h2(x) ≤ 1 − 2
ln 2

(1
2
− x)2 for 0 ≤ x ≤ 1.

Proof: The lemma is proved in [81, Lemma 3.1]; this inequality actually forms a

particular case of Eq. (2.B.2) whose derivation is based on truncating the power

series expansion of the binary entropy function around 1
2
.

Referring to an arbitrary sequence of binary linear block codes {Cm} which achieves

a fraction 1 − ε of capacity with vanishing bit error probability, then according to

2It was observed numerically that the solution l of the optimization equation (2.24) is unique
when considering the binary-input AWGN channel. We conjecture that the uniqueness of such a
solution is a property which holds for MBIOS channels under some mild conditions.
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Definition 2.1, there exists a decoding algorithm (e.g., ML decoding) so that the

average bit error probability of the code Cm tends to zero as m goes to infinity, and

limm→∞ Rm = (1 − ε)C. From Lemma 2.2, we obtain that limm→∞
H(Xm |Ym)

nm
= 0

where Xm and Ym designate the transmitted codeword in the code Cm and the

received sequence, respectively , and nm designates the block length of the code Cm.

From Proposition 2.1, we obtain

H(Xm|Ym)

nm

≥ 1 − C − (1 − Rm)

·
∑

k

{
Γk,m

k∑

t=0

(
k

t

)
(p1 + p2)

t(p0 + p3)
k−t

·h2

(
1 −

(
1 − 2p2

p1+p2

)t(
1 − 2p3

p0+p3

)k−t

2

)}

where Γk,m designates the fraction of parity-check equations in a parity-check matrix

Hm which involve k variables. The upper bound on the binary entropy function h2

in Lemma 2.3 gives

H(Xm|Ym)

nm

≥ 1 − C − (1 − Rm) (2.26)

·
∑

k

{
Γk,m

k∑

t=0

(
k

t

)
(p1 + p2)

t(p0 + p3)
k−t

[
1 − 1

2 ln 2

(
p1 − p2

p1 + p2

)2t(
p0 − p3

p0 + p3

)2(k−t)
]}

Since p0 + p1 + p2 + p3 = 1 (i.e., the transition probabilities of the degraded channel

in Figure 2.1 sum to 1), then

∑

k

{
Γk,m

k∑

t=0

(
k

t

)
(p1 + p2)

t(p0 + p3)
k−t

[
1 − 1

2 ln 2

(
p1 − p2

p1 + p2

)2t(
p0 − p3

p0 + p3

)2(k−t)
]}

=
∑

k

{
Γk,m

[
1 − 1

2 ln 2

k∑

t=0

(
k

t

)(
(p1 − p2)

2

p1 + p2

)t(
(p0 − p3)

2

p0 + p3

)k−t
]}

= 1 − 1

2 ln 2

∑

k

{
Γk,m

k∑

t=0

(
k

t

)(
(p1 − p2)

2

p1 + p2

)t(
(p0 − p3)

2

p0 + p3

)k−t
}

= 1 − 1

2 ln 2

∑

k

{
Γk,m

(
(p1 − p2)

2

p1 + p2
+

(p0 − p3)
2

p0 + p3

)k
}

≤ 1 − 1

2 ln 2

(
(p1 − p2)

2

p1 + p2

+
(p0 − p3)

2

p0 + p3

)aR(m)

(2.27)
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where aR(m) ,
∑

k kΓk,m designates the average right degree of the bipartite graph

which refers to the parity-check matrix Hm, and the last transition follows from

Jensen’s inequality. Substituting (2.27) into the RHS of (2.26) and letting m tend to

infinity give the inequality

1 − C −
(
1 − (1 − ε)C

)
(

1 − 1

2 ln 2

(
(p1 − p2)

2

p1 + p2
+

(p0 − p3)
2

p0 + p3

)aR(∞)
)

≤ 0 (2.28)

where aR(∞) , lim infm→∞ aR(m). Note that the base of the exponent in the LHS

of this inequality does not exceed unity, i.e.,

(p1 − p2)
2

p1 + p2
+

(p0 − p3)
2

p0 + p3

≤ (p1 + p2)
2

p1 + p2
+

(p0 + p3)
2

p0 + p3

= p0 + p1 + p2 + p3 = 1.

Therefore, the inequality in (2.28) yields the following lower bound on the asymptotic

average right degree:

aR(∞) ≥ K ′
1 + K ′

2 ln

(
1

ε

)
(2.29)

where

K ′
1 = − ln

(
1

2 ln 2
1−C

C

)

ln
(

(p1−p2)2

p1+p2
+ (p0−p3)2

p0+p3

) , K ′
2 = − 1

ln
(

(p1−p2)2

p1+p2
+ (p0−p3)2

p0+p3

) . (2.30)

According to Definition 2.2, the density (∆) of a parity-check matrix is equal to the

number of edges in the corresponding bipartite graph normalized per information bit,

while the average right degree (aR) is equal to the same number of edges normalized

per parity-check node. Since the parity-check matrix H is full rank, then the above

scalings of the number of edges in a bipartite graph imply

∆ =
1 − R

R
aR (2.31)

where R is the rate of a binary linear block code. By our assumption, the asymptotic

rate of the sequence of code {Cm} is equal to a fraction 1−ε of the capacity. Therefore,

by combining (2.29) and (2.31) with R = (1 − ε)C, we obtain a lower bound on the

asymptotic parity-check density which gets the form

lim inf
m→∞

∆m ≥ K1 + K2 ln
(

1
ε

)

1 − ε

where

K1,2 =
1 − C

C
· K ′

1,2 (2.32)
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and K ′
1,2 are introduced in (2.30) (note that 1 − R ≥ 1 − C). This completes the

proof of the lower bound in (2.22) with the coefficients K1,2 in (2.23).

Derivation of the optimization equation (2.24): We refer the reader to Appendix 2.A.2,

where we also show the existence of such a solution.

Discussion: It is required to show that we achieve an improved lower bound on

the parity-check density, as compared to the one in [81, Theorem 2.1]. To this end,

it suffices to show that

(p1 − p2)
2

p1 + p2
+

(p0 − p3)
2

p0 + p3
≥ (1 − 2w)2. (2.33)

For a proof of this inequality, we refer the reader to Appendix 2.A.3.

This therefore proves that the new lower bound is tighter (i.e., larger) than the

original bound in [81, Theorem 2.1] (which corresponds to a two-level quantization of

the LLR, as compared to the new bound which is based on a four-level quantization

of the LLR).

Based on Proposition 2.1, we prove and discuss an upper bound on the asymptotic

rate of every sequence of binary linear codes for which reliable communication is

achievable. The bound refers to soft-decision ML decoding, and it is therefore valid

for any suboptimal decoding algorithm. Hence, the following result also provides

an upper bound on the achievable rate of ensembles of LDPC codes under iterative

decoding where the transmission takes places over an MBIOS channel. The following

bound improves the bounds stated in [17, Theorems 1 and 2]:

Corollary 2.1 [“Four-Level Quantization” Upper Bound on the Asymp-

totic Achievable Rates of Sequences of Binary Linear Block Codes] Let

{Cm} be a sequence of binary linear block codes whose codewords are transmitted

with equal probability over an MBIOS channel, and suppose that the block length of

this sequence of codes tends to infinity as m → ∞. Let Γk,m be the fraction of the

parity-check nodes of degree k in an arbitrary representation of the code Cm by a bi-

partite graph which corresponds to a full-rank parity-check matrix. Then a necessary

condition for this sequence to achieve vanishing bit error probability as m → ∞ is

that the asymptotic rate R of this sequence satisfies

R ≤ 1 − max

{
(1 − C) ·

(
∑

k

{
Γk

k∑

t=0

(
k

t

)
(p1 + p2)

t(p0 + p3)
k−t

·h2

(
1 −

(
1 − 2p2

p1+p2

)t(
1 − 2p3

p0+p3

)k−t

2

)





−1

,

2(p2 + p3)

1 −
∑

k

Γk

(
1 − 2(p2 + p3)

)k

}
(2.34)
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where p0, p1, p2, p3 are introduced in (2.9), and Γk and R are introduced in (2.1).

Proof: The first term in the maximization on the RHS of (2.34) follows from (2.10)

in Proposition 2.1 and (2.25) in Lemma 2.2. It follows directly by combining both

inequalities, and letting the bit error probability Pb tend to zero. The second term fol-

lows from the proof of [81, Corollary 3.1] which is based on the erasure decomposition

Lemma [71].

2.3.2 Extension of the Bounds to 2d Quantization Levels

Following the method introduced in Section 2.3.1, we commence by deriving a lower

bound on the conditional entropy of a transmitted codeword given the received se-

quence.

Proposition 2.2 Let C be a binary linear block code of length n and rate R. Let

X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) designate the transmitted codeword and

received sequence, respectively, when the communication takes place over an MBIOS

channel with conditional pdf pY |X(·|·). For an arbitrary d ≥ 2 and 0 < l2d−1−1 <

. . . < l1 < l0 , ∞, let us define the set of probabilities {ps}2d−1
s=0 as follows:

ps ,






Pr{ls+1 < LLR(Y ) ≤ ls|X = 0} s = 0, . . . , 2d−1 − 2

Pr{0 < LLR(Y ) ≤ l2d−1−1|X = 0}
+1

2
Pr{LLR(Y ) = 0|X = 0} s = 2d−1 − 1

Pr{−l2d−1−1 ≤ LLR(Y ) < 0 |X = 0}
+1

2
Pr{LLR(Y ) = 0|X = 0} s = 2d−1

Pr{−l2d−(s+1) ≤ LLR(Y ) < −l2d−s|X = 0} s = 2d−1 + 1, . . . , 2d − 1.

(2.35)

For an arbitrary full-rank parity-check matrix of the code C, let Γk designate the

fraction of the parity-checks involving k variables. Then, the conditional entropy of

the transmitted codeword given the received sequence satisfies

H(X|Y)

n
≥ 1 − C − (1 − R)

∑

k

{
Γk

∑

k0,...,k
2d−1−1P

i ki=k

(
k

k0, . . . , k2d−1−1

) 2d−1−1∏

i=0

(pi + p2d−1−i)
ki

· h2

(
1

2

[
1 −

2d−1−1∏

i=0

(
1 − 2p2d−1−i

pi + p2d−1−i

)ki

])}
.

(2.36)
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Proof: Following the proof of Proposition 2.1, we introduce a new physically

degraded channel. It is a memoryless binary-input 2d-ary output symmetric channel

(see Figure 2.1 for d = 2). To this end, let l2d−1−1 < . . . < l1 be arbitrary positive

numbers, and denote l0 , ∞. The output alphabet of the degraded channel is defined

to be GF(2d) whose elements form the set
{

d−1∑

j=0

aj αj : (a0, a1, . . . , ad−1) ∈ {0, 1}d

}

where α is a primitive element of GF(2d).

For s = 0, 1, . . . , 2d−1 − 1 , denote the (d − 1)–bit binary representation of s by

(a
(s)
1 , . . . , a

(s)
d−1), i.e.,

s =
d−1∑

j=1

a
(s)
j 2j−1.

Let Xi and Yi designate the random variables referring to the input and output of the

original channel pY |X at time i (where i = 1, . . . , n). As a natural generalization of

the channel model in Figure 2.1, we introduce a physically degraded channel with 2d

quantization levels of the LLR. The output of this channel at time i, Zi, is calculated

from the output Yi of the original channel as follows:

Zi = Φi + Ωi (2.37)

where Φi is zero or one according to the sign of LLR(Yi). It is set to zero or one, if

the LLR is positive or negative, respectively; if LLR(Yi) = 0, then Φi is either zero or

one with equal probability. The value of Ωi is calculated based on the absolute value

of LLR(Yi) as follows:

• If ls+1 < |LLR(Yi)| ≤ ls for some 0 ≤ s < 2d−1 − 1, then

Ωi =
d−1∑

j=1

a
(s)
j αj. (2.38)

• If 0 ≤ |LLR(Yi)| ≤ l2d−1−1, then

Ωi =

d−1∑

j=1

αj. (2.39)

From (2.35), the transition probabilities of the degraded channel are given by

ps = Pr(Z =

d−1∑

j=1

a
(s)
j αj|X = 0) = Pr(Z = 1 +

d−1∑

j=1

a
(s)
j αj|X = 1)

p2d−1−s = Pr(Z = 1 +

d−1∑

j=1

a
(s)
j αj|X = 0) = Pr(Z =

d−1∑

j=1

a
(s)
j αj|X = 1) (2.40)
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where s = 0, 1, . . . , 2d−1−1. The symmetry in these equalities holds since the channel

is MBIOS.

Equations (2.11)–(2.15) hold also for the case of 2d-level quantization. Thus, we

will calculate the entropy of the random variable Z, and an upper bound on the

entropy of the random vector Z. This will finally provide the lower bound in (2.36).

Analogously to the proof of Proposition 2.1, the degraded channel is additive over

GF(2d). We denote the additive noise by

Ni = Θi + Ωi. (2.41)

Note that since the code is binary, then Φi = Θi + Xi, and the value of Ωi stays the

same in (2.37) and (2.41). Let Θ , (Θ1, . . . , Θn) and Ω , (Ω1, . . . , Ωn). Due to the

symmetry of the communication channel, it follows that Θ and Ω are statistically

independent of the transmitted codeword X. This gives

H(Z) = H(Φ, Ω)

= H(Ω) + H(Φ|Ω)

= H(Ω) + 1 (2.42)

where the last equality follows from the same argument which validates (2.17).

We now derive an upper bound on the entropy of the random vector Z. From the

same chain of equalities leading to (2.18), it follows that

H(Z) = nH(Ω) + H(Φ |Ω) (2.43)

where Φ , (Φ1, . . . , Φn). As in the proof of Proposition 2.1, we define the syndrome

as S = ΦHT where H is a full-rank parity-check matrix of the code C. As before,

the calculation of the syndrome S only takes into account the Φ-components of the

vector Z. Since XHT = 0, then S = ΘHT which is independent of the transmitted

codeword. In parallel to (2.19), we obtain

H(Φ |Ω) ≤ nR + H(S |Ω). (2.44)

Consider a parity-check equation which involves k variables, and let {i1, . . . , ik} be the

set of indices of the variables involved in this parity-check equation. The component

of the syndrome S which refers to this parity-check equation is zero if and only if the

binary sub-vector (Θi1 , . . . , Θik) has an even Hamming weight.

Lemma 2.4 Given that (Ωi1 , . . . , Ωik) has ks elements equal to
∑d−1

j=1 a
(s)
j αj (s =

0, . . . , 2d−1 − 1), the probability that the corresponding component of the syndrome
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Sl is equal to 1 is given by

1

2


1 −

2d−1−1∏

s=0

(
1 − 2p2d−1−s

ps + p2d−1−s

)ks


 .

Proof: From the probabilities which are associated with the quantized values of the

LLR in (2.40), we get that for 0 ≤ s ≤ 2d−1 − 1

Pr(Θi = 1 |Ωi =

d−1∑

j=1

a
(s)
j αj) =

p2d−1−s

ps + p2d−1−s

.

Since there are ks indices i in the set {i1, . . . , ik} for which Ωi =
∑d−1

j=1 a
(s)
j αj, the

lemma follows from [30, Lemma 4.1].

Based on Lemma 2.4 and the discussion above, it follows that for any vector ω =

(ω1, . . . , ωk) which has ks elements equal to
∑d−1

j=1 a
(s)
j αj (where s = 0, . . . , 2d−1 − 1)

H
(
Si | (Ωi1 , . . . , Ωik) = ω

)
= h2


1

2


1 −

2d−1−1∏

s=0

(
1 − 2p2d−1−s

ps + p2d−1−s

)ks




 . (2.45)

For a component Si (where 1 ≤ i ≤ n(1 − R)) of the syndrome S which refers to a

parity-check equation involving k variables

H(Si |Ω)

= H(Si |Ωi1 , . . . , Ωik)

=
∑

ω

{
Pr
(
(Ωi1 , . . . , Ωik) = ω

)
H
(
Si | (Ωi1 , . . . , Ωik) = ω

)}

=
∑

k0,...,k
2d−1−1P

s ks=k

{(
k

k0, . . . , k2d−1−1

) 2d−1−1∏

s=0

(ps + p2d−1−s)
ks

·h2

(
1

2

[
1 −

2d−1−1∏

s=0

(
1 − 2p2d−1−s

ps + p2d−1−s

)ks

])}

where the last equality follows since there are
(

k

k0,...,k
2d−1−1

)
vectors ω which have ks

elements of the type
∑d−1

j=1 a
(s)
j αj for s ∈ {0, . . . , 2d−1 − 1}, and it also follows from

the statistical independence of the components of the vector Ω, and from Eqs. (2.40)

and (2.45).
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The number of parity-check equations involving k variables is n(1 − R)Γk, hence

H(S |Ω)

≤
n(1−R)∑

i=1

H(Si |Ω)

= n(1 − R)
∑

k

{
Γk

∑

k0,...,k
2d−1−1P

s ks=k

(
k

k0, . . . , k2d−1−1

) 2d−1−1∏

s=0

(ps + p2d−1−s)
ks

· h2


1

2


1 −

2d−1−1∏

s=0

(
1 − 2p2d−1−s

ps + p2d−1−s

)ks





}

. (2.46)

By combining (2.43)–(2.46), an upper bound on the entropy of the random vector Z

follows:

H(Z) ≤ nR + nH(Ω)

+n(1 − R)
∑

k

{
Γk

∑

k0,...,k
2d−1−1P

s ks=k

(
k

k0, . . . , k2d−1−1

) 2d−1−1∏

s=0

(ps + p2d−1−s)
ks

·h2


1

2


1 −

2d−1−1∏

s=0

(
1 − 2p2d−1−s

ps + p2d−1−s

)ks





}

. (2.47)

The substitution of (2.42) and (2.47) in (2.15) finally provides the lower bound on

the conditional entropy H(X |Y) in (2.36).

Discussion: In the proof of Proposition 2.2, the upper bound on entropy of the

degraded channel output Z is of the form

H(Z) ≤ nH(Ω) + nR +

n(1−R)∑

i=1

H(Si|Ω)

which follows directly from (2.43), (2.44) and (2.46). Here, Ω is defined according to

the conditions stated in (2.38) and (2.39), and Si is the ith component of the syndrome

S. Substituting (2.42) and the above inequality in (2.15) yields

H(X|Y )

n
≥ 1 − C − 1

n

n(1−R)∑

i=1

H(Si|Ω)

and the lower bound in (2.36) is in fact an explicit expression for the above inequality.

The calculation of the lower bound in the RHS of (2.36) becomes more complex as

the value of d is increased. However, when the quantization levels l1, . . . , l2d−1−1 are
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set to maximize the lower bound in the RHS of (2.36), we show that the bound is

monotonically increasing with d.

To this end, let d ≥ 2 be an arbitrary integer, (l
(d)
1 , . . . , l

(d)

2d−1−1
) with their sym-

metric values around zero be the optimal choice of 2d quantization levels, and denote

the random variable Ω for this setting by Ω(d) (see (2.38) and (2.39)). Consider any

set of 2d+1 quantization levels (l
(d+1)
1 , . . . , l

(d+1)
2d−1 ) with their symmetric values around

zero such that l
(d+1)
2i = l

(d)
i for i = 1, . . . , 2d−1 − 1. Denote the random variable Ω for

this choice of quantization levels by Ω(d+1). Clearly, since the former set of 2d quan-

tization levels is a subset of the latter set of 2d+1 levels, then Ω(d) can be calculated

from Ω(d+1). Let Ω(k) , (Ω
(k)
1 , . . . , Ω

(k)
n ) for k = d and d + 1. By the information

processing inequality

1 − C − 1

n

n(1−R)∑

i=1

H(Si|Ω(d)) ≤ 1 − C − 1

n

n(1−R)∑

i=1

H(Si|Ω(d+1)).

Therefore, the (possibly sub-optimal) set of 2d+1 quantization levels (l
(d+1)
1 , . . . , l

(d+1)
2d−1 )

with their symmetric values around zero provides a tighter lower bound than the

optimal choice of 2d quantization levels. Hence, this proves that the lower bound is

monotonically increasing with the number of quantization levels when these levels are

set optimally.

Theorem 2.4 [“2d-Level Quantization” Lower Bound on the Asymptotic

Parity-Check Density of Binary Linear Block Codes] Let {Cm} be a sequence

of binary linear block codes achieving a fraction 1 − ε of the capacity of an MBIOS

channel with vanishing bit error probability. Let Hm be an arbitrary full-rank parity-

check matrix of the code Cm, and denote its density by ∆m. Then, the asymptotic

density satisfies

lim inf
m→∞

∆m >
K1 + K2 ln 1

ε

1 − ε
(2.48)

where

K1 = K2 ln

(
1

2 ln 2

1 − C

C

)
, K2 = − 1 − C

C ln




2d−1−1∑

i=0

(pi − p2d−1−i)
2

pi + p2d−1−i




. (2.49)

Here, d ≥ 2 is an arbitrary integer and the probabilities {pi} are introduced in (2.35)

in terms of l1 > . . . > l2d−1−1 ∈ R
+. The optimal vector of quantization levels

(l1, . . . , l2d−1−1) is given implicitly by solving the set of 2d−1 − 1 equations

p2
2d−1−i

+ e−lip2
i

(pi + p2d−1−i)2
=

p2
2d−i

+ e−lip2
i−1

(pi−1 + p2d−i)2
, i = 1, . . . , 2d−1 − 1. (2.50)
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where such a solution always exists.3

Proof: For an arbitrary sequence of binary linear block codes {Cm} which achieves a

fraction 1−ε to capacity with vanishing bit error probability, we get from Lemma 2.2

that

lim
m→∞

H(Xm |Ym)

nm

= 0

where Xm and Ym designate the transmitted codeword in the code Cm and the

received sequence, respectively, and nm designates the block length of the code Cm.

From Proposition 2.2, we obtain

H(Xm|Ym)

nm

≥1 − C − (1 − Rm)

·
∑

k

{
Γk,m

∑

k0,...,k
2d−1−1P

s ks=k

(
k

k0, . . . , k2d−1−1

) 2d−1−1∏

s=0

(ps + p2d−1−s)
ks

·h2



1

2



1 −
2d−1−1∏

s=0

(
1 − 2p2d−1−s

ps + p2d−1−s

)ks








}

.

where Γk,m designates the fraction of parity-check equations in a parity-check matrix

Hm which involve k variables. The upper bound on the binary entropy function h2

in Lemma 2.3 gives

1 − C −
(
1 − Rm)

∑

k

{
Γk,m

∑

k0,...,k
2d−1−1P

s ks=k

(
k

k0, . . . , k2d−1−1

) 2d−1−1∏

s=0

(ps + p2d−1−s)
ks


1 − 1

2 ln 2




2d−1−1∏

s=0

ps − p2d−1−s

ps + p2d−1−s




2ks



}

≤ H(Xm|Ym)

nm

. (2.51)

Since
∑

k Γk,m = 1 and
∑2d−1

s=0 ps = 1, we get

1 − 1

2 ln 2

∑

k





Γk,m

∑

k0,...,k
2d−1−1P

s ks=k

(
k

k0, . . . , k2d−1−1

) 2d−1−1∏

s=0

(
(ps − p2d−1−s)

2

ps + p2d−1−s

)ks





= 1 − 1

2 ln 2

∑

k





Γk,m




2d−1−1∑

s=0

(ps − p2d−1−s)
2

ps + p2d−1−s




k




3See the footnote to Theorem 2.3 on p. 33.
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≤ 1 − 1

2 ln 2




2d−1−1∑

s=0

(ps − p2d−1−s)
2

ps + p2d−1−s




aR(m)

(2.52)

where aR(m) ,
∑

k kΓk,m designates the average right degree of the bipartite graph

which refers to the parity-check matrix Hm, and the last transition follows from

Jensen’s inequality.

Substituting the RHS of (2.52) into the LHS of (2.51) and letting m tend to

infinity gives the inequality

1 − C −
(
1 − (1 − ε)C

)

1 − 1

2 ln 2




2d−1−1∑

s=0

(ps − p2d−1−s)
2

ps + p2d−1−s




aR(∞)

 ≤ 0 (2.53)

where aR(∞) , lim infm→∞ aR(m). Note that the validity of (2.53) follows since the

base of the exponent in the inequality above does not exceed unity, i.e.,

2d−1−1∑

s=0

(ps − p2d−1−s)
2

ps + p2d−1−s

≤
2d−1−1∑

s=0

(ps + p2d−1−s)
2

ps + p2d−1−s

=

2d−1−1∑

s=0

ps + p2d−1−s = 1.

Inequality (2.53) gives the following lower bound on the asymptotic average right

degree:

aR ≥ K ′
1 + K ′

2 ln

(
1

ε

)
(2.54)

where

K ′
1 = − ln

(
1

2 ln 2
1−C

C

)

ln




2d−1−1∑

s=0

(ps − p2d−1−s)
2

ps + p2d−1−s




, K ′
2 = − 1

ln




2d−1−1∑

s=0

(ps − p2d−1−s)
2

ps + p2d−1−s




.

By combining (2.31) and (2.54) with the asymptotic rate R = (1 − ε)C, we obtain a

lower bound on the asymptotic parity-check density which is of the form

lim inf
m→∞

∆m ≥ K1 + K2 ln
(

1
ε

)

1 − ε

where

K1,2 =
1 − C

C
· K ′

1,2.
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This completes the proof of the lower bound in (2.48) and (2.49). The derivation of

the set of optimization equations in (2.50) follows along the lines of the derivation of

(2.24). In the general case of 2d quantization levels, it follows from (2.49) that we

need to maximize
2d−1−1∑

s=0

(ps − p2d−1−s)
2

ps + p2d−1−s

.

To this end, we set to zero all the partial derivatives w.r.t. ls where s = 1, . . . , 2d−1−1.

Since from (2.35) only ps, ps−1, p2d−s and p2d−s−1 depend on ls, then

∂

∂ls

{
(ps−1 − p2d−s)

2

ps−1 + p2d−s

+
(ps − p2d−s−1)

2

ps + p2d−s−1

}
= 0.

We express now the probabilities ps, ps−1, p2d−s and p2d−s−1 as integrals of the con-

ditional pdf a of the LLR, and rely on the symmetry property which states that

a(l) = ela(−l) for l ∈ R. In a similar manner to the derivation of (2.24), this

gives the set of equations in (2.50). Their solution provides the quantization levels

l1, . . . , l2d−1−1 (where according to Proposition 2.3.2, the other 2d−1 − 1 levels are set

to be symmetric w.r.t. zero).

Based on the proof of Theorem 2.4, we derive an upper bound on the asymptotic

rate of every sequence of binary linear codes for which reliable communication is

achievable. The bound refers of soft-decision ML decoding, and it is therefore valid

for any sub-optimal decoding algorithm.

Corollary 2.2 [“2d-Level Quantization” Upper Bound on the Asymptotic

Achievable Rates of Sequences of Binary Linear Block Codes] Let {Cm}
be a sequence of binary linear block codes whose codewords are transmitted with

equal probability over an MBIOS channel, and suppose that the block length of

this sequence of codes tends to infinity as m → ∞. Let Γk,m be the fraction of

the parity-check nodes of degree k in an arbitrary representation of the code Cm

by a bipartite graph which corresponds to a full-rank parity-check matrix. Then a

necessary condition for this sequence to achieve vanishing bit error probability as

m → ∞ is that the asymptotic rate R of this sequence satisfies

R ≤ 1 − max

{
(1 − C)

{
∑

k

Γk

∑

k0,...,k
2d−1−1

·Pi ki=k

(
k

k0, . . . , k2d−1−1

) 2d−1−1∏

i=0

(pi + p2d−1−i)
ki

· h2

(
1

2

[
1 −

2d−1−1∏

i=0

(
1 − 2p2d−1−i

pi + p2d−1−i

)ki

])}−1

,

2
∑2d−1

i=2d−1 pi

1 −∑k Γk

(
1 − 2

∑2d−1
i=2d−1 pi

)k

}
(2.55)
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where d ≥ 2 is arbitrary, the probabilities {pi} are introduced in (2.35), and Γk and

R are introduced in (2.1).

Proof: The concept of the proof is the same as the proof of Corollary 2.1, except

that the first term in the RHS of (2.55) relies on (2.36).

2.4 Approach II: Bounds without Quantization of

the LLR

Similarly to the previous section, we derive bounds on the asymptotic achievable rate

and the asymptotic parity-check density of an arbitrary sequence of binary linear block

codes transmitted over an MBIOS channel. As in Section 2.3, the derivation of these

two bounds is based on a lower bound on the conditional entropy of a transmitted

codeword given the received sequence at the output of an arbitrary MBIOS channel.

Proposition 2.3 Let C be a binary linear block code of length n and rate R transmit-

ted over an MBIOS channel. Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) designate

the transmitted codeword and the received sequence, respectively. For an arbitrary

representation of the code C by a full-rank parity-check matrix, let Γk designate the

fraction of the parity-check equations of degree k, and Γ(x) ,
∑

k Γkx
k be the degree

distribution of the parity-check nodes in the corresponding bipartite graph. Then, the

conditional entropy of the transmitted codeword given the received sequence satisfies

H(X|Y)

n
≥ 1 − C − (1 − R)

(
1 − 1

2 ln 2

∞∑

p=1

Γ(gp)

p(2p − 1)

)
(2.56)

where

gp ,

∫ ∞

0

a(l)(1 + e−l) tanh2p

(
l

2

)
dl , p ∈ N (2.57)

and a denotes the conditional pdf of the LLR given that the channel input is 0.

Proof: We consider a binary linear block code C of length n and rate R whose

transmission takes place over an MBIOS channel. For the continuation of the proof,

we move from the mapping of the MBIOS channel X → Y to the channel X → Ỹ

where Ỹ represents the LLR of the channel output Y . These channels are equivalent

in the sense that H(X|Y ) = H(X|Ỹ ). The basic idea for showing the equivalence

between the original channel and the one which will be introduced shortly is based

on the fact that the LLR forms a sufficient statistics of the channel.
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For the characterization of the equivalent channel, let the function a designate the

conditional pdf of the LLR given that the channel input is 0. We randomly generate

an i.i.d. sequence {Li}n
i=1 w.r.t. the conditional pdf a, and define

Ωi , |Li|, Θi ,






0 if Li > 0

1 if Li < 0

0 or 1 w.p. 1
2

if Li = 0

. (2.58)

The output of the equivalent channel is defined to be the sequence Ỹ = (Ỹ1, . . . , Ỹn)

where

Ỹi = (Φi, Ωi), i = 1, . . . , n

and Φi = Θi + Xi where this addition is modulo-2. The output of this equivalent

channel at time i is therefore the pair (Φi, Ωi) where Φi ∈ {0, 1} and Ωi ∈ R
+. This

defines the memoryless mapping

X → Ỹ , (Φ, Ω)

where Φ is a binary random variable which is affected by X, and Ω is a non-negative

random variable which is not affected by X. Note that due to the symmetry of

the communication channel, the joint distribution of the pair (Φ, Ω) is equal to the

one which corresponds to the pair representing the sign and magnitude of LLR(Y ).

Hence,

fΩ(ω) =





a(ω) + a(−ω) = (1 + e−ω) a(ω) if ω > 0

a(0) if ω = 0
(2.59)

where we rely on the symmetry property of the pdf a.

Following the lines which lead to (2.15), we obtain

H(X|Y) ≥ nR − H(Ỹ) + nH(Ỹ ) − nC. (2.60)

In order to get a lower bound on H(X|Y), we calculate the entropy of Ỹ and also

obtain an upper bound on the entropy of Ỹ. The calculation of the first entropy is

direct

H(Ỹ ) = H(Φ, Ω)

= H(Ω) + H(Φ|Ω)

= H(Ω) + Eω [H(Φ|Ω = ω)]

= H(Ω) + 1 (2.61)
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where the last transition is due to the fact that given the absolute value of the LLR,

its sign is equally likely to be positive or negative. The entropy H(Ω) is not expressed

explicitly as it will cancel out later.

We now derive an upper bound on H(Ỹ).

H(Ỹ) = H
(
Φ1, Ω1, . . . , Φn, Ωn

)

= H(Ω1, . . . , Ωn) + H
(
Φ1, . . . , Φn |Ω1, . . . , Ωn

)

= nH(Ω) + H
(
Φ1, . . . , Φn |Ω1, . . . , Ωn

)
. (2.62)

Define the syndrome vector

S = (Φ1, . . . , Φn) HT

where H is an arbitrary full-rank parity-check matrix of the binary linear block code
C, and let M be the index of the vector (Φ1, . . . , Φn) in the coset which corresponds to

S. Since each coset has exactly 2nR elements which are equally likely then H(M) =

nR, and we get

H
(
(Φ1, . . . , Φn) | (Ω1, . . . , Ωn)

)
= H(S, M | (Ω1, . . . , Ωn)

)

≤ H(M) + H
(
S | (Ω1, . . . , Ωn)

)

= nR + H
(
S | (Ω1, . . . , Ωn)

)

≤ nR +

n(1−R)∑

j=1

H
(
Sj | (Ω1, . . . , Ωn)

)
(2.63)

Since XHT = 0 for any codeword X, then

S = (Θ1, . . . , Θn) HT .

which is independent of the transmitted codeword. Consider the jth parity-check
equation, and assume that it involves k variables whose indices are i1, . . . , ik. Then,

the component Sj of the syndrome is equal to 1 if and only if there is an odd number

of ones in the random vector (Θi1, . . . , Θik).

Lemma 2.5 If the j-th component of the syndrome S involves k variables whose

indices are i1, i2, . . . , ik, then

Pr
(
Sj = 1 | (Ωi1, . . . , Ωik) = (α1, . . . , αk)

)
=

1

2

[
1 −

k∏

m=1

tanh
(αm

2

)]
. (2.64)

Proof: Due to the symmetry of the channel

Pm , Pr(Θim = 1 |Ωim = αm)

=
a(−αm)

a(αm) + a(−αm)

=
1

1 + eαm
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Substituting this result in [30, Lemma 4.1] gives

Pr
(
Sj = 1 | (Ωi1, . . . , Ωik) = (α1, . . . , αk)

)

=
1

2

[
1 −

k∏

m=1

(1 − 2Pm)

]

=
1

2

[
1 −

k∏

m=1

tanh
(αm

2

)]
, m = 1, . . . , k.

We therefore obtain from Lemma 2.5 that

H
(
Sj |(Ωi1 , . . . , Ωik) = (α1, . . . , αk)

)
= h2

(
1

2

[
1 −

k∏

m=1

tanh
(αm

2

)])

and by taking the statistical expectation over the k random variables Ωi1 , . . . , Ωik , we

get

H
(
Sj|Ωi1 , . . . , Ωik

)

=

∫ ∞

0

. . .

∫ ∞

0

h2

(
1

2

[
1 −

k∏

m=1

tanh
(αm

2

)]) k∏

m=1

fΩ(αm) dα1dα2 . . . dαk (2.65)

= 1 − 1

2 ln 2

∞∑

p=1

{
1

p(2p − 1)

(∫ ∞

0

fΩ(α) tanh2p
(α

2

)
dα

)k
}

where the equality in the last transition is proved in Appendix 2.B.2. Hence, since

n(1 − R)Γk designates the number of parity-check equations of degree k, then

n(1−R)∑

j=1

H
(
Sj |Ω1, . . . , Ωn

)

= n(1 − R)

[
1 − 1

2 ln 2

∑

k

{
Γk

∞∑

p=1

1

p(2p − 1)

(∫ ∞

0

fΩ(α) tanh2p
(α

2

)
dα

)k
}]

= n(1 − R)

[
1 − 1

2 ln 2

∑

k

{
Γk

∞∑

p=1

g k
p

p(2p − 1)

}]
(2.66)

where the last equality follows from (2.57) and (2.59). By combining (2.62), (2.63)

and (2.66), we get the following upper bound on H(Ỹ):

H(Ỹ) ≤ nH(Ω) + nR + n(1 − R)

[
1 − 1

2 ln 2

∑

k

{
Γk

∞∑

p=1

g k
p

p(2p − 1)

}]

= nH(Ω) + nR + n(1 − R)

[
1 − 1

2 ln 2

∞∑

p=1

{
1

p(2p − 1)

∑

k

Γkg
k
p

}]

= nH(Ω) + nR + n(1 − R)

(
1 − 1

2 ln 2

∞∑

p=1

Γ(gp)

p(2p − 1)

)
. (2.67)
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Finally, the equality in (2.61) and the upper bound on H(Ỹ) given in (2.67) are

substituted in the RHS of (2.60). This provides the lower bound on the conditional

entropy H(X|Y) given in (2.56), and completes the proof of this proposition.

Remark 2.2 For the particular case of a BEC with erasure probability p, the capac-

ity is C = 1 − p bits per cannel use. The conditional pdf of the LLR, given that the

0 is transmitted, is equal to

a(l) = p∆0(l) + (1 − p)∆∞(l)

where the function ∆a designates the Dirac Delta function at the point a. We obtain

from (2.57) that gm = 1 − p for all m ∈ N, so (2.56) gives

H(X|Y)

n
≥ p − (1 − R)

[
1 − 1

2 ln 2

∞∑

m=1

Γ(1 − p)

m(2m − 1)

]

= p − (1 − R)
[
1 − Γ(1 − p)

]
(2.68)

where this equality above follows since
∞∑

m=1

1

2m(2m − 1)
= ln 2.

This lower bound on the conditional entropy for the BEC coincides with the result

proved in [81, Eqs. (33) and (34)]. The result there was obtained by the derivation

of an upper bound on the rank of HE which is a sub-matrix of H whose columns

correspond to the variables erased by the BEC.

Discussion: The proof of Proposition 2.3 relies on the analysis of an equivalent

channel rather than a degraded (quantized) channel. We therefore expect the lower

bound in the RHS of (2.56) to be tighter than the one in the RHS of (2.36). By

following the derivation in (2.60)–(2.63) gives

H(X|Y)

n
≥ 1 − C − 1

n

n(1−R)∑

j=1

H(Sj|Ω1, . . . , Ωn) (2.69)

where the random variables Ω1, . . . , Ωn are defined in (2.58) and Sj is the j-th compo-

nent of the syndrome. The lower bound in (2.56) is in fact an explicit expression for

the above inequality where the side information Ω is the absolute value of the LLR

without quantization. From the discussion following Proposition 2.2, the bound in

(2.36) is of the same form, except that the side-information Ω1, . . . , Ωn is a quantized

version of the absolute value of the LLR. Hence, from the information processing

inequality it follows the indeed (2.56) is a tighter lower bound on the conditional

entropy than (2.36) for any number of quantization levels.
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Theorem 2.5 [“Un-Quantized” Lower Bound on the Asymptotic Parity-

Check Density of Binary Linear Block Codes] Let {Cm} be a sequence of

binary linear codes achieving a fraction 1− ε of the capacity C of an MBIOS channel

with vanishing bit error probability. Let Hm be an arbitrary full-rank parity-check

matrix of the code Cm, and denote its density by ∆m. Then, the asymptotic density

satisfies

lim inf
m→∞

∆m ≥ K1 + K2 ln 1
ε

1 − ε
(2.70)

where

K1 = K2 ln

(
ξ (1 − C)

C

)
, K2 =

1 − C

C

1

ln
(

1
g1

) , (2.71)

g1 is introduced in (2.57), and

ξ ,

{
1 for a BEC

1
2 ln 2

otherwise
. (2.72)

Proof: From the lower bound on H(X |Y)
n

in Eq. (2.56) and Lemma 2.2 (see p. 33),

we obtain that if {Cm} is a sequence of binary linear block codes which achieves a

fraction 1 − ε of the channel capacity with vanishing bit error probability, then

1 − C −
(
1 − (1 − ε)C

)
(

1 − 1

2 ln 2

∞∑

p=1

Γ(gp)

p(2p − 1)

)
≤ 0

where Γ(x) ,
∑

k Γkx
k is the asymptotic right degree distribution from the node

perspective which corresponds to the sequence of parity-check matrices {Hm}. Since
∑

k kΓk = aR is the average right degree, then from the convexity of the exponential

function, we obtain by invoking Jensen’s inequality that

1 − C −
(
1 − (1 − ε)C

) [
1 − 1

2 ln 2

∞∑

p=1

g aR
p

p(2p − 1)

]
≤ 0. (2.73)

We derive now two different lower bounds on the infinite sum in the LHS of (2.73),

and compare them later. For the derivation of the lower bound in the first approach,

let us define the positive sequence

αp ,
1

ln 2

1

2p(2p − 1)
, p = 1, 2, . . . (2.74)

From (2.B.1) in the appendix, the substitution of x = 0 in both sides of the equality

gives that
∑∞

p=1 αp = 1, so the sequence {αp} forms a probability distribution. We
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therefore obtain that

1

2 ln 2

∞∑

p=1

g aR
p

p(2p − 1)

(a)
=

∞∑

p=1

{
αp

(∫ ∞

0

a(l)(1 + e−l) tanh2p

(
l

2

)
dl

)aR
}

(b)

≥
(∫ ∞

0

a(l)(1 + e−l)

∞∑

p=1

αp tanh2p

(
l

2

)
dl

)aR

(c)
=

(∫ ∞

0

a(l)(1 + e−l)

[
1 − h2

(
1

2

[
1 − tanh

(
l

2

)])]
dl

)aR

(d)
=

(∫ ∞

0

a(l)(1 + e−l)

[
1 − h2

(
1

1 + el

)]
dl

)aR

(e)
= CaR (2.75)

where equality (a) follows from (2.57) and (2.74), inequality (b) follows from Jensen’s

inequality, equality (c) follows from (2.74) and (2.B.1), equality (d) follows from the

identity tanh(x) = e2x−1
e2x+1

, and equality (e) follows from the relation between the

capacity of an MBIOS channel and the pdf of the absolute value of the LLR (see [74,

Lemma 3.13]).

For an alternative derivation of the lower bound of the infinite series, we can

truncate the infinite sum in the RHS of (2.73) and take into account only the first

term in this series. This gives

1

2 ln 2

∞∑

p=1

g aR
p

p(2p − 1)
≥ g aR

1

2 ln 2
(2.76)

which follows from (2.57) since gp ≥ 0 for all p ∈ N.

In order to compare the tightness of the two lower bounds in (2.75) and (2.76),

we first compare the bases of their exponents (i.e., g1 and C). To this end, it is easy

to verify that

tanh2

(
l

2

)
≥ 1 − h2

(
1

1 + el

)
l ∈ [0,∞)

with an equality if and only if l = 0 or l → ∞. To show this, we start from equality

(2.B.1), use the inequality (1 − 2x)2p ≤ (1 − 2x)2 for p ∈ N and 0 ≤ x ≤ 1, and the

equality

∞∑

p=1

1

2p(2p − 1)
= ln 2 to finally get

h2(x) ≥ 1 − (1 − 2x)2 , 0 ≤ x ≤ 1.
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Hence, from (2.75) and (2.76), this gives g1 ≥ C with equality if and only if

the MBIOS channel is a BEC. Therefore, up to the multiplicative constant 1
2 ln 2

, the

second lower bound is tighter than the first one. However, we note that for the BEC,

the first bound is tighter. It gives an improvement by a factor of 2 ln 2 ≈ 1.386.

We will therefore continue the analysis based on the second bound in (2.76), and

then give the potential improvement which follows from the first bound in (2.75) for

a BEC. From (2.73) and (2.76), we obtain that

1 − C −
(
1 − (1 − ε)C

)(
1 − g aR

1

2 ln 2

)
≤ 0.

Since g1 ≤ 1 (where equality is achieved for a noiseless channel), then the asymptotic

average right degree (aR) satisfies the lower bound

aR ≥ ln
(

1
2 ln 2

(
1 + 1−C

εC

))

ln
(

1
g1

) .

By dropping the 1 inside the logarithm in the numerator, we obtain that

aR > K ′
1 + K ′

2 ln

(
1

ε

)
(2.77)

where K ′
1 =

ln( 1
2 ln 2

1−C
C )

ln
�

1
g1

� and K ′
2 = 1

ln
�

1
g1

� . Finally, since for a full-rank parity-check

matrix, the parity-check density and average right degree are related by the equality

∆ =
(

1−R
R

)
aR, then we obtain the following lower bound on the asymptotic parity-

check density:

lim inf
m→∞

∆m >
1 − (1 − ε)C

(1 − ε)C

(
K ′

1 + K ′
2 ln

(
1

ε

))

>
K1 + K2 ln

(
1
ε

)

1 − ε
(2.78)

where K1,2 , 1−C
C

K ′
1,2. For the BEC, this lower bound can be improved by using the

first bound in (2.75). In this case, g1 = C = 1 − p where p designates the erasure

probability of the BEC, so the additive coefficient K1 in the RHS of (2.70) is improved

to

K1 =
p

1 − p

ln
(

p

1−p

)

ln
(

1
1−p

) .

This concludes the proof of this theorem.
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Remark 2.3 For a BEC, the lower bound on the asymptotic parity-check density

stated in Theorem 2.5 coincides with the bound for the BEC in [81, Eq. (3)]. This

lower bound was demonstrated in [81, Theorem 2.3] to be tight. This is proved by

showing that the sequence of right-regular LDPC ensembles of Shokrollahi [93] is

optimal in the sense that it achieves (up to a small additive coefficient) the lower

bound on the asymptotic parity-check density for the BEC.

For a general MBIOS channel (other than the BEC), we show in the proof above

that the preferable logarithmic growth rate of the lower bound on the parity-check

density is achieved by using the bound which follows from (2.76). However, we note

that the lower bound on the parity-check density which follows from (2.75) is universal

w.r.t. all MBIOS channels with the same capacity.

Remark 2.4 The lower bound on the parity-check density in Theorem 2.5 is uni-

formly tighter than the one in [81, Theorem 2.1] (except for the BSC and BEC where

they coincide). For a proof of this claim, the reader is referred to Appendix 2.C.1.

Based on the proof of Theorem 2.5, we prove and discuss an upper bound on the

asymptotic rate of every sequence of binary linear codes for which reliable communi-

cation is achievable. The bound refers to ML decoding, and is therefore valid for any

sub-optimal decoding algorithm. Hence the following result also provides an upper

bound on the achievable rate of ensembles of LDPC codes under iterative decoding,

where the transmission takes places over an MBIOS channel.

Corollary 2.3 [Upper Bound on Achievable Rates] Let {Cm} be a sequence

of binary linear block codes whose codewords are transmitted with equal probability

over an MBIOS channel, and assume that the block lengths of these codes tend to

infinity as m → ∞. Let Γk,m be the fraction of the parity-check nodes of degree k for

arbitrary representations of the codes Cm by bipartite graphs which corresponds to a

full-rank parity-check matrix, and assume the limit Γk , limm→∞ Γk,m exits. Then

in the limit where m → ∞, a necessary condition on the asymptotic achievable rate

(R) for obtaining vanishing bit error probability is

R ≤ 1 − 1 − C

1 − 1

2 ln 2

∞∑

p=1

Γ(gp)

p(2p − 1)

(2.79)

where Γ(x) ,
∑

k Γkx
k, and gp is given in (2.57).

Proof: This upper bound on the achievable rate follows immediately from Lemma 2.2

(see p. 33) and the lower bound on the conditional entropy in Proposition 2.3. The
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upper bound on R follows since the bit error probability of the sequence of codes

{Cm} vanishes as we let m tend to infinity.

Remark 2.5 We note that the upper bound on the achievable rate in the RHS of

(2.79) doesn’t involve maximization, in contrast to the bound in the RHS of (2.55).

The second term of the maximization in the latter bound follows from considerations

related to the BEC where such an expression is not required in the RHS of (2.79).

The reader is referred to Appendix 2.C.2 for a proof of this claim.

Corollary 2.4 [Lower Bounds on the Bit Error Probability of LDPC Codes]

Let C be a binary linear block code of rate R whose transmission takes place over

an MBIOS channel with capacity C. For an arbitrary full-rank parity-check matrix

H of the code C, let Γk designate the fraction of parity-check equations that involve

k variables, and Γ(x) ,
∑

k Γkx
k be the right degree distribution from the node

perspective which refers to the corresponding bipartite graph of C. Then, under ML

decoding (or any other decoding algorithm), the bit error probability (Pb) of the code

satisfies

h2(Pb) ≥ 1 − C

R
+

1 − R

2R ln 2

∞∑

p=1

Γ(gp)

p(2p − 1)
(2.80)

where gp is introduced in (2.57).

Proof: This follows directly by combining (2.25) and (2.56).

We now introduce the definition of normalized parity-check density from [81], and

derive an improved lower bound on the bit error probability (as compared to [81,

Theorem 2.5]) in terms of this quantity.

Definition 2.4 [Normalized parity-check density [81]] Let C be a binary linear

code of rate R, which is represented by a parity-check matrix H whose density is ∆.

The normalized density of H , call it t = t(H), is defined to be t = R∆
2−R

.

In the following, we clarify the motivation for the definition of a normalized parity-

check density. Let us assume that C is a binary linear block code of length n and

rate R, and suppose that it can be represented by a bipartite graph which is cycle-

free. From [81, Lemma 2.1], since this bipartite graph contains (2 − R)n − 1 edges,

connecting n variable nodes with (1 − R)n parity-check nodes without any cycles,

then the parity-check density of such a cycle-free code is ∆ = 2−R
R

− 1
nR

. Hence, in

the limit where we let n tend to infinity, the normalized parity-check density of a

cycle-free code tends to 1. For codes which are represented by bipartite graphs with
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cycles, the normalized parity-check density is above 1. As shown in [81, Corollary

2.5], the number of fundamental cycles in a bipartite graph which represents an ar-

bitrary linear block C grows linearly with the normalized parity-check density. The

normalized parity-check density therefore provides a measure for the number of cycles

in bipartite graphs representing linear block codes. It is well known that cycle-free

codes are not good in terms of performance, even under ML decoding [103]; hence,

good error-correcting codes (e.g., LDPC codes) should be represented by bipartite

graphs with cycles. Following the lead of [81], providing a lower bound on the asymp-

totic normalized parity-check density in terms of their rate and gap to capacity gives

a quantitative measure for the number of fundamental cycles of bipartite graphs rep-

resenting good error correcting codes. In the following, we provide such an improved

bound as compared to the bound given in [81, Theorem 2.5]. In the continuation (see

Section 2.5.2), the resulting improvement is exemplified.

First, we note that from Definition 2.4, it follows that the relation between the

normalized density of a full-rank parity-check matrix and the corresponding average

right degree is t =
(

1−R
2−R

)
aR so the normalized parity-check density grows linearly

with the average right degree (which is directly linked to the decoding complexity per

iteration of LDPC codes under message-passing decoding) where the scaling factor

depends on the code rate R.

Since
∑

k kΓk = aR, then by applying Jensen’s inequality to the RHS of (2.80),

we get the following lower bound on the bit error probability:

h2(Pb) ≥ 1 − C

R
+

1 − R

2R ln 2

∞∑

p=1

g
(2−R)t
1−R

p

p(2p − 1)
. (2.81)

This lower bound on the bit error probability is tighter than the bound given in [81,

Eq. (23)] because of two reasons: Firstly, by combining inequality (2.76) with the

inequality proved in Appendix 2.C.1, we obtain that

1

2 ln 2

∞∑

p=1

g
(2−R)t
1−R

p

p(2p − 1)
≥ (1 − 2w)

2(2−R)t
1−R

2 ln 2
.

Secondly, the further improvement in the tightness of the new bound is obtained by

dividing the RHS of (2.81) by R (where R ≤ 1), as compared to the RHS of [81,

Eq. (23)].

The bounds in (2.80) and (2.81) become trivial when the RHS of these inequalities

are non-positive. Let the (multiplicative) gap to capacity be defined as ε , 1 − R
C

.

Analysis shows that the bounds in (2.80) and (2.81) are useful unless ε ≥ ε0. For the
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bound in the RHS of (2.80), ε0 gets the form

ε0 =
(1 − C)B

C(1 − B)
, B ,

1

2 ln 2

∞∑

p=1

Γ(gp)

p(2p − 1)
(2.82)

and for the bound in the RHS of (2.81), ε0 is the unique solution of the equation

−ε0C +
1 − (1 − ε0)C

2 ln 2

∞∑

p=1

g
(2−(1−ε0)C)t
1−(1−ε0)C

p

p(2p − 1)
= 0. (2.83)

For a proof of (2.82) and (2.83), the reader is referred to Appendices 2.C.3 and

2.C.4, respectively. Similarly to [81, Eq. (25)], we note that ε0 in (2.83) forms a

lower bound on the gap to capacity for an arbitrary sequence of binary linear block

codes achieving vanishing bit error probability over an MBIOS channel; the bound

is expressed in terms of their asymptotic rate R and normalized parity-check density

t. It follows from the transition from (2.80) to (2.81) that the lower bound on the

gap to capacity in (2.83) is looser as compared to the one given in (2.82). However,

the bound in (2.83) solely depends on the normalized parity-check density, while the

bound in (2.82) requires full knowledge of the degree distribution for the parity-check

nodes.

Discussion: Due to the symmetry property, one can show that for any MBIOS

channel, the conditional probability density function of the random variable T =

Pr(X = 1|Y ) − Pr(X = −1|Y ) satisfies the property

fT (t) = fT (−t)

(
1 + t

1 − t

)
, −1 ≤ t ≤ 1.

The relation T = tanh
(

L
2

)
forms a one-to-one correspondence between the value of

the random variable T and the value of the random variable L for the LLR. This

implies that I(X; L) = I(X; T ). It was shown in [91, Lemma 2.4] that the moments

of T satisfy the property

E[T 2p] = E[T 2p−1], p ∈ N .

Based on the above equality, it follows (see [91, Proposition 2.6]) that the mutual

information between X and L can be expressed in the following form:

I(X; L) = I(X; T )

=

∫ 1

−1

fT (t) log2(1 + t)dt

=
1

ln 2

∞∑

p=1

1

2p(2p − 1)
E[T 2p]

=
1

ln 2

∞∑

p=1

gp

2p(2p − 1)
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where the last transition follows from (2.57) and the symmetry property, giving the

equality

gp =

∫ ∞

−∞
a(l) tanh2p

(
l

2

)
dl = E[T 2p].

Therefore, the mutual information is expressed as a sum of even moments of T (exactly

like the lower bound on the conditional entropy in (2.56)). Similar properties also

appear in [62, Lemma 3]. This gives insight to the reason for being able to express

the bound on the entropy in (2.56) as a sum of one-dimensional integrals with even

moments of the tangent hyperbolic function.

2.5 Numerical Results

We present here numerical results for the information-theoretic bounds derived in

Sections 2.3 and 2.4. As expected, they significantly improve the numerical results

presented in [17, Section 4] and [81, Section 4]. This improvement is attributed to the

fact that, in contrast to [17, 81], in the derivation of the bounds in this paper, we do

not perform a two-level quantization of the LLR which in essence converts the arbi-

trary MBIOS channel (whose output may be continuous) to a BSC. Throughout this

section, we assume transmission of the codes over the binary-input AWGN channel.

We note that the statements in Sections 2.2–2.4 refer to the case where the parity-

check matrices are full rank. Though it seems like a feasible requirement for specific

linear codes, this poses a problem when considering ensembles of LDPC codes. In

the latter case, a parity-check matrix, referring to a randomly chosen bipartite graph

with a given pair of degree distributions, may not be full rank (one can even construct

LDPC ensembles where the design rate is strictly less than their asymptotic rate as

the block length goes to infinity). Considering ensembles of LDPC codes, it follows

from the proof of Propositions 2.1, 2.2 and 2.3 that the statements stay valid with the

following modifications: the actual code rate R of a code which is randomly picked

from the ensemble is replaced by the design rate (Rd) of the ensemble, and {Γk}
becomes the degree distribution of the parity-check nodes referring to the original

bipartite graph which represents a parity-check matrix, possibly not of full rank. The

reason for the validity of the bound with the suggested modification is that instead

of bounding the entropy of the syndrome by the sum of the entropies of its n(1−R)

independent components, we sum over all (1−Rd)n components (where since Rd ≤ R,

some of these components are possibly linearly dependent). It follows from the proofs

that the entropy of the transmitted codeword (X) cancels out with the entropy of the

index L of the received vector in the appropriate coset (see e.g. (2.19)), regardless
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of the rank of H . By doing this modification, the bound becomes looser when the

asymptotic rate of the codes is strictly above the design rate of the ensemble. In light

of this modification, we note that the fraction Γk of nodes of degree k is calculated

in terms of the degree distribution ρ by equation (2.6), which gives

Γk =
ρk

k

1
∫ 1

0

ρ(x) dx

.

Though the bounds in Sections 2.3–2.4 improve on the bounds in [17], this con-

clusion about the possible replacement of the code rate with the design rate in case

that the parity-check matrices are not full rank was also noted in [17, p. 2439].

Based on [60, Lemma 7] (see Lemma 2.1 on p. 25), it was verified that the design

rates of the LDPC ensembles presented in this section are equal with probability 1 to

the asymptotic rates of codes from these ensembles. This allows one to consider the

Shannon capacity limit for these ensembles by referring to the capacity values which

correspond to their design rates (see Tables 2.1–2.3).

2.5.1 Thresholds of LDPC Ensembles under ML Decoding

Tables 2.1–2.3 provide bounds on the thresholds of LDPC ensembles under ML de-

coding. They also give an indication on the inherent loss in performance due to the

sub-optimality of iterative decoding.

LDPC Capacity Lower Bounds Upper DE
Ens. Limit 2-Level 4-Level 8-Level Un-Quantized Bound [41] Threshold

(3,6) +0.187 dB +0.249 dB +0.332 dB +0.361 dB +0.371 dB +0.673 dB +1.110 dB
(4,6) −0.495 dB −0.488 dB −0.472 dB −0.463 dB −0.463 dB −0.423 dB +1.674 dB
(3,4) −0.794 dB −0.761 dB −0.713 dB −0.694 dB −0.687 dB −0.510 dB +1.003 dB

Table 2.1: Comparison of thresholds for Gallager’s ensembles of regular LDPC
codes transmitted over the binary-input AWGN channel. The 2-level lower bound
on the threshold of Eb

No
refers to ML decoding, and is based on [17, Theorem 1] (see

also [81, Table II]). The 4-level, 8-level and un-quantized lower bounds apply to ML
decoding, and are based on Corollaries 2.1, 2.2 and 2.3, respectively. The upper

bound on the threshold of Eb

No
holds under ’typical pairs’ decoding [41] (and hence,

also under ML decoding). The DE thresholds are based on the density evolution
analysis, providing exact thresholds under the iterative sum-product decoding

algorithm [73].

The bounds on the achievable rates derived in [17] and Corollaries 2.1, 2.2 and 2.3

provide lower bounds on the Eb

N0
thresholds under ML decoding. For Gallager’s regular
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LDPC ensembles, the gap between the thresholds under ML decoding and the exact

thresholds under the sum-product decoding algorithm (which are calculated using

density-evolution analysis) are rather large. For this reason, we also compare the

lower bounds on the Eb

N0
thresholds under ML decoding with upper bounds on the

Eb

N0
thresholds which rely on ”typical pairs decoding” [41]; an upper bound on the

Eb

N0
thresholds under an arbitrary sub-optimal decoding algorithm (e.g., “typical pairs

decoding”) also forms an upper bound on these thresholds under ML decoding. It is

shown in Table 2.1 that for regular LDPC ensembles, the gap between the thresholds

under iterative sum-product decoding and ML decoding is rather large (this follows

by comparing the columns referring to the DE threshold and the upper bound based

on “typical pairs decoding”). This large gap is attributed to the sub-optimality of

belief propagation decoding for regular LDPC ensembles. On the other hand, it is

also demonstrated in Table 2.1 that the gap between the upper and lower bounds on

the thresholds under ML decoding is much smaller. For example, according to the

numerical results in Table 2.1, the inherent loss in the asymptotic performance due

to the sub-optimality of belief propagation for Gallager’s ensemble of (4, 6) regular

LDPC codes (whose design rate is 1
3

bits per channel use) ranges between 2.097 and

2.137 dB.

λ(x) ρ(x) Lower Bounds DE
2-Level 4-Level 8-Level Un-Quantized Threshold

0.38354x +0.04237x2 +
0.57409x3

0.24123x4+
0.75877x5

0.269 dB 0.370 dB 0.404 dB 0.417 dB 0.809 dB

0.23802x +0.20997x2 +
0.03492x3 +
0.12015x4+0.01587x6+
0.00480x13 +0.37627x14

0.98013x7+
0.01987x8

0.201 dB 0.226 dB 0.236 dB 0.239 dB 0.335 dB

0.21991x +0.23328x2 +
0.02058x3 +
0.08543x5+0.06540x6+
0.04767x7+0.01912x8+
0.08064x18 +0.22798x19

0.64854x7 +
0.34747x8 +
0.00399x9

0.198 dB 0.221 dB 0.229 dB 0.232 dB 0.310 dB

0.19606x +0.24039x2 +
0.00228x5 +
0.05516x6+0.16602x7+
0.04088x8+0.01064x9+
0.00221x27 +0.28636x29

0.00749x7+
0.99101x8+
0.00150x9

0.194 dB 0.208 dB 0.214 dB 0.216 dB 0.274 dB

Table 2.2: Comparison of thresholds for rate one-half ensembles of irregular LDPC
codes transmitted over the binary-input AWGN channel. The Shannon capacity
limit corresponds to Eb

No
= 0.187 dB. The 2-level, 4-level, 8-level and un-quantized

lower bounds on the threshold refer to ML decoding, and are based on [17,
Theorem 2], Corollaries 2.1, 2.2 and 2.3, respectively. The degree distributions of
the ensembles and their DE thresholds are based on density evolution analysis

under iterative sum-product decoding [73], and are taken from [71, Tables 1 and 2].
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λ(x) ρ(x) Lower Bounds DE
2-Level 4-Level 8-Level Un-Quantized Threshold

0.302468x + 0.319447x2 +
0.378085x4 x11 1.698 dB 1.786 dB 1.815 dB 1.825 dB 2.049 dB

0.244067x + 0.292375x2 +
0.463558x6 x13 1.664 dB 1.718 dB 1.736 dB 1.742 dB 1.874 dB

0.205439x + 0.255432x2 +
0.0751187x4 +
0.1013440x5+0.3626670x11

x15 1.647 dB 1.680 dB 1.691 dB 1.695 dB 1.763 dB

Table 2.3: Comparison of thresholds for rate-3
4

ensembles of irregular LDPC codes
transmitted over the binary-input AWGN channel. The Shannon capacity limit

corresponds to Eb

No
= 1.626 dB. The 2-level, 4-level, 8-level and un-quantized lower

bounds on the threshold refer to ML decoding, and are based on [17, Theorem 2],
Corollaries 2.1, 2.2 and 2.3, respectively. The degree distributions of the ensembles

and their DE thresholds are based on density evolution analysis under iterative
sum-product decoding [73], and are taken from [107].

For carefully chosen ensembles of LDPC codes, it is shown in Tables 2.2 and 2.3

that the gap between the DE thresholds under the sum-product decoding algorithm

and the improved lower bounds on the Eb

N0
thresholds derived in this paper is already

rather small. This indicates that for the degree distributions which are provided by

the LDPC optimizer [107], the asymptotic degradation in performance due to the

sub-optimality of belief propagation is marginal (it is observed from Tables 2.2 and

2.3 that for several LDPC ensembles, this degradation in the asymptotic performance

is at most in the order of hundredths of a decibel).

The plots in Figure 2.2 compare different lower bounds on the Eb

N0
-threshold under

ML decoding of right-regular LDPC ensembles. The plots refer to a right degree

of 6 (upper plot) or 10 (lower plot). The following lower bounds are depicted in

these plots: the Shannon capacity limit, the 2-level quantization lower bound in [17,

Theorem 1], the 4 and 8-level quantization bounds of the LLR in Section 2.3, and

finally, the bound in Section 2.4 where no quantization of the LLR is performed. It

can be observed from the two plots in Figure 2.2 that the range of code rates where

there exists a visible improvement with the new lower bounds depends on the degree

of the parity-check nodes. In principle, the larger the value of the right-degree is,

then the improvement obtained by these bounds is more pronounced starting from a

higher rate code rate (e.g., for a right degree of 6 or 10, the improvement obtained

by the new bounds is observed for code rates starting from 0.35 and 0.55 bits per

channel use, respectively).
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Figure 2.2: Comparison between lower bounds on the Eb

N0
–thresholds under ML

decoding for right-regular LDPC ensembles with aR = 6 (upper plot) and aR = 10
(lower plot). The transmission takes place over the binary-input AWGN channel.
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2.5.2 Lower Bounds on the Bit Error Probability of LDPC

Codes

By combining the lower bound in Proposition 2.3 and Lemma 2.2, we obtain in Corol-

lary 2.4 an improved lower bound on the bit error probability of binary linear block

codes, as compared to the one given in [81, Theorem 2.5]. The plot of Figure 2.3

presents a comparison of these lower bounds for binary linear block codes where the

bounds rely on (2.81) and [81, Theorem 2.5]. They are plotted as a function of the
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Figure 2.3: Lower bounds on the bit error probability for any binary linear block
code transmitted over a binary-input AWGN channel whose capacity is 1

2
bits per

channel use. The bounds are depicted in terms of the normalized density of an
arbitrary parity-check matrix which represents the code, and the curves correspond
to code rates which are a fraction 1 − ε of the channel capacity (for different values
of ε). The bounds depicted in dashed lines are based on [81, Theorem 2.5], and the

bounds in solid lines are given in Corollary 2.4.
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normalized density of an arbitrary parity-check matrix (see definition 2.4). In our

setting, the capacity of the channel is 1
2

bit per channel use, and the bounds are

depicted for binary linear block codes whose rate is a fraction 1−ε of the channel ca-

pacity. To demonstrate the advantage of the lower bound on the bit error probability

in (2.81) over the lower bound derived in [81, Theorem 2.5], let us assume that one

wants to design a binary LDPC code which achieves a bit-error probability of 10−6

at a rate which is 99% of the channel capacity. The curve of the lower bound from

[81] for ε = 0.01 implies that the normalized density of an arbitrary parity-check

matrix which represents the code (see Definition 2.4 on p. 55) should be at least

4.33, while the curve depicting the bound from (2.81) strengthens this requirement

to a normalized density (of each parity-check matrix) of at least 5.68. Translating

this into terms of parity-check density (which is also the complexity per iteration for

message-passing decoding) yields minimal parity-check densities of 13.16 and 17.27,

respectively (the minimal parity-check density is given by ∆min = (2−R)tmin

R
). It is

reflected from Figure 2.3 that as the gap to capacity ε tends to zero, the lower bound

on the normalized density of an arbitrary parity-check matrix (t), which represents a

code which achieves low error probability for a rate of R = (1−ε)C grows significantly.

2.5.3 Lower Bounds on the Asymptotic Parity-Check Den-

sity

The lower bound on the parity-check density derived in Theorem 2.5 enables to assess

the tradeoff between asymptotic performance and asymptotic decoding complexity

(per iteration) of an iterative message-passing decoder. This bound tightens the

lower bound on the asymptotic parity-check density derived in [81, Theorem 2.1].

Figure 2.4 compares these bounds for codes of rate 1
2

(left plot) and 3
4

(right plot)

where the bounds are plotted as a function of Eb

N0
. It can be observed from Figure 2.4

that as Eb

N0
increases, the advantage of the bound in Theorem 2.5 over the bound in

[81, Theorem 2.1] diminishes. This follows from the fact that as the value of Eb

N0
is

increased, the two-level quantization of the LLR used in [17] and [81, Theorem 2.1]

better captures the true behavior of the MBIOS channel. It is also reflected in this

figure that as ε tends to zero (i.e., when the gap to capacity vanishes), the slope of the

bounds becomes very sharp. This is due to the logarithmic behavior of the bounds.
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Figure 2.4: Comparison between lower bounds on the asymptotic parity-check
density of binary linear block codes where the transmission takes place over a

binary-input AWGN channel. The dashed line refers to [81, Theorem 2.1], and the
solid line refers to Theorem 2.5. The left and right plots refer to code rates of 1

2
and

3
4
, respectively. The Shannon capacity limit for these code rates corresponds to Eb

N0

of 0.187 dB and 1.626 dB, respectively.
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2.6 Summary and Outlook

The outstanding performance of low-density parity-check (LDPC) codes under iter-

ative decoding is attributed to the sparseness of the parity-check matrices of these

codes. Motivated to consider how sparse parity-check matrices of binary linear block

codes can be as a function of their achievable rates and their gap to capacity, we derive

in this paper two kinds of bounds. The first category is some improved lower bounds

on the asymptotic density of parity-check matrices in terms of the gap to capacity,

and the second category is upper bounds on the achievable rates of binary linear

block codes (even under ML decoding). These bounds refer to the case where the

transmission takes place over memoryless binary-input output-symmetric (MBIOS)

channels, and improve the tightness of the bounds given in [17, 81] (as exemplified in

Section 2.5).

The information-theoretic bounds are valid for every sequence of binary linear

block codes, in contrast to high probability results which follow from probabilistic

tools (e.g., density evolution (DE) analysis under iterative message-passing decoding).

The bounds hold under maximum-likelihood (ML) decoding, and hence, they hold

in particular under any sub-optimal decoding algorithm. We apply the bounds to

ensembles of LDPC codes where the significance of these bounds is as follows: Firstly,

by comparing the new upper bounds on the achievable rates with thresholds provided

by DE analysis, we obtain rigorous bounds on the loss in performance of various LDPC

ensembles due to the sub-optimality of message-passing decoding (as compared to

ML decoding). Secondly, the parity-check density of binary linear block codes which

are represented by standard bipartite graphs can be interpreted as the complexity

per iteration under message-passing decoding. Therefore, by tightening the reported

lower bound on the asymptotic parity-check density (see [81, Theorem 2.1]), the new

bounds provide better insight on the tradeoff between the asymptotic performance

and the asymptotic decoding complexity of iteratively decoded LDPC codes. Thirdly,

the new lower bound on the bit error probability of binary linear block codes tightens

the reported lower bound in [81, Theorem 2.5] and provides a quantitative measure

to the number of fundamental cycles in the graph which should exist in terms of

the achievable rate (even under ML decoding) and its gap to capacity. It is well

known that cycle-free codes have poor performance [103], so the lower bound on the

minimal number of fundamental cycles in the graph (i.e., cycles which cannot be

decomposed into some more elementary cycles) as a function of the gap in rate to

capacity strengthens the result in [103] on the inherent limitation of cycle-free codes.
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The derivation of the bounds in Section 2.3 was motivated by the desire to gen-

eralize the results in [17, Theorems 1 and 2] and [81, Theorem 2.1]. The two-level

quantization of the log-likelihood ratio (LLR) which in essence replaces the arbitrary

MBIOS channel by a physically degraded binary symmetric channel (BSC), is mod-

ified in Section 2.3 to a quantized channel which better reflects the statistics of the

original channel (though the quantized channel is still physically degraded w.r.t. the

original channel). The number of quantization levels at the output of the new chan-

nel is an arbitrary integer power of 2. The calculation of the bounds in Section 2.3

is subject to an optimization of the quantization levels of the LLR, as to get the

tightest bounds within their form. In Section 2.4, we rely on the conditional pdf of

the LLR at the output of the MBIOS channel, and operate on an equivalent channel

without quantizing the LLR. This second approach finally leads to bounds which are

uniformly tighter than the bounds in Section 2.3. It appears to be even simpler to

calculate the un-quantized bounds in Section 2.4, as their calculation does not involve

the solution of any optimization equation related to the quantization levels. The com-

parison between the quantized and un-quantized bounds gives insight on the effect

of the number of quantization levels of the LLR (even if they are chosen optimally)

on the achievable rates, as compared to the ideal case where no quantization is done.

The results of such a comparison are shown in Tables 2.1–2.3 (see Section 2.5.1),

and indicate that the improvement in the tightness of the bounds when more than

8 levels of quantization are used is marginal (in the case that the quantization levels

are optimally determined). We also note that practically, the possibility to calcu-

late un-quantized bounds which are uniformly better than the quantized bounds was

facilitated due to an efficient transformation of the multi-dimensional integral in Ap-

pendix 2.B.2 into an infinite series of one-dimensional integrals whose convergence

rate is fast.

In [62], a new method for analyzing LDPC and low-density generator-matrix

(LDGM) codes under MAP decoding is introduced, based on tools from statistical

physics. It allows to construct lower bounds on the entropy of the transmitted message

given the received one. This bound involves the calculation of a supremum over all

probability densities of an expression, given as a sum of statistical expectations with

a number of terms growing exponentially with the maximal right and left degrees (see

[62, Eqs. (6.2) and (6.3)]); this imposes a considerable difficulty in their calculation.

It is of theoretical interest to see if the lower bound on the conditional entropy given

in (2.56) could be re-derived by plugging a specific density in [62, Eq. (6.2)] (this

question was posed in [61]). However, it is noted that the bound in (2.56) is simple to

calculate. Naturally, the optimized density in the bound in [62, Eqs. (6.2) and (6.3)]
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depends on the pair of degree distributions and the communication channel. Even if

it could be theoretically derived as a particular case of the general bound given in [62],

the simplicity of the calculation of the information-theoretic bounds in Sections 2.3

and 2.4 is of practical significance, especially in light of the fact that they provide

numerical results which are reasonably close to the optimized bounds in [62]. As an

example, for the binary erasure channel (BEC), the lower bounds on the thresholds

of various rate-1
2

regular LDPC ensembles under ML decoding were compared with

those provided in [62, Table 1], and the typical differences in the thresholds for these

ensembles were minor (in the order of 10−4). Note that the information-theoretic

bounds derived in this paper are valid for every binary linear block code (the transi-

tion to sequences of codes is later used to get an upper bound on the achievable rates

and a lower bound on the asymptotic parity-check density). Considering ensembles

of codes, one gets from [62] high probability results as the block length gets large, but

the performance of specific codes of finite length deviates from the average ensemble

performance. Since the bounding techniques which rely on statistical physics [62] do

not allow for a bound which is valid for every linear block code, it would be interest-

ing to get some theory that unifies the information-theoretic and statistical physics

approaches and provides bounds that are tight on average and valid code by code.

The bounds on the thresholds of LDPC ensembles under ML decoding depend

only on the degree distribution of their parity-check nodes and their design rate. For

a given parity-check degree distribution (ρ) and design rate (R), the bounds provide

an indication on the inherent gap to capacity which is independent of the choice of

the left degree distribution λ (as long as the pair of degree distributions (λ, ρ) yield

the design rate R). Sections 2.3 and 2.4 give universal bounds on the gap to capacity

for general LDPC ensembles over MBIOS channels, no matter what the degree of the

variable nodes is (as long as the rate is fixed). These bounds can be exploited to gain

insight on how good a specific design of degree distributions is in terms of the design

rate and the average right degree where this is done by comparing the DE thresholds

and the lower bounds on the ML thresholds, as in Tables 2.2 and 2.3 in Section 2.5.

On the other hand, the bounds are not necessarily tight for LDPC ensembles with a

given pair of degree distributions (λ, ρ) since the explicit influence of λ is not taken

into account except through the design rate of the ensemble. As a topic for further

research, it is suggested to examine the possibility of tightening the bounds for specific

ensembles by explicitly taking into account the exact characterization of λ (a possible

direction studied by the authors is based on the analysis of the average coset weight

distributions of ensembles of binary linear block codes which play a crucial role in

tightening the upper bound on the syndrome entropy [112]). The numerical results
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shown in Section 2.5 indicate, however, that these bounds are useful for assessing

the inherent gap to capacity of various LDPC ensembles. The gap to capacity is

an inherent limitation which is attributed to the finite average right degree of these

LDPC ensembles [81].

As a topic for further research, we also suggest to study a possible generalization

of the bounds to non-binary linear block codes. These generalized bounds can be

applied to the analysis of the ML performance of non-binary LDPC ensembles whose

transmission takes place over arbitrary discrete memoryless channels with possibly

different types of quantization [12].

The lower bound on the asymptotic parity-check density in [81, Theorem 2.1] and

its improvements in Sections 2.3 and 2.4 grow like the log of the inverse of the gap (in

rate) to capacity. The result in [81, Theorem 2.2] shows that a logarithmic growth rate

of the parity-check density is achievable for Gallager’s regular LDPC ensemble under

ML decoding when transmission takes place over an arbitrary MBIOS channel. These

results show that for any iterative decoder which is based on the representation of

the codes by Tanner graphs, there exists a tradeoff between asymptotic performance

and complexity which cannot be surpassed. Recently, it was shown in [65] that a

better tradeoff can be achieved by allowing more complicated graphical models which

involve a sufficient number of state nodes in the graph; for the particular case of the

BEC, the encoding and the decoding complexity of properly designed codes on graphs

remains bounded as the gap to capacity vanishes (see [65]).

In [85], the authors consider the achievable rates and decoding complexity of

LDPC codes over statistically independent parallel channels, and generalize in a non-

trivial way the un-quantized bounds introduced in Section 2.4. The bounds in [85] are

applied to randomly and intentionally punctured LDPC codes, and improved punctur-

ing theorems are derived as compared to those introduced in [65, Theorems 3 and 4].
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Appendices

2.A Some mathematical details related to the proofs

of the statements in Section 2.3.1

2.A.1 Proof of Lemma 2.2

We prove here Lemma 2.2. Since there is a one to one correspondence between the

codewords and the set of information bits used to encode them, then H(X|Y) =

H(U|Y) where the vector u = (u1, . . . , unR) denotes the sequence of information bits

used to encode the codeword x. Let P
(i)
b denote the probability of decoding the bit

ui erroneously given the received sequence at the output of the MBIOS channel, then

the bit error probability is given by

Pb =
1

nR

nR∑

i=1

P
(i)
b . (2.A.1)

This therefore gives

H(X|Y)

n
=

H(U|Y)

n
(a)

≤ 1

n

nR∑

i=1

H(Ui|Y)

(b)

≤ 1

n

nR∑

i=1

h2

(
P

(i)
b

)

(c)

≤ R h2

(
1

nR

nR∑

i=1

P
(i)
b

)

(d)
= R h2

(
Pb

)

where inequality (a) holds from the chain rule of the entropy and since conditioning

reduces entropy, inequality (b) follows from Fano’s inequality and since the code is

binary, inequality (c) is based on Jensen’s inequality and the concavity of the binary

entropy function (h2), and equality (d) follows from (2.A.1).

2.A.2 Derivation of the Optimization Equation in (2.24) and

Proving the Existence of its Solution

Derivation of the optimization equation (2.24): We derive here the optimization equa-

tion (2.24) which refers to the ”four-level quantization” lower bound on the parity-

check density (see p. 33).
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Let the function a designate the conditional pdf of the LLR at the output of the

original MBIOS channel, given the zero symbol is transmitted. In the following, we

express the transition probabilities of the degraded channel in Figure 2.1 (see p. 28)

in terms of the pdf a and the value of l:

p0 = Pr(Z = 0 |X = 0) =

∫ ∞

l

a(u) du (2.A.2)

p1 = Pr(Z = α |X = 0) =

∫ l

0+

a(u) du +
1

2

∫ 0+

0−
a(u) du (2.A.3)

p2 = Pr(Z = 1 + α |X = 0) =

∫ 0−

−l

a(u) du +
1

2

∫ 0+

0−
a(u) du (2.A.4)

p3 = Pr(Z = 1 |X = 0) =

∫ −l

−∞
a(u) du. (2.A.5)

We note that the integration of the function a from u = 0− to u = 0+ gives a non-zero

value if and only if there is a non-vanishing probability that the value of the LLR at

the output of the original channel is zero (e.g., a BEC). Otherwise, the contribution

of this integral to (2.A.3) and (2.A.4) vanishes. Since the channel is MBIOS, the

symmetry property [73] gives

a(u) = eu a(−u), ∀u ∈ R. (2.A.6)

Based on the expressions for the coefficients K1 and K2 in the lower bound on the

asymptotic parity-check density (2.22), then in order to find the tightest lower bound

then we need to maximize

(p1 − p2)
2

p1 + p2
+

(p0 − p3)
2

p0 + p3
(2.A.7)

w.r.t. the free parameter l ∈ R
+. From Eqs. (2.A.2)–(2.A.5) and the symmetry

property in (2.A.6)

p0 − p3 =

∫ ∞

l

a(u)(1 − e−u) du ⇒ ∂

∂l
(p0 − p3) = −a(l)(1 − e−l) (2.A.8)

p0 + p3 =

∫ ∞

l

a(u)(1 + e−u) du ⇒ ∂

∂l
(p0 + p3) = −a(l)(1 + e−l) (2.A.9)

p1 − p2 =

∫ l

0+

a(u)(1 − e−u) du ⇒ ∂

∂l
(p1 − p2) = a(l)(1 − e−l) (2.A.10)

p1 + p2 =

∫ l

0+

a(u)(1 + e−u) du ⇒ ∂

∂l
(p1 + p2) = a(l)(1 + e−l) (2.A.11)

so the calculation of the partial derivative of (2.A.7) w.r.t. l gives

∂

∂l

{
(p1 − p2)

2

p1 + p2
+

(p0 − p3)
2

p0 + p3

}

= −4 a(l)

{[(
p2

p1 + p2

)2

−
(

p3

p0 + p3

)2
]

+ e−l

[(
p1

p1 + p2

)2

−
(

p0

p0 + p3

)2
]}

.
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Since the first derivative of a function changes its sign at a neighborhood of any local

maxima or minima point, and since the pdf a is always non-negative, then the second

multiplicative term above is the one which changes its sign at a neighborhood of

l maximizing (2.A.7). For this value of l, the second multiplicative term vanishes,

which gives the optimization equation for l in (2.24).

Proof of existence of a solution to (2.24): In order to show that a solution to

(2.24) always exists, we will see how the LHS and the RHS of this equation behave as

l → 0+ and l → ∞. From (2.A.2)–(2.A.5), it follows that in the limit where l → ∞,

we get

p1 → 1 − w − Pr(LLR(Y ) = ∞|X = 0), p2 → w

where w is introduced in (2.2), and therefore

lim
l→∞

p2
2 + e−lp2

1

(p1 + p2)2
=

(
w

1 − Pr(LLR(Y ) = ∞|X = 0)

)2

. (2.A.12)

Since from the symmetry property

p3 =

∫ ∞

l

a(−u)du =

∫ ∞

l

e−ua(u)du ≤ e−l

∫ ∞

l

a(u)du = e−lp0

then the fraction p3

p0
tends to zero as l → ∞, so

lim
l→∞

p2
3 + e−lp2

0

(p0 + p3)2
= lim

l→∞

(
p3

p0

)2

+ e−l

(
1 + p3

p0

)2 = 0. (2.A.13)

It therefore follows from (2.A.12) and (2.A.13) that for large enough values of l, the

LHS of (2.24) is larger than the RHS of this equation. On the other hand, in the

limit where l → 0+, we get

p1, p2 →
1

2

∫ 0+

0−
a(u)du

and therefore

lim
l→0+

p2
2 + e−lp2

1

(p1 + p2)2
=

1

2
. (2.A.14)

In the limit where l → 0+

p0 →
∫ ∞

0+

a(u)du, p3 →
∫ 0−

−∞
a(u)du, p0 + p3 → β

where β , 1 −
∫ 0+

0−
a(u)du. By denoting u ,

∫ ∞

0+

a(u)du, we get 0 ≤ u ≤ β, and

lim
l→0+

p2
3 + e−lp2

0

(p0 + p3)2
=

u2 + (β − u)2

β2
≥ 1

2
, ∀u ∈ [0, β]. (2.A.15)
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We note that the last inequality holds in equality if and only if u = β

2
. But if this

condition holds, then this implies that

∫ 0−

−∞
a(u) du =

∫ ∞

0+

a(u) du

which from the symmetry property cannot be satisfied unless a(u) = δ(u). The latter

condition corresponds to a BEC with erasure probability 1 (whose capacity is equal

to zero).

From (2.A.14) and (2.A.15), we obtain that for small enough (and non-negative)

values of l, the LHS of (2.24) is less or equal to the RHS of this equation. Since we

also obtained that for large enough l, the LHS of (2.24) is larger than the RHS of this

equation, the existence of a solution to (2.24) follows from continuity considerations.

2.A.3 Proof of Inequality (2.33)

We prove here the inequality (2.33) (see p. 36) which implies that the ”four-level

quantization” lower bound on the parity-check density (see p. 33) is tighter than

what can be interpreted as the ”two levels quantization” bound in [81, Theorem 2.1].

Based on (2.2), we get

w = Pr{LLR(Y ) < 0 |X = 0} +
1

2
Pr{LLR(Y ) = 0 |X = 0}

so from (2.9), w = p2 + p3. By invoking Jensen’s inequality, we get

(p1 − p2)
2

p1 + p2

+
(p0 − p3)

2

p0 + p3

= (p1 + p2)

(
p1 − p2

p1 + p2

)2

+ (p0 + p3)

(
p0 − p3

p0 + p3

)2

≥
[
(p1 + p2)

(
p1 − p2

p1 + p2

)
+ (p0 + p3)

(
p0 − p3

p0 + p3

)]2

= (p0 + p1 − p2 − p3)
2

= (1 − 2p2 − 2p3)
2

= (1 − 2w)2.

An equality is achieved if and only if p1−p2

p1+p2
= p0−p3

p0+p3
. From (2.A.8)–(2.A.11), we get

p1 − p2

p1 + p2
=

∫ l

0+

a(u)(1 − e−u) du

∫ l

0+

a(u)(1 + e−u) du

≤ 1 − e−l

1 + e−l
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and

p0 − p3

p0 + p3

=

∫ ∞

l

a(u)(1 − e−u) du
∫ ∞

l

a(u)(1 + e−u) du

≥ 1 − e−l

1 + e−l
.

The two fractions p1−p2

p1+p2
and p0−p3

p0+p3
cannot be equal unless the LLR is either equal

to l or −l. This makes the four-level quantization of the LLR identical to the two-

level quantization used for the derivation of the original bound in [17, Theorem 2].

Equality can be also achieved if p1 + p2 = 0 or p0 + p3 = 0 which converts the channel

model in Figure 2.1 (see p. 28) to a BSC.

2.B Some mathematic details for the proof of Propo-

sition 2.3

We provide in this appendix further mathematical details related to the proof of

Proposition 2.3. We note that Appendix 2.B.1 serves here as a preparatory step for

the derivation in Appendix 2.B.2.

2.B.1 Power Series Expansion of the Binary Entropy Func-

tion

Lemma 2.B.1

h2(x) = 1 − 1

2 ln 2

∞∑

p=1

(1 − 2x)2p

p(2p − 1)
, 0 ≤ x ≤ 1. (2.B.1)

Proof: We prove this by expanding the binary entropy function into a power series

around 1
2
. The first order derivative is

h′
2(x) =

ln
(

1−x
x

)

ln 2

and the higher order derivatives get the form

h
(n)
2 (x) = −(n − 2)!

ln 2

(
(−1)n

xn−1
+

1

(1 − x)n−1

)
, n = 2, 3, . . . .

The derivatives of odd degree therefore vanish at x = 1
2
, and for an even value of

n ≥ 2

h
(n)
2

(
1

2

)
= −(n − 2)! 2n

ln 2
.
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This yields the following power series expansion of the binary entropy function around

the point 1
2
:

h2(x) = 1 −
∑

n≥2 even

{
(n−2)! 2n

ln 2

n!
·
(

x − 1

2

)n
}

= 1 − 1

ln 2

∑

n≥2 even

(2x − 1)n

n(n − 1)

= 1 − 1

2 ln 2

∞∑

p=1

(2x − 1)2p

p(2p − 1)

and this power series converges for all x ∈ [0, 1].

We note that since the power series in (2.B.1) has always non-negative coefficients,

then its truncation always gives an upper bound on the binary entropy function, i.e.,

h2(x) ≤ 1 − 1

2 ln 2

m∑

p=1

(1 − 2x)2p

p(2p − 1)
∀x ∈ [0, 1], m ∈ N. (2.B.2)

The case where m = 1 gives the upper bound in Lemma 2.3 which is used in this

paper for the derivation of the lower bounds on the parity-check density. The reason

for not using a tighter version of the binary entropy function for this case was because

otherwise we would get a polynomial equation for aR whose solution cannot be given

necessarily in closed form. As shown in Figure 2.5, the upper bound on the binary

entropy function h2 over the whole interval [0, 1] is improved considerably by taking

even a moderate value for m (e.g., m = 10 gives already a very tight upper bound on

h2 which deviates from the exact values only at a small neighborhood near the two

endpoints of this interval).

2.B.2 Calculation of the Multi-Dimensional Integral in (2.65)

Based on Lemma 2.B.1 which provides a power series expansion of h2 near the point
1
2
, we obtain

∫ ∞

0

∫ ∞

0

. . .

∫ ∞

0

k∏

m=1

fΩ(αm) h2

(
1

2

(
1 −

k∏

m=1

(
1 − e−αm

1 + e−αm

)))
dα1dα2 . . .dαk

= 1 − 1

2 ln 2

∞∑

p=1

1

p(2p − 1)

∫ ∞

0

∫ ∞

0

. . .

∫ ∞

0

k∏

m=1

fΩ(αm)
k∏

m=1

(
1 − e−αm

1 + e−αm

)2p

dα1dα2 . . .dαk

= 1 − 1

2 ln 2

∞∑

p=1

1

p(2p − 1)

∫ ∞

0

∫ ∞

0

. . .

∫ ∞

0

k∏

m=1

(
fΩ(αm) tanh2p

(αm

2

))
dα1dα2 . . .dαk

= 1 − 1

2 ln 2

∞∑

p=1

1

p(2p − 1)

(∫ ∞

0

fΩ(α) tanh2p
(α

2

)
dα

)k

.
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Figure 2.5: Plot of the binary entropy function to base 2 and some upper bounds
which are obtained by truncating its power series around x = 1

2
.

This transforms the original k-dimensional integral to an infinite sum of one-dimensional

integrals. Since we are interested in obtaining a tight upper bound on the k-dimensional

integral above, and all the terms of the last infinite series are positive, then any

truncation of the last infinite series is an upper bound. Based on the discussion in

Appendix 2.B.1, we compute the first 10 terms of this series which (based on the plot

in Figure 2.5) give a very tight upper bound on the k-dimensional integral (for all k).

2.C Some mathematical details related to the proofs

of the statements in Section 2.4

2.C.1 On the Improved Tightness of the Lower Bound in

Theorem 2.5

We show here that the lower bound on the parity-check density in Theorem 2.5 is

uniformly tighter than the one in [81, Theorem 2.1] (except for the BSC and BEC

where they coincide). In order to show this , we first prove the following lemma:
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Lemma 2.C.1 For any MBIOS channel, g1 ≥ (1 − 2w)2 where w and g1 are intro-

duced in (2.2) and (2.57), respectively.

Proof: From (2.2), (2.57) and (2.59)

g1 =

∫ ∞

0

a(l) (1 + e−l) tanh2

(
l

2

)
dl

=

∫ ∞

0

fΩ(l) tanh2

(
l

2

)
dl

≥
(∫ ∞

0

fΩ(l) tanh

(
l

2

)
dl

)2

=

(∫ ∞

0

a(l) (1 + e−l) ·
(

1 − e−l

1 + e−l

)
dl

)2

=

(∫ ∞

0+

a(l) dl −
∫ ∞

0+

e−l a(l) dl

)2

=

(∫ ∞

0+

a(l) dl −
∫ ∞

0+

a(−l) dl

)2

=

(∫ ∞

0+

[a(l) + a(−l)] dl − 2

∫ ∞

0+

a(−l) dl

)2

=

(∫ ∞

−∞
a(l) dl −

∫ 0+

0−
a(l) dl − 2

∫ ∞

0+

a(−l) dl

)2

=

(
1 − 2

(∫ 0−

−∞
a(l) dl +

1

2

∫ 0+

0−
a(l) dl

))2

= (1 − 2w)2.

where the single inequality above follows from Jensen’s inequality.

The proof of the claim now follows directly by noticing that the lower bound on the

parity-check density, as given in (2.70)–(2.72), is equal to

K1 + K2 ln
(

1
ε

)

1 − ε
=

1 − C

(1 − ε)C

ln
(

1
2 ln 2

1−C
εC

)

ln
(

1
g1

)

where we refer here to all MBIOS channels except the BEC. On the other hand, the

lower bound on the parity-check density which is given in [81, Theorem 2.1] gets the

form
1 − C

(1 − ε)C

ln
(

1
2 ln 2

1−C
εC

)

ln
(

1
(1−2w)2

) .
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If the lower bound is not trivial (i.e., the common numerator in both bounds is

positive), then the improvement in the tightness of the former bound over the latter

bound follows from Lemma 2.C.1. We note that for the particular case of a BSC, the

above two bounds coincide (as for a BSC whose crossover probability is p, it is easy

to verify from (2.2) and (2.57) that w = p and g1 = (1 − 2p)2, respectively, hence

g1 = (1 − 2w)2).

2.C.2 Proof for the Claim in Remark 2.5

In order to prove the claim in Remark 2.5 (see p. 55), it is required to show that

1 − C

1 − 1

2 ln 2

∞∑

p=1

{
1

p(2p − 1)

∑

k

Γk g k
p

}

≥ 2w

1 −
∑

k

Γk (1 − 2w)k
(2.C.1)

where w is introduced in (2.2). The reason for showing this in light of the claim in

Remark 2.5 is that the RHS of the last inequality follows from considerations related

to a BEC, essentially in the same way that the second term of the maximization

in the RHS of (2.55) is derived. By showing this, we prove that the maximization

of the two expressions in the LHS and RHS of (2.C.1) doesn’t affect the bound in

Corollary 2.3.

Following the steps which lead to (2.75), we get that for any integer k ≥ 2

1

2 ln 2

∞∑

p=1

g k
p

p(2p − 1)
≥ Ck.

Applying this to (2.C.1) and denoting Γ(x) ,
∑

k Γkx
k, we get that a sufficient

condition for (2.C.1) to hold is

1 − C

1 − Γ(C)
≥ 2w

1 − Γ(1 − 2w)
. (2.C.2)

From the erasure decomposition lemma, we get that an MBIOS channel is physically

degraded as compared to a BEC with an erasure probability p = 2w. By the infor-

mation processing inequality, it follows that C ≤ 1−2w. Therefore, in order to prove

(2.C.2), it is enough to show that the function

f(x) =
1 − x

1 − Γ(x)
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is monotonically decreasing for x ∈ (0, 1). We prove this property by showing that

the derivative of the function f is non-positive for x ∈ (0, 1). As the denominator of

the derivative is positive, we may equivalently show

Γ′(x) (1 − x) −
(
1 − Γ(x)

)
≤ 0.

Dividing both sides of the inequality by 1 − x which is in the interval ∈ (0, 1) and

noting that Γ(1) =
∑

k Γk = 1, we get that it is enough to show

Γ′(x) − Γ(1) − Γ(x)

1 − x
≤ 0. (2.C.3)

Since the function Γ is a polynomial and therefore analytic, by the mean-value theo-

rem we get that for some x̃ ∈ (x, 1)

Γ(1) − Γ(x)

1 − x
= Γ′(x̃).

Since Γ′(x) =
∑

k kΓkx
k−1 is monotonically increasing for x ≥ 0, then (2.C.3) follows

for all x ∈ (0, 1). This in turn proves (2.C.1).

2.C.3 Proof of Eq. (2.82)

In order to prove (2.82), we first multiply the two sides of (2.80) by R, and denote

R = (1 − ε)C. This gives that the lower bound on the bit error probability in (2.80)

is non-positive if and only if

(1 − C)B − εC(1 − B) ≤ 0. (2.C.4)

Unless the channel is noiseless, we get

B =
1

2 ln 2

∞∑

p=1

Γ(gp)

p(2p − 1)

=
1

2 ln 2

∞∑

p=1

{
1

p(2p − 1)

∑

k

Γk g k
p

}

=
1

2 ln 2

∞∑

p=1

{
1

p(2p − 1)

∑

k

Γk

(∫ ∞

0+

a(l)(1 + e−l) tanh2p

(
l

2

)
dl

)k
}

<
1

2 ln 2

∞∑

p=1

{
1

p(2p − 1)

∑

k

Γk

(∫ ∞

0+

a(l)(1 + e−l)dl

)k
}

=
1

2 ln 2

∞∑

p=1

{
1

p(2p − 1)

∑

k

Γk

(∫

R−{0}
a(l)dl

)k
}

=
1

2 ln 2

∞∑

p=1

{
1

p(2p − 1)

∑

k

Γk

(
1 − Pr(LLR = 0)

)k

}

≤ 1

2 ln 2

∞∑

p=1

1

p(2p − 1)
= 1.



CHAPTER 2. PARITY-CHECK DENSITY: SINGLE CHANNEL 80

Since B < 1, the LHS of (2.C.4) is monotonically decreasing in ε. We therefore

deduce that the inequality (2.C.4) holds for ε ≥ ε0, where ε0 is the solution of

(1 − C)B − ε0C(1 − B) = 0.

It can be readily seen that the solution of the last equation is given by ε0 defined in

(2.82).

2.C.4 Proof of Eq. (2.83)

We will show both that there exists a unique ε0 that satisfies (2.83), and that the RHS

of (2.81) is non-positive if and only if ε ≥ ε0 where ε0 is that unique solution. As in

Appendix 2.C.3, we begin by multiplying the two sides of (2.81) by R and denoting

R = (1− ε)C. It follows that the bound in the RHS of (2.81) is trivial (non-positive)

if and only if

−εC +
1 − (1 − ε)C

2 ln 2

∞∑

p=1

g
(2−(1−ε)C)t
1−(1−ε)C

p

p(2p − 1)
≤ 0 (2.C.5)

where gp is introduced in (2.57). We now show that the LHS of the last inequality is

monotonically decreasing in ε. Let us denote

f(ε) , −εC +
1 − (1 − ε)C

2 ln 2

∞∑

p=1

g
(2−(1−ε)C)t
1−(1−ε)C

p

p(2p − 1)

αp ,
1

2 ln 2 p(2p − 1)
.

By Dividing the derivative of f w.r.t. ε by C, we get

f ′(ε)

C
=

1

C

(
− C + C

∞∑

p=1

αp g
(2−(1−ε)C)t
1−(1−ε)C

p

+
(
1 − (1 − ε)C

) ∞∑

p=1

αp g
(2−(1−ε)C)t
1−(1−ε)C

p log(gp)

(
− tC

(1 − (1 − ε)C)2

))

=

∞∑

p=1

{
αp

(
1 − log

(
g

t
1−(1−ε)C
p

))
g

(2−(1−ε)C)t
1−(1−ε)C

p

}
− 1. (2.C.6)

From the symmetry property of the pdf a then (2.57) yields that

gp =

∫ ∞

0

a(l)(1 + e−l) tanh2p

(
l

2

)
dl

=

∫ ∞

−∞
a(l) tanh2p

(
l

2

)
dl

≤
∫ ∞

−∞
a(l)dl = 1
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and since gp ≤ 1, then it follows that g
(2−(1−ε)C)t
1−(1−ε)C

p ≤ g
t

1−(1−ε)C
p . Therefore, (2.C.6) gives

f ′(ε)

C
≤

∞∑

p=1

{
αp

(
1 − log

(
g

t
1−(1−ε)C
p

))
g

t
1−(1−ε)C
p

}
− 1.

For p ∈ N, let us denote g
t

1−(1−ε)C
p , 1 − δp where 0 < δp < 1, then the last inequality

gives

f ′(ε)

C
≤

∞∑

p=1

{
αp

(
1 − log(1 − δp)

)
(1 − δp)

}
− 1

≤
∞∑

p=1

αp − 1 = 0

where the second transition follows from the inequality ln(1−x) > − x
1−x

which holds

for x ∈ (0, 1). This concludes the proof of the monotonicity of the LHS of (2.C.5).

Observing that

f(0) = (1 − C)

∞∑

p=1

αp g
(2−C)t
1−C

p > 0

and

f(1) = −C +

∞∑

p=1

αp g2t
p

≤ −C +
∞∑

p=1

αp gp

= −C + C = 0

where the first inequality follows since gp ≤ 1 and since t ≥ 1 (t = 1 if and only if

the code is cycle-free, otherwise t > 1.) The second equality follows from the last

three equalities leading to (2.75). From the continuity of the function f w.r.t. ε,

we conclude that the monotonicity property of f , as shown above, ensures a unique

solution for (2.83). From (2.C.5), it also follows from the monotonicity and continuity

properties of the function f in terms of ε ∈ (0, 1) that the RHS of (2.81) is non-positive

if and only if ε ≥ ε0 where ε0 is the unique solution of (2.83).
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• I. Sason and G. Wiechman, “On achievable rates and complexity of LDPC codes

over parallel channels: Bounds and applications,” IEEE Trans. on Information

Theory, vol. 53, no. 2 pp. 580-598, February 2007.

Chapter Overview: A variety of communication scenarios can be modeled by a set of

parallel channels. The paper presents upper bounds on the achievable rates under

maximum-likelihood decoding, and lower bounds on the decoding complexity per it-

eration of ensembles of low-density parity-check (LDPC) codes. The communication

of these codes is assumed to take place over statistically independent parallel channels

where the component channels are memoryless, binary-input and output-symmetric.

The bounds are applied to ensembles of punctured LDPC codes where the puncturing

patterns are either random or possess some structure. A diagram concludes our dis-

cussion by showing interconnections between the new theorems and some previously

reported results.
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3.1 Introduction

Parallel channels serve as a model for analyzing various communication scenarios, e.g.,

rate-compatible puncturing of error-correcting codes, non-uniformly error-protected

codes, transmission over block-fading channels and multi-carrier signaling. All these

scenarios can be modeled as a transmission of information over a set of parallel chan-

nels where each code symbol is assigned to one of these component channels. Nat-

urally, analytical tools for evaluating the performance and decoding complexity of

error-correcting codes whose transmission takes place over a set of parallel channels

are gaining theoretical and practical interest (see, e.g., [49, 50, 77]).

The channel model considered in this paper assumes that the communication

of binary linear block codes takes place over J statistically independent component

channels where each of the individual channels is a memoryless binary-input output-

symmetric (MBIOS) channel whose probability density function is given by p(·|· ; j)
(j = 1, 2, . . . , J). If we let I(j) denote the set of indices of the symbols in an n-length

codeword which are transmitted over the jth channel, then

pn (y|x) =
J∏

j=1

∏

i∈I(j)

p(yi|xi; j) . (3.1)

This paper focuses primarily on information-theoretic aspects of low-density parity-

check (LDPC) codes whose transmission takes place over a set of parallel channels.

It provides upper bounds on the achievable rates under maximum-likelihood (ML)

decoding, and lower bounds on the decoding complexity per iteration of ensembles

of LDPC codes. The paper forms a generalization of the results in [118]. However,

the bounds on the achievable rates and decoding complexity derived in this paper are

valid in probability 1 for ensembles of LDPC codes as one lets their block length tend

to infinity; this is in contrast to the results in [118] which refer to communication

over a single MBIOS channel and are valid code by code. The bounds introduced in

this paper are applied to ensembles of punctured LDPC codes where the puncturing

patterns are either random or possess some structure.

The performance of punctured LDPC codes under ML decoding was studied in

[39] via analyzing the asymptotic growth rate of their average weight distributions and

using upper bounds on the decoding error probability under ML decoding. Based on

this analysis, it was proved that for any MBIOS channel, capacity-achieving codes of

any desired rate can be constructed by puncturing the code bits of ensembles of LDPC

codes whose design rate (before puncturing) is sufficiently low. The performance of

punctured LDPC codes over the AWGN channel was studied in [35] under iterative

message-passing decoding. Ha et al. studied in [35] two methods for puncturing
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LDPC codes where the first method assumes random puncturing of the code bits at

a fixed rate, and the second method assumes possibly different puncturing rates for

each subset of code bits which corresponds to variable nodes of a fixed degree. For

the second approach, called ’intentional puncturing’, the degree distributions of the

puncturing patterns were optimized in [34, 35] where it was aimed to minimize the

threshold under iterative decoding for a given design rate via the Gaussian approxi-

mation; exact values of these optimized puncturing patterns were also calculated by

the density evolution analysis and show good agreement with the Gaussian approxi-

mation. The results in [34, 35] exemplify the usefulness of punctured LDPC codes for

a relatively wide range of rates, and therefore, they are suitable for rate-compatible

coding.

The transmission of punctured codes over a single channel can be regarded as

a special case of communication of the original code over a set of parallel channels

(where this set of parallel channels is defined by the puncturing rates applied to

subsets of the code bits). We therefore apply the bounds on the achievable rates and

decoding complexity of LDPC codes over statistically independent parallel channels to

the case of transmission of ensembles of punctured LDPC codes over a single MBIOS

channel. We state puncturing theorems related to achievable rates and decoding

complexity of punctured LDPC codes. For ensembles of punctured LDPC codes,

the calculation of bounds on their thresholds under ML decoding and their exact

thresholds under iterative decoding (based on density evolution analysis) is of interest

in the sense that it enables one to separate the loss due to iterative decoding from

the loss due to the structure of the ensembles.

The paper is organized as follows: Section 3.2 derives bounds on the conditional

entropy of the transmitted codeword given the received sequence at the output of the

parallel channels where the component channels are considered to be MBIOS. Sec-

tion 3.3 relies on the previous bounds and derives an upper bound on the achievable

rates of LDPC codes under ML decoding for parallel channels. Section 3.4 uses the

latter result for the derivation of upper bounds on the achievable rates of ensembles

of randomly and intentionally punctured LDPC codes whose transmission takes place

over MBIOS channels, and numerical results are exemplified for various ensembles.

Section 3.5 provides a lower bound on the decoding complexity (per iteration) of en-

sembles of LDPC codes under iterative message-passing decoding for parallel MBIOS

channels. The latter result is used for the derivation of lower bounds on the decoding

complexity of randomly and intentionally punctured LDPC codes for MBIOS chan-

nels; looser versions of these bounds suggest a simplified re-derivation of previously

reported bounds on the decoding complexity of randomly punctured LDPC codes (as
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shown in an appendix). Finally, Section 3.6 summarizes our discussion, and presents a

diagram which shows interconnections between the theorems introduced in this paper

and some other previously reported results from [17, 65, 69, 67, 81, 118]. The prelim-

inary material on ensembles of LDPC codes and notation required for this paper are

introduced in [74] and [118, Section 2].

3.2 Bounds on the Conditional Entropy for Paral-

lel Channels

This section serves as a preparatory step towards the derivation of upper bounds

on the achievable rates of ML decoded binary linear block codes whose transmission

takes place over statistically independent parallel MBIOS channels. To this end, we

present in this section upper and lower bounds on the conditional entropy of the

transmitted codeword given the received sequence at the output of these channels.

3.2.1 Lower Bound on the Conditional Entropy

We begin by deriving an information-theoretic lower bound on the conditional entropy

of the transmitted codeword given the received sequence, when the transmission takes

place over a set of J independent parallel MBIOS channels.

Proposition 3.1 Let C be a binary linear block code of length n, and assume that

its transmission takes place over a set of J statistically independent parallel MBIOS

channels. Let Cj denote the capacity of the jth channel (in bits per channel use), and

a(·; j) designate the conditional pdf of the log-likelihood ratio (LLR) at the output

of the jth channel given its input is 0. Let X = (X1, . . .Xn) and Y = (Y1, . . . , Yn)

designate the transmitted codeword and received sequence, respectively, I(j) be the

set of indices of the code bits transmitted over the jth channel, n[j] , |I(j)| be the size

of this set, and pj , n[j]

n
be the fraction of bits transmitted over the jth channel. For

an arbitrary c×n parity-check matrix H of the code C, let βj,m designate the number

of indices in I(j) referring to bits which are involved in the mth parity-check equation

of H (where m ∈ {1, . . . , c}), and let Rd = 1 − c
n

be the design rate of C. Then, the

conditional entropy of the transmitted codeword given the received sequence satisfies

H(X|Y)

n

≥ 1−
J∑

j=1

pjCj − (1−Rd)

(
1− 1

2n(1 − Rd) ln 2

∞∑

p=1

{
1

p(2p−1)

n(1−Rd)∑

m=1

J∏

j=1

(gj,p)
βj,m

})

(3.2)
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where

gj,p ,

∫ ∞

0

a(l; j) (1 + e−l) tanh2p

(
l

2

)
dl, j ∈ {1, . . . , J}, p ∈ N. (3.3)

Remark 3.1 Note that the input vector X is chosen uniformly from the codewords

of a binary linear block code. Each input bit Xi therefore either gets the values 0

or 1 with probability 1
2

or is set to zero (due to the linearity of the code). In the

following proof, we assume that all the code symbols get the values 0 or 1 with equal

probability. By slightly modifying the proof, it is simple to show that the bound also

holds for the other case where some of the code bits are set to zero.

Proof: The proof relies on concepts which are presented in [17, 118], and generalizes

them to the case of parallel channels. If a symbol is transmitted over the jth MBIOS

channel and y is the corresponding output, then the LLR gets the form

LLR(y; j) = ln

(
p(y|0; j)

p(y|1; j)

)
, j ∈ {1, . . . , J}, y ∈ Y

where Y denotes the output alphabet of each component channel,1 and p(·|·; j) is the

conditional pdf of the jth channel. For each one of these J component channels, we

move from the original mapping of X → Y (where according to (3.1), each symbol

is transmitted over only one of these J channels) to an equivalent representation of

the channel X → Ỹ , where Ỹ represents the LLR of the channel output Y . These

channels are equivalent in the sense that H(X|Ỹ ) = H(X|Y ). The basic idea for

showing the equivalence between the original set of parallel channels and the one

which will be introduced shortly is based on the principle that the LLR forms a

sufficient statistics of an MBIOS channel.

In the following, we characterize an equivalent channel to each of the J parallel

channels. The output of the equivalent channel is defined to be Ỹ , (Φ, Ω). For the

j-th channel, Ỹ is calculated from Y as follows:

Ω , |LLR(Y ; j)|, Φ ,





0 if LLR(Y ; j) > 0

1 if LLR(Y ; j) < 0

0 or 1 w.p. 1
2

if LLR(Y ; j) = 0

.

Due to the symmetry of the communication channel, the equivalent channel can be

seen as a channel with additive noise where the transmitted signal affects only the Φ

component of the output Ỹ . The characterization of the equivalent channel in this

1In case the output alphabets of the component channels are not equal, then Y can be defined
as their union.
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form is used for the continuation of this proof and is presented below. For each index

i ∈ I(j), let us choose independently a value Li according to the conditional pdf

a(·; j), and for i ∈ {1, . . . , n}, let

Ωi , |Li|, Θi ,





0 if Li > 0

1 if Li < 0

0 or 1 w.p. 1
2

if Li = 0

.

The output of the set of equivalent channels is defined as Ỹ = (Ỹ1, . . . , Ỹn) where

Ỹi = (Φi, Ωi) and Φi = Θi + Xi where the addition is modulo 2. This defines the

mapping

X → Ỹ = (Φ, Ω)

where Φ is a binary random variable which is affected by X, and Ω is a non-negative

random variable which is independent of X. Note that due to the symmetry of

the parallel channels, for each index i ∈ I(j), the joint distribution of (Φi, Ωi) is

independent of i, and is equal to the distribution of the pair representing the sign and

magnitude of LLR(Y ; j). Hence,

fΩi
(ω) , fΩ(ω; j) =





a(ω; j) + a(−ω; j) = (1 + e−ω) a(ω; j) if ω > 0

a(0; j) if ω = 0
(3.4)

where we rely on the symmetry property of a(·; j).
Denoting by R the rate of the code C, since the codewords are transmitted with

equal probability

H(X) = nR. (3.5)

Also, since the J parallel channels are memoryless, then

H(Y|X) =

n∑

i=1

H(Yi|Xi). (3.6)

The mapping Yi → Ỹi is memoryless, hence H(Ỹ|Y) =
∑n

i=1 H(Ỹi|Yi), and

H(Y) = H(Ỹ) − H(Ỹ|Y) + H(Y|Ỹ)

= H(Ỹ) −
n∑

i=1

H(Ỹi|Yi) + H(Y|Ỹ) (3.7)

H(Y|Ỹ) ≤
n∑

i=1

H(Yi|Ỹi)

=

n∑

i=1

[
H(Yi) − H(Ỹi) + H(Ỹi|Yi)

]
. (3.8)
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Applying the above towards the derivation of a lower bound on the conditional entropy

H(X|Y), we get

H(X|Y) = H(X) + H(Y|X) − H(Y)

(a)
= nR +

n∑

i=1

H(Yi|Xi) − H(Ỹ) − H(Y|Ỹ) +
n∑

i=1

H(Ỹi|Yi)

(b)

≥ nR +

n∑

i=1

H(Yi|Xi) − H(Ỹ) −
n∑

i=1

[
H(Yi) − H(Ỹi) + H(Ỹi|Yi)

]

+
n∑

i=1

H(Ỹi|Yi)

= nR − H(Ỹ) +

n∑

i=1

H(Ỹi) −
n∑

i=1

[
H(Yi) − H(Yi|Xi)

]

= nR − H(Ỹ) +

n∑

i=1

H(Ỹi) −
n∑

i=1

I(Xi; Yi)

(c)

≥ nR − H(Ỹ) +

n∑

i=1

H(Ỹi) −
J∑

j=1

n[j] Cj (3.9)

where (a) relies on (3.5)–(3.7), (b) relies on (3.8), and (c) follows since I(Xi; Yi) ≤ Cj

for all i ∈ I(j), and |I(j)| = n[j] for j ∈ {1, . . . , J}. In order to obtain a lower bound

on H(X|Y) from (3.9), we calculate the entropy of the random variables {Ỹi}, and

find an upper bound on the entropy of the random vector Ỹ. This finally provides the

lower bound on the conditional entropy given in (3.2). Considering an index i ∈ I(j)

for some j ∈ {1, 2, . . . J}, we get

H(Ỹi) = H(Φi, Ωi)

= H(Ωi) + H(Φi|Ωi)

= H(Ωi) + Eω [H(Φi|Ωi = ω)]

= H(Ωi) + 1 (3.10)

where the last transition is due to the fact that given the absolute value of the LLR,

since the parallel channels are MBIOS and the coded bits are equally likely to be 0 or

1, the sign of the LLR is equally likely to be positive or negative. The entropy H(Ωi)

is not expressed explicitly as it cancels out later.

We now turn to derive an upper bound on H(Ỹ):

H(Ỹ) = H
(
(Φ1, . . . , Φn), (Ω1, . . . , Ωn)

)

= H(Ω1, . . . , Ωn) + H
(
(Φ1, . . . , Φn) | (Ω1, . . . , Ωn)

)

=

n∑

i=1

H(Ωi) + H
(
(Φ1, . . . , Φn) | (Ω1, . . . , Ωn)

)
(3.11)
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where the last equality follows since the random variables Ωi are statistically inde-

pendent.

Define the c-dimensional syndrome vector as

S , (Φ1, . . . , Φn) HT

where H is a c×n parity-check matrix of the binary linear block code C, and let L be

the index of the vector (Φ1, . . . , Φn) in the coset which corresponds to S. Since each

coset has exactly 2nR elements which are equally likely then H(L) = nR, and we get

H
(
(Φ1, . . . , Φn) | (Ω1, . . . , Ωn)

)
= H

(
S, L | (Ω1, . . . , Ωn)

)

≤ H(L) + H
(
S | (Ω1, . . . , Ωn)

)

= nR + H
(
S | (Ω1, . . . , Ωn)

)

≤ nR +
c∑

m=1

H
(
Sm | (Ω1, . . . , Ωn)

)
. (3.12)

Since XHT = 0 for any codeword, then

S = (Θ1, . . . , Θn) HT .

Let us consider the mth parity-check equation which involves km variables, and assume

that the set of indices of these variables is {i1, . . . , ikm
}. Then, the component Sm

of the syndrome is equal to 1 if and only if there is an odd number of ones in the

random vector (Θi1, . . . , Θikm
). To calculate the probability that Sm is equal to 1, we

rely on the following lemma:

Lemma 3.1 ([118], Lemma 4.1) If the mth linear constraint defined by the parity-

check matrix H involves km variables, and if {i1, . . . , ikm
} denote the indices of these

variables, then

Pr
(
Sm = 1 | (Ωi1, . . . , Ωikm

) = (α1, . . . , αkm
)
)

=
1

2

[
1 −

km∏

w=1

tanh
(αw

2

)]
. (3.13)

From this lemma, we obtain

H
(
Sm|(Ωi1 , . . . , Ωikm

) = (α1, . . . , αkm
)
)

= h2

(
1

2

[
1 −

km∏

w=1

tanh
(αw

2

)])

where h2 denotes the binary entropy function to base 2. By taking the statistical

expectation over the km random variables Ωi1 , . . . , Ωikm
, we get

H
(
Sm|(Ωi1 , . . . , Ωikm

)
)

=

∫ ∞

0

. . .

∫ ∞

0

h2

(
1

2

[
1 −

km∏

w=1

tanh
(αw

2

)]) km∏

w=1

fΩiw
(αw) dα1dα2 . . . dαkm

.
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Let βj,m denote the number of indices w ∈ {i1, . . . , ikm
} referring to variables which

are transmitted over the jth channel. From the Taylor series expansion of the binary

entropy function (h2) around x = 1
2

(see [118, Appendix B.1])

h2(x) = 1 − 1

2 ln 2

∞∑

p=1

(1 − 2x)2p

p(2p − 1)
, 0 ≤ x ≤ 1 (3.14)

it follows that

H
(
Sm|(Ωi1 , . . . , Ωikm

)
)

= 1 − 1

2 ln 2

∞∑

p=1

{
1

p(2p − 1)

km∏

w=1

(∫ ∞

0

fΩiw
(α) tanh2p

(α

2

)
dα

)}

= 1 − 1

2 ln 2

∞∑

p=1

{
1

p(2p − 1)

J∏

j=1

(∫ ∞

0

fΩ(α; j) tanh2p
(α

2

)
dα

)βj,m

}
(3.15)

where the first transition is based on (3.14) and follows along the same lines as [118,

Appendix B.2]), and the second transition is due to the fact that for all i ∈ I(j), the

pdf of the random variable Ωi is independent of i, see (3.4). Summing over all the

parity-check equations of H gives

c∑

m=1

H
(
Sm|(Ω1, . . . , Ωn)

)

= c − 1

2 ln 2

∞∑

p=1

1

p(2p − 1)

c∑

m=1

{
J∏

j=1

(∫ ∞

0

fΩ(α; j) tanh2p
(α

2

)
dα

)βj,m

}
. (3.16)

By combining (3.4), (3.11), (3.12) and (3.16), we get the following upper bound on

H(Ỹ):

H(Ỹ) ≤
n∑

i=1

H(Ωi) + nR + c

[
1 − 1

2c ln 2

∞∑

p=1

1

p(2p − 1)

·
c∑

m=1

{
J∏

j=1

(∫ ∞

0

a(α; j)(1 + e−α) tanh2p
(α

2

)
dα

)βj,m

}]

(a)
=

n∑

i=1

H(Ωi) + nR + n(1 − Rd)

·
[
1 − 1

2n(1 − Rd) ln 2

∞∑

p=1

{
1

p(2p − 1)

c∑

m=1

J∏

j=1

gj,p
βj,m

}]
(3.17)

where (a) relies on the definition of gj,p in (3.3) and since Rd , 1 − c
n

denotes the

design rate of C. Finally, the substitution of (3.10) and (3.17) in the RHS of (3.9)
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provides the lower bound on the conditional entropy H(X|Y) given in (3.2). This

completes the proof of the proposition.

3.2.2 Upper Bound on the Conditional Entropy

In this section, we provide an upper bound on the conditional entropy of the transmit-

ted codeword given the received sequence. The bound holds for an arbitrary binary

linear block code whose transmission takes place over a set of parallel channels, and

is expressed in terms of the code rate and the bit-error probability of the code (under

ML decoding or a sub-optimal decoding algorithm).

Lemma 3.2 Let C be a binary linear block code of length n and rate R, and assume

that its transmission takes place over a set of parallel channels. Let X = (X1, . . . , Xn)

and Y = (Y1, . . . , Yn) designate the transmitted codeword and the received sequence,

respectively. Then
H(X|Y)

n
≤ R h2(Pb) (3.18)

where Pb designates the bit error probability of the code C under an arbitrary decoding

algorithm.

Proof: Since there is a one to one correspondence between the codewords and the

set of information bits used to encode them, then H(X|Y) = H(U|Y) where the

vector U = (U1, . . . , UnR) denotes the sequence of information bits used to encode

the codeword X. Let P
(i)
b (C) denote the probability of decoding the bit Ui erroneously

given the received sequence at the output of the set of parallel channels, then the bit

error probability is given by

Pb(C) =
1

nR

nR∑

i=1

P
(i)
b (C). (3.19)

This therefore gives

H(X|Y)

n
=

H(U|Y)

n
(a)

≤ 1

n

nR∑

i=1

H(Ui|Y)

(b)

≤ 1

n

nR∑

i=1

h2

(
P

(i)
b (C)

)

(c)

≤ R h2

(
1

nR

nR∑

i=1

P
(i)
b (C)

)

(d)
= R h2

(
Pb(C)

)
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where inequality (a) holds from the chain rule of entropy and since conditioning

reduces entropy, inequality (b) follows from Fano’s inequality and since the code is

binary, inequality (c) is based on Jensen’s inequality and the concavity of the binary

entropy function, and equality (d) follows from (3.19).

3.3 An Upper Bound on the Achievable Rates of

LDPC codes over Parallel Channels

In this section, we derive an upper bound on the design rate of a sequence of ensembles

of LDPC codes whose transmission takes place over a set of statistically independent

parallel MBIOS channels, and which achieves vanishing bit error probability under

ML decoding. This bound is used in the next section for the derivation of an upper

bound on the design rate of an arbitrary sequence of ensembles of punctured LDPC

codes.

Let us assume that a binary LDPC code C of length n is transmitted over a set

of J statistically independent parallel MBIOS channels. Denote the number of code

bits of C which are transmitted over the jth channel by n[j], and the fraction of bits

transmitted over the jth channel by

pj ,
n[j]

n
, j ∈ {1, . . . , J}. (3.20)

Let G be a bipartite graph which represents the code C, and E be the set of edges in

G. Let E[j] designate the set of edges connected to variable nodes which correspond

to code bits transmitted over the jth channel, and

qj ,
|E[j]|
|E| , j ∈ {1, . . . , J} (3.21)

denote the fraction of edges connected to these variable nodes. Referring to the edges

from the subset E[j], let λ
[j]
i designate the fraction of these edges which are connected

to variable nodes of degree i, and define the following J degree distributions from the

edge perspective:

λ[j](x) ,

∞∑

i=2

λ
[j]
i xi−1 , j ∈ {1, . . . , J}

which correspond to each of the J parallel channels. According to this notation, the

number of edges connected to variable nodes corresponding to code bits transmitted
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over the jth channel is given by

|E[j]| =
n[j]

∞∑

i=2

λ
[j]
i

i

, j ∈ {1, . . . , J}. (3.22)

For the simplicity of the notation, let us define a vector of degree distributions for the

variable nodes from the edge perspective to be λ(x) =
(
λ[1](x), . . . , λ[J ](x)

)
. Following

the notation in [69], the ensemble (n, λ, ρ) is defined to be the set of LDPC codes

of length n, which according to their representation by bipartite graphs and the

assignment of their code bits to the parallel channels, imply left and right degree

distributions of λ and ρ, respectively.

Lemma 3.3
1

∫ 1

0
λ(x) dx

=

J∑

j=1

{
pj∫ 1

0
λ[j](x) dx

}
. (3.23)

where λ is the overall left degree distribution which serves to construct the vector of

left degree distributions λ by considering the assignments of variables nodes to the

different channels.

Proof: Since E[1], . . . , E[J ] forms a sequence of disjoint sets whose union is the set

E, we get the equality |E| =
∑J

j=1 |E[j]|. From (3.22), we therefore get

n∑∞
i=2

λi

i

=
J∑

j=1





n[j]

∑∞
i=2

λ
[j]
i

i




 (3.24)

and by dividing both sides of the equality by n and using (3.20), the lemma follows

immediately.

Lemma 3.4

qj =
pj∫ 1

0
λ[j](x) dx

· 1
J∑

k=1

{
pk∫ 1

0
λ[k](x) dx

} , ∀ j ∈ {1, . . . , J}. (3.25)

Proof: The lemma follows directly from (3.21), (3.22) and Lemma 3.3.

In the following, we introduce a sequence of ensembles of LDPC codes, say

{(nr, λr, ρ)}∞r=1 where all the codes in each ensemble have the same number of bits

assigned to each of the J parallel channels, and ρ is fixed for all the ensembles of



CHAPTER 3. PARITY-CHECK DENSITY: PARALLEL CHANNELS 94

this sequence (i.e., it is independent of r). Since λ which corresponds to the overall

left degree distribution of the edges is also independent of r, one can consider here

the common design rate of the sequence of ensembles {(nr, λr, ρ)}∞r=1 which does not

depend on r.

This setting is general enough for applying the following theorem to various ap-

plications which form particular cases of communication over parallel channels, e.g.,

punctured LDPC codes [35, 39], non-uniformly error protected LDPC codes [69], and

LDPC-coded modulation (see e.g., [37, 112]). In this setting, the fraction of code bits

assigned to the jth channel, pj,r, depends on j ∈ {1, . . . , J} and r ∈ N, but not on

the particular code chosen from each ensemble. It follows from Lemma 3.4 that the

same property also holds for qj,r which designates the fraction of edges connected to

variable nodes whose code bits are assigned to the jth channel. In the following, we

assume that the limits

pj , lim
r→∞

pj,r, qj , lim
r→∞

qj,r (3.26)

exist and we also assume that they are positive for all j ∈ {1, . . . , J} (though in

general, they are non-negative).

Theorem 3.1 Let a sequence of LDPC ensembles {(nr, λr, ρ)}∞r=1 be transmitted

over a set of J statistically independent parallel MBIOS channels, and assume that

the block length (nr) goes to infinity as we let r tend to infinity. Let Cj denote the

capacity of the jth channel, and a(·; j) designate the pdf of the LLR at the output

of the jth channel given its input is 1. If in the limit where r tends to infinity, the

bit error probability of this sequence under ML decoding vanishes, then the common

design rate Rd of these ensembles satisfies

Rd ≤ 1 −
1 −

J∑

j=1

pjCj

1 − 1

2 ln 2

∞∑

p=1

{
1

p(2p − 1)
Γ

( J∑

j=1

qj gj,p

)} (3.27)

where Γ denotes the right degree distribution from the node perspective, and gj,p is

introduced in (3.3).

Proof: Let {Cr}∞r=1 be a sequence of LDPC codes chosen uniformly at random from

the sequence of ensembles {(nr, λr, ρ)}∞r=1. Denote the rate of the code Cr by Rr, and

let Pb,r be its bit error probability under ML decoding. Let Gr be a bipartite graph

of the code Cr whose left and right degree distributions from the edge perspective

are λr and ρ, respectively. From Proposition 3.1 and Lemma 3.2, it follows that the
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following inequality holds for the binary linear block code Cr:

Rrh2(Pb,r) ≥ 1 −
J∑

j=1

pj,rCj − (1 − Rd)

·



1 − 1

2nr(1 − Rd) ln 2

∞∑

p=1





1

p(2p − 1)

nr(1−Rd)∑

m=1

J∏

j=1

(gj,p)
βr,j,m







(3.28)

where nr is the block length of the code Cr, Rd is the common design rate for

all the codes from the sequence of ensembles {(nr, λr, ρ)}∞r=1, and βr,j,m denotes the

number of edges which are connected to the mth parity-check node of the graph Gr

and are related to code bits transmitted over the jth channel (where j ∈ {1, . . . , J}
and m ∈ {1, . . . nr(1 − Rd)}). By taking the expectation on both sides of (3.28) and

letting r tend to infinity, we get

1 −
J∑

j=1

pjCj − (1 − Rd) lim
r→∞

(
1 − 1

2nr(1 − Rd) ln 2

·
∞∑

p=1





1

p(2p − 1)

nr(1−Rd)∑

m=1

E

(
J∏

j=1

(gj,p)
βr,j,m

)




 ≤ 0. (3.29)

The RHS of (3.29) follows from the LHS of (3.28), due to the concavity of the binary

entropy function and Jensen’s inequality, and since by our assumption, the bit error

probability of the ensembles vanishes in the limit where r tends to infinity.

The derivation of an upper bound on the design rate is proceeded by calculating

the expectation of the product inside the LHS of (3.29). Let kr,m denote the degree

of the mth parity-check node of the bipartite graph Gr, then the smoothing theorem

gives

E

(
J∏

j=1

(gj,p)
βr,j,m

)
= E

[
E

(
J∏

j=1

(gj,p)
βr,j,m

∣∣∣
J∑

j=1

βr,j,m = kr,m

)]
(3.30)

where the outer expectation is carried over the random variable kr,m. We first cal-

culate the inner expectation in the RHS of (3.30). It follows from (3.22) that the

number of edges, |E[j]
r | , |E[j](Gr)|, connected to variable nodes corresponding to

code bits transmitted over the jth channel, is independent of the code Cr choosen

from the ensemble (nr, λr, ρ). The same property also holds for the total number of

edges in the graph (since |Er| =
∑J

j=1 |E
[j]
r |). Since the code Cr is chosen uniformly

at random from the ensemble, it follows that if kr,m is a given positive integer, then
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E

(
J∏

j=1

(gj,p)
βr,j,m

∣∣∣
J∑

j=1

βr,j,m = kr,m

)

=
∑

b1, . . . , bJ ≥ 0PJ
j=1

bj = kr,m

{
Pr
(
βr,j,m = bj , ∀j ∈ {1, . . . , J}

) J∏

j=1

(gj,p)
bj

}

=
∑

b1, . . . , bJ ≥ 0PJ
j=1

bj = kr,m

{(|E[1]
r |
b1

)
· · ·
(|E[J]

r |
bJ

)
( |Er|

kr,m

)
J∏

j=1

(gj,p)
bj

}
. (3.31)

Lemma 3.5

lim
r→∞

(|E[1]
r |
b1

)
· · ·
(|E[J]

r |
bJ

)
( |Er|

kr,m

) =
J∏

j=1

(qj)
bj lim

r→∞

(
kr,m

b1, b2, . . . , bJ

)
. (3.32)

Proof: By assumption, in the limit where we let r tend to infinity, the block length

nr also tends to infinity. Hence, from (3.22) and the assumption that qj > 0 for every

j ∈ {1, . . . , J}, we get that for all j ∈ {1, . . . , J}, E
[j]
r approaches infinity in the limit

where r tends to infinity.

lim
r→∞

(|E[1]
r |

b1

)
· · ·
(|E[J]

r |
bJ

)
( |Er|

kr,m

)

= lim
r→∞

|E[1]
r |! · · · |E[J ]

r |!
|Er|!

(|Er| − kr,m)!

(|E[1]
r | − b1)! · · · (|E[J ]

r | − bJ)!

(
kr,m

b1, b2, . . . , bJ

)

= lim
r→∞

{
|E[1]

r |! · · · |E[J ]
r |!

|Er|!
(|Er| − kr,m)!

(|E[1]
r | − b1)! . . . (|E[J ]

r | − bJ )!

}
lim
r→∞

(
kr,m

b1, b2, . . . , bJ

)

(a)
= lim

r→∞

|E[1]
r |b1 · · · |E[J ]

r |bJ

|Er|kr,m
lim
r→∞

(
kr,m

b1, b2, . . . , bJ

)

(b)
= lim

r→∞

(
|E[1]

r |
|Er|

)b1

. . .

(
|E[J ]

r |
|Er|

)bJ

lim
r→∞

(
kr,m

b1, b2, . . . , bJ

)

(c)
= lim

r→∞

J∏

j=1

(qj,r)
bj lim

r→∞

(
kr,m

b1, b2, . . . , bJ

)

=

J∏

j=1

(qj)
bj lim

r→∞

(
kr,m

b1, b2, . . . , bJ

)

where equality (a) follows since for all j ∈ {1, . . . , J}, |E[j]
r | → ∞ as we let r tend to

infinity, while on the other hand, the maximal right degree (and hence, also b1, . . . , bJ
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and kr,m) stay bounded; equality (b) is valid due to the constraint
∑J

j=1 bj = kr,m,

and equality (c) follows from (3.21).

By letting r tend to infinity on both sides of (3.30), and substituting (3.31) and

(3.32) in the RHS of (3.30), we get that for all p ∈ N

lim
r→∞

E

[
J∏

j=1

(gj,p)
βr,j,m

]

(a)
= E

[
lim
r→∞

E

(
J∏

j=1

(gj,p)
βr,j,m

∣∣∣
J∑

j=1

βr,j,m = kr,m

)]

(b)
= E

[
lim
r→∞

∑

b1, . . . , bJ ≥ 0PJ
j=1

bj = kr,m

(
kr,m

b1, b2, . . . , bJ

) J∏

j=1

(qj gj,p)
bj

]

= E

[
lim
r→∞

(
J∑

j=1

qjgj,p

)kr,m
]

(c)
=

dc,max∑

k=1

{
Γk

( J∑

j=1

qjgj,p

)k
}

= Γ

( J∑

j=1

qjgj,p

)
(3.33)

where equality (a) follows from (3.30) and since the right degree distribution is inde-

pendent of r (note that the outer expectation in equality (a) is performed w.r.t. the

degree of the mth parity-check node); equality (b) follows from (3.31) and (3.32), and

since the number of terms in the sum is bounded (this number is upper bounded by

(kr,m)J−1, so it is bounded for all r ∈ N due to the fact that the maximal right degree

is fixed), and equality (c) follows since the right degree distribution is independent

of r. Since the limit in (3.33) does not depend on the index m which appears in the

inner summation at the LHS of (3.29) and also limr→∞ nr(1−Rd) = ∞, then we get

from (3.33)

lim
r→∞

1

nr(1 − Rd)

nr(1−Rd)∑

m=1

E

[
J∏

j=1

(gj,p)
βr,j,m

]

(a)
= lim

r→∞
E

[
J∏

j=1

(gj,p)
βr,j,m

]

(b)
= Γ

( J∑

j=1

qjgj,p

)
(3.34)
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where equality (a) follows from the fact that if {ar} is a convergent sequence then

the equality limr→∞
1
r

∑r
i=1 ai = limr→∞ ar holds, and also since any sub-sequence

of a convergent sequence converges to the same limit as of the original sequence;

equality (b) follows from (3.33). Combining (3.29) and (3.34) gives

1 −
J∑

j=1

pjCj − (1 − Rd)

(
1 − 1

2 ln 2

∞∑

p=1

{
1

p(2p − 1)
Γ

( J∑

j=1

qjgj,p

)})
≤ 0.

Finally, solving the last inequality for Rd gives the upper bound on the design rate

in (3.27).

Example 3.1 For the special case where the J parallel MBIOS channels are binary

erasure channels where the erasure probability of the jth channel is εj, we get from

(3.3)

gj,p = 1 − εj , ∀ j ∈ {1, . . . , J}, p ∈ N. (3.35)

Since gj,p is independent of p for a BEC, and based on the equality
∑∞

p=1
1

2p(2p−1)
= ln 2,

we obtain from Theorem 3.1 that the common design rate of the sequence of LDPC

ensembles is upper bounded by

Rd ≤ 1 −

J∑

j=1

pjεj

1 − Γ

(
1 −

J∑

j=1

qj εj

) . (3.36)

This result coincides with [69, Theorem 2].

The proof of Theorem 3.1 relies on the assumption that the right degree distribu-

tion ρ is fixed, and does not depend on the ordinal number r of the ensemble. For a

capacity-achieving sequence of LDPC ensembles, both the maximal and the average

right degrees tend to infinity (see [81, Theorem 1]). Hence, for a capacity-achieving

sequence of LDPC codes, ρ cannot be fixed.

Remark 3.2 One can think of Lemma 3.5 in terms of drawing colored balls from

an urn (where the colors are determined in one to one correspondence with the as-

signments of the various edges to the component channels). Since an edge can only

be assigned once to a parity-check node, the balls are not returned to the urn after

they are chosen. As the block length tends to infinity, so does the number of edges

originating in each of the parallel channels (this is the reason for requiring that qj

is positive for all j). Since the degree of the parity-check nodes remains finite, we

are drawing a finite number of balls from an urn which contains an infinite number
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of balls of each color. This lemma simply says that drawing without replacement is

equivalent to drawing with replacement if the number of draws is finite and the num-

ber of balls of each color becomes infinite. Note that this result looks rather intuitive

from a statistical point of view.

Remark 3.3 We wish to discuss a possible refinement of the statement in Theo-

rem 3.1. Let us assume that the (overall) degree distributions λ and ρ are fixed, but

due to the transmission over parallel channels, the corresponding vector of degree

distributions λr = (λ
[1]
r , . . . , λ

[J ]
r ) and also pj,r and qj,r depend on the code from the

ensemble (nr, λ, ρ). Since the derivation of this theorem relies on the bounds on the

conditional entropy from Section 3.2 (which are valid code by code), one can refine

the statement in Theorem 3.1 so that the modified theorem permits the dependency

of the vector (λ
[1]
r , . . . , λ

[J ]
r ) on the specific code chosen from the ensemble. In this

case, the equalities in (3.26) are transformed to

pj = lim
r→∞

E [pj,r(C)] , qj = lim
r→∞

E [qj,r(C)]

where the expectation is carried over the code C from the ensemble (nr, λ, ρ). In this

case, the proof of Theorem 3.1 involves an expectation over C on both sides of (3.28)

(which is valid code by code) and then we let r tend to infinity, as in (3.29). By

invoking Jensen’s inequality, Lemma 3.5 is changed under the above assumption to

the inequality

lim
r→∞

EC




(|E[1]

r |
b1

)
· · ·
(|E[J]

r |
bJ

)
( |Er|

kr,m

)



 ≥
J∏

j=1

(qj)
bj lim

r→∞

(
kr,m

b1, b2, . . . , bJ

)

and correspondingly, (3.33) is changed to

lim
r→∞

EC

[
J∏

j=1

(gj,p)
βr,j,m

]
≥ Γ

( J∑

j=1

qjgj,p

)
.

Therefore, the upper bound on the design rate in (3.27) holds for the more general

setting as above.

3.4 Achievable Rates of Punctured LDPC Codes

In this section we derive upper bounds on the achievable rates of punctured LDPC

codes whose transmission takes place over an MBIOS channel, and the codes are ML

decoded. The analysis in this section relies on the bound presented in Section 3.3.



CHAPTER 3. PARITY-CHECK DENSITY: PARALLEL CHANNELS 100

Let C be a binary linear block code. Assume its code bits are partitioned into J

disjoint sets, and the bits of the jth set are randomly punctured with a puncturing

rate πj (where j ∈ {1, . . . , J}). The transmission of this code over an MBIOS channel

is equivalent to transmitting the code over a set of J parallel MBIOS channels where

each of these channels forms a serial concatenation of a BEC whose erasure probability

is equal to the puncturing rate πj , followed by the original MBIOS channel (see e.g.,

[35, 65, 68, 69]).

3.4.1 Some Preparatory Lemmas

This sub-section presents two lemmas which are later used to prove results for ensem-

bles of randomly and intentionally punctured LDPC codes (denoted by RP-LDPC

and IP-LDPC codes, respectively).

In the following lemma, we consider a punctured linear block code and provide

an upper bound on the conditional entropy of a codeword before puncturing, given

the received sequence at the output of the channel. This upper bound is expressed

in terms of the bit error probability of the punctured code.

Lemma 3.6 Let C′ be a binary linear block code of length n and rate R′, and let C be

a code which is obtained from C′ by puncturing some of its code bits. Assume that the

transmission of the code C takes place over an arbitrary communication channel, and

the code is decoded by an arbitrary decoding algorithm. Let X′ = (X ′
1, . . . , X

′
n) and

Y = (Y1, . . . , Yn) (where the punctured bits are replaced by question marks which

have an LLR of zero) designate the transmitted codeword of C′ and the received

sequence, respectively. Then, the conditional entropy of the original codeword of C′

given the received sequence satisfies

H(X′|Y)

n
≤ R′ h2(Pb) (3.37)

where Pb designates the bit error probability of the punctured code C.

Proof: The proof follows directly from Lemma 3.2, and the equivalence between the

transmission of punctured codes over an MBIOS channel and the special case of trans-

mitting these codes over a set of parallel channels (see the introductory paragraph of

Section 3.4).

Puncturing serves to increase the rate of the original code by reducing the length of

the codeword. It may however cause several codewords to be mapped onto a single

codeword, thereby reducing the dimension of the code. Consider a binary linear code,

C′, of length n and rate R′ and assume a fraction γ of its code bits are punctured. In
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the case that the dimension is not reduced by puncturing, the rate of the punctured

code is given by R = R′

1−γ
. In the general case, we cannot guarantee that the dimension

of the code is not reduced. However, for a sequence of punctured codes whose bit error

probability vanishes as the block length of the codes tends to infinity, the following

lemma shows that the rate of the punctured codes converges to the desired rate R.

Lemma 3.7 Let {C′
r} be a sequence of binary linear block codes of length nr and rate

R′
r, and let {Cr} be a sequence of codes which is obtained from {C′

r} by puncturing

a fraction γ of the code bits. Assume the sequence of punctured codes {Cr} achieves

vanishing bit error probability in the limit where we let r tend to infinity. Then, the

asymptotic rate R of the sequence of punctured codes is given by

R =
R′

1 − γ
(3.38)

where R′ = limr→∞ R′
r is the asymptotic rate of the original sequence of codes {C′

r}.

Proof: Let X′
r = (X ′

1, . . . , X
′
nr

) and Yr = (Yr . . . , Ynr
) designate the original code-

word (before puncturing) and the received sequence (after puncturing), respectively.

Since we assume the there exists a decoding algorithm such that the punctured codes

achieve vanishing bit error probability, we have from lemma 3.6 that

lim
r→∞

H(X′
r|Yr)

nr

= 0.

Let Xr = (X1, . . . , Xnr
) designate the codeword after puncturing (where the punc-

tured bits are replaced by question marks). Since X′
r ⇒ Xr ⇒ Yr forms a Markov

chain, then by the information processing inequality, we get H(X′
r|Xr) ≤ H(X′

r|Yr).

The non-negativity of the conditional entropy therefore yields that

lim
r→∞

H(X′
r|Xr)

nr

= 0. (3.39)

Denote the number of dimensions of the codes C′
r and Cr by d′

r and dr, respectively.

Since C′
r is binary and linear, every codeword of Cr originates from exactly 2d′r−dr

different codewords of C′
r. The codewords are assumed to be transmitted with equal

probability, and therefore H(X′
r|Xr) = d′

r − dr. Let Rr designate the rate of the

punctured code Cr. By definition, d′
r = R′

rnr, and since nr(1 − γ) forms the block

length of the punctured code Cr, then dr = Rrnr(1 − γ). Substituting the last three

equalities into (3.39) gives

lim
r→∞

(R′
r − Rr(1 − γ)) = 0.

This completes the proof of the lemma.
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For a sequence of codes {C′
r}, it is natural to refer to their code rates R′

r. However,

for sequences of ensembles, where parity-check matrices are randomly picked, such

matrices are unlikely to be full rank. Hence, a more natural approach is to refer to

their design rates. To this end, we define the design rate of codes which are obtained

by puncturing some code bits of binary linear block codes.

Definition 3.1 Let C′ be a binary linear block code of length n, H ′ be a c×n parity-

check matrix of C′ and R′
d , 1 − c

n
designate the design rate of the code C′. Let C

be a code which is obtained from C′ by puncturing a fraction γ of the code bits. The

design rate of C is defined as

Rd ,
R′

d

1 − γ
. (3.40)

From Lemma 3.7, it follows that for an arbitrary sequence of punctured codes

which achieves vanishing bit error probability, their asymptotic design rate is equal

in probability 1 to their asymptotic rate if and only if this condition also holds for the

original sequence of codes before their puncturing. For un-punctured ensembles of

LDPC codes, a sufficient condition for the asymptotic convergence of the rate to the

design rate is introduced in [60, Lemma 7] (which is also presented in the preliminaries

of our companion paper as [118, Lemma 2.1]). In Section 3.4.4, we apply this lemma

to show that the bounds on the achievable rates of ensembles of punctured LDPC

codes apply to their actual code rates and not only to their asymptotic design rates.

3.4.2 Randomly Punctured LDPC Codes

In this section, we consider the achievable rates of randomly punctured LDPC (RP-

LDPC) codes. We assume that the transmission of these codes takes place over an

MBIOS channel, and refer to their achievable rates under optimal ML decoding. The

upper bound on the achievable rates of ensembles of RP-LDPC codes relies on the

analysis in Section 3.3 where we derived an upper bound on the achievable rates of

LDPC codes for parallel channels.

In the following, we assume that the communication takes place over an MBIOS

channel with capacity C, and define

gp ,

∫ ∞

0

a(l) (1 + e−l) tanh2p

(
l

2

)
dl , p ∈ N (3.41)

where a designates the pdf of the LLR of the channel given that its input is zero.

Theorem 3.2 Let {(nr, λ, ρ)}∞r=1 be a sequence of ensembles of binary LDPC codes

whose block length (nr) tends to infinity as r → ∞. Assume that a sequence of



CHAPTER 3. PARITY-CHECK DENSITY: PARALLEL CHANNELS 103

ensembles of RP-LDPC codes is constructed in the following way: for each code from

an ensemble of the original sequence, a subset of αnr code bits is a-priori selected, and

these bits are randomly punctured at a fixed rate (Ppct). Assume that the punctured

codes are transmitted over an MBIOS channel with capacity C, and that in the limit

where r approaches infinity, the sequence of ensembles of RP-LDPC codes achieves

vanishing bit error probability under some decoding algorithm. Then in probability 1

w.r.t. the random puncturing patterns, the asymptotic design rate (Rd) of the new

sequence satisfies

Rd ≤ 1

1 − αPpct




1 − 1 − (1 − αPpct)C

1 − 1

2 ln 2

∞∑

p=1

{
1

p(2p − 1)
Γ
(
(1 − Ppct + ξ)gp

)}




(3.42)

where Γ denotes the right degree distribution (from the node perspective) of the

original sequence, gp is introduced in (3.41), and ξ is the following positive number:

ξ , 2(1 − α)Ppct

∫ 1

0

λ(x) dx. (3.43)

Proof: By assumption, we select a set of code bits whose size is a fraction α of the nr

code bits, and these bits are randomly punctured at rate Ppct. The transmission of the

resulting codeword over an MBIOS channel is equivalent to the transmission of the

original codeword over a set of J = 2 parallel channels. The first channel, referring to

the set of code bits which are randomly punctured, is a serial concatenation of a BEC

with erasure probability Ppct and the original MBIOS channel; the second channel

which refers to the rest of the bits (which are transmitted without being randomly

punctured) is the original MBIOS channel. For simplicity, let us first assume that

the degree distribution associated with the selected subset of αnr code bits which are

randomly punctured is independent of the specific code from the ensemble (nr, λ, ρ).

Based on the discussion above and the notation in Section 3.3, the transmission of

the nr code bits over these two parallel channels induces a sequence of ensembles of

LDPC codes, {(nr, λr, ρ)}∞r=1, where λr = (λ
[1]
r , λ

[2]
r ) depends on the selection of the

subset of αnr code bits which are randomly punctured. Following this equivalence,

we get from the notation in Theorem 3.1 that

p1 = α, p2 = 1 − α, C1 = C(1 − Ppct), C2 = C

⇒
J∑

j=1

pjCj = C(1 − αPpct). (3.44)
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In order to apply Theorem 3.1 to our case, we find a global lower bound on the sum
∑J

j=1 qjgj,p which does not depend on the a-priori selection of the subset of code bits

which are randomly punctured. From (3.3) and (3.41), it follows that for all p ∈ N:

g1,p =

∫ ∞

0

[Ppctδ(l) + (1 − Ppct)a(l)] (1 + e−l) tanh2p

(
l

2

)
dl

= (1 − Ppct)

∫ ∞

0

a(l)(1 + e−l) tanh2p

(
l

2

)
dl

= (1 − Ppct) gp

and g2,p = gp. Based on Lemmas 3.3 and 3.4, we get that for all p ∈ N

q1g1,p + q2g2,p =

αgp(1 − Ppct)

∫ 1

0

λ(x) dx

∫ 1

0

λ[1]
r (x) dx

+

(1 − α)gp

∫ 1

0

λ(x)dx

∫ 1

0

λ[2]
r (x) dx

(3.45)

where the following constraint is satisfied:

α
∫ 1

0

λ[1]
r (x) dx

+
1 − α

∫ 1

0

λ[2]
r (x) dx

=
1

∫ 1

0

λ(x) dx

(3.46)

and ∫ 1

0

λ[1]
r (x) dx ≤ 1

2
,

∫ 1

0

λ[2]
r (x) dx ≤ 1

2
(3.47)

due to the fact that λ[1](x) ≤ x and λ[2](x) ≤ x for x ∈ [0, 1] (even without explicitly

knowing λ[1] and λ[2] which depend on the a-priori choice of the subset of bits which

are randomly punctured). Based on (3.45)–(3.47), we get

q1g1,p + q2g2,p

= (1 − Ppct)gp

∫ 1

0

λ(x) dx




α
∫ 1

0

λ[1]
r (x) dx

+
1 − α

∫ 1

0

λ[2]
r (x) dx




+

(1 − α)Ppctgp

∫ 1

0

λ(x) dx

∫ 1

0

λ[2]
r (x) dx

= (1 − Ppct)gp +

(1 − α)Ppctgp

∫ 1

0

λ(x) dx

∫ 1

0

λ[2]
r (x) dx

≥
(

1 − Ppct + 2(1 − α)Ppct

∫ 1

0

λ(x) dx

)
gp

= (1 − Ppct + ξ)gp
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where ξ is defined in (3.43). Since the degree distribution Γ is a monotonic increasing

function, then

Γ

(
J∑

j=1

qjgj,p

)
≥ Γ

(
(1 − Ppct + ξ)gp

)
. (3.48)

By substituting (3.44) and (3.48) in the RHS of (3.27), we obtain the following upper

bound on the asymptotic design rate of the original sequence

R′
d ≤ 1 − 1 − (1 − αPpct)C

1 − 1

2 ln 2

∞∑

p=1

{
1

p(2p − 1)
Γ
(
(1 − Ppct + ξ)gp

)} .

Since as r → ∞, in probability 1 w.r.t. the puncturing patterns, a fraction γ = αPpct

of the code bits are punctured, then the asymptotic design rate (Rd) of this sequence

satisfies the equality

Rd =
R′

d

1 − αPpct

(3.49)

from which the theorem follows.

For the case where the degree distribution associated with the subset of code bits

which are randomly punctured depends on the code C from the ensemble (nr, λ, ρ),

the pair (λ
[1]
r , λ

[2]
r ) cannot be considered to be uniform over all the codes from this

ensemble. In this case, Theorem 3.1 is not directly applicable. In order to circumvent

the problem, we rely on the discussion in Remark 3.3, and on the fact that the lower

bound on q1g1,p + q2g2,p which is given above in terms of ξ from (3.43) is universal

for all the codes from this ensemble (i.e., it only depends on λ, but does not depend

on the specific degree distributions λ
[1]
r (C) and λ

[2]
r (C) which are associated with the

code C from the ensemble). In light of this reasoning, the proof of the theorem

for ensembles of RP-LDPC codes also follows in the more general setting where the

degree distribution associated with the subset of the code bits which are randomly

punctured depends on the specific code from the ensemble.

Remark 3.4 Note that in the above proof, we derive an upper bound on the number

of edges adjacent to variable nodes which are punctured in probability Ppct; this

is done by assuming that the degree of all the un-punctured nodes is 2 (which is

the minimal possible degree for a variable node), and counting the number of the

remaining edges. In the case that the original codes before puncturing have a minimal

variable degree of Λmin > 2, the upper bound can be tightened by assuming that

each un-punctured node is of degree Λmin. This results in replacing ξ in (3.43) with

ξ′ , Λmin(1 − α)Ppct

∫ 1

0
λ(x) dx.
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3.4.3 Intentionally Punctured LDPC Codes

In [35], Ha et al. show that good codes can be constructed by puncturing good

ensembles of LDPC codes using a technique called “intentional puncturing”. In this

approach, the code bits are partitioned into disjoint sets so that each set contains all

the code bits whose corresponding variable nodes have the same degree. The code

bits in each of these sets are randomly punctured at a fixed puncturing rate.

We briefly present the notation used in [35] for the characterization of ensembles

of intentionally punctured LDPC (IP-LDPC) codes. Consider an ensemble of LDPC

codes with left and right edge degree distributions λ and ρ, respectively. For each

degree j such that λj > 0, a puncturing rate πj ∈ [0, 1] is determined for randomly

puncturing the set of code bits which correspond to variable nodes of degree j. The

polynomial associated with this puncturing pattern is

π(0)(x) ,

∞∑

j=1

πjx
j−1. (3.50)

An ensemble of IP-LDPC codes can be therefore represented by the quadruplet

(n, λ, ρ, π(0)) where n designates the block length of these codes, λ and ρ are the

left and right degree distributions from the edge perspective, respectively, and π(0) is

the polynomial which corresponds to the puncturing pattern, as given in (3.50). The

average fraction of punctured bits is given by p(0) =
∑∞

j=1 Λjπj where Λ is the left

node degree distribution of the original LDPC ensemble. The following statement,

which relies on Theorem 3.1, provides an upper bound on the common design rate of

a sequence of ensembles of IP-LDPC codes. This bound refers to ML decoding (and

hence, to any sub-optimal decoding algorithm).

Theorem 3.3 Let {(nr, λ, ρ, π(0))}∞r=1 be a sequence of ensembles of IP-LDPC codes

transmitted over an MBIOS channel, and assume that nr tends to infinity as r → ∞.

Let C be the channel capacity, and a be the pdf of the LLR at the output of the

channel given its input is zero. If the asymptotic bit error probability of this sequence

vanishes under ML decoding (or any sub-optimal decoding algorithm) as r → ∞, then

in probability 1 w.r.t. the puncturing patterns, the asymptotic design rate Rd of these

ensembles satisfies

Rd ≤ 1

1 − p(0)




1 − 1 − (1 − p(0))C

1 − 1

2 ln 2

∞∑

p=1

{
1

p(2p − 1)
Γ

((
1 −

∞∑

j=1

λjπj

)
gp

)}




(3.51)
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where Γ denotes the right degree distribution from the node perspective,

p(0) ,

∞∑

j=1

Λjπj (3.52)

designates the average puncturing rate of the code bits, and gp is the functional of

the MBIOS channel introduced in (3.41).

Proof: The proof follows from Theorem 3.1, and the observation that IP-LDPC codes

form a special case of the ensemble (n, λ, ρ) examined in Section 3.3. For a sequence

of ensembles of IP-LDPC codes, {(nr, λ, ρ, π(0))}, the number of parallel MBIOS

channels used for transmission is equal to the number of strictly positive coefficients

in the polynomial λ, i.e., J , |{i : λi > 0}|. Denote these degrees by i1, . . . , iJ , then

the bits transmitted over the jth channel are those involved in exactly ij parity-check

equations (i.e., the bits whose corresponding variable nodes are of degree ij). From

the above discussion, it follows that the fraction of code bits transmitted over the jth

channel is given by

pj = Λij , j ∈ {1, . . . , J} (3.53)

and the fraction of edges in the bipartite graph which are connected to variable nodes

transmitted of the jth channel is given by

qj = λij , j ∈ {1, . . . , J}. (3.54)

The transmission of IP-LDPC codes over an MBIOS channel is equivalent to trans-

mitting the original codes (before puncturing) over a set of J parallel MBIOS channels

where each of these channels is formed by a serial concatenation of a BEC whose era-

sure probability is equal to the puncturing rate πij , followed by the original MBIOS

channel. Hence, the pdf of the LLR at the output of the jth MBIOS channel given

its input is 1 gets the form

a(l; j) = πijδ0(l) + (1 − πij )a(l), l ∈ R (3.55)

and the capacity of this channel is

Cj = C(1 − πij ). (3.56)

By substituting (3.55) into (3.3), we get that for all j ∈ {1, . . . , J} and p ∈ N

gj,p =

∫ ∞

0

[
πijδ0(l) + (1 − πij )a(l)

]
(1 + e−l) tanh2p

(
l

2

)
dl

= (1 − πij )

∫ ∞

0

a(l) (1 + e−l) tanh2p

(
l

2

)
dl

= (1 − πij )gp (3.57)
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where the last equality is based on (3.41). The statement now follows by substitut-

ing (3.53), (3.54), (3.56) and (3.57) in (3.27); we use the scaling factor for the design

rate of the punctured codes, as given in Definition 3.1. In this case, the parameter

γ tends to the average puncturing rate p(0) of the code bits, as defined in (3.52),

where this convergence is in probability 1 w.r.t. the puncturing patterns. Finally,

since λj = Λj = 0 for j /∈ {i1, . . . , iJ}, then regarding the sums in the RHS of (3.51),

we get the equalities
∑∞

j=1 Λjπj =
∑J

j=1 Λijπij and
∑∞

j=1 λjπj =
∑J

j=1 λijπij . This

completes the proof of the theorem.

Remark 3.5 Let us consider a more general case of punctured ensembles of LDPC

codes where the original code bits are split into J arbitrary sets and each set is

punctured at a different rate. For this general case, it is possible to apply Theorem 3.1

to derive an upper bound on the achievable rates which only depends on the expected

fractions of punctured code bits and edges in the graph attached to variable nodes

of punctured bits. Theorems 3.2 and 3.3 emerge as corollaries of such a theorem (in

this paper we do not take this approach since we analyze two strategies of puncturing

as special cases of transmission over parallel channels). In the case of ensembles of

RP-LDPC codes, the fraction of edges adjacent to punctured bits is not known in

general. Hence, for the derivation of upper bounds on their achievable rates, we

employ a lower bound on the fraction of edges adjacent to punctured bits in a similar

way to the proof of Theorem 3.2.

3.4.4 Numerical Results for Intentionally Punctured LDPC

Codes

In this section, we present a comparison between thresholds under iterative message-

passing decoding and bounds on thresholds under ML decoding for ensembles of

IP-LDPC codes. It is assumed that the transmission of the punctured LDPC codes

takes place over a binary-input AWGN channel. The pairs of degree distributions

and the corresponding puncturing patterns were originally presented in [34, 35]. We

use these ensembles in order to study their inherent gap to capacity, and also study

how close to optimal iterative decoding is for these ensembles (in the asymptotic case

where the block length goes to infinity).

We refer here to three ensembles of IP-LDPC codes: Tables 3.1 and 3.2 refer to

two ensembles of rate−1
2

LDPC codes which by puncturing, their rates vary between

0.50 and 0.91; Table 3.3 refers to an ensemble of rate− 1
10

LDPC codes which by

puncturing, its rate varies between 0.10 and 0.83. Based on [60, Lemma 7], we verify
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π(0)(x) Design Capacity Lower bound Iterative (IT) Fractional gap
(puncturing pattern) rate limit (ML decoding) Decoding to capacity

(ML vs. IT)

0 0.500 0.187 dB 0.270 dB 0.393 dB ≥ 40.3%

0.07886x+0.01405x2 +
0.06081x3 + 0.07206x9 0.528 0.318 dB 0.397 dB 0.526 dB ≥ 37.9%

0.20276x+0.09305x2 +
0.03356x3 + 0.16504x9 0.592 0.635 dB 0.716 dB 0.857 dB ≥ 36.4%

0.25381x+0.15000x2 +
0.34406x3+0.019149x9 0.629 0.836 dB 0.923 dB 1.068 dB ≥ 37.3%

0.31767x+0.18079x2 +
0.05265x3 + 0.24692x9 0.671 1.083 dB 1.171 dB 1.330 dB ≥ 35.6%

0.36624x+0.24119x2 +
0.49649x3 + 0.27318x9 0.719 1.398 dB 1.496 dB 1.664 dB ≥ 36.9%

0.41838x+0.29462x2 +
0.05265x3 + 0.30975x9 0.774 1.814 dB 1.927 dB 2.115 dB ≥ 37.2%

0.47074x+0.34447x2 +
0.02227x3 + 0.34997x9 0.838 2.409 dB 2.547 dB 2.781 dB ≥ 37.1%

0.52325x+0.39074x2 +
0.01324x3 + 0.39436x9 0.912 3.399 dB 3.607 dB 3.992 dB ≥ 35.1%

Table 3.1: Comparison of thresholds for ensembles of IP-LDPC codes where the
original ensemble before puncturing has the degree distributions

λ(x) = 0.25105x + 0.30938x2 + 0.00104x3 + 0.43853x9 and
ρ(x) = 0.63676x6 + 0.36324x7 (so its design rate is equal to 1

2
). The transmission of

these codes takes place over a binary-input AWGN channel. The table compares
values of Eb

N0
referring to the capacity limit, the bound given in Theorem 3.3 (which

provides a lower bound on Eb

N0
under ML decoding), and thresholds under

message-passing decoding. The fractional gap to capacity (see the rightmost
column) measures the ratio of the gap to capacity under optimal ML decoding and
the achievable gap to capacity under (sub-optimal) message-passing decoding. The
pair of degree distributions for the ensemble of LDPC codes, and the polynomials

which correspond to its puncturing patterns are taken from [35, Table 2].
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that the design rates of these three ensembles of LDPC codes (before puncturing) are

equal in probability 1 to the asymptotic rates of codes from these ensembles. This

conclusion still holds for the punctured LDPC ensembles given in Tables 3.1–3.3 (see

Lemma 3.7). This enables to calculate the capacity limits which refer to the design

rates of these ensembles, and to evaluate the gaps to capacity under ML decoding

and iterative decoding for these ensembles of punctured LDPC codes.

For various ensembles of IP-LDPC codes, Tables 3.1–3.3 provide lower bounds on

the inherent gap to capacity under optimal ML decoding (based on Theorem 3.3);

these values are compared to the corresponding gaps to capacity under message-

passing decoding (whose calculation is based on the density evolution analysis). On

one hand, Tables 3.1–3.3 provide a quantitative assessment of the loss in the asymp-

totic performance which is attributed to the sub-optimality of iterative decoding (as

compared to ML decoding), and on the other hand, they provide an assessment of the

inherent loss in performance which is attributed to the structure of the ensembles,

even if ML decoding could be applied to decode these codes. The loss in perfor-

mance in both cases is measured in terms of Eb

N0
in decibels. It is demonstrated in

Tables 3.1–3.3 that for various good ensembles of IP-LDPC codes, the asymptotic

loss in performance due to the code structure is still non-negligible as compared to

the corresponding loss due to the sub-optimality of iterative decoding. As an ex-

ample, for all the ensembles of IP-LDPC codes considered in Table 3.1 (which were

originally introduced in [35, Table 2]), the gap to capacity under the sum-product

iterative decoding algorithm does not exceed 0.6 dB; however, under ML decoding,

the gap to capacity is always greater than 1
3

of the corresponding gap to capacity un-

der this iterative decoding algorithm; therefore, the results in Table 3.1 regarding the

thresholds under ML decoding further emphasize the efficiency of the sum-product

decoding algorithm for these ensembles, especially in light of its moderate complexity.

Tables 3.1–3.3 also show that the performance of the punctured LDPC codes

is degraded at high rates, where one needs to pay a considerable penalty for using

punctured codes. This phenomenon was explained in [68, Theorem 1] by the threshold

effect for ensembles of punctured LDPC codes.

Following the performance analysis of punctured LDPC codes in [34, 35, 39, 68],

the numerical results shown in Tables 3.1–3.3 exemplify the high potential of punc-

turing in designing codes which operate closely to the Shannon capacity limit and

are used for rate-compatible coding for various MBIOS channels. Other examples of

capacity-achieving ensembles of punctured codes on graphs are the irregular repeat-

accumulate (IRA) codes and accumulate-repeat-accumulate (ARA) codes. Recently,

it was shown by Pfister et al. that properly designed nonsystematic IRA codes achieve
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π(0)(x) Design Capacity Lower bound Iterative (IT) Fractional gap
(puncturing pattern) rate limit (ML decoding) Decoding to capacity

(ML vs. IT)

0 0.500 0.187 dB 0.234 dB 0.299 dB ≥ 41.5%

0.102040x+0.06497x2+
0.06549x5+0.00331x6+
0.39377x19

0.555 0.450 dB 0.473 dB 0.599 dB ≥ 15.4%

0.226410x+0.14149x2+
0.21268x5+0.00001x6+
0.4424x19

0.625 0.816 dB 0.841 dB 1.028 dB ≥ 11.9%

0.348940x+0.21015x2+
0.38902x5+0.00003x6+
0.48847x19

0.714 1.368 dB 1.398 dB 1.699 dB ≥ 8.9%

0.410320x+0.24330x2+
0.48388x5+0.00004x6+
0.50541x19

0.769 1.777 dB 1.811 dB 2.215 dB ≥ 7.8%

0.469100x+0.28408x2+
0.56178x5+0.00002x6+
0.53412x19

0.833 2.362 dB 2.404 dB 3.004 dB ≥ 6.6%

0.533750x+0.30992x2+
0.66375x5+0.00001x6+
0.54837x19

0.909 3.343 dB 3.410 dB 4.634 dB ≥ 5.2%

Table 3.2: Comparison of thresholds for ensembles of IP-LDPC codes where the
original LDPC ensemble before puncturing has the degree distributions
λ(x) = 0.23403x + 0.21242x2 + 0.14690x5 + 0.10284x6 + 0.30381x19 and

ρ(x) = 0.71875x7 + 0.28125x8 (so its design rate is equal to 1
2
). The transmission of

these codes takes place over a binary-input AWGN channel. The table compares
values of Eb

N0
referring to the capacity limit, the bound given in Theorem 3.3 (which

provides a lower bound on Eb

N0
under ML decoding), and thresholds under iterative

message-passing decoding. The fractional gap to capacity (see the rightmost
column) measures the ratio of the gap to capacity under optimal ML decoding and
the achievable gap to capacity under (sub-optimal) iterative decoding. The pair of
degree distributions for the ensemble of LDPC codes, and the polynomials which

correspond to the puncturing patterns are taken from [35, Table 3].
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π(0)(x) Design Capacity Lower bound Iterative (IT) Fractional gap
(puncturing pattern) rate limit (ML decoding) Decoding to capacity

(ML vs. IT)

0 0.100 −1.286 dB −1.248 dB −1.028 dB ≥ 14.5%

0.486490x+0.69715x2+
0.03287x3+0.04248x4+
0.69048x7 + 0.45209x24

0.203 −0.953 dB −0.917 dB −0.731 dB ≥ 16.3%

0.655580x+0.83201x2+
0.48916x3+0.33917x4+
0.63990x7 + 0.76947x24

0.304 −0.605 dB −0.570 dB −0.317 dB ≥ 12.0%

0.745690x+0.87184x2+
0.38179x3+0.48427x4+
0.74655x7 + 0.79130x24

0.406 −0.226 dB −0.189 dB +0.029 dB ≥ 14.7%

0.838470x+0.65105x2+
0.04527x3+0.95233x4+
0.74808x7 + 0.80845x24

0.487 +0.130 dB +0.171 dB +0.599 dB ≥ 8.7%

0.979320x+0.46819x2+
0.71050x3+0.59816x4+
0.79485x7 + 0.05765x24

0.577 +0.556 dB +0.840 dB +1.152 dB ≥ 47.7%

0.895200x+0.84401x2+
0.98541x3+0.42518x4+
0.92976x7 + 0.30225x24

0.663 +1.039 dB +1.232 dB +1.806 dB ≥ 25.2%

0.910960x+0.91573x2+
0.23288x3+0.40977x4+
0.99811x7 + 0.15915x24

0.747 +1.605 dB +1.958 dB +2.637 dB ≥ 34.2%

0.904130x+0.96192x2+
0.35996x3+0.96980x4+
0.31757x7 + 0.89250x24

0.828 +2.303 dB +2.505 dB +3.863 dB ≥ 13.0%

Table 3.3: Comparison of thresholds for ensembles of IP-LDPC codes where the
original ensemble before puncturing has the degree distributions

λ(x) = 0.414936x+0.183492x2+0.013002x3 +0.093081x4 +0.147017x7 +0.148472x24

and ρ(x) = 0.4x2 + 0.6x3 (so its design rate is equal to 1
10

). The transmission of
these codes takes place over a binary-input AWGN channel. The table compares

values of Eb

N0
referring to the capacity limit, the bound given in Theorem 3.3 (which

provides a lower bound on Eb

N0
under ML decoding), and thresholds under iterative

message-passing decoding. The fractional gap to capacity (see the rightmost
column) measures the ratio of the gap to capacity under optimal ML decoding and
the achievable gap to capacity under (sub-optimal) iterative decoding. The pair of
degree distributions for the ensemble of LDPC codes, and the polynomials which

correspond to the puncturing patterns are taken from [34, Table 5.1].



CHAPTER 3. PARITY-CHECK DENSITY: PARALLEL CHANNELS 113

the capacity of the BEC with bounded decoding complexity per information bit [65].

This bounded complexity result is achieved by puncturing all the information bits

of the IRA codes, and allowing in this way a sufficient number of state nodes in the

Tanner graph representing the codes. This is in contrast to all previous constructions

of capacity-achieving LDPC codes which refer to bipartite graphs without state nodes

and whose complexity becomes unbounded as their gap to capacity vanishes (for an

information-theoretic proof which explains why the complexity becomes unbounded

in this case, the reader is referred to [81, Theorem 2.1]). The decoding complexity of

punctured LDPC codes for parallel channels is addressed in the next section.

3.5 Lower Bounds on the Decoding Complexity of

LDPC Codes for Parallel Channels

The scope of this section is to derive a lower bound on the decoding complexity of

LDPC codes for parallel MBIOS channels. The lower bound holds under iterative

message-passing decoding, and it grows like the logarithm of the inverse of the gap

(in rate) to capacity. Interestingly, a logarithmic behavior of the parity-check density

(which forms a measure of the decoding complexity per iteration) in terms of the gap

to capacity also characterizes the upper bound derived in [50, Section 3]; this upper

bound refers to MacKay’s ensemble of LDPC codes whose transmission takes place

over a set of parallel MBIOS channels.

In the previous section we regarded the transmission of punctured LDPC codes

over MBIOS channels as a special case of the transmission of the original codes (before

puncturing) over a set of parallel MBIOS channels. Hence, the aforementioned bound

is later applied to obtain lower bounds on the decoding complexity of punctured

LDPC codes. This section refers to an appendix which suggests a simplified re-

derivation of [65, Theorems 3 and 4], and shows that the bounds introduced in this

section are tighter.

3.5.1 A Lower Bound on the Decoding Complexity for Par-

allel MBIOS Channels

Consider a binary linear block code which is represented by a bipartite graph, and

assume that the graph serves for the decoding with an iterative algorithm. Following

[50] and [65], the decoding complexity under message-passing decoding is defined as

the number of edges in the graph normalized per information bit. This quantity

measures the number of messages which are delivered through the edges of the graph
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(from left to right and vice versa) during a single iteration. Equivalently, since there

is a one-to-one correspondence between a bipartite graph and the parity-check matrix

H which represents the code, the decoding complexity is also equal to the number of

non-zero elements in H normalized per information bit (i.e., it is equal to the density

of the parity-check matrix [81, Definition 2.2]). Hence, the decoding complexity and

performance of iteratively decoded binary linear block codes depend on the specific

representation of the code by a parity-check matrix. Since the average right degree

(aR) of a bipartite graph is equal to the number of edges per parity-check equation,

then the average right degree and the decoding complexity are related quantities.

Consider an ensemble of LDPC codes whose design rate is Rd. It is natural to relate

the decoding complexity of the ensemble, say χD, to its average right degree and

design rate, as follows:

χD =

(
1 − Rd

Rd

)
aR .

We note that aR is fixed for all the codes from an ensemble of LDPC codes with a

given pair of degree distributions.

The following lemma is used in the continuation for the derivation of a lower

bound on the decoding complexity per iteration under message-passing decoding.

Lemma 3.8 Let Γ be the right degree distribution of an ensemble of LDPC codes.

Then

Γ(α) ≥ αaR, ∀α ≥ 0.

Proof: Using the convexity of the function f(x) = αx, it follows from Jensen’s

inequality that for α ≥ 0

Γ(α) =

∞∑

i=1

Γiα
i ≥ α

P∞
i=1 iΓi = αaR .

Consider a sequence of ensembles of LDPC codes, {(nr, λr, ρ)}∞r=1, whose trans-

mission takes place over a set of J statistically independent parallel MBIOS channels.

Let Cj and pj be the capacity and the fraction of code bits assigned to the jth channel,

respectively (where j ∈ {1, . . . , J}). We define the average capacity of the set of J

parallel channels as C ,
∑J

j=1 pjCj. For an ensemble of LDPC codes which achieves

vanishing bit error probability as the block length goes to infinity, the multiplicative

gap (in rate) to capacity is defined as

ε , 1 − Rd

C
. (3.58)
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We now present a lower bound on the decoding complexity per iteration under

message-passing decoding for this sequence. The bound is given in terms of the

gap to capacity.

Theorem 3.4 Let a sequence of ensembles of LDPC codes, {(nr, λr, ρ)}∞r=1, be trans-

mitted over a set of J statistically independent parallel MBIOS channels. Let Cj be

the capacity of the jth channel (where j ∈ {1, . . . , J}), and denote the average capac-

ity by C ,
∑J

j=1 pjCj. If this sequence achieves a fraction 1 − ε of C with vanishing

bit error probability, then the asymptotic decoding complexity under message-passing

decoding satisfies

χD(ε) ≥ K1 + K2 ln

(
1

ε

)
. (3.59)

The coefficients K1,2 in this lower bound are as follows:

K1 = −
(1 − C) ln

(
1

2 ln 2
1−C

C

)

C ln

(
J∑

j=1

qjgj,1

) , K2 = − 1 − C

C ln

(
J∑

j=1

qjgj,1

) (3.60)

where gj,1 is introduced in (3.3), and qj is introduced in (3.26) and is assumed to be

positive for all j ∈ {1, . . . , J}. For parallel BECs, the term 1
2 ln 2

can be removed from

the numerator in the expression of K1.

Proof: Substituting (3.58) in (3.27) gives

(1 − ε)C ≤ 1 − 1 − C

1 − 1

2 ln 2

∞∑

p=1

{
1

p(2p − 1)
Γ

(
J∑

j=1

qjgj,p

)} . (3.61)

Since gj,p in (3.3) is non-negative for j ∈ {1, . . . , J} and p ∈ N, and the function Γ

is non-negative on R
+, then the terms in the infinite sum above are all non-negative.

By the truncation of this series where we only take its first term (note that this is

the largest term in the sum), we obtain a lower bound on the RHS of (3.61). This

implies that

(1 − ε)C ≤ 1 − 1 − C

1 − 1

2 ln 2
Γ

(
J∑

j=1

qjgj,1

) .

Invoking Lemma 3.8 yields that

(1 − ε)C ≤ 1 − 1 − C

1 − 1

2 ln 2

(
J∑

j=1

qjgj,1

)aR
.
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The solution of the last inequality for the average right degree (aR) gives

aR ≥ −
ln

(
1

2 ln 2

(
1 + 1−C

Cε

))

ln

(
J∑

j=1

qjgj,1

)

> K ′
1 + K ′

2 ln

(
1

ε

)
(3.62)

where the last step follows by dropping the 1 which appeared inside the logarithm at

the numerator (this step is valid since the denominator is strictly negative), and

K ′
1 = −

ln
(

1
2 ln 2

1−C

C

)

ln

(
J∑

j=1

qjgj,1

) , K ′
2 = − 1

ln

(
J∑

j=1

qjgj,1

) .

Since Rd < C, it follows that χD = 1−Rd

Rd
aR > 1−C

C
aR. The proof of the lower bound

on the decoding complexity for parallel MBIOS channels follows by multiplying both

sides of (3.62) by 1−C

C
.

For parallel BECs, we get from (3.3) that for every p ∈ N

gj,p =

∫ ∞

0

a(l; j)(1 + e−l) tanh2p

(
l

2

)
dl = 1 − εj

where εj denotes the erasure probability of the jth BEC. This gives

1

2 ln 2

∞∑

p=1

{
1

p(2p − 1)
Γ

(
J∑

j=1

qjgj,p

)}

=
1

2 ln 2

∞∑

p=1

1

p(2p − 1)
· Γ
(

J∑

j=1

qjgj,1

)

= Γ

(
J∑

j=1

qjgj,1

)
.

Substituting this in (3.61), gives

(1 − ε)C ≤ 1 − 1 − C

1 − Γ

(
J∑

j=1

qjgj,1

) .

The continuation of the proof follows the same steps as the proof for parallel MBIOS

channels, and leads to an improved coefficient K1 where the factor 1
2 ln 2

in the numer-

ator of K1 for general MBIOS channels (see (3.60)) is replaced by 1.
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We proceed the analysis by the derivation of lower bounds on the decoding com-

plexity of sequences of ensembles of punctured LDPC codes where it is assumed that

these sequences achieve vanishing bit error probability; similarly to Theorem 3.4, the

lower bounds are expressed in terms of the multiplicative gap (in rate) to capacity.

3.5.2 Lower Bounds on the Decoding Complexity for Punc-

tured LDPC Codes

As discussed in the previous section, transmission of punctured codes can be inter-

preted as a special case of transmitting the original (un-punctured) codes over a

set of parallel channels where these component channels are formed by a mixture of

the communication channel and BECs whose erasure probabilities are the punctur-

ing rates of the different subsets of code bits. Hence, the bounds on the decoding

complexity of punctured codes can be derived as special cases of the bound given in

Theorem 3.4. For the sake of brevity, we derive these bounds by using the upper

bounds on the achievable rates of punctured LDPC codes as given in Theorem 3.2

(for random puncturing) and Theorem 3.3 (for intentional puncturing). Note that

the derivation of these two theorems relies on Theorem 3.1 (as shown in Figure 3.1

on p. 121).

Consider an ensemble of LDPC codes of length n and design rate R′
d, and let

the code bits be partitioned into J disjoint sets where the jth set contains a fraction

pj of these bits (j ∈ {1, . . . , J}). Assume that the bits in the jth set are randomly

punctured at rate πj , and let the punctured codes be transmitted over an MBIOS

channel whose capacity is C. As shown in the previous section, this is equivalent to

transmitting the original (un-punctured) codes over a set of J parallel channels, where

the jth set of code bits is transmitted over a channel whose capacity is Cj = (1−πj)C.

The average capacity of this set of J parallel channels is therefore given by

C =

J∑

j=1

pj (1 − πj)C =
(
1 −

J∑

j=1

pjπj

)
C = (1 − γ)C (3.63)

where γ ,
∑J

j=1 pjπj is the overall puncturing rate. Denote the design rate of the

punctured codes by Rd ,
R′

d

1−γ
(see Definition 3.1 on p. 102), then it follows that the

multiplicative gap to capacity of the punctured codes is given by

ε = 1 − Rd

C
= 1 − R′

d

C
. (3.64)

For punctured codes, the iterative decoder is based on the bipartite graph of

the ’mother code’ where the channel input to the variable nodes which correspond
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to the punctured code bits is defined to be 0. Hence, the decoding complexity of

the punctured ensemble under message-passing decoding is identical to the decoding

complexity of the original ensemble (before puncturing), and is given by

χD =

(
1 − R′

d

R′
d

)
aR

=

(
1 − (1 − γ)Rd

(1 − γ)Rd

)
aR . (3.65)

In the following, we derive a lower bound on the decoding complexity of a sequence

of ensembles of RP-LDPC codes.

Theorem 3.5 Let {(nr, λ, ρ)}∞r=1 be a sequence of ensembles of LDPC codes whose

block length (nr) tends to infinity as r → ∞. Assume that a sequence of ensembles of

RP-LDPC codes is constructed in the following way: for each code from an ensemble

of the original sequence, a subset of αnr code bits is a-priori selected, and these bits

are randomly punctured at a fixed rate (Ppct). Assume that the punctured codes

are transmitted over an MBIOS channel with capacity C, and that as r tends to

infinity, the sequence of ensembles of punctured codes achieves a fraction 1− ε of the

capacity with vanishing bit error probability. Then in probability 1 w.r.t. the random

puncturing patterns, the decoding complexity of this sequence under message-passing

decoding satisfies

χD(ε) ≥ K1 + K2 ln

(
1

ε

)
. (3.66)

The coefficients K1,2 in this lower bound are as follows:

K1 = −
(1 − C) ln

(
1

2 ln 2
1−C

C

)

C ln
(
(1 − Ppct + ξ)g1

) , K2 = − 1 − C

C ln
(
(1 − Ppct + ξ)g1

) (3.67)

where g1 is introduced in (3.41), ξ is introduced in (3.43), and C , (1 − αPpct)C.

For the particular case of a BEC, the term 1
2 ln 2

can be dropped, thus improving the

tightness of the additive term (K1) in the lower bound.

Proof: Since the code bits of a subset of the code bits whose size is αnr are

randomly punctured at rate Ppct, then the average puncturing rate is given by γ =

αPpct. Hence, Eq. (3.63) yields that C = (1 − αPpct)C. By multiplying both sides of

(3.42) by 1 − αPpct and getting from (3.64) that Rd = (1 − ε)C, we obtain

(1 − ε)C ≤ 1 − 1 − C

1 − 1

2 ln 2

∞∑

p=1

{
1

p(2p − 1)
Γ
(
(1 − Ppct + ξ)gp

)} .
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Following the same steps as in the proof of Theorem 3.4, we get a lower bound on the

average right degree of the bipartite graph which corresponds to the pair of degree

distributions (λ, ρ). This lower bound is of the form

aR > K ′
1 + K ′

2 ln

(
1

ε

)
(3.68)

where

K ′
1 = −

ln
(

1
2 ln 2

1−C

C

)

ln
(
(1 − Ppct + ξ)g1

) , K ′
2 = − 1

ln
(
(1 − Ppct + ξ)g1

) .

Note that K2 is positive; this follows from (3.43), which yields that ξ < (1 − α)Ppct

(due to the fact that the integral of λ over the interval [0, 1] is upper bounded by 1
2
).

This assures that as the gap (in rate) to capacity vanishes, the lower bound on aR

scales like the logarithm of the inverse of this gap.

From (3.64), we get R′
d = (1 − ε)C < C, and therefore χD =

1−R′
d

R′
d

aR > 1−C

C
aR.

The proof of the lower bound on the decoding complexity is completed by multiplying

both sides of (3.68) by 1−C

C
. In the particular case where the communication channel

is a BEC, following the same concept as in the proof of Theorem 3.4 leads to the

improved coefficient K1.

The upper bound on the decoding complexity for sequences of ensembles of IP-

LDPC codes is also given in terms of the gap between the rate of the punctured rate

and the channel capacity.

Theorem 3.6 Let {(nr, λ, ρ, π(0))}∞r=1 be a sequence of ensembles of IP-LDPC codes

transmitted over an MBIOS channel whose capacity is C. If this sequence achieves a

fraction 1−ε of the capacity with vanishing bit error probability, then in probability 1

w.r.t. the random puncturing patterns, the decoding complexity of this sequence

under iterative message-passing decoding satisfies

χD(ε) ≥ K1 + K2 ln

(
1

ε

)
. (3.69)

The coefficients K1,2 in this lower bound are as follows:

K1 = −
(1 − C) ln

(
1

2 ln 2
1−C

C

)

C ln

((
1 −

∑∞
j=1 λjπj

)
gp

) , K2 = − 1 − C

C ln

((
1 −

∑∞
j=1 λjπj

)
gp

) (3.70)

where g1 is introduced in (3.41), and C , (1−
∑∞

j=1 Λjπj)C. For the particular case

of a BEC, the term 1
2 ln 2

can be dropped, thus improving the tightness of the additive

term (K1) in the lower bound.
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Proof: The proof follows from the same concepts as the proof of Theorem 3.5, but

is based on (3.51) instead of (3.42). Note that K2, which reflects the logarithmic

growth rate of the lower bound in (3.69), is always positive; this follows from (3.70)

and due to the fact that from (3.41), g1 < 1, and also 0 < 1 −
∑∞

j=1 λjπj ≤ 1.

3.5.3 Re-Derivation of Reported Lower Bounds on the De-

coding Complexity

In [65, Theorems 3 and 4], Pfister et al. introduced lower bounds on the decoding

complexity of punctured codes under iterative decoding. The bounds were derived

for the case where a subset of linearly independent code bits whose size is equal to the

code dimension are randomly punctured at a fixed rate (Ppct), and the transmission of

the codes takes place over an MBIOS channel. In particular, this scenario corresponds

to RP-LDPC codes (see Section 3.4.2) where we choose a subset of the code bits to

be randomly punctured at rate Ppct; under the assumption in [65, Theorems 3 and 4],

the fraction (α) of the code bits which are randomly punctured is equal to the code

rate. In the appendix, we show that for RP-LDPC codes, the lower bounds on the

decoding complexity given in [65, Theorems 3 and 4] follow from a looser version of

the bound in Theorem 3.5.

3.6 Summary and Outlook

The main result in this paper, Theorem 3.1, provides an upper bound on the asymp-

totic rate of a sequence of ensembles of low-density parity-check (LDPC) codes which

achieves vanishing bit error probability. We assume that the communication takes

place over a set of parallel memoryless binary-input output-symmetric (MBIOS) chan-

nels. The derivation of Theorem 3.1 relies on upper and lower bounds on the condi-

tional entropy of the transmitted codeword given the received sequence at the output

of the parallel channels (see Section 3.2), and it is valid under optimal maximum-

likelihood (ML) decoding (or any sub-optimal decoding algorithm). This theorem

enables the derivation of a lower bound on the decoding complexity (per iteration) of

ensembles of LDPC codes under message-passing iterative decoding when the trans-

mission of the codes takes place over parallel MBIOS channels. The latter bound is

given in terms of the gap between the rate of these codes for which reliable commu-

nication is achievable and the channel capacity. Similarly to a lower bound on the

decoding complexity of ensembles of LDPC codes for a single MBIOS channel [81],

the lower bound on the decoding complexity which is derived for parallel channels
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also grows like the log of the inverse of the gap to capacity.

Achievable rates of LDPC codes
for parallel MBIOS channels

Theorem 3.1

Information-theoretic bounds:

Proposition 3.1 and Lemma 3.2

Upper bounds on the achievable
rates of punctured LDPC codes

for MBIOS channels

Theorems 3.2 and 3.3

Upper bound on the
achievable rates of LDPC
codes for MBIOS channels

[118, Corollary 4.1]

Upper bound on the
achievable rates of LDPC
codes for parallel BECs

[69, Theorem 2]

Lower bound on the
decoding complexity of LDPC

codes for parallel channels

Theorem 3.4

Upper bound on the rates
of LDPC codes based on

two-level quantization

[17, Theorems 1 and 2]

Upper bound on the rates
of LDPC codes based on

two-level quantization

[81, Theorem 2.5]

BEC
Lower bound on the

decoding complexity of
randomly punctured LDPC

codes (Theorem 3.5)

Lower bound on the
decoding complexity of
intentionally punctured

LDPC codes (Theorem 3.6)

Lower bounds on the
parity-check density

[81, Theorem 2.1]

Upper bound on the
achievable rates for a

uniform BEC:
[67, Theorem 3] and

[81, Eq. (36)]

Lower bounds on the
decoding complexity of

randomly punctured LDPC
codes for MBIOS channels

[65, Theorems 3 and 4]

Figure 3.1: An interconnections diagram among the bounds in this paper and some
previously reported bounds which follow as special cases.

Theorem 3.1 can be used for various applications which form particular cases of

communication over parallel channels, e.g., intentionally punctured LDPC codes [35],

non-uniformly error protected LDPC codes [69], and LDPC-coded modulation (see

e.g., [37, 112]). In Section 3.4, we use Theorem 3.1 for the derivation of upper bounds

on the achievable rates under ML decoding of (randomly and intentionally) punctured

LDPC codes whose transmission takes place over an MBIOS channel. It is exemplified

numerically that for various good ensembles of intentionally punctured LDPC codes,

the asymptotic loss in performance due to the code structure is still non-negligible as

compared to the corresponding loss due to the sub-optimality of iterative decoding

(as compared to optimal ML decoding). Looser versions of the bounds derived in
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this paper for punctured LDPC codes suggest a simplified re-derivation of previously

reported bounds on the decoding complexity of randomly punctured LDPC codes

(see [65, Theorems 3 and 4]).

Interconnections between the theorems introduced in this paper and some previ-

ously reported results which follow as special cases are shown in Figure 3.1.

Appendix

3.1 Re-derivation of [65, Theorems 3 and 4]

In the following, we start with the re-derivation of [65, Theorem 4] for general MBIOS

channels, and then re-derive the refined bound in [65, Theorem 3] for a BEC. For the

re-derivation of [65, Theorems 3 and 4] we rely on Theorem 3.5 whose derivation is

based on Theorem 3.2. Hence, we first loosen the upper bound on the achievable

rates given in (3.42), and then re-derive [65, Theorem 4] as a consequence of this

looser version. The loosening of (3.42) is done by replacing the positive parameter ξ

introduced in (3.43) by zero, and then using the lower bound on Γ from Lemma 3.8.

This gives

Rd ≤ 1

1 − αPpct




1 − 1 − (1 − αPpct)C

1 − 1

2 ln 2

∞∑

p=1

{
1

p(2p − 1)

(
(1 − Ppct)gp

)aR

}




. (3.A.1)

Finally, truncating the infinite series in the RHS of (3.A.1) by only taking its first

term which corresponds to p = 1 further loosens the upper bound on the achievable

rates, and gives

Rd ≤ 1

1 − αPpct


1 − 1 − (1 − αPpct)C

1 − 1

2 ln 2

(
(1 − Ppct)g1

)aR


 . (3.A.2)

From (3.64), we get the inequality

(1 − ε)(1 − αPpct)C ≤ 1 − 1 − (1 − αPpct)C

1 − 1

2 ln 2

(
(1 − Ppct)g1

)aR
.

which after straightforward algebra gives

1 +
1 − (1 − αPpct)C

εC(1 − αPpct)
≤ 2 ln 2

(
1

(1 − Ppct)g1

)aR

. (3.A.3)

We proceed by giving a simple lower bound on g1.
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Lemma 3.A.1 For g1 introduced in (3.41), the following inequality holds

g1 ≥ (1 − 2w)2

where

w , Pe(a) =
1

2
Pr(L = 0) +

∫ 0−

−∞
a(l) dl

designates the uncoded bit error probability of the MBIOS channel given the channel

input is 1.

Proof: Based on the symmetry property where a(l) = ela(−l) and Jensen’s inequal-

ity, we get

g1 =

∫ ∞

0

a(l) (1 + e−l) tanh2

(
l

2

)
dl

=

∫ ∞

−∞
a(l) tanh2

(
l

2

)
dl

≥
(∫ ∞

−∞
a(l) tanh

(
l

2

)
dl

)2

=

(∫ ∞

0

a(l) (1 + e−l) tanh

(
l

2

)
dl

)2

=

(∫ ∞

0

a(l) (1 − e−l)dl

)2

=

(∫ ∞

0+

(
a(l) − a(−l)

)
dl

)2

=

(
1 − Pr(L = 0) − 2

∫ 0−

−∞
a(l) dl

)2

= (1 − 2w)2.

Replacing g1 in the RHS of (3.A.3) by its lower bound from Lemma 3.A.1 gives

1 +
1 − (1 − αPpct)C

εC(1 − αPpct)
≤ 2 ln 2

(
1

(1 − Ppct)(1 − 2w)2

)aR

≤ 2 ln 2

(
1

(1 − Ppct)(1 − 2w)

)2aR

.

Solving the last inequality for aR gives

aR ≥
ln

(
1

2 ln 2

(
1 + 1−(1−αPpct)C

εC(1−αPpct)

))

2 ln
(

1
(1−Ppct)(1−2w)

) .
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Based on the equality (3.65) which relates the complexity under message-passing

decoding to the average right degree (aR) and since Rd < C, we get from the last

inequality

χD(ε) ≥ 1 − C

2C

ln

(
1

2 ln 2

(
1 + 1−(1−αPpct)C

εC(1−αPpct)

))

ln
(

1
(1−Ppct)(1−2w)

) . (3.A.4)

Note that α = R′
d in [65, Theorem 4]. This gives the equality α = (1 − ε)C =

(1 − ε)(1 − αPpct)C whose solution is

α =
(1 − ε)C

1 + (1 − ε)CPpct
. (3.A.5)

Finally, the substitution of α in (3.A.5) into the RHS of (3.A.4) gives

χD(ε) ≥ 1 − C

2C

ln

(
1

2 ln 2

(
1 + 1−(1−Ppct)C−εCPpct

εC

))

ln
(

1
(1−Ppct)(1−2w)

)

≥ 1 − C

2C

ln
(

1
ε

1−(1−Ppct)C
2C ln 2

)

ln
(

1
(1−Ppct)(1−2w)

) . (3.A.6)

which coincides with [65, Theorem 4] for a sequence of ensembles of randomly punc-

tured LDPC codes.

For the derivation of the refined bound for the BEC which is given in [65, Theo-

rem 3], we start from (3.A.1). The refinement of the latter bound is due to the fact

that for the BEC, gp in (3.41) is independent of p, and is equal to gp = 1 − PBEC

where PBEC designates the erasure probability of the BEC. From (3.A.1), we get the

following upper bound on the achievable rates:

Rd ≤ 1

1 − αPpct


1 − 1 − (1 − αPpct)C

1 −
(
(1 − Ppct)(1 − PBEC)

)aR




which follows from the equality
∑∞

p=1
1

2p(2p−1)
= ln 2. Substituting Rd = (1 − ε)(1 −

PBEC) and the α in (3.A.5) gives a lower bound on aR. Finally, the lower bound

in [65, Theorem 3] follows from the resulting lower bound on aR and the inequality

χD(ε) ≥ 1−C
C

aR.



Chapter 4

Bounds on the Number of

Iterations for Turbo-Like

Ensembles over the Binary Erasure

Channel

This chapter is a preprint of

• I. Sason and G. Wiechman, “Bounds on the number of iterations for turbo-

like ensembles over the binary erasure channel,” submitted to IEEE Trans. on

Information Theory, November 2007.

Chapter Overview: This paper provides simple lower bounds on the number of iter-

ations which is required for successful message-passing decoding of some important

families of graph-based code ensembles (including low-density parity-check codes and

variations of repeat-accumulate codes). The transmission of the code ensembles is

assumed to take place over a binary erasure channel, and the bounds refer to the

asymptotic case where we let the block length tend to infinity. The simplicity of

the bounds derived in this paper stems from the fact that they are easily evaluated

and are expressed in terms of some basic parameters of the ensemble which include

the fraction of degree-2 variable nodes, the target bit erasure probability and the gap

between the channel capacity and the design rate of the ensemble. This paper demon-

strates that the number of iterations which is required for successful message-passing

decoding scales at least like the inverse of the gap (in rate) to capacity, provided that

the fraction of degree-2 variable nodes of these turbo-like ensembles does not vanish

(hence, the number of iterations becomes unbounded as the gap to capacity vanishes).

125
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4.1 Introduction

During the last decade, there have been many developments in the construction and

analysis of low-complexity error-correcting codes which closely approach the Shannon

capacity limit of many standard communication channels with feasible complexity.

These codes are understood to be codes defined on graphs, together with the asso-

ciated iterative decoding algorithms. Graphs serve not only to describe the codes

themselves, but more importantly, they structure the operation of their efficient sub-

optimal iterative decoding algorithms.

Proper design of codes defined on graphs enables to asymptotically achieve the ca-

pacity of the binary erasure channel (BEC) under iterative message-passing decoding.

Capacity-achieving sequences of ensembles of low-density parity-check (LDPC) codes

were originally introduced by Shokrollahi [94] and by Luby et al. [51], and a sys-

tematic study of capacity-achieving sequences of LDPC ensembles was presented by

Oswald and Shokrollahi [63] for the BEC. Analytical bounds on the maximal achiev-

able rates of LDPC ensembles were derived by Barak et al. [10] for the asymptotic

case where the block length tends to infinity; this analysis provides a lower bound on

the gap between the channel capacity and the achievable rates of LDPC ensembles

under iterative decoding. The decoding complexity of LDPC codes under iterative

message-passing decoding scales linearly with the block length, though their encoding

complexity is in general super-linear with the block length; this motivated the intro-

duction of repeat-accumulate codes and their more recent variants (see, e.g., [4], [40]

and [64]) whose encoding and decoding complexities under iterative message-passing

decoding are both inherently linear with the block length. Due to the simplicity of the

density evolution analysis for the BEC, suitable constructions of capacity-achieving

ensembles of variants of repeat-accumulate codes were devised in [40], [65], [64] and

[80]. All these works rely on the density evolution analysis of codes defined on graphs

for the BEC, and provide an asymptotic analysis which refers to the case where we

let the block length of these code ensembles tend to infinity. Another innovative cod-

ing technique, introduced by Shokrollahi [95], enables to achieve the capacity of the

BEC with encoding and decoding complexities which scale linearly with the block

length, and it has the additional pleasing property of achieving the capacity without

the knowledge of the erasure probability of the channel.

The performance analysis of finite-length LDPC code ensembles whose transmis-

sion takes place over the BEC was introduced by Di et al. [22]. This analysis con-

siders sub-optimal iterative message-passing decoding as well as optimal maximum-

likelihood decoding. In [6], an efficient approach to the design of LDPC codes of
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finite length was introduced by Amraoui et al.; this approach is specialized for the

BEC, and it enables to design such code ensembles which perform well under itera-

tive decoding with a practical constraint on the block length. In [72], Richardson and

Urbanke initiated the analysis of the distribution of the number of iterations needed

for the decoding of LDPC ensembles of finite block length which are communicated

over the BEC.

For general channels, the number of iterations is an important factor in assess-

ing the decoding complexity of graph-based codes under iterative message-passing

decoding. The second factor determining the decoding complexity of such codes is

the complexity of the Tanner graph which is used to represent the code; this latter

quantity, defined as the number of edges in the graph per information bit, serves as

a measure for the decoding complexity per iteration.

The extrinsic information transfer (EXIT) charts, pioneered by Stephan ten Brink

[102, 101], form a powerful tool for an efficient design of codes defined on graphs by

tracing the convergence behavior of their iterative decoders. EXIT charts provide

a good approximative engineering tool for tracing the convergence behavior of soft-

input soft-output iterative decoders; they suggest a simplified visualization of the

convergence of these decoding algorithms, based on a single parameter which repre-

sents the exchange of extrinsic information between the constituent decoders. For the

BEC, the EXIT charts coincide with the density evolution analysis (see [74]) which

is simplified in this case to a one-dimensional analysis.

A numerical approach for the joint optimization of the design rate and decoding

complexity of LDPC ensembles was provided in [8]; it is assumed there that the

transmission of these code ensembles takes place over a memoryless binary-input

output-symmetric (MBIOS) channel, and the analysis refers to the asymptotic case

where we let the block length tend to infinity. For the simplification of the numerical

optimization, a suitable approximation of the number of iterations was used in [8]

to formulate this joint optimization as a convex optimization problem. Due to the

efficient tools which currently exist for a numerical solution of convex optimization

problems, this approach suggests an engineering tool for the design of good LDPC

ensembles which possess an attractive tradeoff between the decoding complexity and

the asymptotic gap to capacity (where the block length of these code ensembles is

large enough). This numerical approach however is not amenable for drawing rigorous

theoretical conclusions on the tradeoff between the number of iterations and the

performance of the code ensembles. A different numerical approach for approximating

the number of iterations for LDPC ensembles operating over the BEC is addressed

in [52].
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A different approach for characterizing the complexity of iterative decoders was

suggested by Khandekar and McEliece (see [43, 42, 56]). Their questions and conjec-

tures were related to the tradeoff between the asymptotic achievable rates and the

complexity under iterative message-passing decoding; they initiated a study of the

encoding and decoding complexity of graph-based codes in terms of the achievable

gap (in rate) to capacity. It was conjectured there that for a large class of channels, if

the design rate of a suitably designed ensemble forms a fraction 1 − ε of the channel

capacity, then the decoding complexity scales like 1
ε
ln 1

ε
. The logarithmic term in this

expression was attributed to the graphical complexity (i.e., the decoding complexity

per iteration), and the number of iterations was conjectured to scale like 1
ε
. There

is one exception: For the BEC, the complexity under the iterative message-passing

decoding algorithm behaves like ln 1
ε

(see [51], [81], [80] and [94]). This is true since

the absolute reliability provided by the BEC allows every edge in the graph to be

used only once during the iterative decoding. Hence, for the BEC, the number of

iterations performed by the decoder serves mainly to measure the delay in the decod-

ing process, while the decoding complexity is closely related to the complexity of the

Tanner graph which is chosen to represent the code. The graphical complexity re-

quired for LDPC and systematic irregular repeat-accumulate (IRA) code ensembles

to achieve a fraction 1 − ε of the capacity of a BEC under iterative decoding was

studied in [81] and [80]. It was shown in these papers that the graphical complexity

of these ensembles must scale at least like ln 1
ε
; moreover, some explicit constructions

were shown to approach the channel capacity with such a scaling of the graphical

complexity. An additional degree of freedom which is obtained by introducing state

nodes in the graph (e.g., punctured bits) was exploited in [65] and [64] to construct

capacity-achieving ensembles of graph-based codes which achieve an improved trade-

off between complexity and achievable rates. Surprisingly, these capacity-achieving

ensembles under iterative decoding were demonstrated to maintain a bounded graph-

ical complexity regardless of the erasure probability of the BEC. A similar result of

a bounded graphical complexity for capacity-achieving ensembles over the BEC was

also obtained in [38].

This paper provides simple lower bounds on the number of iterations which is

required for successful message-passing decoding of graph-based code ensembles. The

transmission of these ensembles is assumed to take place over the BEC, and the

bounds refer to the asymptotic case where the block length tends to infinity. The

simplicity of the bounds derived in this paper stems from the fact that they are eas-

ily evaluated and are expressed in terms of some basic parameters of the considered
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ensemble; these include the fraction of degree-2 variable nodes, the target bit era-

sure probability and the gap between the channel capacity and the design rate of

the ensemble. The bounds derived in this paper demonstrate that the number of

iterations which is required for successful message-passing decoding scales at least

like the inverse of the gap (in rate) to capacity, provided that the fraction of degree-

2 variable nodes of these turbo-like ensembles does not vanish (hence, the number

of iterations becomes unbounded as the gap to capacity vanishes). The behavior of

these lower bounds matches well with the experimental results and the conjectures

on the number of iterations and complexity, as provided by Khandekar and McEliece

(see [43, 42, 56]). Note that lower bounds on the number of iterations in terms of

the target bit erasure probability can be alternatively viewed as lower bounds on the

achievable bit erasure probability as a function of the number of iterations performed

by the decoder. As a result of this, the simple bounds derived in this paper provide

some insight on the design of stopping criteria for iteratively decoded ensembles over

the BEC (for other stopping criteria see, e.g., [7, 90]).

This paper is structured as follows: Section 4.2 presents some preliminary back-

ground, definitions and notation, Section 4.3 introduces the main results of this paper

and discusses some of their implications, the proofs of these statements and some fur-

ther discussions are provided in Section 4.4. Finally, Section 4.5 summarizes this

paper. Proofs of some technical statements are relegated to the appendices.

4.2 Preliminaries

This section provides preliminary background and introduces notation for the rest of

this paper.

4.2.1 Graphical Complexity of Codes Defined on Graphs

As noted in Section 4.1, the decoding complexity of a graph-based code under iterative

message-passing decoding is closely related to its graphical complexity, which we now

define formally.

Definition 4.1 [Graphical Complexity] Let C be a binary linear block code of

length n and rate R, and let G be an arbitrary representation of C by a Tanner graph.

Denote the number of edges in G by E. The graphical complexity of G is defined as

the number of edges in G per information bit of the code C, i.e., ∆(G) , E
nR

.

Note that the graphical complexity depends on the specific Tanner graph which is

used to represent the code. An analysis of the graphical complexity for some families

of graph-based codes is provided in [38, 65, 64, 81, 80].
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4.2.2 Accumulate-Repeat-Accumulate Codes

Accumulate-repeat-accumulate (ARA) codes form an attractive coding scheme of

turbo-like codes due to the simplicity of their encoding and decoding (where both

scale linearly with the block length), and due to their remarkable performance under

iterative decoding [4]. By some suitable constructions of puncturing patterns, ARA

codes with small maximal node degree are presented in [4]; these codes perform very

well even for short to moderate block lengths, and they suggest flexibility in the design

of efficient rate-compatible codes operating on the same ARA decoder.

Ensembles of irregular and systematic ARA codes, which asymptotically achieve

the capacity of the BEC with bounded graphical complexity, are presented in [64].

This bounded complexity result stays in contrast to LDPC ensembles, which have

been shown to require unbounded graphical complexity in order to approach channel

capacity, even under maximum-likelihood decoding (see [81]). In this section, we

present ensembles of irregular and systematic ARA codes, and give a short overview

of their encoding and decoding algorithms; this overview is required for the later

discussion. The material contained in this section is taken from [64, Section II], and

is introduced here briefly in order to make the paper self-contained.

From an encoding point of view, ARA codes are viewed as interleaved and serially

concatenated codes. The encoding of ARA codes is done as follows: first, the informa-

tion bits are accumulated (i.e., differentially encoded), and then the bits are repeated

a varying number of times (by an irregular repetition code) and interleaved. The

interleaved bits are partitioned into disjoint sets (whose size is not fixed in general),

and the parity of each set of bits is computed (i.e., the bits are passed through an

irregular single parity-check (SPC) code). Finally, the bits are accumulated a second

time. A codeword of systematic ARA codes is composed of the information bits and

the parity bits at the output of the second accumulator.

Since the iterative decoding algorithm of ARA codes is performed on the appro-

priate Tanner graph (see Figure 4.1), this leads one to view them as sparse-graph

codes from a decoding point of view.

Following the notation in [64], we refer to the three layers of bit nodes in the

Tanner graphs as ‘systematic bits’ which form the systematic part of the codeword,

‘punctured bits’ which correspond to the output of the first accumulator and are not

a part of the transmitted codeword, and ‘code bits’ which correspond to the output

of the second accumulator and form the parity-bits of the codeword (see Figure 4.1).

Denoting the block length of the code by n and its dimension by k, each codeword

is composed of k systematic bits and n − k code bits. The two layers of check nodes

are referred to as ‘parity-check 1’ nodes and ‘parity-check 2’ nodes, which correspond
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to the first and the second accumulators of the encoder, respectively. An ensemble

of irregular ARA codes is defined by the block length n and the degree distributions

of the ‘punctured bit’ and ‘parity-check 2’ nodes. Following the notation in [64], the

degree distribution of the ‘punctured bit’ nodes is given by the power series

L(x) ,

∞∑

i=1

Lix
i (4.1)

where Li designates the fraction of ‘punctured bit’ nodes whose degree is i. Similarly,

the degree distribution of the ‘parity-check 2’ nodes is given by

R(x) ,

∞∑

i=1

Rix
i (4.2)

where Ri designates the fraction of these nodes whose degree is i. In both cases, degree

of a node only refers to edges connecting the ‘punctured bit’ and the ‘parity-check 2’

layers, without the extra two edges which are connected to each of the ‘punctured bit’

nodes and ‘parity-check 2’ nodes from the accumulators (see Figure 4.1). Considering

the distributions from the edge perspective, we let

λ(x) ,

∞∑

i=1

λix
i−1, ρ(x) ,

∞∑

i=1

ρix
i−1 (4.3)

designate the degree distributions from the edge perspective; here, λi (ρi) designates

the fraction of edges connecting ‘punctured bit’ nodes to ‘parity-check 2’ nodes which

are adjacent to ‘punctured bit’ (‘parity-check 2’) nodes of degree i. The design rate

of a systematic ARA ensemble is given by R = aR

aL+aR
where

aL ,
∑

i

iLi = L′(1) =
1

∫ 1

0

λ(t)dt

, aR ,
∑

i

iRi = R′(1) =
1

∫ 1

0

ρ(t)dt

(4.4)

designate the average degrees of the ‘punctured bit’ and ‘parity-check 2’ nodes, re-

spectively.

Iterative decoding of ARA codes is performed by passing messages on the edges

of the Tanner graph in a layer-by-layer approach. Each decoding iteration starts

with messages for the ‘systematic bit’ nodes to the ‘parity-check 1’ nodes, the latter

nodes then use this information to calculate new messages to the ‘punctured bit’

nodes and so the information passes through layers down the graph and back up

until the iteration ends with messages from the ‘punctured bit’ nodes to the ‘parity-

check 1’ nodes. The final phase of messages from the ‘parity-check 1’ nodes to the

‘systematic bit’ nodes is omitted since the latter nodes are of degree one and so the
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Figure 4.1: Tanner graph of an irregular and systematic
accumulate-repeat-accumulate code. This figure is reproduced from [64].

outgoing message is not changed by incoming information. Assume that the code is

transmitted over a BEC with erasure probability p. Since the systematic bits receive

input from the channel, the probability of erasure in messages from the ‘systematic

bit’ nodes to the ‘parity-check 1’ nodes is equal to p throughout the decoding process.

For other messages, we denote by x
(l)
i where i = 0, 1, . . . , 5 the probability of erasure of

the different message types at decoding iteration number l (where we start counting at

zero). The variable x
(l)
0 corresponds to the probability of erasure in message from the

‘parity-check 1’ nodes to the ‘punctured bit’ nodes, x
(l)
1 tracks the erasure probability

of messages from the ‘punctured bit’ nodes to the ‘parity-check 2’ nodes and so on.

The density evolution (DE) equations for the decoder based on the Tanner graph in

Figure 4.1 are given in [64], and we repeat them here:

x
(l)
0 = 1 −

(
1 − x

(l−1)
5

)
(1 − p)

x
(l)
1 =

(
x

(l)
0

)2

λ
(
x

(l−1)
4

)

x
(l)
2 = 1 − R

(
1 − x

(l)
1

)(
1 − x

(l−1)
3

)
l = 1, 2, . . . (4.5)

x
(l)
3 = p x

(l)
2

x
(l)
4 = 1 −

(
1 − x

(l)
3

)2

ρ
(
1 − x

(l)
1

)

x
(l)
5 = x

(l)
0 L

(
x

(l)
4

)
.

The stability condition for systematic ARA ensembles is derived in [64, Section II.D]

and states that the fixed point x
(l)
i = 0 of the iterative decoding algorithm is stable
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if and only if

p2 λ2

(
ρ′(1) +

2pR′(1)

1 − p

)
≤ 1 . (4.6)

4.2.3 Big-O notation

The terms O, Ω and Θ are widely used in computer science to describe asymptotic

relationships between functions (for formal definitions see e.g., [1]). In our context, we

refer to the gap (in rate) to capacity, denoted by ε, and discuss in particular the case

where 0 ≤ ε ≪ 1 (i.e., sequences of capacity-approaching ensembles). Accordingly,

we define

• f(ε) = O
(
g(ε)

)
means that there are positive constants c and δ, such that

0 ≤ f(ε) ≤ c g(ε) for all 0 ≤ ε ≤ δ.

• f(ε) = Ω
(
g(ε)

)
means that there are positive constants c and δ, such that

0 ≤ c g(ε) ≤ f(ε) for all 0 ≤ ε ≤ δ.

• f(ε) = Θ
(
g(ε)

)
means that there are positive constants c1, c2 and δ, such that

0 ≤ c1 g(ε) ≤ f(ε) ≤ c2 g(ε) for all 0 ≤ ε ≤ δ.

Note that for all the above definitions, the values of c, c1, c2 and δ must be fixed for

the function f and should not depend on ε.

4.3 Main Results

In this section, we present lower bounds on the required number of iterations used by

a message-passing decoder for code ensembles defined on graphs. The communication

is assumed to take place over a BEC, and we consider the asymptotic case where the

block length of these code ensembles tends to infinity.

Definition 4.2 Let
{
Cm

}
m∈N

be a sequence of code ensembles. Assume a common

block length (nm) of the codes in Cm which tends to infinity as m grows. Let the

transmission of this sequence take place over a BEC with capacity C. The sequence{
Cm

}
is said to achieve a fraction 1 − ε of the channel capacity under some given

decoding algorithm if the asymptotic rate of the codes in Cm satisfies R ≥ (1 − ε)C

and the achievable bit erasure probability under the considered algorithm vanishes as

m becomes large.

In the continuation, we consider a standard message-passing decoder for the BEC,

and address the number of iterations which is required in terms of the achievable

fraction of the channel capacity under this decoding algorithm.
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Theorem 4.1 [Lower bound on the number of iterations for LDPC ensem-

bles transmitted over the BEC] Let
{
(nm, λ, ρ)

}
m∈N

be a sequence of LDPC

ensembles whose transmission takes place over a BEC with erasure probability p.

Assume that this sequence achieves a fraction 1 − ε of the channel capacity under

message-passing decoding. Let L2 = L2(ε) be the fraction of variable nodes of de-

gree 2 for this sequence. In the asymptotic case where the block length tends to

infinity, let l = l(ε, p, Pb) denote the number of iterations which is required to achieve

an average bit erasure probability Pb over the ensemble. Under the mild condition

that Pb < p L2(ε), the required number of iterations satisfies the lower bound

l(ε, p, Pb) ≥
2

1 − p

(√
p L2(ε) −

√
Pb

)2 1

ε
. (4.7)

Corollary 4.1 Under the assumptions of Theorem 4.1, if the fraction of degree-2

variable nodes stays strictly positive as the gap (in rate) to capacity vanishes, i.e., if

lim
ε→0

L2(ε) > 0

then the number of iterations which is required in order to achieve an average bit

erasure probability Pb < p L2(ε) under iterative message-passing decoding scales at

least like the inverse of this gap to capacity, i.e.,

l(ε, p, Pb) = Ω

(
1

ε

)
.

Discussion 4.1 [Effect of messages’ scheduling on the number of iterations]

The lower bound on the number of iterations as provided in Theorem 4.1 refers to the

flooding schedule where in each iteration, all the variable nodes and subsequently all

the parity-check nodes send messages to their neighbors. Though it is the commonly

used scheduling used by iterative message-passing decoding algorithms, an alterna-

tive scheduling of the messages may provide a faster convergence rate for the iterative

decoder. As an example, [92] considers the convergence rate of a serial scheduling

where instead of sending all the messages from the variable nodes to parity-check

nodes and then all the messages from check nodes to variable nodes, as done in the

flooding schedule, these two phases are interleaved. Based on the density evolution

analysis which applies to the asymptotic case of an infinite block length, it is demon-

strated in [92] that under some assumptions, the required number of iterations for

LDPC decoding over the BEC with serial scheduling is reduced by a factor of two (as
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compared to the flooding scheduling). It is noted that the main result of Theorem 4.1

is the introduction of a rigorous and simple lower bound on the number of iterations

for LDPC ensembles which scales like the reciprocal of the gap between the channel

capacity and the design rate of the ensemble. Though such a scaling of this bound

is proved for the commonly used approach of flooding scheduling, it is likely to hold

also for other efficient approaches of scheduling. It is also noted that this asymptotic

scaling of the lower bound on the number of iterations supports the conjecture of

Khandekar and McEliece [43].

Discussion 4.2 [On the dependence of the bounds on the fraction of degree-

2 variable nodes] The lower bound on the number of iterations in Theorem 4.1

becomes trivial when the fraction of variable nodes of degree 2 vanishes. Let us

focus our attention on sequences of ensembles which approach the channel capacity

under iterative message-passing decoding (i.e., ε → 0). For the BEC, several such

sequences have been constructed (see e.g. [51, 94]). Asymptotically, as the gap to

capacity vanishes, all of these sequences known to date satisfy the stability condition

with equality; this property is known as the flatness condition [94]. In [76, Lemma 5],

the asymptotic fraction of degree 2 variable nodes for capacity-approaching sequences

of LDPC ensembles over the BEC is calculated. This lemma states that for such

sequences which satisfy the following two conditions as the gap to capacity vanishes:

• The stability condition is satisfied with equality (i.e., the flatness condition

holds)

• The limit of the ratio between the standard deviation and the expectation of

the right degree exists and is finite

then the asymptotic fraction of degree–2 variable nodes does not vanish. In fact,

for various sequences of capacity approaching LDPC ensembles known to date (see

[51, 63, 94]), the ratio between the standard deviation and the expectation of the

right degree-distribution tends to zero; in this case, [76, Lemma 5] implies that the

fraction of degree-2 variable nodes tends to 1
2

irrespectively of the erasure probability

of the BEC, as can be verified directly for these code ensembles.

Discussion 4.3 [Concentration of the lower bound] Theorem 4.1 applies to

the required number of iterations for achieving an average bit erasure probability Pb

where this average is taken over the LDPC ensemble whose block length tends to

infinity. Although we consider an expectation over the LDPC ensemble, note that l is

deterministic as it is the smallest integer for which the average bit erasure probability
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does not exceed a fixed value. As shown in the proof (see Section 4.4), the derivation

of this lower bound relies on the density evolution technique which addresses the

average performance of the ensemble. Based on concentration inequalities, it is proved

that the performance of individual codes from the ensemble concentrates around the

average performance over the ensemble as we let the block length tend to infinity [74,

Appendix C]. In light of this concentration result and the use of density evolution in

Section 4.4 (which applies to the case of an infinite block length), it follows that the

lower bound on the number of iterations in Theorem 4.1 is valid with probability 1

for individual codes from the ensemble. This also holds for the ensembles of codes

defined on graphs considered in Theorems 4.2 and 4.3.

Discussion 4.4 [On the number of required iterations for showing a mild

improvement in the erasure probability during the iterative process] Note

that for capacity-approaching LDPC ensembles, the lower bound on the number of

iterations tells us that even for successfully starting the iteration process and reduc-

ing the bit erasure probability by a factor which is below the fraction of degree-2

variable nodes, the required number of iterations already scales like 1
ε
. This is also

the behavior of the lower bound on the number of iterations even when the bit era-

sure probability should be made arbitrarily small; this lower bound therefore indicates

that for capacity-approaching LDPC ensembles, a significant number of the iterations

is performed for the starting process of the iterative decoding where the bit erasure

probability is merely reduced by a factor of 1
2

as compared to the erasure probability

of the channel (see Discussion 4.2 as a justification for the one-half factor). This

conclusion is also well interpreted by the area theorem and the asymptotic behavior

of the two EXIT curves (for the variable nodes and the parity-check nodes) in the

limit where ε → 0; as the gap to capacity vanishes, both curves tend to be a step

function jumping from 0 to 1 at the origin, so the iterations progress very slowly at

the initial stages of the decoding process.

In the asymptotic case where we let the block length tend to infinity and the

transmission takes place over the BEC, suitable constructions of capacity-achieving

systematic ARA ensembles enable a fundamentally improved tradeoff between their

graphical complexity and their achievable gap (in rate) to capacity under iterative

decoding (see [64]). The graphical complexity of these systematic ARA ensembles

remains bounded (and quite small) as the gap to capacity for these ensembles vanishes

under iterative decoding; this stays in contrast to un-punctured LDPC code ensembles

[81] and systematic irregular repeat-accumulate (IRA) ensembles [80] whose graphical

complexity necessarily becomes unbounded as the gap to capacity vanishes (see [64,
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Table I]). This observation raises the question whether the number of iterations which

is required to achieve a desired bit erasure probability under iterative decoding, can

be reduced by using systematic ARA ensembles. The following theorem provides a

lower bound on the number of iterations required to achieve a desired bit erasure

probability under message-passing decoding; it shows that similarly to the parallel

result for LDPC ensembles (see Theorem 4.1), the required number of iterations for

systematic ARA codes scales at least like the inverse of the gap to capacity.

Theorem 4.2 [Lower bound on the number of iterations for systematic

ARA ensembles transmitted over the BEC] Let
{
(nm, λ, ρ)

}
m∈N

be a sequence

of systematic ARA ensembles whose transmission takes place over a BEC with era-

sure probability p. Assume that this sequence achieves a fraction 1− ε of the channel

capacity under message-passing decoding. Let L2 = L2(ε) be the fraction of ‘punc-

tured bit’ nodes of degree 2 for this sequence (where the two edges related to the

accumulator are not taken into account). In the asymptotic case where the block

length tends to infinity, let l = l(ε, p, Pb) designate the required number of iterations

to achieve an average bit erasure probability Pb of the systematic bits. Under the

mild condition that 1 −
√

1 − Pb

p
< p L2(ε), the number of iterations satisfies the

lower bound

l(ε, p, Pb) ≥ 2p(1 − ε)



√

p L2(ε) −

√√√√1 −
√

1 − Pb

p




2

1

ε
. (4.8)

As noted in Section 4.2.2, systematic ARA codes can be viewed as serially concate-

nated codes where the systematic bits are associated with the outer code. These codes

can be therefore decoded iteratively by using a turbo-like decoder for interleaved and

serially concatenated codes. The following proposition states that the lower bound

on the number of iterations in Theorem 4.2 is also valid for such an iterative decoder.

Proposition 4.1 [Lower bound on the number of iterations for systematic

ARA codes under turbo-like decoding] Under the assumptions and notation

of Theorem 4.2, the lower bound on the number of iterations in (4.8) is valid also

when the decoding is performed by a turbo-like decoder for uniformly interleaved and

serially concatenated codes.

The reader is referred to Appendix 4.A for a detailed proof. The following theorem

which refers to irregular repeat-accumulate (IRA) ensembles is proved in a conceptu-

ally similar way to the proof of Theorem 4.2.
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Theorem 4.3 [Lower bound on the number of iterations for IRA ensembles

transmitted over the BEC] Let
{
(nm, λ, ρ)

}
m∈N

be a sequence of (systematic or

non-systematic) IRA ensembles whose transmission takes place over a BEC with

erasure probability p. Assume that this sequence achieves a fraction 1 − ε of the

channel capacity under message-passing decoding. Let L2 = L2(ε) be the fraction of

‘information bit’ nodes of degree 2 for this sequence. In the asymptotic case where

the block length tends to infinity, let l = l(ε, p, Pb) designate the required number

of iterations to achieve an average bit erasure probability Pb of the information bits.

For systematic codes, if Pb < p L2(ε), then the number of iterations satisfies the lower

bound
l(ε, p, Pb) ≥ 2(1 − ε)

(√
p L2(ε) −

√
Pb

)2 1

ε
. (4.9)

For non-systematic codes, if Pb < L2(ε), then

l(ε, p, Pb) ≥ 2(1 − ε)
(√

L2(ε) −
√

Pb

)2 1

ε
. (4.10)

4.4 Derivation of the Bounds on the Number of

Iterations

4.4.1 Proof of Theorem 4.1

Let
{
x(l)
}

l∈N
designate the expected fraction of erasures in messages from the variable

nodes to the check nodes at the l’th iteration of the message-passing decoding algo-

rithm (where we start counting at l = 0). From density evolution, in the asymptotic

case where the block length tends to infinity, x(l) is given by the recursive equation

x(l+1) = p λ
(
1 − ρ

(
1 − x(l)

))
, l ∈ N (4.11)

with the initial condition

x(0) = p (4.12)

where p designates the erasure probability of the BEC. Considering a sequence of

{(nm, λ, ρ)} LDPC ensembles where we let the block length nm tend to infinity, the

average bit erasure probability after the l’th iteration is given by

P
(l)
b = p L

(
1 − ρ(1 − x(l))

)
(4.13)

where L designates the common left degree distribution of the ensembles from the

node perspective. Since the function f(x) = p λ
(
1 − ρ(1 − x)

)
is monotonically

increasing, Eqs. (4.11)–(4.13) imply that an average bit erasure probability of Pb is

attainable under iterative message-passing decoding if and only if

p λ
(
1 − ρ(1 − x)

)
< x , ∀x ∈ (x∗, p] (4.14)
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where x∗ is the unique solution of

Pb = p L
(
1 − ρ(1 − x∗)

)
.

Let us define the functions

c(x) , 1 − ρ(1 − x), v(x) =

{
λ−1

(
x
p

)
0 ≤ x ≤ p

1 p < x ≤ 1
. (4.15)

From the condition in (4.14), an average bit erasure probability of Pb is attained if

and only if c(x) < v(x) for all x ∈ (x∗, p]. Since we assume that vanishing bit erasure

probability is achievable under message-passing decoding, it follows that c(x) < v(x)

for all x ∈ (0, p]. Figure 4.2 shows a plot of the functions c(x) and v(x) for an ensem-

ble of LDPC codes which achieves vanishing bit erasure probability under iterative

decoding as the block length tends to infinity. The horizontal and vertical lines, la-

beled
{
hl

}
l∈N

and
{
vl

}
l∈N

, respectively, are used to track the expected fraction of

erased messages from the variable nodes to the parity-check nodes at each iteration

of the message-passing decoding algorithm. From (4.11) and (4.12), the expected

fraction of erased left to right messages in the l’th decoding iteration (where we start

counting at zero) is equal to the x value at the left tip of the horizontal line hl. The

right-angled triangles shaded in gray will be used later in the proof.

The first step in the proof of Theorem 4.1 is calculating the area bounded by the

curves c(x) and v(x). This is done in the following lemma which is based on the area

theorem for the BEC [9].
Lemma 4.1 ∫ 1

0

(
v(x) − c(x)

)
dx =

C − R

aL

(4.16)

where C = 1 − p is the capacity of the BEC, R is the design rate of the ensemble,

and aL is the average left degree of the ensemble.

Proof: The definitions of the functions v and c in (4.15) imply that∫ 1

0

(
v(x) − c(x)

)
dx =

∫ p

0

λ−1

(
x

p

)
dx +

∫ 1

p

1 dx −
∫ 1

0

c(x)dx

= p

∫ 1

0

λ−1(s)ds + 1 − p −
∫ 1

0

(
1 − ρ(1 − x)

)
dx

(a)
= p

(
1 −

∫ 1

0

λ(x)dx

)
+ 1 − p − 1 +

∫ 1

0

ρ(x)dx

=

∫ 1

0

ρ(x)dx − p

∫ 1

0

λ(x)dx

=

∫ 1

0

λ(x)dx

︸ ︷︷ ︸
1

aL

( ∫ 1

0
ρ(x)dx

∫ 1

0
λ(x)dx

︸ ︷︷ ︸
1−R

− p︸︷︷︸
1−C

)

=
C − R

aL
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Figure 4.2: Plot of the functions c(x) and v(x) for an ensemble of LDPC codes
which achieves vanishing bit erasure probability under iterative message-passing

decoding when communicated over a BEC whose erasure probability is equal to p.
The horizontal and vertical lines track the evolution of the expected fraction of

erasure messages from the variable nodes to the check nodes at each iteration of the
message-passing decoding algorithm.

where (a) follows by substituting x = λ(s) and applying integration by parts.

Let us consider the two sets of right-angled triangles shown in two shades of gray

in Figure 4.2. The set of triangles which are shaded in dark gray are defined so that

one of the legs of triangle number i (counting from right to left and starting at zero)

is the vertical line vi, and the slope of the hypotenuse is equal to c′(0) = ρ′(1). Since

c(x) is concave for all x ∈ [0, 1], these triangles are guaranteed to be above the curve

of the function c. Since the slope of the hypotenuse is ρ′(1), the area of the i’th

triangle in this set is

Ai =
1

2
|vi|

( |vi|
ρ′(1)

)
=

|vi|2
2ρ′(1)

(4.17)
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where |vi| is the length of vi. We now turn to consider the second set of triangles,

which are shaded in light gray. Note that the function λ(x) is monotonically increasing

and convex in [0, 1] and also that λ(0) = 0 and λ(1) = 1. This implies that λ−1 is

concave in [0, 1] and therefore v(x) is concave in [0, p]. The triangles shaded in light

gray are defined so that one of the legs of triangle number i (again, counting from

the right and starting at zero) is the vertical line vi and the slope of the hypotenuse

is given by

v′(0) =
1

p

(
λ−1
)′

(0) =
1

pλ′(0)
=

1

pλ2

where the second equality follows since λ(0) = 0. The concavity of v(x) in [0, p]

guarantees that these triangles are below the curve of the of function v. The area of

the i’th triangle in this second set of triangles is given by

Bi =
1

2
|vi| (|vi| pλ2) =

pλ2 |vi|2
2

. (4.18)

Since v(x) is monotonically increasing with x, the dark-shaded triangles lie below

the curve of the function v. Similarly, the monotonicity of c(x) implies that the

light-shaded triangles are above the curve of the function c. Hence, both sets of

triangles form a subset of the domain bounded by the curves of c(x) and v(x). By

their definitions, the i’th dark triangle is on the right of vi, and the i’th light triangle

lies to the left of vi; therefore, the triangles do not overlap. Combining (4.17), (4.18)

and the fact that the triangles do not overlap, and applying Lemma 4.1, we get

C − R

aL
=

∫ 1

0

(
v(x) − c(x)

)
dx

≥
∞∑

i=0

(Ai + Bi)

≥ 1

2

(
1

ρ′(1)
+ pλ2

) l−1∑

i=0

|vi|2 (4.19)

where l is an arbitrary natural number. Since we assume that the bit erasure probabil-

ity vanishes under iterative message-passing decoding, the stability condition implies

that
1

ρ′(1)
≥ p λ2 . (4.20)

Substituting (4.20) and R = (1 − ε)C in (4.19) gives

Cε ≥ aL pλ2

l−1∑

i=0

|vi|2. (4.21)
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The definition of hl and vl in Figure 4.2 implies that for an arbitrary iteration l

1 − ρ(1 − x(l)) = c(x(l)) = 1 −
l∑

i=0

|vi| .

Substituting the last equality in (4.13) yields that the average bit erasure probability

after iteration number l − 1 can be expressed as

P
(l−1)
b = p L

(
1 −

l−1∑

i=0

|vi|
)

. (4.22)

Let l designate the number of iterations required to achieve an average bit erasure

probability Pb over the ensemble (where we let the block length tend to infinity),

i.e., l is the smallest integer which satisfies P
(l−1)
b ≤ Pb since we start counting at

l = 0. Although we consider an expectation over the LDPC ensemble, note that l is

deterministic as it is the smallest integer for which the average bit erasure probability

does not exceed Pb. Since L is monotonically increasing, (4.22) provides a lower

bound on
∑l−1

i=0 |vi| of the form

l−1∑

i=0

|vi| ≥ 1 − L−1

(
Pb

p

)
. (4.23)

From the Cauchy-Schwartz inequality, we get

(
l−1∑

i=0

|vi|
)2

≤
l−1∑

i=0

1

l−1∑

i=0

|vi|2 = l

l−1∑

i=0

|vi|2. (4.24)

Combining the above inequality with (4.21) and (4.23) gives the inequality

Cε ≥
aL pλ2

(
1 − L−1

(
Pb

p

))2

l

which provides the following lower bound on the number of iterations l:

l ≥
aL pλ2

(
1 − L−1

(
Pb

p

))2

(1 − p)ε
. (4.25)

To continue the proof, we derive a lower bound on 1 − L−1(x) for x ∈ (0, 1). Since

the fraction of variable nodes of degree i is non-negative for all i = 2, 3, . . ., we have

L(x) =
∑

i

Lix
i ≥ L2x

2, x ≥ 0.

Substituting t = L(x) gives

t ≥ L2 ·
(
L−1(t)

)2
, ∀t ∈ (0, 1)
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which is transformed into the following lower bound on 1 − L−1(x):

1 − L−1(x) ≥ 1 −
√

x

L2
, ∀x ∈ (0, 1) . (4.26)

Under the assumption Pb

p
< L2, substituting (4.26) in (4.25) gives

l ≥
aL pλ2

(√
L2 −

√
Pb

p

)2

L2 (1 − p)ε

=
aL λ2

(√
p L2 −

√
Pb

)2

L2 (1 − p)ε
. (4.27)

The lower bound in (4.7) is obtained by substituting the equality L2 = λ2 aL

2
into

(4.27).

Taking the limit where the average bit erasure probability tends to zero on both

sides of (4.7) gives the following lower bound on the number of iterations:

l(ε, p, Pb → 0) ≥ 2p

1 − p

L2(ε)

ε
.

4.4.2 Proof of Theorem 4.2

We begin the proof by considering the expected fraction of erasure messages from the

‘punctured bit’ nodes to the ‘parity-check 2’ nodes (see Figure 4.1). The following

lemma provides a lower bound on the expected fraction of erasures in the l’th decoding

iteration in terms of this expected fraction at the preceding iteration.

Lemma 4.2 Let (n, λ, ρ) be an ensemble of systematic ARA codes whose transmis-

sion takes place over a BEC with erasure probability p. Then, in the limit where

the block length tends to infinity, the expected fraction of erasure messages from the

‘punctured bit’ nodes to the ‘parity-check 2’ nodes at the l’th iteration satisfies

x
(l)
1 ≥ λ̃

(
1 − ρ̃

(
1 − x

(l−1)
1

))
, l = 1, 2, . . . (4.28)

where the tilted degree distributions λ̃ and ρ̃ are given as follows (see [64]):

λ̃(x) ,

(
p

1 − (1 − p)L(x)

)2

λ(x) (4.29)

ρ̃(x) ,

(
1 − p

1 − pR(x)

)2

ρ(x) (4.30)

and L and R designate the degree distributions of the ARA ensemble from the node

perspective.



CHAPTER 4. BOUNDS ON THE NUMBER OF ITERATIONS 144

Proof: See Appendix 4.B.1.

From Figure 4.1, it can be readily verified that the probabilities x0 and x1 for

erasure messages at iteration no. zero are equal to 1, i.e.,

x
(0)
0 = x

(0)
1 = 1. (4.31)

Let us look at the RHS of (4.28) as a function of x, and observe that it is monoton-

ically increasing over the interval [0, 1]. Let us compare the performance of a sys-

tematic ARA ensemble whose degree distributions are (λ, ρ) with an LDPC ensemble

whose degree distributions are given by (λ̃, ρ̃) (see (4.29) and (4.30)) under iterative

message-passing decoding. Given the initial condition x
(0)
1 = 1, the following conclu-

sion is obtained by recursively applying Lemma 4.2: For any iteration, the erasure

probability for messages delivered from ‘punctured bit’ nodes to ‘parity-check 2’ nodes

of the ARA ensemble (see Figure 4.1) is lower bounded by the erasure probability

of the left-to-right messages of the LDPC ensemble; this holds even if the a-priori

information from the BEC is not used by the iterative decoder of the LDPC ensemble

(note that the coefficient of λ̃ in the RHS of (4.28) is equal to one). Note that unless

the fraction of ‘parity-check 2’ nodes of degree 1 is strictly positive (i.e., R1 > 0), the

iterative decoding cannot be initiated for both ensembles (unless some the values of

some ’punctured bits’ of the systematic ARA ensemble are known, as in [64]). Hence,

the comparison above between the ARA and LDPC ensembles is of interest under the

assumption that R1 > 0; this property is implied by the assumption of vanishing bit

erasure probability for the systematic ARA ensemble under iterative message-passing

decoding.

In [64, Section II.C.2], a technique called ‘graph reduction’ is introduced. This

technique transforms the Tanner graph of a systematic ARA ensemble, transmitted

over a BEC whose erasure probability is p, into a Tanner graph of an equivalent

LDPC ensemble (where this equivalence holds in the asymptotic case where the block

length tends to infinity). The variable and parity-check nodes of the equivalent LDPC

code evolve from the ‘punctured bit’ and ‘parity-check 2’ nodes of the ARA ensemble,

respectively, and their degree distributions (from the edge perspective) are given by

λ̃ and ρ̃, respectively. It is also shown in [64] that λ̃ and ρ̃ are legitimate degree

distribution functions, i.e., all the derivatives at zero are non-negative and λ̃(1) =

ρ̃(1) = 1. As shown in [64, Eqs. (9)–(12)], the left and right degree distributions of

the equivalent LDPC ensemble from the node perspective are given, respectively, by

L̃(x) =

∫ x

0

λ̃(t)dt

∫ 1

0

λ̃(t)dt

=
p L(x)

1 − (1 − p)L(x)
(4.32)
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and

R̃(x) =

∫ x

0

ρ̃(t)dt

∫ 1

0

ρ̃(t)dt

=
(1 − p) R(x)

1 − pR(x)
. (4.33)

Let P
(l)
b designate the average erasure probability of the systematic bits after the

l’th decoding iteration (where we start counting at l = 0). For LDPC ensembles, a

simple relationship between the erasure probability of the code bits and the erasure

probability of the left-to-right messages at the l’th decoding iteration is given in

(4.13). For systematic ARA ensembles, a similar, though less direct, relationship

exists between the erasure probability of the systematic bits after the l’th decoding

iteration and x
(l)
1 ; this relationship is presented in the following lemma.

Lemma 4.3 Let (n, λ, ρ) be an ensemble of systematic ARA codes whose transmis-

sion takes place over a BEC with erasure probability p. Then, in the asymptotic

case where the block length tends to infinity, the average erasure probability of the

systematic bits after the l’th decoding iteration, P
(l)
b , satisfies the inequality

1 −

√

1 − P
(l)
b

p
≥ L̃

(
1 − ρ̃

(
1 − x

(l)
1

))
(4.34)

where ρ̃ and L̃ are defined in (4.30) and (4.32), respectively (similarly to their defin-

itions in [64]).

Proof: See Appendix 4.B.2.

Remark 4.1 We note that when P
(l)
b is very small, the LHS of (4.34) satisfies

1 −

√

1 − P
(l)
b

p
≈ P

(l)
b

2p
,

so (4.34) takes a similar form to (4.13) which refers to the erasure probability of

LDPC ensembles.

Consider the number of iterations required for the message-passing decoder, operating

on the Tanner graphs of the systematic ARA ensemble, to achieve a desired bit erasure

probability Pb. Combining Lemmas 4.2 and 4.3, and the initial condition in (4.31),

a lower bound on this number of iterations can be deduced. More explicitly, it is

lower bounded by the number of iterations which is required to achieve a bit erasure

probability of 1 −
√

1 − Pb

p
for the LDPC ensemble whose degree distributions are

(λ̃, ρ̃) and where the erasure probability of the BEC is equal to 1. It is therefore
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tempting to apply the lower bound on the number of iterations in Theorem 4.1,

which refers to LDPC ensembles, as a lower bound on the number of iterations for

the ARA ensemble. Unfortunately, the LDPC ensemble with the tilted pair of degree

distributions (λ̃, ρ̃) is transmitted over a BEC whose erasure probability is 1, so the

channel capacity is equal to zero and the multiplicative gap to capacity is meaningless.

This prevents a direct use of Theorem 4.1; however, the continuation of the proof

follows similar lines in the proof of Theorem 4.1.

Let x∗ denote the unique solution in [0, 1] of the equation

1 −
√

1 − Pb

p
= L̃

(
1 − ρ̃ (1 − x∗)

)
. (4.35)

From (4.28), (4.31) and (4.34), a necessary condition for achieving a bit erasure

probability Pb of the systematic bits is that

λ̃
(
1 − ρ̃(1 − x)

)
< x , ∀x ∈ (x∗, 1] . (4.36)

In the limit where the fixed point of the iterative decoding process is attained, the

inequalities in (4.28), (4.31) and (4.34) are replaced by equalities; hence, (4.36) also

forms a sufficient condition. Analogously to the case of LDPC ensembles, as in the

proof of Theorem 4.1, we define the functions

c̃(x) = 1 − ρ̃(1 − x) and v(x) = λ̃−1(x) . (4.37)

Due to the monotonicity of λ̃ in [0, 1], the necessary and sufficient condition for

attaining an erasure probability Pb of the systematic bits in (4.36) can be rewritten

as

c̃(x) < ṽ(x) , ∀x ∈ (x∗, 1] .

Since we assume that the sequence of ensembles asymptotically achieves vanishing

bit erasure probability under message-passing decoding, it follows that

c̃(x) < ṽ(x) , ∀x ∈ (0, 1] .

The next step in the proof is calculating the area of the domain bounded by the curves

c̃(x) and ṽ(x). This is done in the following lemma which is analogous to Lemma 4.1.

Lemma 4.4 ∫ 1

0

(
ṽ(x) − c̃(x)

)
dx =

C − R

(1 − R) aR
(4.38)

where ṽ and c̃ are introduced in (4.37), C = 1 − p is the capacity of the BEC, R is

the design rate of the systematic ARA ensemble, and aR is defined in (4.4) and it

designates the average degree of the ‘parity-check 2’ nodes when the two edges related

to the lower accumulator in Figure 4.1 are not taken into account.
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Proof: The definitions of the functions ṽ and c̃ in (4.37) yield that

∫ 1

0

(
ṽ(x) − c̃(x)

)
dx =

∫ 1

0

λ̃−1(x)dx − 1 +

∫ 1

0

ρ̃(1 − x)dx

=

(
1 −

∫ 1

0

λ̃(x)dx

)
− 1 +

∫ 1

0

ρ̃(x)dx

=

∫ 1

0

ρ̃(x)dx −
∫ 1

0

λ̃(x)dx (4.39)

where the second equality is obtained via integration by parts (note that λ̃(0) = 0

and λ̃(1) = 1). From (4.32), we get

∫ 1

0

λ̃(x)dx =
1

L̃′(1)
=

p

L′(1)
=

p

aL

(4.40)

(see also [64, Eq. (23)]) where aL is defined in (4.4) and designates the average degree

of the ‘punctured bit’ nodes in the Tanner graph (see Figure 4.1) when the two edges,

related to the upper accumulator in Figure 4.1, are not taken into account. Similarly,

(4.33) gives ∫ 1

0

ρ̃(x)dx =
1

R̃′(1)
=

1 − p

R′(1)
=

1 − p

aR
(4.41)

(see also [64, Eq. (24)]). Substituting (4.40) and (4.41) into (4.39) gives

∫ 1

0

(
ṽ(x) − c̃(x)

)
dx =

1 − p

aR
− p

aL

(a)
=

1

aR

[
1 − p

(
aL + aR

aL

)

︸ ︷︷ ︸
1

1−R

]

=
1

aR

1 − R − p

1 − R

=
C − R

(1 − R) aR
(4.42)

where (a) follows since the design rate of the systematic ARA ensemble is given by

R = aR

aL+aR
(this equality follows directly from Figure 4.1).

To continue the proof, we consider a plot similar to the one in Figure 4.2 with the

exception that c(x) and v(x) are replaced by c̃(x) and ṽ(x), respectively. Note that

in this case the horizontal line h0 is reduced to the point (1, 1). Consider the two sets

of gray-shaded right-angled triangles. The triangles shaded in dark gray are defined

so that the height of triangle number i (counting from right to left and starting at

zero) is the vertical line vi and the slope of their hypotenuse is equal to c̃′(0) = ρ̃′(1).
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Since c̃(x) is concave, these triangles form a subset of the domain bounded by the

curves c̃(x) and ṽ(x). The area of the i’th triangle in this set is given by

Ai =
1

2
|vi|

( |vi|
ρ̃′(1)

)
=

|vi|2
2 ρ̃′(1)

where |vi| is the length of vi. The second set of right-angled triangles, which are

shaded in light gray, are also defined so that the height of the i’th triangle (counting

from right to left and starting at zero) is the vertical line vi, but the triangle lies to

the left of vi and the slope of its hypotenuse is equal to

ṽ′(0) =
(
λ̃−1
)′

(0) =
1

λ̃′(0)
=

1

p2λ′(0)
=

1

p2λ2

where the second equality follows since λ̃(0) = 0 and the third equality follows from

the definition of λ̃ in (4.29). Since λ̃ is monotonically increasing and convex over the

interval [0, 1] and it satisfies λ̃(0) = 0 and λ̃(1) = 1, then it follows that v(x) = λ̃−1(x)

is concave over this interval. Hence, the triangles shaded in light gray also form a

subset of the domain bounded by the curves c(x) and v(x). The area of the i’th

light-gray triangle is given by

Bi =
1

2
|vi|

(
|vi| p2λ2

)
=

p2λ2 |vi|2
2

Applying Lemma 4.4 and the fact that the triangles in both sets do not overlap, we

get

C − R

(1 − R) aR

≥ 1

2

(
1

ρ̃′(1)
+ p2λ2

) l−1∑

i=0

|vi|2 (4.43)

where l is an arbitrary natural number. Since the sequence of ensembles asymp-

totically achieves vanishing bit erasure probability under iterative message-passing

decoding, the stability condition for systematic ARA codes (see (4.6) or equivalently

[64, Eq. (14)]) implies that

p2λ2 ≤
1

ρ′(1) + 2pR′(1)
1−p

=
1

ρ̃′(1)
(4.44)

where the last equality follows from (4.30). Substituting (4.44) in (4.43) gives

C − R

(1 − R) aR

≥ p2λ2

l−1∑

i=0

|vi|2 . (4.45)

Let x(l) denote the x value of the left tip of the horizontal line hl. The value of x(l)

satisfies the recursive equation

x(l+1) = λ̃
(
1 − ρ̃

(
1 − x(l)

))
, ∀ l ∈ N (4.46)



CHAPTER 4. BOUNDS ON THE NUMBER OF ITERATIONS 149

with x(0) = 1. As was explained above (immediately following Lemma 4.2), from

(4.28), (4.31), and the monotonicity of the function f(x) = λ̃
(
1 − ρ̃(1 − x)

)
over the

interval [0, 1], we get that x(l) ≤ x
(l)
1 for l ∈ N. The definition of hl and vl in Figure 4.2

implies that

1 − ρ̃
(
1 − x(l)

)
= c̃
(
x(l)
)

= 1 −
l∑

i=0

|vi| . (4.47)

Starting from (4.34) and applying the monotonicity of L̃ and ρ̃ gives

1 −

√

1 − P
(l−1)
b

p
≥ L̃

(
1 − ρ̃

(
1 − x

(l−1)
1

))

≥ L̃
(
1 − ρ̃

(
1 − x(l−1)

))

= L̃

(
1 −

l−1∑

i=0

|vi|
)

where the last equality follows from (4.47). Since L̃ is strictly monotonically increasing

in [0, 1], then
l−1∑

i=0

|vi| ≥ 1 − L̃−1

(
1 −

√

1 − P
(l−1)
b

p

)
. (4.48)

Applying the Cauchy-Schwartz inequality (as in (4.24)) to the RHS of (4.45), we get

C − R

(1 − R) aR
≥ p2λ2

l−1∑

i=0

|vi|2

≥ p2λ2

l

(
l−1∑

i=0

|vi|
)2

≥ p2λ2

l


1 − L̃−1

(
1 −

√

1 − P
(l−1)
b

p

)


2

where the last inequality follows from (4.48). Since the design rate R is assumed to

be a fraction 1 − ε of the capacity of the BEC, the above inequality gives

Cε ≥
p2λ2 (1 − R) aR

(
1 − L̃−1

(
1 −

√
1 − P

(l−1)
b

p

))2

l

where l is an arbitrary natural number. Let l designate the number of iterations

required to achieve an average bit erasure probability Pb of the systematic bits, i.e.,
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l is the smallest integer which satisfies P
(l−1)
b ≤ Pb (since we start counting the

iterations at l = 0). Note that l is deterministic since it refers to the smallest number

of iterations required to achieve a desired average bit erasure probability over the

ensemble. From the inequality above and the monotonicity of L̃, we obtain that

Cε ≥
p2λ2 (1 − R) aR

(
1 − L̃−1

(
1 −

√
1 − Pb

p

))2

l

which provides a lower bound on the number of iterations of the form

l ≥
p2λ2(1 − R) aR

(
1 − L̃−1

(
1 −

√
1 − Pb

p

))2

Cε

=
p2λ2(1 − ε) aL

(
1 − L̃−1

(
1 −

√
1 − Pb

p

))2

ε
(4.49)

where the last equality follows since aR

aL
= R

1−R
(see Figure 4.1) and R = (1 − ε)C.

To continue the proof, we derive a lower bound on 1 − L̃−1(x). Following the same

steps which lead to (4.26) gives the inequality

1 − L̃−1(x) ≥ 1 −
√

x

L̃2

, ∀ x ≥ 0 (4.50)

where (4.32) implies that

L̃2 =
L̃′′(0)

2
=

p L′′(0)

2
= p L2 . (4.51)

Under the assumption that 1 −
√

1 − Pb

p
< p L2, substituting (4.50) and (4.51) in

(4.49) gives

l ≥
pλ2(1 − ε) aL

(√
p L2 −

√
1 −

√
1 − Pb

p

)2

L2 ε
. (4.52)

Finally, the lower bound on the number of iterations in (4.8) follows from (4.52) by

substituting L2 = λ2 aL

2
.

Considering the case where Pb → 0 on both sides of (4.8) gives

l(ε, p, Pb → 0) ≥ 2p2 (1 − ε)
L2(ε)

ε
.



CHAPTER 4. BOUNDS ON THE NUMBER OF ITERATIONS 151

4.5 Summary and Conclusions

In this paper, we consider the number of iterations which is required for successful

message-passing decoding of code ensembles defined on graphs. In the considered set-

ting, we let the block length of these ensembles tend to infinity, and the transmission

takes place over a binary erasure channel (BEC).

In order to study the decoding complexity of these code ensembles under iterative

decoding, one needs also to take into account the graphical complexity of the Tanner

graphs of these code ensembles. For the BEC, this graphical complexity is closely

related to the total number of operations performed by the iterative decoder. For

various families of code ensembles, Table 4.1 compares the number of iterations and

the graphical complexity which are required to achieve a given fraction 1 − ε (where

ε can be made arbitrarily small) of the capacity of a BEC with vanishing bit erasure

probability. The results in Table 4.1 are based on lower bounds and some achievabil-

ity results which are related to the graphical complexity of various families of code

ensembles defined on graphs (see [65, 64, 81, 80]); the results related to the number

of iterations are based on the lower bounds derived in this paper.

Code Number of iterations Graphical complexity
family as function of ε as function of ε

LDPC Ω
(

1
ε

)
(Theorem 4.1) Θ

(
ln 1

ε

)
[81, Theorems 2.1 and 2.3]

Systematic IRA Ω
(

1
ε

)
(Theorem 4.3) Θ

(
ln 1

ε

)
[80, Theorems 1 and 2]

Non-systematic IRA Ω
(

1
ε

)
(Theorem 4.3) Θ(1) [65]

Systematic ARA Ω
(

1
ε

)
(Theorem 4.2) Θ(1) [64]

Table 4.1: Number of iterations and graphical complexity required to achieve a
fraction 1 − ε of the capacity of a BEC with vanishing bit erasure probability under

iterative message-passing decoding.

Theorems 4.1–4.3 demonstrate that for various attractive families of code ensem-

bles (including low-density parity-check (LDPC) codes, systematic and non-systematic

irregular repeat-accumulate (IRA) codes, and accumulate-repeat-accumulate (ARA)

codes), the number of iterations which is required to achieve a desired bit erasure

probability scales at least like the inverse of the gap between the channel capacity

and the design rate of the ensemble. This conclusion holds provided that the fraction

of degree-2 variable nodes in the Tanner graph does not tend to zero as the gap to ca-

pacity vanishes (where under mild conditions, this property is satisfied for sequences

of capacity-achieving LDPC ensembles, see [76, Lemma 5]).
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When the graphical complexity of these families of ensembles is considered, the

results are less homogenous. More explicitly, assume a sequence of LDPC codes (or

ensembles) whose block length tends to infinity, and consider the case where their

transmission takes place over a memoryless binary-input output-symmetric channel.

It follows from [81, Theorem 2.1] that if a fraction 1−ε of the capacity of this channel

is achieved with vanishing bit error (erasure) probability under ML decoding (or any

sub-optimal decoding algorithm), then the graphical complexity of an arbitrary rep-

resentation of the codes using bipartite graphs scales at least like ln 1
ε
. For systematic

IRA codes which are transmitted over the BEC and decoded by a standard iterative

message-passing decoder, a similar result on their graphical complexity is obtained in

[80, Theorem 1]. In [81, Theorem 2.3], the lower bound on the graphical complexity

of LDPC ensembles is achieved for the BEC (up to a small additive constant), even

under iterative message-passing decoding, by the right-regular LDPC ensembles of

Shokrollahi [94]. Similarly, [80, Theorem 2] presents an achievability result of this

form for ensembles of systematic IRA codes transmitted over the BEC; the graphical

complexity of these ensembles scales logarithmically with 1
ε
. For ensembles of non-

systematic IRA and systematic ARA codes, however, the addition of state nodes in

their standard representation by Tanner graphs allows to achieve an improved trade-

off between the gap to capacity and the graphical complexity; suitable constructions

of such ensembles enable to approach the capacity of the BEC with vanishing bit

erasure probability under iterative decoding while maintaining a bounded graphical

complexity (see [65] and [64]). We note that the ensembles in [64] have the additional

advantage of being systematic, which allows simple decoding of the information bits.

The lower bounds on the number of iterations in Theorems 4.1–4.3 become trivial

when the fraction of degree-2 variable nodes vanishes. As noted in Discussion 4.2, for

all known capacity-approaching sequences of LDPC ensembles, this fraction tends to 1
2

as the gap to capacity vanishes. For some ensembles of capacity approaching system-

atic ARA codes presented in [64], the fraction of degree-2 ‘punctured bit’ nodes (as

introduced in Figure 4.1) is defined to be zero (see [64, Table I]). For these ensembles,

the lower bound on the number of iterations in Theorem 4.2 is ineffective. However,

this is mainly a result of our focus on the derivation of simple lower bounds on the

number of iterations which do not depend on the full characterization of the degree

distributions of the code ensembles. Following the proofs of Theorems 4.1 and 4.2,

and focusing on the case where the fraction of degree-2 variable nodes vanishes, it

is possible to derive lower bounds on the number of iterations which are not trivial

even in this case; these bounds, however, require the knowledge of the entire degree

distribution of the examined ensembles.
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The simple lower bounds on the number of iterations of graph-based ensembles,

as derived in this paper, scale like the inverse of the gap in rate to capacity and also

depend on the target bit erasure probability. The behavior of these lower bounds

matches well with the experimental results and the conjectures on the number of

iterations and complexity, as provided by Khandekar and McEliece (see [43, 42, 56]).

In [42, Theorem 3.5], it was stated that for LDPC and IRA ensembles which achieve

a fraction 1−ε of the channel capacity of a BEC with a target bit erasure probability

of Pb under iterative message-passing decoding, the number of iterations grows like

O
(

1
ε

)
. In light of the outline of the proof of this statement, as suggested in [42, p. 71],

it implicitly assumes that the flatness condition is satisfied for these code ensembles

and also that the target bit erasure probability vanishes; under these assumptions,

the reasoning suggested by Khandekar in [42, Section 3.6] supports the behavior of

the lower bounds which are derived in this paper.

The matching condition for generalized extrinsic information transfer (GEXIT)

curves serves to conjecture in [59, Section XI] that the number of iterations scales

like the inverse of the achievable gap in rate to capacity (see also [57, p. 92]); this

conjecture refers to LDPC ensembles whose transmission takes place over a general

memoryless binary-input output-symmetric (MBIOS) channel. Focusing on the BEC,

the derivation of the lower bounds on the number of iterations (see Section 4.4)

makes the heuristic reasoning of this scaling rigorous. It also extends the bounds to

various graph-based code ensembles (e.g., IRA and ARA ensembles) under iterative

message-passing decoding, and makes them universal for the BEC in the sense that

they are expressed in terms of some basic parameters of the ensembles which include

the fraction of degree-2 variable nodes, the target bit erasure probability and the

asymptotic gap between the channel capacity and the design rate of the ensemble

(but the bounds here do not depend explicitly on the degree distributions of the code

ensembles). An interesting and challenging direction which calls for further research is

to extend these lower bounds on the number of iterations for general MBIOS channels;

as suggested in [59, Section XI], a consequence of the matching condition for GEXIT

curves has the potential to lead to such lower bounds on the number of iterations

which also scale like the inverse of the gap to capacity for general MBIOS channels.

Appendices

4.A Proof of Proposition 4.1

We begin the proof by considering an iterative decoder of systematic ARA codes by

viewing them as interleaved and serially concatenated codes. The outer code of the
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systematic ARA code consists of the first accumulator which operates on the system-

atic bits (see the upper zigzag in Figure 4.1), followed by the irregular repetition code.

The inner code consists of the irregular SPC code, followed by the second accumula-

tor (see the lower zigzag in Figure 4.1). These two constituent codes are joined by an

interleaver which permutes the repeated bits at the output of the outer code before

they are used as input to the inner encoder; for the considered ARA ensemble, we

assume that the interleaver is chosen uniformly at random over all interleavers of the

appropriate length. The turbo-like decoding algorithm is based on iterating extrinsic

information between bitwise MAP decoders of the two constituent codes (see e.g.,

[11]). Each decoding iteration begins with an extrinsic bitwise MAP decoding for

each non-systematic output bit of the outer code (these are the bits which serve as

input to the inner code) based on the information regarding these bits received from

the extrinsic bitwise MAP decoder of the inner code in the previous iteration and the

information on the systematic bits received from the communication channel. In the

second stage of the iteration, this information is passed from the outer decoder to an

extrinsic bitwise MAP decoder of the inner code and is used as a-priori knowledge

for decoding the input bits of the inner code. A Tanner graph for turbo-like decod-

ing of systematic ARA codes is presented in Figure 4.3. Considering the asymptotic

case where the block length tends to infinity, we denote the probability of erasure

messages from the outer decoder to the inner decoder and vice versa at the l’th de-

coding iteration by x
(l)
0 and x

(l)
1 , respectively. Keeping in line with the notation in

the proofs of Theorems 4.1 and 4.2, we begin counting the iterations at l = 0. Since

there is no a-priori information regarding the non-systematic output bits of the outer

decoder (which are permuted to form the input bits of the inner decoder, as shown

in Figure 4.3) we have

x
(−1)
0 = x

(−1)
1 = 1. (4.A.1)

We now turn to calculate the erasure probability x
(l)
0 in an extrinsic bitwise MAP

decoding of non-systematic output bits of the outer code, given that the a-priori

erasure probability of these bits is x
(l−1)
1 . To this end, we consider the Tanner graph

of the outer code, shown in the top box of Figure 4.3. We note that this Tanner

graph contains no cycles, and therefore bitwise MAP decoding of this code can be

performed by using the standard iterative message-passing decoding algorithm until

a fixed-point is reached. In such a decoder which operates on the Tanner graph of

the outer code, messages are transferred between the ‘punctured bit’ and the ‘parity-

check 1’ nodes of the graph. Let us denote by x0,o(x) the probability of erasure in

messages from the ‘punctured bit’ nodes to the ‘parity-check 1’ nodes at the fixed

point of the iterative decoding algorithm, when the a-priori erasure probability of the
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DE

p

x random permutation

outer code

inner code

0 x 1

x 0,ox 1,o

x 1,ix 0,i

parity
checks 1

punctured
bits

parity
checks 2

code
bits

bits
systematic

Figure 4.3: Tanner graph of a systematic accumulate-repeat-accumulate (ARA)
code for turbo-like decoding as an interleaved and serially concatenated code.

output bits is x. Similarly, we denote by x1,o(x) the erasure probability in messages

from the ’parity-check 1’ nodes to the ’punctured bit’ nodes at the fixed point, where

x is the a-priori erasure probability of the non-systematic output bits. Based on the

structure of the Tanner graph, we have

x0,o(x) = x1,o(x) · L(x) (4.A.2)

and

x1,o(x) = 1 − (1 − p)
(
1 − x0,o(x)

)
(4.A.3)

where L is defined in (4.1) and it forms the degree distribution of the ‘punctured bit’

nodes from the node perspective, and p denotes the erasure probability of the BEC.

Substituting (4.A.2) into (4.A.3) gives

x1,o(x) =
p

1 − (1 − p)L(x)
. (4.A.4)

Therefore, the structure of the Tanner graph of the outer code implies that the erasure

probability x
(l)
0 in messages from the outer decoder to the inner decoder at iteration

number l of the turbo-like decoding algorithm is given by
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x
(l)
0 =

(
x1,o

(
x

(l−1)
1

))2

λ
(
x

(l−1)
1

)

=

(
p

1 − (1 − p)L
(
x

(l−1)
1

)
)2

λ
(
x

(l−1)
1

)

= λ̃
(
x

(l−1)
1

)
(4.A.5)

where the second equality relies on (4.A.4), and λ̃ is the tilted degree distribution

which results from graph reduction (see (4.29)). We now employ a similar technique

to calculate the erasure probability x
(l)
1 in an extrinsic bitwise MAP decoding of input

bits of the inner code, given that the a-priori erasure probability of these bits is x
(l)
0 .

Since the Tanner of the inner code is also cycle-free (see the lower box in Figure 4.3),

extrinsic bitwise MAP decoding can be done by using the iterative decoder operating

on the Tanner graph of the inner code. We denote by x0,i(x) the erasure probability of

messages from the ‘parity check 2’ nodes to the ‘code bit’ nodes at the fixed point of

the iterative decoding algorithm when x is the a-priori erasure probability of the input

bits. Similarly, x1,i(x) designates the erasure probability of messages from the ‘code

bit’ nodes to the ‘parity check 2’ nodes at the fixed point of the decoding algorithm,

when x is the a-priori erasure probability of the input bits. The structure of the

Tanner graph implies that

x0,i(x) = 1 −
(
1 − x1,i(x)

)
R(1 − x) (4.A.6)

and
x1,i(x) = p x0,i(x) (4.A.7)

where R is defined in (4.2). Substituting (4.A.6) into (4.A.7) gives

x1,i(x) =
p
(
1 − R(1 − x)

)

1 − p R(1 − x)
. (4.A.8)

Therefore, the erasure probability x
(l)
1 in messages from the inner decoder to the outer

decoder at iteration number l of the turbo-like decoding algorithm is given by

x
(l)
1 = 1 −

(
1 − x1,i

(
x

(l)
0

))2

ρ
(
1 − x

(l)
0

)

= 1 −


1 −

p
(
1 − R

(
1 − x

(l)
0

))

1 − p R
(
1 − x

(l)
0

)




2

ρ
(
1 − x

(l)
0

)

= 1 −
(

1 − p

1 − p R
(
1 − x

(l)
0

)
)2

ρ
(
1 − x

(l)
0

)

= 1 − ρ̃
(
1 − x

(l)
0

)
(4.A.9)
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where the second equality relies on (4.A.8), and ρ̃ is the tilted degree distribution

resulting from graph reduction (see (4.30)). Combining (4.A.1), (4.A.5) and (4.A.9)

gives

x
(0)
0 = λ̃

(
x

(−1)
1

)
= λ̃(1) = 1 ,

x
(l)
0 = λ̃

(
1 − ρ̃

(
1 − x

(l−1)
0

))
, l ∈ N . (4.A.10)

Observing the proof of Theorem 4.2, we note that x
(l)
0 = x(l) for all l = 0, 1, . . ., where

is the x(l) value at the left tip of the horizontal line hl in Figure 4.2 (see Eq. (4.46)

on page 148).

Let P
(l)
b designate the average erasure probability of the systematic bits at the end

of the l’th iteration of the turbo-like decoder. From the definition of the turbo-like

decoding algorithm, P
(l)
b is the erasure probability of bitwise MAP decoding for the

input bits to the outer code, given that the a-priori erasure probability of the output

bits of this code is given by x
(l)
1 . Based of the structure of the Tanner graph of the

outer code in Figure 4.3, we get

P
(l)
b = p

[
1 −

(
1 − x0,o

(
x

(l)
1

))2
]

(4.A.11)

where x0,o(x) in the fixed point erasure probability of messages from the ‘punctured

bit’ nodes to the ‘parity-check 1’ nodes in the case that the a-priori erasure probability

of the non-systematic output bits of the code is x. Substituting (4.A.3) in (4.A.2)

gives

x0,o(x) =
p L(x)

1 − (1 − p)L(x)
.

Substituting the above equality into (4.A.11), we have

P
(l)
b = p

[
1 −

(
1 − p L

(
x

(l)
1

)

1 − (1 − p)L
(
x

(l)
1

)
)2
]

= p

[
1 −

(
1 − L̃

(
x

(l)
1

))2
]

= p

[
1 −

(
1 − L̃

(
1 − ρ̃

(
1 − x

(l)
0

)))2
]

where the second equality follows from the definition of L̃ in (4.32) and the third

equality relies on (4.A.9). Using simple algebra, the above expression gives

1 −

√

1 − P
(l)
b

p
= L̃

(
1 − ρ̃

(
1 − x

(l)
0

))
. (4.A.12)
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Hence, the lower bound on the average erasure probability of the systematic bits

at the end of the l’th iteration of the standard iterative decoder for ARA codes in

Lemma 4.3 is satisfied (with equality) also for the turbo-like decoder.

Let l designate the required number of iterations for the turbo-like decoder to

achieve an average erasure probability Pb of the systematic bits. Since we start

counting the iterations at zero, (4.A.12) implies that l is the smallest natural number

which satisfies

1 −
√

1 − Pb

p
≥ L̃

(
1 − ρ̃

(
1 − x

(l−1)
0

))
.

However, this is exactly the quantity for which we calculated the lower bound in

the proof of Theorem 4.2 (see Lemmas 4.2 and 4.3 and Eq. (4.31)). Therefore, we

conclude that the lower bound on the number of iterations (l) in Theorem 4.2 holds

also when the considered turbo-like decoding algorithm is employed to decode the

systematic ARA codes as interleaved and serially concatenated codes.

4.B Some mathematical details related to the proof

of Theorem 4.2

4.B.1 Proof of Lemma 4.2

The proof of Lemma 4.2 is based on the DE equations in (4.5) for systematic ARA

ensembles. From the DE equations for x
(l)
2 and x

(l)
3 , we have

x
(l)
3 = p x

(l)
2

= p
[
1 − R

(
1 − x

(l)
1

)(
1 − x

(l−1)
3

)]

≥ p
[
1 − R

(
1 − x

(l)
1

)(
1 − x

(l)
3

)]

where the inequality follows since the decoding process does not add erasures, so x
(l)
i

is monotonically decreasing with l (for i = 0, 1, . . . , 5). This gives

1 − x
(l)
3 ≤ 1 − p

[
1 − R

(
1 − x

(l)
1

)(
1 − x

(l)
3

)]

and

1 − x
(l)
3 ≤ 1 − p

1 − pR
(
1 − x

(l)
1

) . (4.B.1)



CHAPTER 4. BOUNDS ON THE NUMBER OF ITERATIONS 159

Substituting (4.B.1) into the DE equation for x
(l)
4 (see (4.5)) gives

x
(l)
4 = 1 −

(
1 − x

(l)
3

)2

ρ
(
1 − x

(l)
1

)

≥ 1 −


 1 − p

1 − pR
(
1 − x

(l)
1

)




2

ρ
(
1 − x

(l)
1

)

= 1 − ρ̃
(
1 − x

(l)
1

)
(4.B.2)

where ρ̃ is defined in (4.30). From (4.5), we get

x
(l)
5 = x

(l)
0 L

(
x

(l)
4

)

=
[
1 −

(
1 − x

(l−1)
5

)
(1 − p)

]
L
(
x

(l)
4

)

≥
[
1 −

(
1 − x

(l)
5

)
(1 − p)

]
L
(
x

(l)
4

)

where the inequality follows from the monotonicity of {x(l)
5 }. Solving for 1−x

(l)
5 gives

1 − x
(l)
5 ≤

1 − L
(
x

(l)
4

)

1 − (1 − p)L
(
x

(l)
4

) . (4.B.3)

Substituting (4.B.3) into the DE equation for x
(l)
0 in (4.5), we have

x
(l)
0 = 1 −

(
1 − x

(l−1)
5

)
(1 − p)

≥ 1 −
(1 − p)

[
1 − L

(
x

(l−1)
4

)]

1 − (1 − p)L
(
x

(l−1)
4

)

=
p

1 − (1 − p)L
(
x

(l−1)
4

) .

Substituting the inequality above into the DE equation for x
(l)
1 gives

x
(l)
1 =

(
x

(l)
0

)2

λ
(
x

(l−1)
4

)

≥


 p

1 − (1 − p)L
(
x

(l−1)
4

)




2

λ
(
x

(l−1)
4

)

= λ̃
(
x

(l−1)
4

)
(4.B.4)

where λ̃ is defined in (4.29). Finally (4.28) follows from (4.B.2) and (4.B.4) and the

monotonicity of λ̃ over the interval [0, 1].
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4.B.2 Proof of Lemma 4.3

From the structure of the Tanner graph of systematic ARA codes (see Figure 4.1)

and the DE equation for x
(l)
5 in (4.5) we get

P
(l)
b = p

[
1 −

(
1 − x

(l)
5

)2
]

= p

[
1 −

(
1 − x

(l)
0 L

(
x

(l)
4

))2
]

. (4.B.5)

The DE equation (4.5) for x
(l)
1 and (4.29) imply that

(
x

(l)
0

)2

=
x

(l)
1

λ
(
x

(l−1)
4

)

=
x

(l)
1 p2

λ̃
(
x

(l−1)
4

) [
1 − (1 − p) L

(
x

(l−1)
4

)]2

≥


 p

1 − (1 − p) L
(
x

(l−1)
4

)




2

where the last inequality follows from (4.B.4). Taking the square root on both sides

of the above inequality gives

x
(l)
0 ≥ p

1 − (1 − p) L
(
x

(l−1)
4

) . (4.B.6)

Substituting (4.B.6) in (4.B.5), we get

P
(l)
b ≥ p


1 −


1 −

p L
(
x

(l)
4

)

1 − (1 − p) L
(
x

(l−1)
4

)




2



≥ p


1 −



1 −
p L
(
x

(l)
4

)

1 − (1 − p) L
(
x

(l)
4

)




2

 (4.B.7)

where the second inequality above follows since the decoding process does not add

erasures so x
(l)
4 ≤ x

(l−1)
4 , and from the monotonicity of L over [0, 1]. Applying the

definition of L̃ in (4.32) to the RHS of (4.B.7) gives

P
(l)
b ≥ p

[
1 −

(
1 − L̃

(
x

(l)
4

))2
]

≥ p

{
1 −

[
1 − L̃

(
1 − ρ

(
x

(l)
1

))]2}
(4.B.8)

where the last inequality follows from (4.B.2). Finally, (4.34) follows directly from

(4.B.8).



Chapter 5

An Improved Sphere-Packing

Bound for Finite-Length Codes

over Symmetric Memoryless

Channels

This chapter is a preprint of

• G. Wiechman and I. Sason, “An improved sphere-packing bound for finite-

length codes on symmetric memoryless channels,” submitted to IEEE Trans.

on Information Theory, March 2007.

Chapter Overview: This paper derives an improved sphere-packing (ISP) bound for

finite-length error-correcting codes whose transmission takes place over symmetric

memoryless channels, and the codes are decoded with an arbitrary list decoder. We

first review classical results, i.e., the 1959 sphere-packing (SP59) bound of Shannon

for the Gaussian channel, and the 1967 sphere-packing (SP67) bound of Shannon

et al. for discrete memoryless channels. An improvement on the SP67 bound, as

suggested by Valembois and Fossorier, is also discussed. These concepts are used for

the derivation of a new lower bound on the error probability of list decoding (referred

to as the ISP bound) which is uniformly tighter than the SP67 bound and its improved

version. The ISP bound is applicable to symmetric memoryless channels, and some

of its applications are exemplified. Its tightness under ML decoding is studied by

comparing the ISP bound to previously reported upper and lower bounds on the ML

decoding error probability, and also to computer simulations of iteratively decoded

turbo-like codes. This paper also presents a technique which performs the entire

calculation of the SP59 bound in the logarithmic domain, thus facilitating the exact

calculation of this bound for moderate to large block lengths without the need for the

asymptotic approximations provided by Shannon.

161
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5.1 Introduction

The theoretical study of the fundamental performance limitations of long block codes

was initiated by Shannon. During the fifties and sixties, this research work attracted

Shannon and his colleagues at MIT and Bell Labs (see, e.g., the collected papers of

Shannon [96] and the book of Gallager [32]). An overview of these classical results

and their impact was addressed by Berlekamp [13].

The 1959 sphere-packing (SP59) bound of Shannon [89] serves for the evaluation of

the performance limits of block codes whose transmission takes place over an AWGN

channel. This lower bound on the decoding error probability is expressed in terms

of the block length and rate of the code; however, it does not take into account the

modulation used, but only assumes that the signals are of equal energy. It is often

used as a reference for quantifying the sub-optimality of error-correcting codes under

some practical decoding algorithms.

The 1967 sphere-packing (SP67) bound, derived by Shannon, Gallager and Berlekamp

[87], provides a lower bound on the decoding error probability of block codes as a func-

tion of their block length and code rate, and applies to arbitrary discrete memoryless

channels. Like the random-coding bound (RCB) of Gallager [31], the SP67 bound

decays to zero exponentially with the block length for all rates below the channel

capacity. Further, the error exponent of the SP67 bound is known to be tight at the

portion of the rate region between the critical rate (Rc) and the channel capacity;

for all the rates in this range, the error exponents of the SP67 bound and the RCB

coincide (see [87, Part 1]).

The introduction of turbo-like codes, which closely approach the Shannon capacity

limit with moderate block lengths and a feasible decoding complexity, stirred up new

interest in studying the limits of code performance as a function of the block length

(see, e.g., [27, 44, 45, 55, 79, 98, 109, 115]). In a recent paper [20], Costello and Forney

survey the evolution of channel coding techniques, and also address the significant

contributions of error-correcting codes in improving the tradeoff between performance,

block length (delay) and complexity for practical applications.

In spite of the exponential decay of the SP67 bound in terms of the block length at

all rates below the channel capacity, this bound appears to be loose for codes of small

to moderate block lengths. The weakness of this bound is due to the original focus

in [87] on asymptotic analysis. In [109], Valembois and Fossorier revisited the SP67

bound in order to improve its tightness for finite-length block codes (especially, for

codes of short to moderate block lengths), and also extended its validity to memoryless

continuous-output channels (e.g., the binary-input AWGN channel). The remarkable
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improvement of their bound over the classical SP67 bound was exemplified in [109].

Moreover, the extension of the bound in [109] to memoryless continuous-output chan-

nels provides an alternative to the SP59 bound which holds for the AWGN channel

[89].

This paper is focused on the study of the fundamental performance limitations

of finite-length error-correcting codes and the tradeoff between their performance

and block length when the transmission takes place over an arbitrary symmetric

memoryless channel. This study is facilitated by theoretical bounds, and it is also

compared to the performance of modern coding techniques under sub-optimal and

practical decoding algorithms. In this work, we derive an improved sphere-packing

bound (referred to as the ‘ISP bound’) which improves the bounding techniques in

[87] and [109], especially for codes of short to moderate block lengths; this new bound

is valid for all symmetric memoryless channels.

The structure of this paper is as follows: Section 5.2 reviews the concepts used in

the derivation of the SP67 bound [87, Part 1] and its improved version in [109]. In

Section 5.3, we derive the ISP bound which improves the bound in [109] for symmetric

memoryless channels where the derivation of the ISP bound relies on concepts and

notation presented in Section 5.2. Section 5.4 starts by reviewing the SP59 bound

of Shannon [89], and presenting an algorithm used in [109] for a numerical calcula-

tion this bound. The numerical instability of this algorithm for codes of moderate

to large block lengths motivates the derivation of an alternative algorithm in Sec-

tion 5.4 which facilitates the exact calculation of the SP59 bound, irrespectively of

the block length. Section 5.5 provides numerical results which serve to compare the

ISP bound to previously reported sphere-packing bounds. The tightness of the ISP

bound is exemplified in Section 5.5 for various communication channels. Additionally,

sphere-packing bounds are applied in Section 5.5 to study the tradeoff between the

performance and the required block length of error-correcting codes. We conclude

our discussion in Section 5.6. Some technical details are relegated to the appendices.

5.2 The 1967 Sphere-Packing Bound and Improve-

ments

In the following, we present the SP67 bound and its improvement in [109], followed

by an outline of their derivation. Classical sphere-packing bounds are reviewed in

[79, Chapter 5]. This section serves as a preparatory step towards the derivation of

an improved sphere-packing bound in the next section.
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5.2.1 The 1967 Sphere-Packing Bound

Let us consider a block code C which consists of M codewords each of length N , and

denote its codewords by x1, . . . ,xM. Assume that C is transmitted over a discrete

memoryless channel (DMC) and is decoded by a list decoder; for each received se-

quence y, the decoder outputs a list of at most L integers from the set {1, 2, . . . , M}
which correspond to the indices of the codewords. A list decoding error is declared if

the index of the transmitted codeword does not appear in the list. Originally intro-

duced by Elias [29] and Wozencraft [120], list decoding signifies an important class

of decoding algorithms. During the last decade, there has been a significant break-

through in the construction of efficient list-decoding algorithms for error-correcting

codes (see, e.g., [33], [75, Chapter 9] and references therein).

A lower bound on the decoding error probability of an arbitrary block code with

M codewords of length N is derived in [87]. This bound applies to an arbitrary list

decoder where the size of the list is limited to L. The particular case where L = 1

clearly provides a lower bound on the error probability under maximum-likelihood

(ML) decoding.

Let Ym designate the set of output sequences y for which message m is on the

decoding list, and define Pm(y) , Pr(y|xm). The conditional error probability under

list decoding when message m is sent over the channel is given by

Pe,m =
∑

y∈Yc
m

Pm(y) (5.1)

where the superscript ‘c’ stands for the complementary set. For the block code

and list decoder under consideration, let Pe,max designate the maximal value of Pe,m

where m ∈ {1, 2, . . . , M}. Assuming that all the codewords are equally likely to be

transmitted, the average decoding error probability is given by

Pe =
1

M

M∑

m=1

Pe,m.

Referring to a list decoder of size at most L, the code rate is defined as R ,
ln(M

L )
N

nats per channel use.

The derivation of the SP67 bound [87, Part 1] is divided into three main steps. The

first step refers to the derivation of upper and lower bounds on the error probability

of a code consisting of two codewords only. These bounds are given by the following

theorem:
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Theorem 5.1 [Upper and Lower Bounds on the Pairwise Error Probability]

[87, Theorem 5]. Let P1 and P2 be two probability assignments defined over a discrete

set of sequences Y , Y1 and Y2 = Yc
1 be (disjoint) decision regions for these sequences,

Pe,1 and Pe,2 be given by (5.1), and assume that P1(y)P2(y) 6= 0 for at least one

sequence y. Then, for all s ∈ (0, 1)

Pe,1 >
1

4
exp
(
µ(s) − sµ′(s) − s

√
2µ′′(s)

)
(5.2)

or

Pe,2 >
1

4
exp
(
µ(s) + (1 − s)µ′(s) − (1 − s)

√
2µ′′(s)

)
(5.3)

where

µ(s) , ln
(∑

y

P1(y)1−sP2(y)s
)
, 0 < s < 1. (5.4)

Furthermore, for an appropriate choice of the decision regions Y1 and Y2, the following

upper bounds hold:

Pe,1 ≤ exp
(
µ(s) − sµ′(s)

)
(5.5)

and

Pe,2 ≤ exp
(
µ(s) + (1 − s)µ′(s)

)
. (5.6)

The function µ is non-positive and convex over the interval (0, 1). The convexity of

µ is strict unless P1(y)
P2(y)

is constant over all the sequences y for which P1(y)P2(y) 6= 0.

Moreover, the function µ is strictly negative over the interval (0, 1) unless P1(y) =

P2(y) for all y.

In the following, we present an outline of the proof of Theorem 5.1 which serves

to emphasize the parallelism between Theorem 5.1 and the first part of the derivation

of the ISP bound in Section 5.3. A detailed proof of this theorem is given in [87,

Section III].

Proof: Let us define the log-likelihood ratio (LLR) as

D(y) , ln

(
P2(y)

P1(y)

)
(5.7)

and the probability distribution

Qs(y) ,
P1(y)1−sP2(y)s

∑
y′ P1(y′)1−sP2(y′)s

, 0 < s < 1. (5.8)

It is simple to show that for all 0 < s < 1, the first and second derivatives of µ in

(5.4) are equal to the statistical expectation and variance of the LLR, respectively,
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taken with respect to (w.r.t.) the probability distribution Qs in (5.8). This gives the

following equalities:

µ′(s) = EQs

(
D(y)

)
(5.9)

µ′′(s) = VarQs

(
D(y)

)
. (5.10)

Also, as can be readily verified from (5.4), (5.7) and (5.8)

P1(y) = exp
(
µ(s) − sD(y)

)
Qs(y) (5.11)

P2(y) = exp
(
µ(s) + (1 − s)D(y)

)
Qs(y). (5.12)

For 0 < s < 1, the equalities in (5.9) and (5.10) motivate the definition of a set of

typical sequences w.r.t. the probability distribution Qs as followed:

Ys ,

{
y ∈ Y : |D(y) − µ′(s)| ≤

√
2µ′′(s)

}
. (5.13)

For any choice of a decision region Y1, the conditional error probability given that

the first message was transmitted satisfies

Pe,1 =
∑

y∈Yc
1

P1(y)

≥
∑

y∈Yc
1

T
Ys

P1(y)

(a)
=

∑

y∈Yc
1

TYs

exp
(
µ(s) − sD(y)

)
Qs(y)

(b)

≥ exp
(
µ(s) − sµ′(s) − s

√
2µ′′(s)

) ∑

y∈Yc
1

T
Ys

Qs(y) (5.14)

where (a) follows from (5.11) and (b) relies on the definition of Ys in (5.13). Using

similar arguments and relying on (5.12), we also get that

Pe,2 ≥ exp
(
µ(s) + (1 − s)µ′(s) − (1 − s)

√
2µ′′(s)

) ∑

y∈Yc
2

T
Ys

Qs(y) . (5.15)

Since Y1 and Y2 form a partition of the observation space, we have that

∑

y∈Yc
1

T
Ys

Qs(y) +
∑

y∈Yc
2

T
Ys

Qs(y) =
∑

y∈Ys

Qs(y) >
1

2

where the last transition relies on (5.9), (5.10) and (5.13), and it follows from Cheby-

chev’s inequality. Therefore, at least one of the two sums on the LHS of the expression

above must be greater than 1
4
. Substituting this in (5.14) and (5.15) completes the
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proof on the satisfiability of at least one of the inequalities (5.2) and (5.3). The upper

bound on the error probability in (5.5) and (5.6) is attained by selecting the decision

region for the first codeword to be

Y1 ,
{
y ∈ Y : D(y) < µ′(s)

}

and the decision region for the second code as Y2 , Yc
1. The proof for the upper

bounds in (5.5) and (5.6) follows directly from (5.11), (5.12) and the particular choice

of Y1 and Y2 as above.

The initial motivation of Theorem 5.1 is the calculation of lower bounds on the

error probability of a two-word code. Note that this theorem is valid for any pair

of probability assignments P1 and P2 and decision regions Y1 and Y2 which form a

partition of the observation space.

In the continuation of the derivation of the SP67 bound in [87], this theorem is

used in order to control the size of a decision region of a particular codeword without

directly referring to the other codewords. To this end, an arbitrary probability tilting

measure fN is introduced in [87] over all N -length sequences of channel outputs,

requiring that it is factorized in the form

fN(y) =

N∏

n=1

f(yn) (5.16)

for an arbitrary output sequence y = (y1, . . . , yN). The size of the set Ym is defined

as

F (Ym) ,
∑

y∈Ym

fN (y). (5.17)

Next, [87] relies on Theorem 5.1 in order to relate the conditional error probability

Pe,m and F (Ym) for fixed composition codes; this is done by associating Pr(·|xm) and

fN with P1 and P2, respectively. Theorem 5.1 is applied to derive a parametric lower

bound on the size of the decision region Ym or on the conditional error probability

Pe,m. Due to the fact that the list size is limited to L, then

M∑

m=1

F (Ym) =

M∑

m=1

∑

y∈Ym

fN(y) ≤ L

since for every sequence y, the relation y ∈ Ym holds for at most L indices m ∈
{1, . . . , M}, and

∑
y fN(y) = 1. Therefore, there exists an index m so that F (Ym) ≤

L
M

and for this unknown value of m, one can upper bound the conditional error

probability Pe,m by

Pe,max , max
m∈{1,...,M}

Pe,m.
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Using Theorem 5.1 with the above setting for the probability assignments P1 and P2,

then Pe,1 and Pe,2 on the LHS of (5.2) and (5.3) are respectively replaced by Pe,m and

F (Ym). For the above unknown value of m, whose existence is assured to be in the

set {1, . . . , M}, one can replace Pe,m and F (Ym) on the LHS of (5.2) and (5.3) by

their upper bounds Pe,max and L
M

, respectively. This provides a lower bound on Pe,max

as long as the inequality which follows from the replacement of F (Ym) by its upper

bound
(

L
M

)
on the LHS of (5.3) does not hold. Next, the probability assignment

f , fs is optimized in [87], so as to get the tightest (i.e., maximal) lower bound

on Pe,max within this form while considering a code whose composition minimizes

the bound (so that the bound holds for all fixed composition codes). A solution for

this min-max problem, as provided in [87, Eqs. (4.18)–(4.20)], leads to the following

theorem which gives a lower bound on the maximal decoding error probability of an

arbitrary fixed composition block code (for a more detailed review of these concepts,

see [79, Section 5.3]).

Theorem 5.2 [Sphere-Packing Bound on the Maximal Error Probability of

Fixed Composition Codes] [87, Theorem 6]. Let C be a fixed composition block

code of M codewords and length N . Assume that the transmission of C takes place

over a DMC, and let P (j|k) be the set of transition probabilities characterizing this

channel (where j ∈ {0, . . . , J − 1} and k ∈ {0, . . . , K − 1} designate the channel

output and input, respectively). For an arbitrary list decoder where the size of the

list is limited to L, the maximal error probability (Pe,max) satisfies

Pe,max ≥ exp

[
−N

(
Esp

(
R − ln 4

N
− ε
)

+

√
8

N
ln
( e√

Pmin

)
+

ln 4

N

)]

where R ,
ln
(

M
L

)

N
is the rate of the code, Pmin designates the smallest non-zero

transition probability of the DMC, the parameter ε is an arbitrarily small positive

number, and the function Esp is given by

Esp(R) , sup
ρ≥0

(
E0(ρ) − ρR

)
(5.18)

E0(ρ) , max
q

E0(ρ,q) (5.19)

E0(ρ,q) , − ln

(
J−1∑

j=0

[K−1∑

k=0

qkP (j|k)
1

1+ρ

]1+ρ

)
. (5.20)

The maximum in the RHS of (5.19) is taken over all probability vectors q = (q0, . . . , qK−1),

i.e., over all q with K non-negative components summing to 1.
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The reason for considering fixed composition codes in [87] is that, in general, the

optimal probability distribution fs may depend on the composition of the codewords

through the choice of the parameter s in (0, 1) (see [87, p. 96]).

The next step in the derivation of the SP67 bound is the application of Theo-

rem 5.2 to obtain a lower bound on the maximal decoding error probability of an

arbitrary block code. This is performed by lower bounding the maximal decoding

error probability of a block code by the maximal error probability of its largest fixed

composition subcode. Since the number of possible compositions is polynomial in the

block length, one can lower bound the rate of the largest fixed composition subcode

by R−O
(

ln N
N

)
where R is the rate of the original code. Clearly, the rate loss caused

by considering this subcode vanishes when the block length tends to infinity; however,

it loosens the bound for codes of short to moderate block lengths. Finally, the bound

on the maximal block error probability is transformed into a bound on the average

block error probability by considering an expurgated code which contains half of the

codewords of the original code with the lowest conditional error probability. This

finally leads to the SP67 bound in [87, Part 1].

Theorem 5.3 [The 1967 Sphere-Packing Bound for Discrete Memoryless

Channels] [87, Theorem 2]. Let C be an arbitrary block code whose transmission

takes place over a DMC. Assume that the DMC is specified by the set of transition

probabilities P (j|k) where k ∈ {0, . . . , K − 1} and j ∈ {0, . . . , J − 1} designate the

channel input and output alphabets, respectively. Assume that the code C forms a

set of M codewords of length N (i.e., each codeword is a sequence of N letters from

the input alphabet), and consider an arbitrary list decoder where the size of the list

is limited to L. Then, the average decoding error probability of the code C satisfies

Pe(N, M, L) ≥ exp

{
−N

[
Esp

(
R − O1

( ln N

N

))
+ O2

( 1√
N

)]}

where R ,
ln
(

M
L

)

N
, and the error exponent Esp(R) is introduced in (5.18). The terms

O1

( ln N

N

)
=

ln 8

N
+

K ln N

N
(5.21)

O2

( 1√
N

)
=

√
8

N
ln
( e√

Pmin

)
+

ln 8

N

scale like lnN
N

and 1√
N

, respectively (hence, they both vanish as we let N tend to

infinity), and Pmin denotes the smallest non-zero transition probability of the DMC.
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5.2.2 Recent Improvements on the 1967 Sphere-Packing Bound

In [109], Valembois and Fossorier revisited the derivation of the SP67 bound, focus-

ing on finite-length block codes. They presented four modifications to the classical

derivation in [87] which improve the pre-exponent of the SP67 bound. The new

bound derived in [109] is also valid for memoryless channels with discrete input and

continuous output (as opposed to the SP67 bound which is only valid for DMCs). In

this section, we outline the improvements suggested in [109] and present the resulting

bound.

The first modification suggested in [109] is the addition of a free parameter in the

derivation of the lower bound on the decoding error probability of two-word codes; this

free parameter is used in conjunction with Chebychev’s inequality, and it is optimized

in order to tighten the lower bounds on Pe,1 and Pe,2 in Theorem 5.1 (see (5.2), (5.3)).

A second improvement presented in [109] is related to the inequality s
√

µ′′(s) ≤
ln
(

e√
Pmin

)
which was applied to simplify the final form of the bound in Theorem 5.3

(see [87, Part 1]). This bound on the second derivative of µ results in no asymptotic

loss, but it loosens the lower bound on the decoding error probability for finite-length

codes (especially, for short to moderate block lengths). By using the exact value of

µ′′ instead, the tightness of the resulting bound is further improved in [109]. This

modification also makes the bound suitable to memoryless channels with a continuous

output alphabet, as it is no longer required that Pmin is positive. It should be noted

that this causes a small discrepancy in the derivation of the bound; the derivation of a

lower bound on the block error probability which is uniform over all fixed composition

codes relies on finding the composition which minimizes the lower bound. The optimal

composition is given in [87, Eqs. (4.18), (4.19)] for the case where the upper bound

on µ′′ is applied. In [109], the same composition is used without checking whether

it is still the composition which minimizes the lower bound. However (as we see in

the next section), for the class of symmetric memoryless channels, the value of the

bound is independent of the code composition; therefore, the bound of Valembois and

Fossorier [109, Theorem 7] (referred to as the ‘VF bound’) stays valid. This class of

channels includes all memoryless binary-input output-symmetric (MBIOS) channels.

A third improvement in [109] refers to the particular selection of the value of

ρ ≥ 0 which leads to the derivation of Theorem 5.3. In [87], ρ is set to be the value ρ̃

which maximizes the error exponent of the SP67 bound (i.e., the upper bound on the

error exponent). This choice emphasizes the similarity between the error exponents

of the SP67 bound and the RCB, hence proving that the error exponent of the SP67

bound is tight for all rates above the critical rate of the channel. In order to tighten

the bound for finite-length block codes, [109] chooses the value of ρ to be ρ∗ which
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provides the tightest possible lower bound on the decoding error probability. For

rates above the critical rate of the channel, the tightness of the error exponent of the

classical SP67 bound implies that ρ̃ tends to ρ∗ as the block length tends to infinity.

However, for codes of finite block length, this simple observation tightens the bound

with almost no penalty in the computational complexity of the resulting bound.

The fourth observation made in [109] refers to the final stage in the derivation

of the SP67 bound. In order to get a lower bound on the maximal decoding error

probability of an arbitrary block code, the derivation in [87] considers the maximal

decoding error probability of a fixed composition subcode of the original code. In [87],

a simple lower bound on the size of the largest fixed composition subcode is given;

namely, the size of the largest fixed composition subcode is not less than the size of

the entire code divided by the number of possible compositions. Since the number of

possible compositions is equal to the number of possible ways to divide N symbols

into K types, this value is given by
(

N+K−1
K−1

)
. To simplify the final expression of the

SP67 bound, [87] relies on the inequality
(

N+K−1
K−1

)
≤ NK which provides a simple

upper bound on the number of compositions. Since this expression is polynomial

is the block length N , there is no asymptotic loss to the error exponent. However,

by using the exact expression for the number of possible compositions, the bound in

[109] is tightened for codes of short to moderate block lengths. Applying these four

modifications in [109] to the derivation of the SP67 bound yields an improved lower

bound on the decoding error probability of block codes transmitted over memoryless

channels with finite input alphabets. As mentioned above, these modifications also

extend the validity of the new bound to memoryless channels with discrete input and

continuous output. However, the requirement of a finite input alphabet still remains,

as it is required to apply the bound to arbitrary block codes, and not only to fixed

composition codes. Under the assumptions and notation used in Theorem 5.3, the

VF bound [109] is given in the following theorem:

Theorem 5.4 [Improvement on the 1967 Sphere-Packing Bound for Dis-

crete Memoryless Channels] [109, Theorem 7]. The average decoding error prob-

ability satisfies Pe(N, M, L) ≥ exp
(
−NEVF(R, N)

)
where

EVF(R, N) ,

∫

x>
√

2
2

{
E0(ρx) − ρx

(
R − O1

( ln N

N
, x
))

+ O2

( 1√
N

, x, ρx

)}

and

O1

( ln N

N
, x
)

,
ln 8

N
+

ln
(

N+K−1
K−1

)

N
− ln

(
2 − 1

x2

)

N
(5.22)
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O2

( 1√
N

, x, ρ
)

, x

√√√√ 8

N

K−1∑

k=0

qk,ρν
(2)
k (ρ) +

ln 8

N
− ln

(
2 − 1

x2

)

N

ν
(1)
k (ρ) ,

J−1∑

j=0

βj,k,ρ ln
βj,k,ρ

P (j|k)

J−1∑

j=0

βj,k,ρ

ν
(2)
k (ρ) ,

J−1∑

j=0

βj,k,ρ ln2 βj,k,ρ

P (j|k)

J−1∑

j=0

βj,k,ρ

−
[
ν

(1)
k (ρ)

]2

βj,k,ρ , P (j|k)
1

1+ρ ·
(

K−1∑

k′=0

qk′,ρP (j|k′)
1

1+ρ

)ρ

where qρ , (q1,ρ, . . . , qK,ρ) designates the input distribution which maximizes E0(ρ,q)

in (5.19), and the parameter ρ = ρx is determined by solving the equation

R − O1

( ln N

N
, x
)

= −1

ρ

K−1∑

k=0

qk,ρν
(1)
k (ρ) +

x

ρ

√√√√ 2

N

K−1∑

k=0

qk,ρν
(2)
k (ρ).

For a more detailed review of the improvements suggested in [109], the reader is

referred to [79, Section 5.4].

Remark 5.1 The rate loss as a result of the expurgation of the code by removing half

of the codewords with the largest error probability was ignored in [109]. The term
ln 4
N

, as it appears in the term O1(
ln N
N

, x) of [109, Theorem 7], should be therefore

replaced by ln 8
N

(see (5.22)).

5.3 An Improved Sphere-Packing Bound for Sym-

metric Memoryless Channels

In this section, we derive an improved lower bound on the decoding error probability

which utilizes the sphere-packing bounding technique. This new bound is valid for

symmetric memoryless channels with a finite input alphabet, and is referred to as

an improved sphere-packing (ISP) bound. Note that the symmetry of the channel is

crucial for the derivation of the ISP bound in this section, which stays in contrast to

the SP67 and VF bounds where channel symmetry is not required. We begin with
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some necessary definitions and basic properties of symmetric memoryless channels

which are used in this section for the derivation of the ISP bound.

5.3.1 Symmetric Memoryless Channels

Definition 5.1 A bijective mapping g : J → J where J ⊆ R
d is said to be unitary

if for any integrable generalized function f : J → R

∫

J
f(x)dx =

∫

J
f(g(x))dx (5.23)

where by generalized function we mean a function which may contain a countable

number of shifted Dirac delta functions. If the projection of J over some of the d

dimensions is countable, the integration over these dimensions is turned into a sum.

Remark 5.2 The following properties also hold:

1. If g is a unitary mapping so is its inverse g−1.

2. If J is a countable set, then g : J → J is unitary if and only if g is bijective.

3. Let J be an open set and g : J → J be a bijective function. Denote

g(x1, . . . , xd) ,
(
g1(x1, . . . , xd), . . . , gd(x1, . . . , xd)

)

and assume that the partial derivatives ∂gi

∂xj
exist for all i, j ∈ {1, 2, . . . , d}. Then

g is unitary if and only if the Jacobian satisfies |J(x)| = 1 for all x ∈ J .

Proof: The first property follows from (5.23) and by defining f̃(x) , f
(
g−1(x)

)
; this

gives
∫

J
f
(
g−1(x)

)
dx =

∫

J
f̃(x)dx =

∫

J
f̃
(
g(x)

)
dx =

∫

J
f
(
(g−1 ◦ g)(x)

)
dx =

∫

J
f(x)dx .

The second property follows from the fact that for countable sets, the integral is

turned into a sum, and the equality

∑

j∈J
f(j) =

∑

j∈J
f
(
g(j)

)

holds by changing the order of summation. Finally, the third property is proved by

a transform of the integrator on the LHS of (5.23) from x = (x1, . . . , xd) to g(x).

We are now ready to define K-ary input symmetric channels. The symmetry

properties of these channels are later exploited to improve the tightness of the sphere-

packing bounding technique and derive the ISP lower bound on the average decoding

error probability of block codes transmitted over these channels.
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Definition 5.2 [Symmetric Memoryless Channels] A memoryless channel with

input alphabet K = {0, 1, . . . , K − 1}, output alphabet J ⊆ R
d (where K, d ∈ N)

and transition probability (or density if J non-countable) function P (·|·) is said to

be symmetric if there exists a set of bijective and unitary mappings {gk}K−1
k=0 where

gk : J → J for all k ∈ K such that

∀y ∈ J , k ∈ K P (y|0) = P
(
gk(y)|k

)
(5.24)

and

∀k1, k2 ∈ K g−1
k1

◦ gk2 = g(k2−k1)modK . (5.25)

Remark 5.3 From (5.24), the mapping g0 is the identity mapping. Assigning k1 = k

and k2 = 0 in (5.25) gives

∀k ∈ K g−1
k = g(−k)modK = gK−k . (5.26)

The class of symmetric memoryless channels, as given in Definition 5.2, is quite

large. In particular, it contains the class of memoryless binary-input output-symmetric

(MBIOS) channels. To show this, we employ the following proposition which follows

from the discussion in [74, Section 4.1.4]:

Proposition 5.1 An MBIOS channel can be equivalently represented as a (time-

varying) binary symmetric channel (BSC) whose crossover probability for each output

symbol is an i.i.d. random variable which is independent of the channel input, and

observed by the receiver. This crossover probability is given by p = 1
1+exp(|L|) where

L = L(y) denotes the log-likelihood ratio which corresponds to the channel output y.

We now apply Proposition 5.1 to show that any MBIOS channel is a symmetric

memoryless channel, according to Definition 5.2.

Corollary 5.1 An arbitrary MBIOS channel, can be equivalently represented as a

symmetric memoryless channel.

Proof: Let us consider an MBIOS channel C. Applying Proposition 5.1, it can be

equivalently represented by a channel C′ whose output alphabet is J = {0, 1}× [0, 1];

here, the first term of the output refers to the BSC output and the second term is

the associated crossover probability. We now show that this equivalent channel is a

symmetric memoryless channel. To this end, it suffices to find a unitary mapping

g1 : J → J such that
∀y ∈ J P (y|0) = P

(
g1(y)|1

)
(5.27)

and g−1
1 = g1 (i.e., g1 is equal to its inverse).
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For the channel C
′, the conditional probability distribution (or density) function

of the output y = (m, p) (where m ∈ {0, 1} and p ∈ [0, 1]) given that i ∈ {0, 1} is

transmitted, is given by

P (y|i) =

{
P̃ (p) · (1 − p) if i = m

P̃ (p) · p if i = m
(5.28)

where P̃ is a distribution (or density) over [0, 1] and m designates the logical not of m.

From (5.28), we get that the mapping g1(m, p) =
(
m, p

)
satisfies (5.27). Additionally,

g−1
1 = g1 since m = m. Therefore, the proof is completed by showing that g1 is a

unitary mapping. For any (generalized) function f : J → R we have

∫

J
f(x)dx ,

1∑

m=0

∫ 1

0

f(m, p)dp

=

1∑

m=0

∫ 1

0

f(m̄, p)dp

=

∫

J
f
(
g1(x)

)
dx

where the second equality holds by changing the order of summation; hence g1 is a

unitary function.

Remark 5.4 Proposition 5.1 forms a special case of a proposition given in [113,

Appendix I]. Using the proposition in [113, Appendix I], which refers to M-ary input

channels, it can be shown in a similar way that all M-ary input symmetric output

channels, as defined in [113], can be equivalently represented as symmetric memoryless

channels.

Coherently detected M-ary PSK modulated signals transmitted over a fully inter-

leaved fading channel, followed by an additive white Gaussian noise, form another

example of a symmetric memoryless channel. In this case, J = R
2 and the mapping

gk for k = 0, . . . , M − 1 forms a clockwise rotation by 2πk
M

(i.e., gk(y) = exp
(

2jπk

M

)
y).

Note that the determinant of the Jacobian of these rotation mappings is equal in

absolute value to 1.

5.3.2 Derivation of an Improved Sphere-Packing Bound for

Symmetric Memoryless Channels

In this section, we derive an improved sphere-packing lower bound on the decoding

error probability of block codes transmitted over symmetric memoryless channels.
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To keep the notation simple, we derive the bound under the assumption that the

communication takes place over a symmetric DMC. However, the derivation of the

bound is justified later for the general class of symmetric memoryless channels with

discrete or continuous output alphabets. Some remarks are given at the end of the

derivation.

Though there is a certain parallelism to the derivation of the SP67 bound in

[87, Part 1], our analysis for symmetric memoryless channels deviates considerably

from the derivation of this classical bound. The improvements suggested in [109]

are also incorporated into the derivation of the bound. We show that for symmetric

memoryless channels, the derivation of the sphere-packing bound can be modified

so that the intermediate step of bounding the maximal error probability for fixed

composition codes can be skipped, and one can directly consider the average error

probability of an arbitrary block code. To this end, the first step of the derivation

in [87] (see Theorem 5.1 here) is modified so that instead of bounding the error

probability when a single pair of probability assignments is considered, we consider

the average error probability over M pairs of probability assignments.

Average Decoding Error Probability for M Pairs of Probability Assign-

ments

We start the analysis by considering the average decoding error probability over M

pairs of probability assignments, denoted {P m
1 , P m

2 }M
m=1, where it is assumed that the

index m of the pair is chosen uniformly at random from the set {1, . . . , M} and is

known to the decoder. Denote the observation by y and the observation space by Y .

For simplicity, we assume that Y is a finite set. Following the notation in [87], we

define the LLR for the mth pair of probability assignments as

Dm(y) , ln

(
P m

2 (y)

P m
1 (y)

)
(5.29)

and the probability distribution

Qm
s (y) ,

P m
1 (y)1−s P m

2 (y)s

∑
y′ P m

1 (y′)1−s P m
2 (y′)s

, 0 ≤ s ≤ 1 . (5.30)

For the mth pair, we also define the function µm as

µm(s) , ln

(
∑

y

P m
1 (y)1−s P m

2 (y)s

)
, 0 ≤ s ≤ 1 . (5.31)

Let us assume that µm and its first and second derivatives w.r.t. s are independent

of the value of m, and therefore we can define µ , µ1 = µ2 = . . . = µM .
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Remark 5.5 Note that in this setting, the requirement that µm is independent of m

inherently yields that all its derivatives are also independent of m. However, in the

continuation, we will let P m
2 be a function of s and differentiate µm w.r.t. s while

holding P m
2 fixed. In this setting, we will show that for the specific selection of P m

1

and P m
2 which are used to derive the new lower bound on the average block error

probability, if the communication takes place over a symmetric memoryless channel

then µm and its first two derivatives w.r.t. s are independent of m. Also note that

the fact that µm is independent of m does not imply that P m
k is independent of m.

Based on the assumption above, it can be easily verified (in parallel to (5.9)–(5.12))

that for all m ∈ {1, . . . , M}

µ′(s) =
(
µm
)′

(s) = EQm
s

(
Dm(y)

)
(5.32)

µ′′(s) =
(
µm
)′′

(s) = VarQm
s

(
Dm(y)

)
(5.33)

P m
1 (y) = exp

(
µ(s) − sDm(y)

)
Qm

s (y) (5.34)

P m
2 (y) = exp

(
µ(s) + (1 − s)Dm(y)

)
Qm

s (y) (5.35)

where EQ and VarQ stand, respectively, for the statistical expectation and variance

w.r.t. a probability distribution Q. For the mth code book, we define the set of typical

output vectors as

Ym,x
s ,

{
y ∈ Y : |Dm(y) − µ′(s)| ≤ x

√
2µ′′(s)

}
, x > 0. (5.36)

In the original derivation of the SP67 bound in [87] (see (5.13) here), the parameter

x was set to one; similarly to [109], this parameter is introduced in (5.36) in order

to tighten the bound for finite-length block codes. However, in both [87] and [109],

only one pair of probability assignments was considered. By applying Chebychev’s

inequality to (5.36), and relying on the equalities in (5.32) and (5.33), we get that for

all m ∈ {1, . . . , M} ∑

y∈Ym,x
s

Qm
s (y) > 1 − 1

2x2
(5.37)

where this result is meaningful only for x >
√

2
2

.

Let Ym
1 and Ym

2 be the decoding regions of P m
1 and P m

2 , respectively. Since the

index m is known to the decoder, P m
1 is decoded only against P m

2 ; hence, Ym
1 and

Ym
2 form a partition of the observation space Y . We now derive a lower bound on the

conditional error probability given that the correct hypothesis is the first probability

assignment and the mth pair was selected. Similarly to (5.14), we get the following

lower bound from (5.34) and (5.36):

P m
e,1 ≥ exp

(
µ(s) − sµ′(s) − s x

√
2µ′′(s)

) ∑

y∈Ym
2

T
Ym,x

s

Qm
s (y). (5.38)
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Following the same steps w.r.t. the conditional error probability of P m
2 and applying

(5.35), gives

P m
e,2 ≥ exp

(
µ(s) + (1 − s)µ′(s) − (1 − s) x

√
2µ′′(s)

) ∑

y∈Ym
1

T
Ym,x

s

Qm
s (y). (5.39)

Averaging (5.38) and (5.39) over m gives that for all s ∈ (0, 1)

P avg
e,1 ,

1

M

M∑

m=1

P m
e,1

≥ exp
(
µ(s) − sµ′(s) − s x

√
2µ′′(s)

) 1

M

M∑

m=1

∑

y∈Ym
2

T
Ym,x

s

Qm
s (y) (5.40)

and

P avg
e,2 ,

1

M

M∑

m=1

P m
e,2

≥ exp
(
µ(s) + (1 − s)µ′(s) − (1 − s)x

√
2µ′′(s)

) 1

M

M∑

m=1

∑

y∈Ym
1

T
Ym,x

s

Qm
s (y) (5.41)

where P avg
e,1 and P avg

e,2 refer to the average error probabilities given that the first or

second hypotheses, respectively, of a given pair are correct where this pair is chosen

uniformly at random among the M possible pairs of hypotheses. Since for all m, the

sets Ym
1 and Ym

2 form a partition of the set of output vectors Y , then

1

M

M∑

m=1

∑

y∈Ym
1

T
Ym,x

s

Qm
s (y) +

1

M

M∑

m=1

∑

y∈Ym
2

T
Ym,x

s

Qm
s (y) =

1

M

M∑

m=1

∑

y∈Ym,x
s

Qm
s (y) > 1 − 1

2x2

where the last transition follows from (5.37) and is meaningful for x >
√

2
2

. Hence,

at least one of the terms in the LHS of the above equality is necessarily greater

than 1
2

(
1 − 1

2x2

)
. Combining this result with (5.40) and (5.41), we get that for every

s ∈ (0, 1)

P avg
e,1 >

(
1

2
− 1

4x2

)
exp
(
µ(s) − sµ′(s) − s x

√
2µ′′(s)

)
(5.42)

or

P avg
e,2 >

(
1

2
− 1

4x2

)
exp
(
µ(s) + (1 − s)µ′(s) − (1 − s) x

√
2µ′′(s)

)
. (5.43)

The two inequalities above provide a lower bound on the average decoding error

probability over M pairs of probability assignments.

We now turn to consider a block code which is transmitted over a symmetric DMC.

Similarly to the derivation of the SP67 bound in [87], we use the lower bound derived
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in this section to relate the decoding error probability when a given codeword is

transmitted to the size of the decision region associated with this codeword. However,

the bound above allows us to directly consider the average block error probability;

this is in contrast to the derivation in [87] which first considered the maximal block

error probability of the code and then used an argument based on expurgating half of

the bad codewords in order to obtain a lower bound on the average error probability

of the original code (where the code rate is asymptotically not affected as a result

of this expurgation). Additionally, we show that when the transmission takes place

over a memoryless symmetric channel, one can consider directly an arbitrary block

code instead of starting the analysis by referring to fixed composition codes as in [87,

Part 1] and [109].

Lower Bound on the Decoding Error Probability of General Block Codes

We now consider a block code C of length N with M codewords, denoted by {xm}M
m=1;

assume that the transmission takes place over a symmetric DMC with transition

probabilities P (j|k), where k ∈ K = {0, . . . , K − 1} and j ∈ J = {0, . . . , J − 1}
designate the channel input and output alphabets, respectively. In this section, we

derive a lower bound on the average block error probability of the code C for an

arbitrary list decoder where the size of the list is limited to L. Let fN be a probability

measure defined over the set of length-N sequences of the channel output, and which

can be factorized as in (5.16). We define M pairs of probability measures {P m
1 , P m

2 }
by

P m
1 (y) , Pr(y|xm), P m

2 (y) , fN(y), m ∈ {1, 2, . . . , M} (5.44)

where xm is the mth codeword of the code C. Combining (5.31) and (5.44), the

function µm takes the form

µm(s) = ln

(
∑

y

Pr(y|xm)1−sfN(y)s

)
, 0 < s < 1. (5.45)

Let us denote by qm
k the fraction of appearances of the letter k in the codeword

xm. By assumption, the communication channel is memoryless and the function fN

is a probability measure which is factorized according to (5.16). Hence, for every

m ∈ {1, 2, . . . , M}, the function µm in (5.45) is expressible in the form

µm(s) = N

K−1∑

k=0

qm
k µk(s) (5.46)

where

µk(s) , ln

(
J−1∑

j=0

P (j|k)1−sf(j)s

)
, 0 < s < 1. (5.47)
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In order to validate the statement which assures that at least one of the inequalities

in (5.42) and (5.43) is satisfied, it is required to verify in this case that the function

µm and its first and second derivatives w.r.t. s are independent of the index m. From

(5.46), since
∑K−1

k=0 qm
k = 1 for every m ∈ {1, . . . , M}, it suffices to show that µk and

its first and second derivatives are independent of the input symbol k. To this end, for

every s ∈ (0, 1), we choose the function f to be fs, as given in [87, Eqs. (4.18)–(4.20)].

Namely, for 0 < s < 1, let qs = {q0,s, . . . , qK−1,s} satisfy the inequalities

J−1∑

j=0

P (j|k)1−sα
s

1−s

j,s ≥
J−1∑

j=0

α
1

1−s

j,s ; ∀k ∈ K (5.48)

where

αj,s ,

K−1∑

k′=0

qk′,sP (j|k′)1−s. (5.49)

The function f = fs is given by

fs(j) =
α

1
1−s

j,s

J−1∑

j′=0

α
1

1−s

j′,s

, j ∈ {0, . . . , J − 1}. (5.50)

Note that the input distribution qs is independent of the code C, as it only depends on

the channel statistics. It should be also noted that P m
1 and P m

2 are in general allowed

to depend on the parameter s, though the differentiation of the function µm w.r.t. s

is performed while holding P m
1 and P m

2 fixed. The following lemma shows that for

symmetric channels, the function fs in (5.50) yields that µk and its first and second

derivatives w.r.t. s (while holding fs fixed) are independent of the input symbol k.

Lemma 5.1 Let P (·|·) designate the transition probability function of a symmetric

DMC with input alphabet K = {0, . . . , K−1} and output alphabet J = {0, . . . , J−1},
and let µk be defined as in (5.47), where f = fs is given in (5.50). Then, the following

properties hold for all s ∈ (0, 1)

µ0(s) = µ1(s) = . . . = µK−1(s) = −(1 − s)E0

(
s

1 − s

)
(5.51)

µ′
0(s) = µ′

1(s) = . . . = µ′
K−1(s) (5.52)

µ′′
0(s) = µ′′

1(s) = . . . = µ′′
K−1(s) (5.53)

where E0 is introduced in (5.19) and the differentiation in (5.52) and (5.53) is per-

formed w.r.t s while holding fs fixed.

Proof: The proof of this lemma is quite technical and is given in Appendix 5.A.
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Remark 5.6 Since the differentiation of the function µk w.r.t. s is performed while

holding f = fs fixed, then the independence of the function µk in the parameter

k, as stated in (5.51), does not necessarily imply the independence of the first and

second derivatives of µk as in (5.52) and (5.53); in order to prove Lemma 5.1 (see

Appendix 5.A), we rely on the symmetry of the memoryless channel. The function

µ0 in (5.4) and its derivatives are calculated in Appendix 5.B for some symmetric

memoryless channels, and these results are later used for the numerical calculations

of the sphere-packing bounds in Section 5.5.

By (5.46) and Lemma 5.1, we get that the function µm and its first and second

derivatives w.r.t. s are independent of the index m (where this property also follows

since
∑K−1

k=0 qm
k = 1, irrespectively of m).

Let Ym be the decision region of the codeword xm. By associating Ym and Yc
m

with the two decision regions for the probability measures P m
1 and P m

2 , respectively,

we get from (5.44)

P m
e,1 =

∑

y∈Yc
m

P m
1 (y) =

∑

y∈Yc
m

Pr(y|xm) , Pe,m

and

P m
e,2 =

∑

y∈Ym

P m
2 (y) =

∑

y∈Ym

fN (y) = F (Ym)

where Pe,m is the decoding error probability of the code C when the codeword xm is

transmitted, and F (Ym) is a measure for the size of the decoding region Ym as defined

in (5.17). Substituting the two equalities above in (5.42) and (5.43) gives that for all

s ∈ (0, 1)

1

M

M∑

m=1

Pe,m = P avg
e,1 >

(
1

2
− 1

4x2

)
exp
(
µ(s) − sµ′(s) − s x

√
2µ′′(s)

)
(5.54)

or

1

M

M∑

m=1

Fs(Ym) = P avg
e,2 >

(
1

2
− 1

4x2

)
exp
(
µ(s) + (1 − s)µ′(s) − (1 − s) x

√
2µ′′(s)

)

(5.55)

where x >
√

2
2

and Fs(Ym) ,
∑

y∈Ym
fN,s(y). Similarly to [87], we relate

M∑

m=1

Fs(Ym)

to the number of codewords M and to the size of the decoding list which is limited

to L. First, for all 0 ≤ s ≤ 1

M∑

m=1

Fs(Ym) =
M∑

m=1

∑

y∈Ym

fN,s(y) ≤ L
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where the last inequality holds since each y ∈ J N is included in at most L subsets

{Ym}M
m=1 and

∑
y fN,s(y) = 1. Hence, the LHS of (5.55) is upper bounded by L

M
for

all 0 ≤ s ≤ 1. Additionally, the LHS of (5.54) is equal by definition to the average

block error probability Pe of the code C. Therefore, (5.54) and (5.55) can be rewritten

as

Pe >

(
1

2
− 1

4x2

)
exp
(
µ(s) − sµ′(s) − s x

√
2µ′′(s)

)
(5.56)

or
L

M
>

(
1

2
− 1

4x2

)
exp
(
µ(s) + (1 − s)µ′(s) − (1 − s) x

√
2µ′′(s)

)
. (5.57)

Applying (5.46) and Lemma 5.1 to (5.56) and (5.57) gives that for all s ∈ (0, 1)

Pe >

(
1

2
− 1

4x2

)
exp

{
N

(
µ0(s, fs) − sµ′

0(s, fs) − s x

√
2µ′′

0(s, fs)

N

)}
(5.58)

or

L

M
>

(
1

2
− 1

4x2

)
exp

{
N

(
µ0(s, fs) + (1 − s)µ′

0(s, fs) − (1 − s)x

√
2µ′′

0(s, fs)

N

)}
.

(5.59)

A lower bound on the average block error probability can be obtained from (5.58) by

substituting any value of s ∈ (0, 1) for which the inequality in (5.59) does not hold.

In particular we choose a value s = sx such that the inequality in (5.59) is replaced

by an equality, i.e.,

L

M
= exp(−NR)

=

(
1

2
− 1

4x2

)
exp

{
N

(
µ0(sx, fsx

) + (1 − sx) µ′
0(sx, fsx

)

−(1 − sx) x

√
2µ′′

0(sx, fsx
)

N

)}
(5.60)

where R ,
ln(M

L )
N

designates the code rate in nats per channel use. Note that the

existence of a solution s = sx to (5.60) can be demonstrated in a similar way to

the arguments in [87, Eqs. (4.28)–(4.35)] for the non-trivial case where the sphere-

packing bound does not reduce to the trivial inequality Pe ≥ 0. This particular value

of s is chosen since for a large enough value of N , the RHS of (5.58) is monotonically

decreasing while the RHS of (5.59) is monotonically increasing for s ∈ (0, 1); thus, this

choice is optimal for large enough N . The choice of s = sx also allows to get a simpler

representation of the bound on the average block error probability. Rearranging (5.60)

gives

µ′
0(sx, fsx

) = − 1

1 − sx

[
R + µ0(sx, fsx

) +
1

N
ln

(
1

2
− 1

4x2

)]
+ x

√
2µ′′

0(sx, fsx
)

N
.
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Substituting s = sx and the last equality into (5.58) yields that

Pe > exp

{
N

(
µ0(sx, fsx

)

1 − sx

+
sx

1 − sx

(
R +

1

N
ln

(
1

2
− 1

4x2

))

−sx x

√
8µ′′

0(sx, fsx
)

N
+

1

N
ln

(
1

2
− 1

4x2

))}
.

By applying (5.51) and defining ρx , sx

1−sx
we get

Pe > exp

{
−N

(
E0(ρx) − ρx

[
R +

1

N
ln

(
1

2
− 1

4x2

)]

+sx x

√
8µ′′

0(sx, fsx
)

N
− 1

N
ln

(
1

2
− 1

4x2

))}
.

Note that the above lower bound on the average decoding error probability holds for

an arbitrary block code of length N and rate R. The selection of ρx is similar to [109].

Finally, we optimize over the parameter x ∈ (
√

2
2

,∞) in order to get the tightest lower

bound of this form.

The derivation above only relies on the fact that the channel is memoryless and

symmetric, but does not rely on the fact that the output alphabet is discrete. As

mentioned in Section 5.2.2, the original derivation of the SP67 bound in [87] relies on

the fact that the input and output alphabets are finite in order to upper bound µ′′(s)

by
(

1
s
ln
(

e√
Pmin

))2

where Pmin designates the smallest non-zero transition probability

of the channel. This requirement was relaxed in [109] to the requirement that only

the input alphabet is finite; to this end, the second derivative of the function µ is

calculated, thus the above upper bound on this second derivative is replaced by its

exact value. The validity of the derivation for symmetric continuous-output channels

is considered in the continuation (see Remark 5.9). This leads to the following theo-

rem, which provides an improved sphere-packing lower bound on the decoding error

probability of block codes transmitted over symmetric memoryless channels.

Theorem 5.5 [An Improved Sphere-Packing (ISP) Bound for Symmetric

Memoryless Channels] Let C be an arbitrary block code consisting of M codewords,

each of length N . Assume that C is transmitted over a memoryless symmetric channel

which is specified by the transition probabilities (or densities) P (j|k) where k ∈ K =

{0, . . . , K − 1} and j ∈ J ⊆ R
d designate the channel input and output alphabets,

respectively. Assume an arbitrary list decoder where the size of the list is limited to

L. Then, the average decoding error probability satisfies

Pe(N, M, L) ≥ exp
{
−NEISP(R, N)

}
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where

EISP(R, N) , inf
x>

√
2

2

{
E0(ρx) − ρx

(
R − O1

( 1

N
, x
))

+ O2

( 1√
N

, x, ρx

)}
(5.61)

the function E0 is introduced in (5.19), R = 1
N

ln
(

M
L

)
, and

O1

( 1

N
, x
)

, − 1

N
ln

(
1

2
− 1

4x2

)
(5.62)

O2

( 1√
N

, x, ρ
)

, s(ρ) x

√
8

N
µ′′

0

(
s(ρ), fs(ρ)

)
− 1

N
ln

(
1

2
− 1

4x2

)
. (5.63)

Here, s(ρ) ,
ρ

1+ρ
, and the non-negative parameter ρ = ρx on the RHS of (5.61) is

determined by solving the equation

R−O1

(
1

N
,x

)
= −µ0

(
s(ρ), fs(ρ)

)
−
(
1−s(ρ)

)
µ′

0

(
s(ρ), fs(ρ)

)
+
(
1−s(ρ)

)
x

√
2µ′′

0

(
s(ρ), fs(ρ)

)

N
(5.64)

and the functions µ0(s, f) and fs are defined in (5.47) and (5.50), respectively.

Remark 5.7 The requirement that the communication channel is symmetric is cru-

cial to the derivation of the ISP bound. One of the new concepts introduced here is

the use of the channel symmetry to show that the function µm and its first and second

derivatives w.r.t. s are independent of the codeword composition. This enables to

tighten the VF bound in [109] by skipping the intermediate step which is related to

fixed composition codes. Another new concept is a direct consideration of the average

decoding error probability of the code rather than considering the maximal block error

probability and expurgating the code. This is due to the consideration of M pairs of

probability distributions in the first step of the derivation. Note that the bound on

the average block error probability of M probability assignment pairs requires that

µm and its first and second derivatives are independent of the index m; this property

holds due to the symmetry of the memoryless communication channel.

Remark 5.8 In light of the previous remark where we do not need to consider the

block error probability of fixed composition codes as an intermediate step, the ISP

bound differs from the VF bound [109] (see Theorem 5.4) in the sense that the term
log (N+K−1

K−1 )
N

is removed from O1(
lnN
N

, x) (see (5.22)). Therefore, the shift in the rate

of the error exponent of the ISP bound scales asymptotically like 1
N

instead of ln N
N

(see (5.21), (5.22) and (5.62)). Additionally, the derivation of the VF bound requires

expurgation of the code to transform a lower bound on the maximal block error

probability to a lower bound on the average block error probability. These differences
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indicate a tightening of the pre-exponent of the ISP bound (as compared to the SP67

and VF bounds) which is expected to be especially pronounced for codes of small to

moderate block lengths and also when the size of the channel input alphabet is large

(as will be verified in Section 5.5).

Remark 5.9 The ISP bound is also applicable to symmetric channels with continu-

ous output. When the ISP bound is applied to a memoryless symmetric channel with

a continuous-output alphabet, the transition probability is replaced by a transition

density function and the sums over the output alphabet are replaced by integrals.

Note that these densities may include Dirac delta functions which appear at the

points where the corresponding input distribution or the transition density function

of the channel are discontinuous. Additionally, as explained in Appendix 5.A, the

statement in Lemma 5.1 holds for general symmetric memoryless channels.

5.4 The 1959 Sphere-Packing Bound of Shannon

and Improved Algorithms for Its Calculation

The 1959 sphere-packing (SP59) bound, derived by Shannon [89], provides a lower

bound on the decoding error probability of an arbitrary block code whose transmis-

sion takes place over an AWGN channel. We begin this section by introducing the

SP59 bound in its original form, along with asymptotic approximations in [89] which

facilitate the estimation of the bound for large block lengths. We then review a

theorem, introduced by Valembois and Fossorier [109], presenting a set of recursive

equations which simplify the calculation of this bound. Both the original formula for

the SP59 bound in [89] and the recursive method in [109] perform the calculations in

the probability domain; this leads to various numerical difficulties of over and under

flows when calculating the exact value of the bound for codes of block lengths of

N = 1000 or more. In this section, we present an alternative approach which facili-

tates the calculation of the SP59 bound in the logarithmic domain. This eliminates

the possibility of numerical problems in the calculation of the SP59 bound, regardless

of the block length.

5.4.1 The 1959 Sphere-Packing Bound and Asymptotic Ap-

proximations

Consider a block code C of length N and rate R nats per channel use per dimen-

sion. It is assumed that all the codewords are mapped to signals with equal energy
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(e.g., PSK modulation); hence, all the signals representing codewords lie on an N -

dimensional sphere centered at the origin, but finer details of the modulation used

are not taken into account in the derivation of the bound. This assumption implies

that every Voronoi cell (i.e., the convex region containing all the points which are

closer to the considered signal than to any other code signal) is a polyhedric cone

which is limited by at most exp(NR) − 1 hyper planes intersecting at the origin. As

a measure of volume, Shannon introduced the solid angle of a cone which is defined

to be the area of the sphere of unit radius cut out by the cone. Since the Voronoi

cells partition the space R
N , then the sum of their solid angles is equal to the area of

an N -dimensional sphere of unit radius. The derivation of the SP59 bound relies on

two main observations:

• Among the cones of a given solid angle, the lowest probability of error is obtained

by the circular cone whose main axis passes through the origin and the signal

point which represents the transmitted signal.

• In order to minimize the average decoding error probability, it is best to share

the total solid angle equally among the exp(NR) Voronoi regions.

As a corollary of these two observations, it follows that the average block error prob-

ability cannot be smaller than the error probability which corresponds to the case

where all the Voronoi regions are circular cones centered around the code signals

with a common solid angle which is equal to a fraction of exp(−NR) of the solid

angle of R
N . The solid angle of a circular cone is given by the following lemma.

Lemma 5.2 [Solid Angle of a Circular Cone [89]] The solid angle of a circular

cone of half angle θ in R
N is given by

ΩN (θ) =
2π

N−1
2

Γ(N−1
2

)

∫ θ

0

(sin φ)N−2 dφ .

In particular, the solid angle of R
N is given by

ΩN (π) =
2π

N
2

Γ(N
2
)
.

Theorem 5.6 [The 1959 Sphere-Packing (SP59) Bound [89]] Assume that the

transmission of an arbitrary block code of length N and rate R (in units of nats per

channel use per dimension) takes place over an AWGN channel whose additive white

Gaussian noise has a two-sided spectral density of N0

2
. Then, under ML decoding, the

block error probability is lower bounded by

Pe(ML) > PSPB(N, θ, A) , A ,

√
2Es

N0
(5.65)
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where Es is the average energy per symbol, θ ∈ [0, π] satisfies the inequality exp(−NR) ≤
ΩN (θ)
ΩN (π)

,

PSPB(N, θ, A) ,
(N − 1) exp

(
−NA2

2

)

√
2π

∫ π
2

θ

(sin φ)N−2 fN(
√

NA cos φ) dφ

+Q(
√

NA) (5.66)

and

fN(x) ,
1

2
N−1

2 Γ(N+1
2

)

∫ ∞

0

zN−1 exp

(
−z2

2
+ zx

)
dz , ∀x ∈ R, N ∈ N. (5.67)

By assumption, the transmitted signal is represented by a point which lies on the

N -dimensional sphere of radius
√

NEs and which is centered at the origin, and the

Gaussian noise is additive. The value of PSPB(N, θ, A) on the RHS of (5.65) designates

the probability that the received vector falls outside the N -dimensional circular cone

of half angle θ whose main axis passes through the origin and the signal point which

represents the transmitted signal. Hence, this function is monotonically decreasing

in θ. The tightest lower bound on the decoding error probability, as given in (5.65),

is therefore achieved for θ1(N, R) which satisfies

ΩN

(
θ1(N, R)

)

ΩN(π)
= exp(−NR). (5.68)

In order to simplify the calculation of the SP59 bound, Shannon provided in [89]

asymptotically tight upper and lower bounds on the ratio ΩN (θ)
ΩN (π)

.

Lemma 5.3 [Bounds on the Solid Angle [89]] The solid angle of a circular cone

of half angle θ in the Euclidean space R
N satisfies the inequality

Γ(N
2
)(sin θ)N−1

2Γ(N+1
2

)
√

π cos θ

(
1 − tan2 θ

N

)
≤ ΩN (θ)

ΩN (π)
≤ Γ(N

2
)(sin θ)N−1

2Γ(N+1
2

)
√

π cos θ
.

Corollary 5.2 [SP59 Bound (Cont.)] If θ∗ satisfies the equality

Γ(N
2
)(sin θ∗)N−1

2Γ(N+1
2

)
√

π cos θ∗

(
1 − tan2 θ∗

N

)
= exp(−NR) (5.69)

then ΩN (θ∗)
ΩN (π)

≥ exp(−NR), and therefore

Pe(ML) > PSPB(N, θ∗, A). (5.70)



CHAPTER 5. AN IMPROVED SPHERE-PACKING BOUND 188

The use of θ∗ instead of the optimal value θ1(N, R) causes some loss in the tightness of

the SP59 bound. However, due to the asymptotic tightness of the bounds on ΩN (θ)
ΩN (π)

,

this loss vanishes as N → ∞. In [109], it was numerically observed that this loss

is marginal even for relatively small values of NR; it was observed that this loss is

smaller than 0.01 dB whenever the dimension of the code in bits is greater than 20,

and it becomes smaller than 0.001 dB when the dimension exceeds 60 bits.

For large block lengths, the calculation of the SP59 bound becomes difficult in

practice due to over and under flows in the floating-point operations. However, [89]

presents some asymptotic formulas which give a good estimation of the bound for

large enough block lengths. These approximations allow the calculation to be made

in the logarithmic domain which eliminates the possibility of floating-point errors.

Theorem 5.7 [89]. Defining

G(θ) ,
A cos θ +

√
A2 cos2 θ + 4

2

EL(θ) ,
A2 − AG(θ) cos θ − 2 ln

(
G(θ) sin θ

)

2

then

PSPB(N, θ, A) ≥
√

N − 1

6N(A + 1)
exp

(
3 − (A + 1)2

2

)
exp
(
−N EL(θ)

)
. (5.71)

This lower bound is valid for any block length N . However, the ratio of the left and

right terms in (5.71) stays bounded away from one for all N .

A rather accurate approximation of PSPB(N, θ, A) was provided by Shannon in [89],

but without a determined inequality. As a consequence, the following approximation

is not a proven theoretical lower bound on the block error probability. For N > 1000,

however, its numerical values become almost identical to those of the exact bound,

thus giving a useful estimation for the lower bound.

Proposition 5.2 [89]. Using the notation of Theorem 5.7, if θ > cot−1(A), then

PSPB(N, θ, A) ≈ α(θ) exp(−NEL

(
θ)
)

√
N

where

α(θ) ,

(√
π (1 + G(θ)2) sin θ

(
AG(θ) sin2 θ − cos θ

))−1

.
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5.4.2 A Recent Algorithm for Calculating the 1959 Sphere-

Packing Bound

In [109, Section 2], Valembois and Fossorier review the SP59 bound and suggest a

recursive algorithm to simplify its calculation. This algorithm is presented in the

following theorem:

Theorem 5.8 [Recursive Equations for Simplifying the Calculation of the

SP59 Bound] [109, Theorem 3]. The set of functions {fN} introduced in (5.67) can

be expressed in the alternative form

fN(x) = PN(x) + QN (x) exp(
x2

2
)

∫ x

−∞
exp(−t2

2
) dt , x ∈ R, N ∈ N (5.72)

where PN and QN are two polynomials, determined by the same recursive equation

for N ≥ 5

PN(x) =
2N − 5 + x2

N − 1
PN−2(x) − N − 4

N − 1
PN−4(x) ,

QN(x) =
2N − 5 + x2

N − 1
QN−2(x) − N − 4

N − 1
QN−4(x) (5.73)

with the initial conditions

P1(x) = 0, P2(x) =

√
2

π
, P3(x) =

x

2
, P4(x) =

√
2

π

2 + x2

3
,

Q1(x) = 1, Q2(x) =

√
2

π
x, Q3(x) =

1 + x2

2
, Q4(x) =

√
2

π

3x + x3

3
.

By examining the recursive equations for PN and QN in (5.73), it is observed that

the coefficients of the higher powers of x vanish exponentially as N increases. When

performing the calculation using double-precision floating-point numbers, these coef-

ficients cause underflows when N is larger than several hundreds, and are replaced by

zeros. Examining the expression for PSPB(N, θ, A) in (5.66), we observe that fN (x)

(and therefore the polynomials PN (x) and QN(x)) are evaluated at x ∼ O(
√

N).

Hence, for large values of N , the replacement of the coefficients of the high powers of

x by zeros causes a considerable inaccuracy in the calculation of PSPB in (5.66).

Considering the integrand on the RHS of (5.66) reveals another difficulty in cal-

culating the SP59 bound for large values of N . In this case, the term fN(
√

NA cos φ)

becomes very large and causes overflows, while the value of the term (sin φ)N−2 be-

comes very small and causes underflows; this creates a “0 · ∞” phenomenon when

evaluating the integrand at the RHS of (5.66).
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5.4.3 A Log-Domain Approach for Computing the 1959 Sphere-

Packing Bound

In this section, we present a method which facilitates the entire calculation of the

integrand on the RHS of (5.66) in the logarithmic domain, thus circumventing the

numerical over and under flows which become problematic in the calculation of the

SP59 bound for large block lengths. We begin our derivation by representing the set

of functions {fN} defined in (5.67) as sums of exponents.

Proposition 5.3 The set of functions {fN} in (5.67) can be expressed in the form

fN(x) =
N−1∑

j=0

exp
(
d(N, j, x)

)
, x ∈ R, N ∈ N

where

d(N, j, x) ,
x2

2
+ ln Γ

(
N

2

)
− ln Γ

(
j

2
+ 1

)
− ln Γ(N − j)

+(N − 1 − j) ln
(√

2 x
)
− ln 2

2

+ ln

[
1 + (−1)j γ̃

(
x2

2
,
j + 1

2

)]
,

N ∈ N, x ∈ R

j = 0, 1 . . . , N − 1
(5.74)

and

Γ(a) ,

∫ ∞

0

ta−1 exp(−t) dt , Re(a) > 0 (5.75)

γ̃(x, a) ,
1

Γ(a)

∫ x

0

ta−1 exp(−t) dt , x ∈ R, Re(a) > 0 (5.76)

designate the complete and incomplete Gamma functions, respectively.

Proof: The proof is given in Appendix 5.C.

Remark 5.10 It is noted that the exponents d(N, j, x) in (5.74) are readily cal-

culated by using standard mathematical functions. The function which calculates

the natural logarithm of the Gamma function is implemented in the MATLAB soft-

ware by gammaln, and in the Mathematica software by LogGamma. The incomplete

Gamma function γ̃ is implemented in MATLAB by gammainc and in Mathematica

by GammaRegularized.

In order to perform the entire calculation of the function fN in the logarithmic domain,

we employ the function

max ∗(x1, . . . , xm) , ln

(
m∑

i=1

exp(xi)

)
, m ∈ N, x1, . . . , xm ∈ R (5.77)
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which is commonly used for the implementation of the log-domain BCJR algorithm.

The function max ∗ can be calculated in the logarithmic domain using the recursive

equation

max ∗(x1, . . . , xm+1) = max ∗(max ∗(x1, . . . , xm), xm+1

)
,

m ∈ N \ {1},
x1, . . . , xm+1 ∈ R

with the initial condition

max ∗(x1, x2) = max(x1, x2) + ln
(
1 + exp

(
−|x1 − x2|

))
.

Combining Proposition 5.3 and the definition of the function max ∗ in (5.77), we get

a method for calculating the set of functions {fN} in the logarithmic domain.

Corollary 5.3 The set of functions {fN} defined in (5.67) can be rewritten in the

form

fN (x) = exp
[
max ∗(d(N, 0, x), d(N, 1, x), . . . , d(N, N − 1, x)

)]
(5.78)

where d(N, j, x) is introduced in (5.74).

By combining (5.66) and (5.78), one gets the following theorem which provides

an efficient algorithm for the calculation of the SP59 bound in the log domain.

Theorem 5.9 [Logarithmic domain calculation of the SP59 bound] The term

PSPB(N, θ, A) on the RHS of (5.70) can be rewritten as

PSPB(N, θ, A) =

∫ π
2

θ

exp

[
ln(N − 1) − NA2

2
− 1

2
ln(2π) + (N − 2) ln sin φ

+ max ∗
(
d(N, 0,

√
NA cos φ), . . . , d(N, N − 1,

√
NA cosφ)

)]
dφ

+Q(
√

NA) , N ∈ N, θ ∈ [0,
π

2
], A ∈ R

+

where the function d is introduced in (5.74).

Using Theorem 5.9, it is easy to calculate the exact value of the SP59 lower bound

for very large block lengths.

5.5 Numerical Results for Sphere-Packing Bounds

This section presents some numerical results which serve to exemplify the improved

tightness of the ISP bound derived in Section 5.3. We consider performance bounds

for coherent detection of M-ary PSK block coded modulation where the signals are
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transmitted over fully interleaved fading channels, and it is assumed that perfect side

information of the fading samples is available at the receiver. As special cases, the

fully interleaved Rayleigh-fading channel and the AWGN channel are considered. For

M-ary PSK modulated signals whose transmission takes place over the AWGN chan-

nel, the ISP bound is compared to the SP59 bound (which is revisited in Section 5.4)

and to some upper bounds on the decoding error probability. As a representative of

the class of discrete memoryless and symmetric channels, the binary erasure channel

(BEC) is considered. All the bounds are compared in this section to computer simu-

lations for the performance of modern error-correcting codes using practical decoding

algorithms.

5.5.1 Performance Bounds for M-ary PSK Block Coded Mod-

ulation over Fully Interleaved Fading Channels

The ISP bound in Section 5.3 is particularized here to M-ary PSK block coded modu-

lation schemes whose transmission takes place over fully interleaved fading channels,

where it is assumed that the received signals are coherently detected and the fading

samples are perfectly known at the receiver. For simplicity of notation, we treat

the channel inputs and outputs as two-dimensional real vectors, and not as complex

numbers. Let M = 2p (where p ∈ N) be the size of the constellation for the PSK

modulation, and denote the input to the channel by X = (X1, X2) where the possible

input values are given by

xk = (cos θk, sin θk) , θk ,
(2k + 1)π

M
, k = 0, 1, . . . , M − 1. (5.79)

We denote the channel output by (Y, A) = (Y1, Y2, A) where A is a fading sam-

ple which is distributed according to some distribution (or density function) pA,

Y = AX + N, and N = (N1, N2) is an additive Gaussian random vector with i.i.d.

components with zero-mean and variance σ2. The channel input, fading sample and

additive noise are statistically independent. The conditional pdf of the channel out-

put, given the transmitted symbol Xk, is given by

pY,A|X(y, a|xk) =
pA(a)

2πσ2
exp

(
−‖y − axk‖2

2σ2

)
, y ∈ R

2 , a ∈ R
+ (5.80)

where ‖·‖ designates the L2 norm. Due to the symmetry of the additive noise and

the fact that the fading samples are fully known at the receiver, the phase of the

fading coefficient can be eliminated at the receiver; hence, the fading is treated as

a non-negative (real) random variable. Due to the channel interleaver, the fading
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Figure 5.1: A comparison between lower bounds on the ML decoding error
probability for block codes of length N = 1024 bits and code rate of 0.75 bits

channel use
.

This figure refers to BPSK modulated signals whose transmission takes place over
fully-interleaved (i.i.d.) Rayleigh-fading and AWGN channels. We compare the
Valembois-Fossorier (VF) [109] bound and the improved sphere-packing (ISP)

bound derived in Section 5.3.

coefficients are i.i.d. random variables so the channel is indeed memoryless. Closed-

form expressions for the function µ0 and its first two derivatives w.r.t. s (while holding

fs fixed) are derived in Appendix 5.B.1 and are used for the calculation of both the VF

and ISP bounds. Further details on BPSK modulated signals transmitted over fully

interleaved fading channels, including expressions for the capacity, cutoff rate and

various bounds on the decoding error probability, are provided in [78] and references

therein.

Figure 5.1 compares the VF bound [109] and the ISP bound derived in Section 5.3.

The comparison refers to block codes of length 1024 bits and rate 0.75 bits
channel use

which

employ BPSK modulation. Two communication channels are considered: The AWGN

channel, which can be viewed as a fading channel where the fading samples are set

to 1 (i.e., pA(a) = δ(a−1) where δ designates the Dirac delta function), and the fully

interleaved Rayleigh-fading channel, where

pA(a) = 2a exp(−a2), a ≥ 0.
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The plot also depicts the capacity limit bound (CLB) for these two channels (cal-

culated from [78, Eq. (2)]).1 It is observed that the ISP bound outperforms the VF

bound for both channels and that the gap is wider for the Rayleigh-fading channel.

For a block error probability of 10−5, the ISP bound provides gains of about 0.19 and

0.33 dB over the VF bound and gaps of 0.54 dB and 0.84 dB to the channel capacity

for the AWGN and Rayleigh-fading channels, respectively. Also, for both channels

the ISP bound is more informative than the CLB for block error probabilities below

10−2 while the VF bound requires block error probabilities below 10−3 to outperform

the capacity limit.

5.5.2 Performance Bounds for M-ary PSK Block Coded Mod-

ulation over the AWGN Channel

The ISP bound is particularized in Section 5.5.1 to M-ary PSK block coded modu-

lation schemes whose transmission takes place over fully interleaved fading channels,

where the received signals are coherently detected and the fading samples are fully

known at the receiver. A special case of this model is the AWGN channel. The

closed-form expressions for the function µ0 and its first two derivatives w.r.t. s (while

holding fs fixed) are given in Appendix 5.B.2. The SP59 bound [89] provides a lower

bound on the decoding error probability for the considered case, since the modulated

signals have equal energy and are transmitted over the AWGN channel. In the fol-

lowing, we exemplify the use of these lower bounds. They are also compared to the

RCB of Gallager [31], and the tangential-sphere upper bound (TSB) of Poltyrev [70]

when applied to random block codes. This serves for the study of the tightness of

the ISP bound, as compared to other upper and lower bounds. The numerical results

shown in this section indicate that the recent variants of the SP67 bound provide an

interesting alternative to the SP59 bound which is commonly used in the literature as

a measure for the sub-optimality of codes transmitted over the AWGN channel (see,

e.g., [27, 44, 55, 79, 98, 109, 115]). Moreover, the advantage of the ISP bound over

the VF bound in [109] is exemplified in this section.

Figure 5.2 compares the SP59 bound [89], the VF bound [109], and the ISP bound

derived in Section 5.3. The comparison refers to block codes of length 500 bits and

rate 0.8 bits
channel use

which are BPSK modulated and transmitted over an AWGN channel.

The plot also depicts the RCB of Gallager [31], the TSB ([36, 70]), and the capacity

limit bound (CLB). It is observed from this figure that even for relatively short block

1Although the CLB refers to the asymptotic case where the block length tends to infinity, it
is plotted in [109] and here as a reference, in order to examine whether the improvement in the
tightness of the ISP is for rates above or below capacity.



CHAPTER 5. AN IMPROVED SPHERE-PACKING BOUND 195

1.5 2 2.5 3 3.5 4 4.5 5 5.5
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

B
lo

ck
 e

rr
or

 p
ro

ba
bi

lit
y

 

 

Capacity limit

1959 sphere−packing bound
Valembois−Fossorier bound
Improved sphere−packing bound
Random coding upper bound
Tangential sphere upper bound

Figure 5.2: A comparison between upper and lower bounds on the ML decoding
error probability for block codes of length N = 500 bits and code rate of

0.8 bits
channel use

. This figure refers to BPSK modulated signals whose transmission takes
place over an AWGN channel. The compared bounds are the 1959 sphere-packing

(SP59) bound of Shannon [89], the Valembois-Fossorier (VF) bound [109], the
improved sphere-packing (ISP) bound derived in Section 5.3, the random-coding

upper bound (RCB) of Gallager [31], and the tangential-sphere bound (TSB) [36, 70]
when applied to fully random block codes with the above block length and rate.

lengths, the ISP bound outperforms the SP59 bound for block error probabilities

below 10−1 (this issue will be discussed later in this section). For a block error

probability of 10−5, the ISP bound provides gains of about 0.26 and 0.33 dB over the

SP59 and VF bounds, respectively. For these code parameters, the TSB provides a

tighter upper bound on the block error probability of random codes, as compared to

the RCB of Gallager; e.g., the gain of the TSB over the Gallager bound is about 0.2 dB

for a block error probability of 10−5. Note that the Gallager bound is tighter than the

TSB for fully random block codes of large enough block lengths, as the latter bound

does not reproduce the random-coding error exponent for the AWGN channel [70].

However, Figure 5.2 exemplifies the advantage of the TSB over the Gallager bound,
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when applied to random block codes of relatively short block lengths; this advantage

is especially pronounced for low code rates where the gap between the error exponents

of these two bounds is marginal (see [79, p. 67]), but it is also reflected from Figure 5.2

for BPSK modulation with a code rate of 0.8 bits
channel use

. The gap between the TSB

and the ISP bound, as upper and lower bounds respectively, is less than 1.2 dB for all

block error probabilities lower than 10−1. Also, the ISP bound is more informative

than the CLB for block error probabilities below 8 · 10−3 while the SP59 and VF

bounds require block error probabilities below 1.5 · 10−3 and 5 · 10−4, respectively, to

outperform the capacity limit.

Figure 5.3 presents a comparison of the SP59, VF and ISP bounds referring to

short block codes which are QPSK modulated and transmitted over the AWGN chan-

nel. The plots also depict the RCB, the TSB and CLB; in these plots, the ISP bound

outperforms the SP59 bound for all block error probabilities below 4 ·10−1 (this result

is consistent with the upper plot of Figure 5.7). In the upper plot of Figure 5.3, which

corresponds to a block length of 1024 bits (i.e., 512 QPSK symbols) and a rate of

1.5 bits
channel use

, it is shown that the ISP bound provides gains of about 0.25 and 0.37 dB

over the SP59 and VF bounds, respectively, for a block error probability of 10−5. The

gap between the ISP lower bound and the RCB is 0.78 dB for all block error proba-

bilities lower than 10−1. In the lower plot of Figure 5.3 which corresponds to a block

length of 300 bits and a rate of 1.8 bits
channel use

, the ISP bound significantly improves the

SP59 and VF bounds; for a block error probability of 10−5, the improvement in the

tightness of the ISP over the SP59 and VF bounds is 0.8 and 1.13 dB, respectively.

Additionally, the ISP bound is more informative than the CLB for block error prob-

abilities below 3 · 10−3, where the SP59 and VF bound outperform the CLB only for

block error probabilities below 3 · 10−6 and 5 · 10−8, respectively. For fully random

block codes of length N = 300 and rate 1.8 bits
channel use

which are QPSK modulated with

Gray’s mapping and transmitted over the AWGN channel, the TSB is tighter than

the RCB (see the lower plot in Figure 5.3 and the explanation referring to Figure 5.2).

The gap between the ISP bound and the TSB in this plot is about 1.5 dB for a block

error probability of 10−5 (as compared to gaps of 2.3 dB (2.63 dB) between the TSB

and the SP59 (VF) bound).

Figure 5.4 presents a comparison of the bounds for codes of block length 5580 bits

and 4092 information bits, where both QPSK (upper plot) and 8-PSK (lower plot)

constellations are considered. The modulated signals correspond to 2790 and 1680

symbols, respectively, so the code rates for these constellations are 1.467 and 2.2 bits

per channel use, respectively. For both constellations, the two considered SP67-based
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Figure 5.3: A comparison between upper and lower bounds on the ML decoding
error probability, referring to short block codes which are QPSK modulated and
transmitted over the AWGN channel. The compared lower bounds are the 1959

sphere-packing (SP59) bound of Shannon [89], the Valembois-Fossorier (VF) bound
[109], and the improved sphere-packing (ISP) bound; the compared upper bounds

are the random-coding upper bound (RCB) of Gallager [31] and the
tangential-sphere bound (TSB) of Poltyrev [70]. The upper plot refers to block

codes of length N = 1024 which are encoded by 768 information bits (so the rate is
1.5 bits

channel use
), and the lower plot refers to block codes of length N = 300 which are
encoded by 270 bits whose rate is therefore 1.8 bits

channel use
.
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Figure 5.4: A comparison of upper and lower bounds on the ML decoding error
probability for block codes of length N = 5580 bits and information block length of

4092 bits. This figure refers to QPSK (upper plot) and 8-PSK (lower plot)
modulated signals whose transmission takes place over an AWGN channel; the rates
in this case are 1.467 and 2.200 bits

channel use
, respectively. The compared bounds are the

1959 sphere-packing (SP59) bound of Shannon [89], the Valembois-Fossorier (VF)
bound [109], the improved sphere-packing (ISP) bound, and the random-coding

upper bound (RCB) of Gallager [31].
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bounds (i.e., the VF and ISP bounds) outperform the SP59 for all block error prob-

abilities below 2 · 10−1; the ISP bound provides gains of 0.1 and 0.22 dB over the

VF bound for the QPSK and 8-PSK constellations, respectively. For both modula-

tions, the gap between the ISP lower bound and the RCB of Gallager does not exceed

0.4 dB. In [23], Divsalar and Dolinar design codes with the considered parameters

by using concatenated Hamming and accumulate codes. They also present computer

simulations of the performance of these codes under iterative decoding, when the

transmission takes place over the AWGN channel and several common modulation

schemes are applied. For a block error probability of 10−4, the gap between the simu-

lated performance of these codes under iterative decoding, and the ISP lower bound,

which gives an ultimate lower bound on the block error probability of optimally de-

signed codes under ML decoding, is approximately 1.4 dB for QPSK and 1.6 dB for

8-PSK signaling. This provides an indication on the performance of codes defined

on graphs and their iterative decoding algorithms, especially in light of the feasible

complexity of the decoding algorithm which is linear in the block length. To con-

clude, it is reflected from the results plotted in Figure 5.4 that a gap of about 1.5 dB

between the ISP lower bound and the performance of the iteratively decoded codes in

[23] is mainly due to the imperfectness of these codes and their sub-optimal iterative

decoding algorithm; this conclusion follows in light of the fact that for random codes

of the same block length and rate, the gap between the ISP bound and the RCB is

reduced to less than 0.4 dB.

While it was shown in Section 5.3 that the ISP bound is uniformly tighter than

the VF bound (which in turn is uniformly tighter than the SP67 bound [87]), no such

relations are shown between the SP59 bound and the recent improvements on the

SP67 bound (i.e., the VF and ISP bounds). Figure 5.5 presents regions of code rates

and block lengths for which the ISP bound outperforms the SP59 bound and the

CLB; it refers to BPSK modulated signals transmitted over the AWGN channel and

considers block error probabilities of 10−4, 10−5 and 10−6. It is reflected from this

figure that for any rate 0 < R < 1, there exists a block length N = N(R) such that

the ISP bound outperforms the SP59 bound for block lengths larger than N(R); the

same property also holds for the VF bound, but the value of N(R) depends on the

considered SP67-based bound, and it becomes significantly larger in the comparison

of the VF and SP59 bounds. It is also observed that the value N(R) is monotonically

decreasing with R, and it approaches infinity as we let R tend to zero. An intuitive

explanation for this behavior can be given by considering the capacity limits of the

binary-input and the energy-constrained AWGN channels. For any value 0 ≤ C < 1,

denote by
Eb,1(C)

N0
and

Eb,2(C)

N0
the values of Eb

N0
required to achieve a channel capacity of
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Figure 5.5: Regions in the two-dimensional space of code rate and block length,
where a bound is better than the two others for three different targets of block error

probability (Pe). The figure compares the tightness of the 1959 sphere-packing
(SP59) bound of Shannon [89], the improved sphere-packing (ISP) bound, and the

capacity-limit bound (CLB). The plot refers to BPSK modulated signals whose
transmission takes place over the AWGN channel, and the considered code rates lie

in the range between 0.1 and 1 bits
channel use

.

C bits per channel use for the binary-input and the energy-constraint AWGN chan-

nels, respectively (note that in the latter case, the input distribution which achieves

capacity is also Gaussian). For any 0 ≤ C < 1, clearly
Eb,1(C)

N0
≥ Eb,2(C)

N0
; however,

the difference between these values is monotonically increasing with the capacity C,

and, on the other hand, this difference approaches zero as we let C tend to zero.

Since the SP59 bound only constrains the signals to be of equal energy, it gives a

measure of performance for the energy-constrained AWGN channel, where the SP67-

based bounds consider the actual modulation and therefore refer to the binary-input

AWGN channel. As the code rates become higher, the difference in the ultimate per-

formance between the two channels is larger, and therefore the SP67-based bounding

techniques outperform the SP59 bound for smaller block lengths. For low code rates,

the difference between the channels is reduced, and the SP59 outperforms the SP67-

based bounding techniques even for larger block lengths due to the superior bounding

technique which is specifically tailored for the AWGN channel.

Figure 5.6 presents regions of code rates and block lengths for which the VF
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Figure 5.6: Regions in the two-dimensional space of code rate and block length,
where a bound is better than the two others for three different targets of block error

probability (Pe). The figure compares the tightness of the 1959 sphere-packing
(SP59) bound of Shannon [89], the capacity-limit bound (CLB), and the

Valembois-Fossorier (VF) bound [109] (upper plot) or the improved sphere-packing
(ISP) bound in Section 5.3 (lower plot). The plots refer to BPSK modulated signals
whose transmission takes place over the AWGN channel, and the considered code

rates lie in the range between 0.70 and 1 bits
channel use

.
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bound (upper plot) and the ISP bound (lower plot) outperform the CLB and the

SP59 bound when the signals are BPSK modulated and transmitted over the AWGN

channel; block error probabilities of 10−4, 10−5 and 10−6 are examined. This figure

focuses on high code rates, where the performance of the SP67-based bounds and

their advantage over the SP59 bound is most appealing. From Figure 5.6, we have

that for a code rate of 0.75 bits per channel use and a block error probability of 10−6,

the VF bound is tighter than the SP59 for block lengths exceeding 850 bits while the

ISP bound reduces this value to 450 bits; moreover, when increasing the rate to 0.8

bits per channel use, the respective minimal block lengths reduce to 550 and 280 bits

for the VF and ISP bounds, respectively. Figure 5.7 shows regions of code rates and

block lengths where the ISP outperforms the CLB and SP59 bounds for QPSK (upper

plot) and 8-PSK (lower plot) modulations. Comparing the lower plot of Figure 5.6

which refers to BPSK modulation with the upper plot of Figure 5.7 which refers to

QPSK modulation, one can see that the two graphs are identical (when accounting

for the doubling of the rate due to the use of both real and imaginary dimensions

in the QPSK modulation). This is due to the fact that QPSK modulation poses no

additional constraints on the channel and in fact, the real and imaginary planes can be

serialized and decoded as in BPSK modulation. However, this property does not hold

when replacing the ISP bound by the VF bound; this is due to the fact that the VF

bound considers a fixed composition subcode of the original code and the increased

size of the alphabet causes a greater loss in the rate for QPSK modulation. When

comparing the two plots of Figure 5.7, it is evident that the minimal value of the block

length for which the ISP bound becomes better than the SP59 bound decreases as the

size of the input alphabet is increased (when the rate is measured in information bits

per code bit). An intuitive justification for this phenomenon is attributed to the fact

that referring to the constellation points of the M-ary PSK modulation, the mutual

information between the code symbols in each dimension of the QPSK modulation is

zero, while as the spectral efficiency of the PSK modulation is increased, the mutual

information between the real and imaginary parts of each signal point is increased;

thus, as the spectral efficiency is increased, this poses a stronger constraint on the

possible positioning of the equal-energy signal points on the N -dimensional sphere.

This intuition suggests an explanation for the reason why as the spectral efficiency

is increased, the advantage of the ISP bound over the SP59 bound (which does not

take into account the modulation scheme) holds even for smaller block lengths. This

effect is expected to be more subtle for the VF bound since a larger size of the input

alphabet decreases the rate for which the error exponent is evaluated (see (5.22)).
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Figure 5.7: Regions in the two-dimensional space of code rate and block length,
where a bound is better than the two others for different targets of block error
probability (Pe). The figure compares the tightness of the 1959 sphere-packing

(SP59) bound of Shannon [89], the improved sphere-packing (ISP) bound, and the
capacity-limit bound (CLB). The plots refer to QPSK (upper plot) and 8-PSK
(lower plot) modulated signals whose transmission takes place over the AWGN

channel; the considered code rates lie in the range between 1.4 and 2 bits
channel use

for
the QPSK modulated signals and between 2.1 and 3 bits

channel use
for the 8-PSK

modulated signals.
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5.5.3 Performance Bounds for the Binary Erasure Channel

In recent years, several families of code ensembles defined on graphs have been con-

structed and demonstrated to achieve the capacity of the BEC under iterative de-

coding with low complexity (see, e.g., [51], [64] and [93]). These low-complexity and

capacity-achieving ensembles for the BEC motivate a study of the performance of

iteratively decoded codes defined on graphs for moderate block lengths (see, e.g.,
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Figure 5.8: A comparison of the improved sphere-packing (ISP) lower bound from
Section 5.3 and the exact decoding error probability of random binary linear block

codes under ML decoding where the transmission takes place over the BEC (see [22,
Eq. (3.2)]). The code rate examined is 0.75 bits

channel use
and the block lengths are

N = 1024, 2048, 4096, 8192 and 16384 bits.

[106]). In Figure 5.8, we compare the ISP lower bound and the exact block error

probability of random linear block codes transmitted over the BEC as given in [22,

Eq. (3.2)]. The figure refers to codes of rate 0.75 bits per channel use and various

block lengths. It can be observed that for a block length of 1024 bits, the difference

in the channel erasure probability for which the RCB and the ISP bound achieve a

block error probability of 10−5 is 0.035 while for a block length of 16384 bits, this gap

is decreased to 0.009. This yields that the ISP bound is reasonably tight, and also

suggests that this bound can be used in order to assess the imperfectness of turbo-like

codes even for moderate block lengths.
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5.5.4 Minimal Block Length as a Function of Performance

In a wide range of applications, the system designer needs to design a communica-

tion system which fulfills several requirements on the available bandwidth, acceptable

delay for transmitting and processing the data while maintaining a certain fidelity

criterion in reconstructing the data (e.g., the block error probability needs to be below

a certain threshold). In this setting, one wishes to design a code which satisfies the

delay constraint (i.e., the block length is limited) while adhering to the required per-

formance over the given channel. By fixing the communication channel model, code

rate (which is related to the bandwidth expansion caused by the error-correcting

code) and the block error probability, sphere-packing bounds are transformed into

lower bounds on the minimal block length required to achieve the desired block error

probability at a certain gap to capacity using an arbitrary block code and decoding

algorithm. Similarly, by fixing these parameters, upper bounds on the error proba-

bility of random codes under ML decoding are transformed into upper bounds on the

block length required for ML decoded random codes to achieve a desired block error

probability on a given communication channel.

In this section, we consider some practically decodable codes taken from some

recent papers ([5], [25], [26], [97], [99], [108]). We examine the gap between channel

capacity and the Eb

N0
for which they achieve a required block error probability as a

function of the block length of these codes. The performance of these specific codes

under their practical decoding algorithms is compared to the sphere-packing bounds

and also to upper bounds on the error probability of random block codes; these bounds

serve here as lower and upper bounds, respectively, on the block length required to

achieve a given block error probability and code rate on a given channel using an

optimal block code and decoding algorithm. Comparing the performance of specific

codes and decoding algorithms to the information-theoretic limitations provided by

the sphere-packing bounds, enables one to deduce how far in terms of delay is a

practical system from the fundamental limitations of information theory.

Figure 5.9 considers some block codes of rate 1
2

bits per channel use which are

BPSK modulated and transmitted over the AWGN channel. The plot depicts the gap

to capacity in dB for which these codes achieve block error probabilities of 10−4 and

10−5 under their practical decoding algorithms as a function of their block length. As

a reference, this figure also plots lower bounds on the block length which stem from the

SP59 and ISP bounds, and upper bounds on the block length of fully random binary

block codes which are based on the RCB of Gallager [31] and the TSB of Poltyrev

[70]; these bounds refer to a block error probability of 10−5. For large enough block

lengths, the RCB provides a tighter upper bound on the achievable gap to capacity
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Figure 5.9: This figure refers to the tradeoff between the block length and the gap
to capacity of error-correcting codes which are BPSK modulated and transmitted

over an AWGN channel. The horizontal axis refers to the block length of the codes,
and the vertical axis refers to the gap, measured in decibels, between the channel
capacity and the energy per bit to spectral noise density (Eb

N0
) which is required to

obtain a block error probability Pe (set either to 10−4 or 10−5). The considered rate
of all the codes is one-half bit per channel use. The minimal gap to capacity which
is required for achieving a block error probability of 10−5 is depicted via bounds:
the upper bound is calculated using the random-coding bound (RCB) of Gallager

[31] and the tangential-sphere bound (TSB) of Poltyrev [70] applied to fully random
and binary block codes, and the lower bound on this minimal block length is
calculated via the 1959 sphere-packing (SP59) bound of Shannon [89] and the
improved sphere-packing (ISP) bound introduced in Section 5.3. In addition to

bounds, this tradeoff between the block length (delay) and gap to capacity, is shown
for some efficiently decodable error-correcting codes; the codes are taken from [108]

(code 1), [26] (codes 2 and 4) and [25] (code 3).
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than the TSB; this is expected since the error exponent of the TSB is slightly looser

than the random-coding error exponent (see [104, upper plot of Fig. 3]). However, for

small to moderate block lengths (i.e., for block lengths below approximately 5000 bits

according to Figure 5.9), the TSB provides a tighter upper bound on the achievable

gap as compared to the RCB. The improvement of the TSB over the RCB closes the

gap between the upper and lower bounds on the achievable gap to capacity for small

to moderate block lengths (where the lower bound is obtained via the SP59 bound

which is tighter than the ISP bound for the considered range of block lengths). As

for particularly efficient block codes, the code labeled 1 in Figure 5.9 is a block code

of length 192 bits which is decoded using a near-ML decoder by applying ‘box and

match’ decoding techniques [108]. It is observed that this code outperforms RCB for

ML decoded random codes with the same block length and code rate, and almost

coincides with the upper bound obtained via the TSB. It is also observed that this

code achieves a block error probability of 10−5 at a gap to capacity of 2.76 dB while the

SP59 bound gives that the block length required to achieve this performance is lower

bounded by 133 bits (so the bound is very informative). The codes labeled 2, 3 and

4 are prototype-based LDPC codes of lengths 2048, 5176 and 8192 bits, respectively

(codes 2 and 4 are taken from [26] and code 3 is taken from [25]). These codes

achieve under iterative decoding a block error probability of 10−5 at gaps to capacity

of 1.70, 1.27 and 1.07 dB, respectively. In terms of block length, the gap between the

performance of these codes under iterative decoding and the SP59 lower bound on

the block length required to achieve a block error probability of 10−5 at these channel

conditions is less than one order of magnitude. It is also noted that throughout the

range of block lengths depicted in Figure 5.9, the gap between the lower bound on the

block length of optimal codes which stems from the better of the two sphere-packing

bounds and the upper bound on the block length of random codes is less than one

order of magnitude. This exemplifies the tightness of the sphere-packing bounds when

used as lower bounds on the block lengths of optimal codes.

Figure 5.10 considers some LDPC codes of rate 0.88 bits per channel use which

are BPSK modulated and transmitted over the AWGN channel. The gap to capacity

in dB for which these codes achieve block error probabilities of 10−4 and 10−5 under

iterative decoding is plotted as a function of block length. As in Figure 5.9, the

figure uses upper and lower bounds on the achievable gap to capacity in terms of

the block length: for this (relatively high) code rate and the considered range of

block lengths, the ISP bound is uniformly tighter than the SP59 bound (so only the

ISP bound is depicted in this figure, and the SP59 bound is omitted). The upper

bounds on the required block lengths for achieving a target block error probability
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Figure 5.10: This figure refers to the tradeoff between the block length and the gap
to capacity of error-correcting codes which are BPSK modulated and transmitted

over an AWGN channel. The horizontal axis refers to the block length of the codes,
and the vertical axis refers to the gap, measured in decibels, between the channel
capacity and the energy per bit to spectral noise density (Eb

N0
) which is required to

obtain a block error probability Pe (set either to 10−4 or 10−5). The considered rate
of all the codes is 0.88 bit per channel use. The minimal gap to capacity which is
required for achieving a block error probability of 10−5 is depicted via bounds: the
upper bound is calculated using the random-coding bound (RCB) of Gallager [31]

and the tangential-sphere bound (TSB) of Poltyrev [70] applied to fully random and
binary block codes, and the lower bound on this minimal block length is calculated
via the improved sphere-packing (ISP) bound introduced in Section 5.3 (which is

better than the 1959 sphere-packing (SP59) bound of Shannon [89] for the
considered code rate and the range of block lengths which is depicted in the

horizontal line). In addition to bounds, this tradeoff between the block length
(delay) and gap to capacity, is shown for some efficiently decodable error-correcting

codes; the codes labeled by 1, 2, 3 and 4 are taken from [5], [25], [97] and [99],
respectively.
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in terms of the achievable gap to capacity are obtained via the RCB and the TSB

when it is applied to the ensemble of fully random block codes. The upper and lower

bounds refer to a block error probability of 10−5. Similarly to Figure 5.9, the RCB

is advantageous over the TSB for block codes of short to moderate block lengths; in

this case, the advantage of the RCB over the TSB occurs for block lengths above

approximately 1000 bits (instead of 5000 bits, as was the case in Fig. 5.9 for code

rate of 0.5 bit per channel use). This shows that for short block lengths, the TSB is

tighter than the RCB; however, since by increasing the code rate, the error exponent

of the TSB becomes less tight as compared to the error exponent of the RCB (see

the upper and lower plots of [104, Fig. 3] which refers to code rates of 0.5 and 0.9

bits per channel use), the asymptotic advantage of the RCB over the TSB is more

pronounced, and the former bound is tighter than the latter already for shorter block

lengths. The tradeoff between the gap to capacity (in terms of Eb

N0
) versus the block

length is depicted in Figure 5.10 for some efficient error-correcting codes, in order to

compare their practical performance and delay to the information-theoretic bounds

(similarly to Fig. 5.9). For the examined block error probabilities (of 10−4 and 10−5),

the depicted codes require a gap to capacity of between 0.63 and 1.9 dB. For this range

of Eb

N0
, the lower bound on the block lengths which is derived from the ISP bound is

looser than the one given by the SP59 bound. However, both bounds are not very

informative in this range. For cases where the gap to capacity is below 0.5 dB, the

difference between the lower bound on the block length of optimal codes which stems

from the ISP bound and the upper bound on the block length of random codes is less

than one order of magnitude. Code number 1 is an LDPC of length 1448 bits whose

construction of is based on balanced incomplete block designs [5]. This code achieves

a block error probability of 10−5 at a gap to capacity of 1.9 dB while the RCB shows

that the block length which is required to achieve this performance using random

codes is upper bounded by 600 bits. The code labeled 2 is a prototype-based LDPC

code of length 5176 bits which is taken from [25]. Code number 3 is a quasi-cyclic

LDPC code of length 16362 bits taken from [97]. These code achieve under iterative

decoding a block error probability of 10−5 at gaps to capacity of 1.02 and 0.86 dB,

respectively. In terms of block length, the gap between the performance of these codes

under iterative decoding and the upper bound on the block length of random codes

which achieve a block error probability of 10−5 under the same channel conditions is

less than one order of magnitude. The code labeled 4 is a finite-geometry LDPC code

of length 279552 bits which is taken from [99]. For this code we only have the gap

to capacity required to achieve a block error probability of 10−4, however, it is clear

that the difference in block length from the RCB becomes quite large as the gap to
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capacity is reduced.

By fixing the block length and considering the gap in ∆Eb/N0 between the perfor-

mance of the specific codes and the sphere-packing bounds in Figures 5.9 and 5.10, it

is observed that the codes considered in these plots exhibit gaps of 0.2–0.8 dB w.r.t.

the information-theoretic limitation provided by the sphere-packing bounds (with the

exception of code 1 in Figure 5.10 which exhibits a gap of about 1.25 dB). In this re-

spect we also mention that some high rate turbo-product codes with moderate block

lengths (see [21]) exhibit a gap of 0.75 – 0.95 dB w.r.t. the information-theoretic

limitation provided by the ISP bound. Based on numerical results in [105] for the

ensemble of uniformly interleaved (1144, 1000) turbo-block codes whose components

are random systematic, binary and linear block codes, the gap in Eb

N0
between the ISP

lower bound and an upper bound under ML decoding is 0.9 dB for a block error prob-

ability of 10−7. These results exemplify the strength of the sphere-packing bounds

for assessing the theoretical limitations of block codes and the power of iteratively

decoded codes (see also [27, 44, 45, 79, 109]).

5.6 Summary

This paper presents an improved sphere-packing (ISP) bound for finite-length block

codes whose transmission takes place over symmetric memoryless channels. The im-

proved tightness of the bound is especially pronounced for codes of short to moderate

block lengths, and some of its applications are exemplified in this paper. The deriva-

tion of the ISP bound was stimulated by the remarkable performance and feasible

complexity of turbo-like codes with short to moderate block lengths. We were mo-

tivated by recent improvements on the sphere-packing bound of [87] for finite block

lengths, as suggested by Valembois and Fossorier [109].

We first review the classical sphere-packing bounds, i.e., the 1959 sphere-packing

bound (SP59) derived by Shannon for equal-energy signals transmitted over the

Gaussian channel [89], and the 1967 sphere-packing (SP67) bound derived by Shan-

non, Gallager and Berlekamp for discrete memoryless channels [87]. The ISP bound,

introduced in Section 5.3, is uniformly tighter than the classical SP67 bound [87] and

the bound in [109].

We apply the ISP bound to various memoryless symmetric channels. The tightness

of the ISP bound is exemplified by comparing it with upper and lower bounds on the

ML decoding error probability and also with reported computer simulations of turbo-

like codes under iterative decoding.

This paper also presents a new numerical algorithm which performs the entire
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calculation of the SP59 bound in the logarithmic domain, thus facilitating the exact

calculation of the SP59 bound for all block lengths without the need for asymptotic

approximations. It is shown that the ISP bound suggests an interesting alternative

to the SP59 bound, where the latter is specialized for the AWGN channel.

In a wide range of applications, one wishes to design a block code which satisfies a

known delay constraint (i.e., the block length is limited) while adhering to a required

performance over a given channel model. By fixing the communication channel model,

code rate and the block error probability, sphere-packing bounds are transformed into

lower bounds on the minimal block length required to achieve the target block error

probability at a certain gap to capacity when an arbitrary block code and decod-

ing algorithm are used. Comparing the performance of specific codes and decoding

algorithms to the information-theoretic limitations provided by the sphere-packing

bounds, enables one to deduce how far in terms of delay is a practical system from

the fundamental limitations of information theory. Further details on the compari-

son between practically decodable codes and the sphere-packing bounds are found in

Section 5.5.4.

The ISP bound is especially attractive for block codes of short to moderate block

lengths, and its advantage is especially pronounced for high rate codes. Its improve-

ment over the SP67 bound and the bound in [109, Theorem 7] also becomes more

significant as the input alphabet of the considered modulation is increased.

Appendices

5.A Proof of Lemma 5.1

We consider a symmetric DMC with input alphabet K = {0, . . . , K − 1}, output

alphabet J = {0, . . . J − 1} (where J, K ∈ N) and a transition probability function

P (·|·). Let {gk}K
k=0 be the set of unitary functions which satisfy the conditions (5.24)

and (5.25) in Definition 5.2. To prove Lemma 5.1, we start with a discussion on the

distribution qs which satisfies (5.48).

On the input distribution qs for symmetric DMCs

Lemma 5.A.1 For symmetric DMCs and an arbitrary value of s ∈ (0, 1), the uni-

form distribution qk,s = 1
K

for k ∈ K satisfies (5.48) with equality.
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Proof: To prove the lemma, it is required to show that

J−1∑

j=0




P (j|k)1−s

(
K−1∑

k′=0

1

K
P (j|k′)1−s

) s
1−s






=
J−1∑

j=0

(
K−1∑

k′=0

1

K
P (j|k′)1−s

) 1
1−s

, ∀k ∈ K. (5.A.1)

Let us consider some k ∈ K. Examining the left-hand side (LHS) of (5.A.1) gives

J−1∑

j=0




P (j|k)1−s

(
K−1∑

k′=0

1

K
P (j|k′)1−s

) s
1−s






= K
J−1∑

j=0





1

K
P (j|k)1−s

(
K−1∑

k′=0

1

K
P (j|k′)1−s

) s
1−s





(a)
=

K−1∑ek=0

J−1∑

j=0





1

K
P (j|k)1−s

(
K−1∑

k′=0

1

K
P (j|k′)1−s

) s
1−s






(b)
=

K−1∑ek=0

J−1∑

j=0





1

K
P (gek(j)|k)1−s

(
K−1∑

k′=0

1

K
P (gek(j)|k′)1−s

) s
1−s



 (5.A.2)

where (a) holds by summing over a dummy variable k̃ ∈ K instead of the multipli-

cation by K in the previous line, and (b) holds since gek is unitary for all k̃ ∈ K (see

(5.23) where the integral is replaced here by a sum). For all j ∈ J and k̃ ∈ K, the

symmetry properties in (5.24) - (5.26) give

P
(
gek(j)| k) (a)

= P
((

g−1
k ◦ gek)(j)| 0)

(b)
= P

(
g(ek−k)modK

(j)| 0
)

(c)
= P

(
j| (k − k̃)modK

)
(5.A.3)

where (a) follows from (5.24), (b) relies on (5.25), and (c) follows from (5.24) and

(5.26). Similarly, for all j, k̃ ∈ {0, 1, . . . , K − 1}
K−1∑

k′=0

1

K
P (gek(j)|k′)1−s (a)

=
K−1∑

k′=0

1

K
P
(
j| (k′ − k̃)modK

)1−s

(b)
=

K−1∑

k′=0

1

K
P (j|k′)1−s (5.A.4)

where (a) relies on (5.A.3) and (b) holds since when the index k′ takes all the values in

{0, 1, . . . , K − 1}, so does (k′ − k̃)modK. Substituting (5.A.3) and (5.A.4) in (5.A.2)
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gives

J−1∑

j=0
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K
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)1−s
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K−1∑

k′=0

1

K
P (j|k′)1−s

) s
1−s





=
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j=0
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1

K
P
(
j|(k − k̃)modK

)1−s
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K−1∑
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(a)
=
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j=0









K−1∑ek=0

1

K
P (j|k̃)1−s



(

K−1∑

k′=0

1

K
P (j|k′)1−s

) s
1−s






=

J−1∑

j=0

(
K−1∑

k′=0

1

K
P (j|k′)1−s

) 1
1−s

(5.A.5)

where equality (a) holds since the k̃ takes all the values in {0, 1, . . . , K − 1}, and so

does the index k′ , (k − k̃)modK.

We now turn to explore how the symmetry of the channel and the input distribution

qs induce a symmetry on the probability tilting measure fs.

On the symmetry of the tilting measure fs for strictly symmetric DMCs

Lemma 5.A.2 For all s ∈ (0, 1), k ∈ K and j ∈ J , the tilting measure fs in (5.50)

satisfies

fs(j) = fs

(
gk(j)

)
. (5.A.6)

Proof: Examining the definition of fs in (5.50), it can be observed that it suffices to

show that

αj,s = αgk(j),s , ∀s ∈ (0, 1), k ∈ K, j ∈ J (5.A.7)

where αj,s is given in (5.49). Note that for the uniform input distribution where qk,s =
1
K

for all k ∈ K, inequalities (5.48) and (5.49) hold with equality (see Lemma 5.A.1).

From (5.A.4), equality (5.A.7) follows for the uniform input distribution.

Having established some symmetry properties of qs and fs, we are ready to prove

equalities (5.51) – (5.53).
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On the independence of µk and its two derivatives from k As we have shown,

the uniform distribution qs satisfies (5.48) in equality for all inputs, so

µk(s) = ln

(
∑

j

P (j|k)1−sfs(j)
s

)

(a)
= ln

(
∑

j

P (j|k)1−s (αj,s)
s

1−s

)
− s ln

(
∑

j

(αj,s)
1

1−s

)

(b)
= (1 − s) ln

(
∑

j

(αj,s)
1

1−s

)

(c)
= (1 − s) ln



∑

j

[
∑

k

qk,sP (j|k)1−s

] 1
1−s


 (5.A.8)

where (a) follows from the choice of fs in (5.49) and (5.50), (b) follows from Lemma 5.A.1

and (5.49), and (c) follows from (5.49). Under the setting s = ρ

1+ρ
, since the condi-

tions on qs in (5.48) are identical to the conditions on the input distribution q = qs

which maximizes E0(
s

1−s
,q) as stated in [31, Theorem 4], then

µk(s, fs) = (1 − s) ln



∑

j

[
∑

k

qk,sP (j|k)
1

1+ s
1−s

]1+ s
1−s




= −(1 − s) E0

(
s

1 − s
,qs

)

= −(1 − s) E0

(
s

1 − s

)
, 0 < s < 1 (5.A.9)

where E0 is given in (5.19). This proves (5.51).

We now turn to prove the independence of the first two derivatives of µk w.r.t s

from k ∈ K.

Remark 5.11 Note that the partial derivative of µk(s) w.r.t s is performed while

holding f = fs constant.

As is shown in [87],

µ′(s) = EQs

(
D(j)

)

µ′′(s) = VarQs

(
D(j)

)

where

D(j) , ln

(
P2(j)

P1(j)

)
, Qs(j) ,

P1(j)
1−sP2(j)

s

∑
j′ P1(j′)1−sP2(j′)s

.



CHAPTER 5. AN IMPROVED SPHERE-PACKING BOUND 215

For every k ∈ K, P1 and P2 used in µk are defined to be P (·|k) and fs, respectively.

Hence, for all k ∈ K

µ′
k(s, fs) = EQk,s

(
Dk,s(j)

)

µ′′
k(s, fs) = VarQk,s

(
Dk,s(j)

)
(5.A.10)

where

Dk,s(j) , ln

(
fs(j)

P (j|k)

)
(5.A.11)

Qk,s(j) ,
P (j|k)1−sfs(j)

s

J−1∑

j′=0

P (j′|k)1−sfs(j
′)s

. (5.A.12)

Applying (5.24) and Lemma 5.A.2, we get that for all k ∈ K
J−1∑

j′=0

P (j′|k)1−sfs(j
′)s (a)

=
J−1∑

j′=0

P (g−1
k (j′)|0)1−sfs(g

−1
k (j′))s

(b)
=

J−1∑

j′=0

P (j′|0)1−sfs(j
′)s (5.A.13)

where (a) follows from (5.24) and Lemma 5.A.2, and (b) follows since g−1
k is unitary.

Substituting (5.A.13) in (5.A.12) gives

Qk,s(j) =
P (j|k)1−sfs(j)

s

J−1∑

j′=0

P (j′|k)1−sfs(j
′)s

(a)
=

P (g−1
k (j)|0)1−sfs(g

−1
k (j))s

J−1∑

j′=0

P (j′|0)1−sfs(j
′)s

(b)
= Q0,s

(
g−1

k (j)
)

(5.A.14)

where (a) follows from (5.24), (5.26), (5.50), (5.A.6) and (5.A.13), and (b) relies on

the definition of Qk,s in (5.A.12). Similarly,

Dk,s(j) = ln

(
fs(j)

P (j|k)

)

(a)
= ln

(
fs

(
g−1

k (j)
)

P
(
g−1

k (j)|0
)
)

(b)
= D0,s

(
g−1

k (j)
)

(5.A.15)
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where (a) follows from (5.24), (5.26) and (5.A.6), and (b) relies on the definition of

Dk,s in (5.A.11). Using (5.A.14) and (5.A.15), we finally get for all k ∈ K

µ′
k(s) = EQk,s

(
Dk,s(j)

)

=
J−1∑

j=0

Qk,s(j)Dk,s(j)

=

J−1∑

j=0

Q0,s

(
g−1

k (j)
)
D0,s

(
g−1

k (j)
)

(a)
=

J−1∑

j=0

Q0,s(j)D0,s(j)

= µ′
0(s)

and

µ′′
k(s) = VarQk,s

(
Dk,s(j)

)

=

J−1∑

j=0

Qk,s(j)D
2
k,s(j) − µ′

k(s)
2

=
J−1∑

j=0

Q0,s

(
g−1

k (j)
)(

D0,s

(
g−1

k (j)
))2

− µ′
0(s)

2

(b)
=

J−1∑

j=0

Q0,s(j)
(
D0,s(j)

)2 − µ′
0(s)

2

= µ′′
0(s)

where (a) and (b) follow since g−1
k is unitary for all k ∈ K. This completes the proof

of Lemma 5.1.

Remark 5.12 Equalities (5.51)–(5.53) hold for arbitrary symmetric memoryless chan-

nels. For a general output alphabet J ⊆ R
d, the proof of these properties follows the

same lines as the proof here with the exception that the sums over J are replaced by

integrals. As in Definition 5.1, if the projection of J over some of the d dimensions

is countable, the integration over these dimensions is turned into a sum.
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5.B Calculation of the Function µ0 in (5.47) for some

Symmetric Channels

This appendix presents some technical calculations which yield the expressions for

the function µ0 defined in (5.47) and its first two derivatives w.r.t. s (while holding

fs fixed in the calculation of the partial derivatives of µ w.r.t. s, as required in

[87]). The examined cases are M-ary PSK modulated signals transmitted over fully

interleaved fading channels, with the AWGN channel as a special case, and binary

block codes transmitted over the BEC. These expressions serve for the application

of the VF bound in [109] and the ISP bound derived in Section 5.3 to block codes

transmitted over these channels.

5.B.1 M-ary PSK Modulated Signal over Fully Interleaved

Fading Channels with Perfect CSI

For M-ary PSK modulated signals transmitted over a fully interleaved fading channel,

the channel output is J = R
2×R

+, where the first two coordinates refer to the vector

Y and the third refers to the fading coefficient A. In the case of a continuous output

alphabet, the sums in (5.A.8) are replaced by integrals, and the transition probabilities

are replaced by transition probability density functions. To simplify the presentation,

for all s ∈ (0, 1), y ∈ R
2 and a ∈ R

+ we define

κs(y, a) ,

(
1

M

M−1∑

k=0

e
(1−s)a 〈y,xk−x0〉

σ2

) 1
1−s

. (5.B.1)

This expression will be used throughout the following calculations.

Due to the symmetry of the channel, we get from Lemma 5.A.1 that the distrib-

ution qs which satisfies (5.48) is uniform. Hence, we get by substituting (5.80) into

(5.A.8) that

µ0(s) = (1 − s) ln




∫∫

R2

∞∫

0

pA(a)

2πσ2
e−

‖y−ax0‖2
2σ2 ζs(y, a)da dy





where

ζs(y, a) ,

(
1

M

M−1∑

k=0

e−
(1−s)(‖y−axk‖2−‖y−ax0‖2)

2σ2

) 1
1−s

Since ‖xk‖2 = 1 for all k ∈ {0, 1, . . . , M − 1} we have

‖y − axk‖2 − ‖y − ax0‖2 = −2a〈y,xk − x0〉 (5.B.2)
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and so µ0 can be rewritten in the form

µ0(s) = (1 − s) ln (θ(s))

where

θ(s) ,

∫∫

R2

∞∫

0

pA(a)

2πσ2
e−

‖y−ax0‖2
2σ2 κs(y, a)da dy. (5.B.3)

and κs(y, a) is defined in (5.B.1).

We now turn to calculate the derivative of µ0 with respect to s while holding

f = fs constant. Substituting (5.80) into the definition of fs in (5.50), we get that fs

is given by

fs(y, a) =

(
M−1∑

k=0

1

M

(
pA(a)

2πσ2

)1−s

e−
(1−s) ‖y−axk‖2

2σ2

) 1
1−s

∫∫

R2

∞∫

0

(
M−1∑

k=0

1

M

(
pA(a′)

2πσ2

)1−s

e−
(1−s) ‖y′−a′xk‖2

2σ2

) 1
1−s

da′dy′

=
κs(y, a)

θ(s)

pA(a)

2πσ2
e−

‖y−ax0‖2
2σ2 (5.B.4)

where the last equality follows from (5.B.2) and (5.B.3). The log-likelihood ratio D0,s

in (5.A.11) is given by

D0,s(y, a) , ln

(
fs(y, a)

P (y, a|0)

)

= ln
(
κs(y, a)

)
− ln

(
θ(s)

)
(5.B.5)

where the second equality follows from (5.80) and (5.B.4). The distribution Q0,s in

(5.A.12) is given by

Q0,s(y, a)

,
P (y, a|0)1−sfs(y, a)s

∫∫

R2

∞∫

0

P (y′, a′|0)1−sfs(y
′, a′)s da′ dy′

=

pA(a)

2πσ2
e−

‖y−ax0‖2
2σ2

(
κs(y, a)

)s

∫∫

R2

∞∫

0

pA(a′)

2πσ2
e−

‖y′−a′x0‖2

2σ2
(
κs(y, a′)

)s
da′dy′
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(a)
=

pA(a)

2πσ2
e−

‖y−ax0‖2
2σ2

(
κs(y, a)

)s

·



∫∫

R2

∞∫

0

(
1

M

M−1∑

k=0

(
1

2πσ2
e−

‖y′−a′xk‖2

2σ2

)1−s
) s

1−s(
pA(a′)

2πσ2
e−

‖y′−a′x0‖2

2σ2

)1−s

da′ dy′



−1

(b)
=

pA(a)

2πσ2
e−

‖y−ax0‖2
2σ2

(
κs(y, a)

)s

∫∫

R2

∞∫

0

(
1

M

M−1∑

k=0

(
pA(a′)

2πσ2
e−

‖y′−a′xk‖2

2σ2

)1−s
) 1

1−s

da′dy′

(c)
=

pA(a)

2πσ2
e−

‖y−ax0‖2
2σ2

(
κs(y, a)

)s

∫∫

R2

∞∫

0

pA(a′)

2πσ2
e−

‖y′−a′x0‖2

2σ2 κs(y, a′) da′dy′

(d)
=

pA(a) (κs(y, a)
)s

2πσ2 θ(s)
e−

‖y−ax0‖2
2σ2 (5.B.6)

where (a) and (c) rely on (5.B.2), (b) follows from Lemma 2.1 in the proof for symmet-

ric memoryless channels, and (d) relies on the definition of θ in (5.B.3). Substituting

(5.B.5) and (5.B.6) in (5.A.10) we get

µ′
0(s) = EQ0,s

(
D0,s

)

=
1

θ(s)

∫∫

R2

∞∫

0

pA(a)

2πσ2
e−

‖y−ax0‖2
2σ2

(
κs(y, a)

)s

· ln
(
κs(y, a)

)
da dy − ln

(
θ(s)

)
(5.B.7)

and

µ′′
0(s) = EQ0,s

(
D2

0,s(y)
)
− µ′

0(s)
2

=
1

θ(s)

∫∫

R2

∞∫

0

pA(a)

2πσ2
e−

‖y−ax0‖2
2σ2

(
κs(y, a)

)s

·
(

ln
(
κs(y, a)

)
− ln

(
θ(s)

))2

da dy

−µ′
0(s)

2 . (5.B.8)

In this paper, we consider the particular case where the fading coefficients have a

Rayleigh distribution. In this case, the distribution of the fading samples is given by

pA(a) = 2a e−a2
for a ≥ 0, so that E(A2) = 1.
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5.B.2 M-ary PSK Modulated Signals over the AWGN Chan-

nel

A widely studied special case of fully interleaved fading channels is the AWGN channel

where the fading coefficients are set to 1. Substituting PA(a) = δ(a − 1), where δ is

the Dirac delta function at zero, we get that θ in (5.B.3) is particularized to

θ(s) ,

∫∫

R2

e−
‖y−x0‖2

2σ2

2πσ2
κs(y, a) dy (5.B.9)

and the first and second derivatives of µ0 w.r.t. s (while holding fs constant) are

given by

µ′
0(s) =

1

θ(s)

∫∫

R2

e−
‖y−x0‖2

2σ2

2πσ2

(
κs(y, a)

)s
ln
(
κs(y, a)

)
dy − ln

(
θ(s)

)
(5.B.10)

and

µ′′
0(s) =

1

θ(s)

∫∫

R2

1

2πσ2
e−

‖y−x0‖2
2σ2

(
κs(y, a)

)s(
ln
(
κs(y, a)

)
− ln

(
θ(s)

))2

dy − µ′
0(s)

2 .

(5.B.11)

5.B.3 The Binary Erasure Channel

Let us denote the output of the channel when an erasure has occurred by E , and let

p designate the erasure probability of the channel. Since the BEC is symmetric, the

input distribution qs which satisfies (5.48) is uniform (see Lemma 5.A.1), and we get

from (5.A.8)

µ0(s, fs) = (1 − s) ln

(
2(1 − p)

2
1

1−s

+ p

)

= (1 − s) ln
(
2(1 − p) + 2

1
1−s p

)
− ln 2 . (5.B.12)

We now turn to calculate fs for the BEC; substituting the transition probabilities

into (5.50) gives

fs(0) = fs(1) =

(
1
2
(1 − p)1−s

) 1
1−s

2
(

1
2
(1 − p)1−s

) 1
1−s + (p1−s)

1
1−s

=
2−

1
1−s (1 − p)

21− 1
1−s (1 − p) + p

=
1 − p

2(1 − p) + 2
1

1−s p
(5.B.13)
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and

fs(E) =
(p1−s)

1
1−s

2
(

1
2
(1 − p)1−s

) 1
1−s + (p1−s)

1
1−s

=
p

21− 1
1−s (1 − p) + p

=
2

1
1−s p

2(1 − p) + 2
1

1−s p
. (5.B.14)

Substituting (5.B.13) and (5.B.14) into the definition of the distribution Q0,s in

(5.A.12) gives

Q0,s(0) =
P (0|0)1−sfs(0)s

∑

j∈{0,1,E}
P (j|0)1−sfs(j)

s
=

1 − p

1 − p + 2
s

1−s p

Q0,s(1) =
P (1|0)1−sfs(0)s

∑

j∈{0,1,E}
P (j|0)1−sfs(j)

s
= 0

Q0,s(E) =
P (E|0)1−sfs(E)s

∑

j∈{0,1,E}
P (j|0)1−sfs(j)

s
=

2
s

1−s p

1 − p + 2
s

1−s p
(5.B.15)

and the LLR in (5.A.11) is given by

D0,s(0) = ln

(
1

2(1 − p) + 2
1

1−s p

)

D0,s(E) = ln

(
2

1
1−s

2(1 − p) + 2
1

1−s p

)
. (5.B.16)

Applying (5.B.15) and (5.B.16) we get from (5.A.12)

µ′
0(s, fs) = EQ0,s

(
D0,s

)

=
1 − p

1 − p + 2
s

1−s p
ln

(
1

2(1 − p) + 2
1

1−s p

)

+
2

s
1−s p

1 − p + 2
s

1−s p
ln

(
2

1
1−s

2(1 − p) + 2
1

1−s p

)

= ln

(
1

1 − p + 2
s

1−s p

)
+

2
s

1−s p

1 − p + 2
s

1−s p

ln 2

1 − s
(5.B.17)
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and

µ′′
0(s, fs) = EQ0,s

(
D2

0,s

)
− µ′

0(s, fs)
2

=
1 − p

1 − p + 2
s

1−s p
ln2

(
1

2(1 − p) + 2
1

1−s p

)

+
2

s
1−s p

1 − p + 2
s

1−s p
ln2

(
2

1
1−s

2(1 − p) + 2
1

1−s p

)
− µ′

0(s, fs)
2

= ln2

(
1

1 − p + 2
s

1−s p

)
+

2
s

1−s p

1 − p + 2
s

1−s p

(
ln 2

1 − s

)2

+
2

1
1−s p

1 − p + 2
s

1−s p

ln 2

1 − s
ln

(
1

1 − p + 2
s

1−s p

)
− µ′

0(s, fs)
2

=
2

s
1−s p (1 − p)

(
1 − p + 2

s
1−s p

)2
(

ln 2

1 − s

)2

(5.B.18)

5.C Proof of Proposition 5.3

From the definition of fN in (5.67), it follows that

fN(x) =
1

2
N−1

2 Γ(N+1
2

)

∫ ∞

0

zN−1 exp(−z2

2
+ zx) dz

=
exp

(
x2

2

)

2
N−1

2 Γ(N+1
2

)

∫ ∞

0

zN−1 exp

(
−(z − x)2

2

)
dz

=
exp

(
x2

2

)

2
N−1

2 Γ(N+1
2

)

∫ ∞

−x

(u + x)N−1 exp

(
−u2

2

)
du .

From the binomial formula, we get

fN(x) =
exp

(
x2

2

)

2
N−1

2 Γ(N+1
2

)

N−1∑

j=0

[(
N − 1

j

)
xN−1−j

∫ ∞

−x

uj exp

(
−u2

2

)
du

]
. (5.C.1)

We now examine the integrals on the RHS of (5.C.1). For odd values of j, we get
∫ ∞

−x

uj exp

(
−u2

2

)
du =

∫ x

−x

uj exp

(
−u2

2

)
du +

∫ ∞

x

uj exp

(
−u2

2

)
du

=

∫ ∞

x

uj exp

(
−u2

2

)
du

=

∫ ∞

0

uj exp

(
−u2

2

)
du −

∫ x

0

uj exp

(
−u2

2

)
du (5.C.2)

where the second equality follows since the integrand is an odd function for odd

values of j, and the interval of first integral is symmetric around zero (so this integral
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vanishes). For even values of j, we get

∫ ∞

−x

uj exp

(
−u2

2

)
du =

∫ ∞

0

uj exp

(
−u2

2

)
du +

∫ 0

−x

uj exp

(
−u2

2

)
du

=

∫ ∞

0

uj exp

(
−u2

2

)
du +

∫ x

0

uj exp

(
−u2

2

)
du (5.C.3)

where the second equality holds since the integrand is an even function for even

values of j. Combining (5.C.2) and (5.C.3) gives that for j ∈ {0, 1, . . . , N − 1}
∫ ∞

−x

uj exp

(
−u2

2

)
du =

∫ ∞

0

uj exp

(
−u2

2

)
du + (−1)j

∫ x

0

uj exp

(
−u2

2

)
du

(a)
=

∫ ∞

0

(2t)
j−1
2 exp(−t) dt + (−1)j

∫ x2

2

0

(2t)
j−1
2 exp(−t) dt

= 2
j−1
2

∫ ∞

0

t
j−1
2 exp(−t) dt




1 + (−1)j

∫ x2

2

0

t
j−1
2 exp(−t) dt

∫ ∞

0

t
j−1
2 exp(−t) dt




= 2
j−1
2 Γ

(
j + 1

2

) [
1 + (−1)j γ̃

(
x2

2
,
j + 1

2

)]

where (a) follows by substituting t , u2

2
and the functions Γ and γ̃ are introduced

in (5.75) and (5.76), respectively. Substituting the last equality in (5.C.1) and also

noting that
(

N − 1

j

)
=

Γ(N)

Γ(N − j) Γ(j + 1)
, N ∈ N, j ∈ {0, 1, . . . , N − 1}

we get

fN(x) =
exp

(
x2

2

)

2
N−1

2 Γ(N+1
2

)

N−1∑

j=0

{
Γ(N)

Γ(N − j) Γ(j + 1)
xN−1−j 2

j−1
2

·Γ
(

j + 1

2

) [
1 + (−1)j γ̃

(
x2

2
,
j + 1

2

)]}

=
N−1∑

j=0





exp
(

x2

2

)

Γ(N − j)

Γ(N)

Γ
(

N+1
2

) Γ
(

j+1
2

)

Γ(j + 1)

xN−1−j

2
N−j

2

[
1 + (−1)j γ̃

(
x2

2
,
j + 1

2

)]


(a)
=

N−1∑

j=0





exp
(

x2

2

)

Γ(N − j)

2N−1 Γ
(

N
2

)
√

π

2−j
√

π

Γ
(

j

2
+ 1
) xN−1−j

2
N−j

2

[
1 + (−1)j γ̃

(
x2

2
,
j + 1

2

)]


(b)
=

N−1∑

j=0

exp
(
d(N, j, x)

)
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where (a) follows from the equality

Γ(2u) =
22u−1

√
π

Γ(u) Γ

(
u +

1

2

)
, u 6= 0,−1

2
,−1,−3

2
, . . .

and (b) follows from the definition of the function d in (5.74).



Chapter 6

Summary and Outlook

This research work focuses on the fundamental tradeoff between the performance of

graph-based codes and the complexity required to achieve this performance under

iterative message-passing decoding algorithms. The complexity of message-passing

algorithms is dictated by two main factors – the complexity of a single decoding

iteration and the number of iterations required to achieve the desired performance

level. In this work, we derive lower bounds on both of these factors. These bounds

refer to the asymptotic case where we let the block length of the codes tend to infinity.

We also consider the fundamental performance limitations of finite-length block codes.

This is done via the derivation of an improved sphere-packing (ISP) bound which

applies to block codes transmitted over memoryless symmetric channels.

6.1 Contributions of this Dissertation

In Chapter 2 we derive two types of bounds. The first category consists of lower

bounds on the asymptotic density of parity-check matrices of binary linear block

codes, which are given in terms of the gap between the code rate and the channel

capacity. Due to the nature of the iterative message-passing decoding algorithms,

these bounds serve as lower bounds on the complexity (per information bit) of a

single decoding iteration. The second category of bounds are upper bounds on the

achievable rates of binary linear block codes (even under maximum-likelihood (ML)

decoding). The bounds in both categories refer to the asymptotic case where we let

the block length of the codes tend to infinity and assume that the transmission takes

place over an arbitrary memoryless binary-input output-symmetric (MBIOS) channel.

The derivation of the bounds was motivated by the desire to tighten the statements

in [17, Theorems 1 and 2] and [81, Theorem 2.1]. The two-level quantization of

the information on the log-likelihood ratio (LLR) in [17, 81] in essence performs the

225
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analysis on a physically degraded binary symmetric channel (BSC) instead of the

original communication channel. As a first step, we present an analysis based on

information from a quantized channel which better reflects the statistics of the actual

communication channel (though the quantized information is still degraded w.r.t.

the original information provided by the channel). The number of quantization levels

applied to the information is set as an arbitrary integer power of 2. The calculation

of the bounds is subject to an optimization of the quantization levels of the LLR, as

to get the tightest bounds within their form. Later, we present bounds that rely on

the conditional pdf of the LLR at the output of the MBIOS channel, and perform the

analysis on an equivalent channel without a degradation of the channel information.

This second approach finally leads to bounds which are uniformly tighter than the

bounds based on a quantization of the communication channel. It appears to be even

simpler to calculate the un-quantized bounds, as their calculation does not involve

the solution of any optimization equation related to the quantization levels. The

comparison between the quantized and un-quantized bounds gives insight on the effect

of the number of quantization levels of the LLR (even if they are chosen optimally)

on the achievable rates, as compared to the ideal case where no quantization is done.

The information-theoretic bounds derived in Chapter 2 are valid for every se-

quence of binary linear block codes, in contrast to high probability results which

follow from probabilistic tools (e.g., density evolution (DE) analysis under iterative

message-passing decoding). The bounds hold under ML decoding, and hence, they

hold in particular under any sub-optimal decoding algorithm. We apply the bounds

to ensembles of low-density parity-check (LDPC) codes where the significance of these

bounds is as follows: Firstly, by comparing the new upper bounds on the achievable

rates with thresholds provided by DE analysis, we obtain rigorous bounds on the loss

in performance of various LDPC ensembles due to the sub-optimality of message-

passing decoding (as compared to ML decoding). Secondly, the parity-check density

of binary linear block codes which are represented by standard bipartite graphs is in-

terpreted as the complexity per iteration under message-passing decoding. Therefore,

by tightening the reported lower bound on the asymptotic parity-check density (see

[81, Theorem 2.1]), the new bounds provide better insight on the tradeoff between

the asymptotic performance and the asymptotic decoding complexity of iteratively

decoded LDPC codes. Thirdly, the new lower bound on the bit error probability of

binary linear block codes (see Corollary 2.4) tightens the reported lower bound in

[81, Theorem 2.5] and provides a quantitative measure to the number of fundamental

cycles in the graph which should exist in terms of the achievable rate (even under ML

decoding) and its gap to capacity. It is well known that cycle-free codes have poor
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performance [103], so the lower bound on the minimal number of fundamental cycles

in the graph (i.e., cycles which cannot be decomposed into some more elementary

cycles) as a function of the gap in rate to capacity strengthens the result in [103] on

the inherent limitation of cycle-free codes.

The lower bound on the asymptotic parity-check density in [81, Theorem 2.1] and

its improvements in Chapter 2 grow like the log of the inverse of the gap (in rate) to

capacity. The result in [81, Theorem 2.2] shows that a logarithmic growth rate of the

parity-check density is achievable for Gallager’s regular LDPC ensemble under ML

decoding when transmission takes place over an arbitrary MBIOS channel. These

results show that for any iterative decoder which is based on the representation of

the codes by Tanner graphs, there exists a tradeoff between asymptotic performance

and complexity which cannot be surpassed. Recently, it was shown in [64, 65] that a

better tradeoff can be achieved by allowing more complicated graphical models which

involve a sufficient number of state nodes in the graph; for the particular case of the

binary erasure channel (BEC), the encoding and the decoding complexity of properly

designed codes on graphs remains bounded as the gap to capacity vanishes.

The analysis in Chapter 3 generalizes the statements in Chapter 2 to the case

where the codes are transmitted over a set of statistically independent parallel MBIOS

channels. The bounds on the asymptotic achievable rates and parity-check density

can be applied to various scenarios which form particular cases of communication over

parallel channels, e.g., intentionally punctured LDPC codes [35], non-uniformly error

protected LDPC codes [69], and LDPC-coded modulation (see e.g., [37, 112]). In

Section 3.4, we use Theorem 3.1 for the derivation of upper bounds on the achievable

rates under ML decoding of (randomly and intentionally) punctured LDPC codes

whose transmission takes place over an MBIOS channel. It is exemplified numeri-

cally that for various good ensembles of intentionally punctured LDPC codes, the

asymptotic loss in performance due to the code structure is still non-negligible as

compared to the corresponding loss due to the sub-optimality of iterative decoding

(as compared to optimal ML decoding). Looser versions of the bounds derived in this

chapter for punctured LDPC codes suggest a simplified re-derivation of previously

reported bounds on the decoding complexity of randomly punctured LDPC codes

(see [65, Theorems 3 and 4]).

In Chapter 4, we turn to consider the number of iterations required for success-

ful decoding of graph-based code ensembles. In the considered setting, we let the

block length of these ensembles tend to infinity, and the transmission takes place over

a BEC. Theorems 4.1–4.3 demonstrate that for various attractive families of code
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ensembles (including LDPC codes, systematic and non-systematic irregular repeat-

accumulate (IRA) codes, and accumulate-repeat-accumulate (ARA) codes), the num-

ber of iterations which is required to achieve a desired bit erasure probability scales

at least like the inverse of the gap between the channel capacity and the design rate

of the ensemble. This conclusion holds provided that the fraction of degree-2 variable

nodes in the Tanner graph does not tend to zero as the gap to capacity vanishes

(where under mild conditions, this property is satisfied for sequences of capacity-

achieving LDPC ensembles, see [76, Lemma 5]). The behavior of these lower bounds

matches well with the experimental results and the conjectures on the number of

iterations and complexity, as provided by Khandekar and McEliece (see [42, 43, 56]).

In [42, Theorem 3.5], it was stated that for LDPC and IRA ensembles which achieve

a fraction 1−ε of the channel capacity of a BEC with a target bit erasure probability

of Pb under iterative message-passing decoding, the number of iterations grows like

O
(

1
ε

)
. In light of the outline of the proof of this statement, as suggested in [42, p. 71],

it implicitly assumes that the flatness condition is satisfied for these code ensembles

and also that the target bit erasure probability vanishes; under these assumptions,

the reasoning suggested by Khandekar in [42, Section 3.6] supports the behavior of

the lower bounds which are derived in this work.

The lower bounds on the number of iterations in Chapter 4 become trivial when

the fraction of degree-2 variable nodes vanishes. However, this is mainly a result

of our focus on the derivation of simple lower bounds on the number of iterations

which do not depend on the full characterization of the degree distributions of the

code ensembles. Following the proofs of the statements in this chapter and focusing

on the case where the fraction of degree-2 variable nodes vanishes, it is possible to

derive lower bounds on the number of iterations which are not trivial even in this

case; these bounds, however, require the knowledge of the entire degree distribution

of the examined ensembles.

To complement the asymptotic analysis in Chapters 2–4, we study the fundamen-

tal limitations on the performance of finite-length block codes. Chapter 5 presents an

improved sphere-packing (ISP) bound for finite-length block codes whose transmission

takes place over symmetric memoryless channels. The derivation of the ISP bound

was stimulated by the remarkable performance and feasible complexity of turbo-like

codes with short to moderate block lengths. We were motivated by recent improve-

ments on the 1967 sphere-packing (SP67) bound (see [87]) for finite block lengths,

as suggested by Valembois and Fossorier [109]. Numerical results demonstrate that

the ISP bound significantly tightens the SP67 bound and the bound in [109, Theo-

rem 7]. This improvement is especially pronounced for codes of short to moderate
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block lengths and also grows as the input alphabet of the considered communication

channel increases in size.

The ISP bound is applied to M-ary phase shift keying (PSK) block coded modu-

lation schemes whose transmission takes place over an additive white Gaussian noise

(AWGN) channel and the received signals are coherently detected. The tightness of

the ISP bound is exemplified by comparing it with upper and lower bounds on the

ML decoding error probability and also with reported computer simulations of turbo-

like codes under iterative decoding. Chapter 5 also presents a new algorithm which

performs the entire calculation of Shannon’s 1959 sphere-packing (SP59) bound (see

[89]) in the logarithmic domain, thus facilitating the exact calculation of the SP59

bound for all block lengths without the need for asymptotic approximations. It is

shown that the ISP bound suggests an interesting alternative to the SP59 bound,

where the latter is specialized for the AWGN channel.

6.2 Future Research Directions

Performance versus complexity of generalized LDPC codes

The component codes of LDPC codes can be viewed as repetition codes at the vari-

able nodes and single-parity check (SPC) codes at the check nodes. The idea in the

construction of generalized LDPC (GLDPC) codes is to replace a fraction of the SPC

codes by other algebraic codes (e.g., Hamming or BCH codes). GLDPC codes were

introduced independently by Lentmaier and Zigangirov [46, 47], Boutros et al. [16]

and Wadayama [111]. GLDPC codes are constructed by replacing each single parity-

check in Gallager’s LDPC codes with the parity-check matrix of a small linear block

code called a constituent code. It has been shown that GLDPC codes are asymp-

totically good in the sense of their minimum distance, and even more importantly,

they exhibit with iterative decoding algorithms good performance over both AWGN

channel and Rayleigh fading channels. Moreover, it was demonstrated that GLDPC

codes can also be considered as a generalization of product codes, and because of their

flexibility on the selection of code length, GLDPC codes turn out to be a promising

alternative to product codes in many applications.

The design of doubly generalized low-density parity-check (DGLDPC) codes with

generic block linear codes at both bit and check nodes (instead of the traditional

repetition and single parity-check codes) was recently considered in [114]. For the

binary BEC and the AWGN channel. Both analysis and simulations show that this

approach provides more flexibility in constructing codes with good threshold. An
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improvement in their performance was exemplified at the expense of increasing their

encoding and decoding complexity [114]. It would be interesting to compare the

performance of LDPC and generalized LDPC cods under iterative decoding when

their decoding complexity is fixed, and to devise some approaches for the optimization

of generalized LDPC codes when one wishes to find a good tradeoff between the

asymptotic threshold and the decoding complexity under iterative decoding.

Application of the information-theoretic bounds for binary linear block

codes over parallel channels to common communication scenarios

In Chapter 3, we derive information-theoretic bounds on the performance-complexity

tradeoff for LDPC ensembles whose transmission takes place over a set of parallel

MBIOS channels. In light of the widespread use of punctured LDPC codes, these

bounds are to assess the performance and complexity of randomly and intention-

ally punctured LDPC ensembles transmitted over a single MBIOS channel. Parallel

channels serve as a model for several other important communication scenarios; these

include non-uniformly error-protected codes, transmission over block-fading channels

and multi-carrier signaling. It is suggested to apply the bounds derived in Chapter 3

towards providing information-theoretic bounds on the performance and complexity

of LDPC ensembles for these applications. It would also be interesting to compare

the theoretic bounds to performance of existing schemes for these scenarios.

Generalization of the lower bounds on the number of decoding iterations

to arbitrary MBIOS channels

In Chapter 4, we derive lower bounds on the number of iterations which is required for

successful decoding of several families of graph-based code ensembles. These bounds

refer to codes transmitted over a BEC, and they hold in the asymptotic case where

the block length of the codes tends to infinity. The derivation of the bounds relies on

extrinsic information-transfer (EXIT) functions and the area theorem, and hinges on

the fact that EXIT charts coincide with density-evolution analysis for the BEC. As

a topic for further research, it is suggested to examine the possibility of adapting the

bounds presented in Chapter 4 to the case where the transmission takes place over

arbitrary MBIOS channels. This direction is especially appealing in light of the recent

development of generalized EXIT charts and the introduction of the generalized area

theorem [59], which apply to arbitrary MBIOS channels.
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Further improvement of sphere-packing bounds for finite-length codes

In Chapter 5, we present a new sphere-packing lower bound on the error probabil-

ity of optimal block codes. This improved sphere-packing (ISP) bound is targeted

at finite-length block codes transmitted over symmetric memoryless channels. It is

demonstrated that the ISP bound significantly tightens the classical 1967 sphere-

packing (SP67) bound and its recent improved version in [109]; this is especially

pronounced for codes for short to moderate block lengths. However, it is also demon-

strated that for M-ary PSK modulated signals transmitted over the AWGN channel,

the classical 1959 sphere-packing (SP59) bound of Shannon may provide a tighter

lower bound, especially for short codes with low rates. This is despite the fact that

the SP59 does not take into account the specific modulation used and only assumes

that the signals have equal energy. This observation motivates further improvements

of the technique, in order to further tighten the bound for finite-length codes. Such

an improvement might be achieved by optimizing the tilting measure fs (see Eq. 5.50)

for the specific code length considered, instead of using the function from [87], which

is optimized for the asymptotic case where the block length tends to infinity. It would

also be interesting to revisit the derivation of the bound and consider the case where

the communication channel is not symmetric.

Sphere-packing bounds on the symbol error probability of optimal codes

The sphere-packing bounds in [87, 89, 109] and Chapter 5 refer to the word error

probability of optimal block codes. In many applications, the relevant distortion

measure is the bit (or symbol) error probability. Moreover, many graph-based codes

exhibit very low bit error probabilities under iterative decoding, in contrast to a

rather high probability of word error. As a topic for further research, it is suggested

to examine the possibility of adapting the sphere-packing bounding techniques to

derive lower bounds on the symbol error probability of optimal codes.
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xivwz-ipkhk meik mivetp miiaihxhi` geprt inzixebl`a miynzynd ze`iby oewizl miewmiitxb milen ii lr xe`izl mipzip el` miew .dkenp zeikeaiqa uexr eiw zew-rtd inzixebl` ly mzlert oeit`l ode miewd ly ixabl`d dpand oeivl od miynyndgeprt mixyt`nd miew ly zeax zegtyn elbzp zepexg`d mipya .miiaihxhi`d gep,(LDPC) dlil zeibef zwia zevixhn ilra miew zellek el` zegtyn .liri iaihxhi`dxib`-dxfg iew ,dltkn iew ,eaxeh iew ,(LDGM) dlil zxvei dvixhn ilra miewgeprt inzixebl` zgz mibivn el` miew .ere mdly mihp`ixee (repeat-accumulate),miax miihxphq zxeywz ivexr ly leaiwd zelabnl miaxwznd mirevia miiaihxhi`mieedn el` miew ly oted i`vei mireviad .ziyrn geprt zeikeaiq lr mixney merazeikeaiql mireviad oia dxixad ly zeipeivnxetpi`d zelabnd zxiwgl dwfg divaihenel` miew zegtyn ly mireviad .miitxb milen lr miqqeand miew ly geprtdzeipeivnxetpi`d zelabnd zxiwgl divaihen md s` mieedn miiyrn wela ikxe` xearzel`y yely ii lr rpen ef deara xwgnd .iteq jxe`a wela iew ly mdirevia lr:zeixwirmiynzyn xy`k elit` ,LDPC iew ly mireviad zeidl mileki miaeh dnk r .1?ilnihte` gprtnadivwpetk ,sxb iew ly zilnipind geprtd zeikeaiq lr zeieqid zelabnd odn .2zt`eyy d`iby zexazqd zbyen exear ewd avw oiae uexrd leaiw oia xrtd ly?qt`l?iteq jxe`a wela iew ly mdirevia lr zeieqid zelabnd odn .3sxbd zezyw jxe`l zered zgily ii lr milret miiaihxhi`d geprtd inzixebl`minxeb ipyn zrtyen el` minzixebl` ly zeikeaiqd ,jk meyn .ewd z` x`znd,df leb .ewd z` x`znd itxbd lend ly zeikeaiqd epid oey`xd mxebd :miixwirjilyn ,ewd ly divnxetpi`d zeiaiq xtqna lnxepn sxba zezywd xtqnk xbendepid ipyd mxebd ; geprtd jildza divxhi` lk ly ziaeyigd zeikeaiqd lr zexiyiep` ,ef deara .dievxd mireviad znx z` biydl zpn lr yxpd zeivxhi`d xtqn.el` minxebn g` lk lr miipeivnxetpi` mipezgz minqg migztn



d xivwzminqg zxifba wnzn ,ef dear ly 3-e 2 miwxta bvend ,xwgnd ly oey`xd ewlgminqg gezita oke miix`piae miix`ipil wela iew ly dbydd ixa miavwd lr mipeilrzxezn zeprh lr miqqazn el` minqg .el` miew ly zitxbd zeikeaiqd lr mipezgzgeprtde seqpi`l s`ey miewd ly welad jxe` ea dxwnd xear mitwze divnxetpi`d-ew xear minqg mibven deard ly 2 wxta .(ML) ziaxn zexiaq gprtn ii lr rvean.(MBIOS) d`ivia miixhniqe `eana miix`pia oexkif ixqg mivexr iab lr mixeynd mi-eye Burshtein ii lr ebvedy dniqg zewipkh xetiy ly zqqean el` minqg zxifb-eara .(zitxb zeikeaiq iabl) Urbanke-e Sason ii lre (dbyd ixa miavw iabl) eitzuexrn lawznd rind ly zix`pia divfihpeew lr dqqazd dfilp`d ,el` zenew zexyt`zy jk dniqgd zwipkh xetiy ii lr dyrp ef deara minqgd xetiy .zxeywzddf rin ly dxiyi dfilp` s`e uexrdn lawznd rind ly zixhniq divfihpeew lkzeikeaiqde mireviad oia dxixad ly dkxrdl mipten minqgd .llk divfihpeew `llly dllkd zbven deard ly 3 wxta .iaihxhi` geprt zgz LDPC iew ly divxhi`lzg` lk xy`k ,miiliawn MBIOS ivexr iab lr mixeyn miewd ea dxwnl el` minqgmireviad oia dxixad zkxrdl zynyn ef dllkd .itivtq uexrl zipten ewd zeiaiqn-ida xetiyd .(punctured codes) miawepn miew xear geprt ziivxhi`l zeikeaiqdezpn lr miynyn minqgd .`ed s` ogap zextqdn mirei minqg znerl minqgd zewgeprtd inzixebl` ly zeilnihte`d-zz ii lr mxbpd leaiwl xrtd ly ewlg z` en`l.miewd ly ixabl`d dpandn raepd wlgd z`e milirid miiaihxhi`dlr mipezgz minqg mixfeb ep` ,ef dear ly 4 wxta bvend ,xwgnd ly ipyd ewlgaepid xeiyd xy`k ,dievx mirevia znx biydl zpn lr yxpd geprtd zeivxhi` xtqn-azn minqgd zxifb .seqpi`l s`ey miewd ly welad jxe`e ix`pia dwign uexr iab lriaikxn ly (EXIT functions) zifpixhqw` divnxetpi` zxard zeivwpet gezip lr zqq-i`d geprtd jildz ly wien bevii zeedn el` zeivwpety jk lr zqqazne mipeyd ewdleaiwl ewd avw oia xrtd ly divwpetk mipezp minqgd .lirl zegpdd zgz iaihxhsxba mipzynd iznv feg` ly drii wxe j` miyxee aeyigl miheyt mpid ,uexrdzeygd zegtynd z` oke LDPC iew ly mixiav mipgea ep` .miizyl deey mzbxy.(accumulate-repeat-accumulate iew oebk) odly zeiv`ixee dxib`-dxfg iew ly xzeiglven geprt xear yxpd zeivxhi`d xtqn ik mi`xn ep` ,lirl zexkfend zegtynd lkl-e Khandekar ly dxrydl zen`ez el` ze`vez ;leaiwl xrtl jetd qgia zegtl lb.zeipeiqip ze`vezl oke 2001 zpyn McEliecezelabn zpigal mipet ep` ,ef dear ly 5 wxta bvend ,xwgnd ly oexg`d ewlga-niq uexr iab lr zrvazn zxeywzd xy`k iteq wela jxe` ilra miew ly mireviad
(sphere-packing mixek zfix` beqn minqg zpigaa miwnzn ep` .oexkif xqge ixh-ne`ib gezip lr miqqaznd d`ibyd zexazqd lr mipezgz minqg mpidy ,bounds)-rt zgz mitwz el` minqg .miewd ly izexixy gprtna dhlgdd ixef` ly ixhote`a miynyn el` mipezgz minqg .(list decoding) dniyx geprt xear oke ML gep



e xivwzedylk iyrn geprt mzixebl` zgz oezp ew ly mirevia oia wgxnd lr nk xizwela jxe`e avw eze` lra ilnihte` ew ly mireviad lr zeihxe`izd zelabnd oiaes`ey miewd ly welad jxe` xy`k ihehtniq`d leaba .uexr eze` iab lr xeyndmixekd zfix` mqg epid d`ibyd zexazqd lr xzeia wedd reid mqgd ,seqpi`lmivexr xear swz df mqg .Berlekamp-e Gallager ,Shannon ii lr 1967 zpya `vedyely zil`ivppetqw`d zebdpzddy jk i"r x`yd oia oiite`ne oexkif ixqge miihxwqi
1967 zpyn dfilp`d .leaiwde uexrd ly ihixwd avwd oiay miavwd megza zwien-xagnd z` dkiledy dyibd .mqgd ly zihehtniq`d zikixrnd zebdpzda dwnzdly zihehtniq`d zebdpzdd zrbtp `l er lk ,dxifbd z` ozipd lkk hytl dzid mimireviad .miiyrn wela ikxe`a miew xear liri epi`y mqgl d`iad ef dyib .mqgdikxe` mr mb uexrd leaiwl miaexwd miavw mibiyn xy` ,miipxen miew ly mipievndz` ygn oegal Fossorier -e Valembois z` 2004 zpya eliaed ,in mikex` `l welaxear xzei daeh dxeva dni`zdle 1967 zpyn mixekd zfix` mqg ly dxifbd zwipkhorl did ozip oda dxifbd jldna zeewp xtqna epigad md .iteq wela jxe`a miew.iteq wela jxe` ilra miew xear mqgd zewid z` xtyl jkae dniqgd zwipkh z`iteqpi` `ven ziatl` ilra mivexr xear mqgd zlrtd z` exyt` el` mixetiy ,ok enk-nyn wdn xy` (ISP) xteyn mixek zfix` mqg mibivn ep` ,df xwgna .sivx s`emixeynd miew xear swz ISP-d mqg .Fossorier-e Valembois ly mqgd z` zizerdqxbd oke 1967-n mixekd zfix` mqg zxifb .oexkif ixqge miixhniq mivexr iab lrly zilniqwnd d`ibyd zexazqd znqgp ea ,miipia rv lr zepryp ely zwedndlr mqgd zxifbl qiqak ynyn df mqg .(fixed composition) reaw akxd ilra miewdeara .zewida izernyn qtd jez ,millk miew ly zrvennd d`ibyd zexazqdzexiyi meqgl zpn lr ef dpekz lvpl ozip ,uexra dixhniq zniiw xy`ky mi`xn ep` ,efxear xwira ,zewida xkipd xetiyd .millk miew ly zrvennd d`ibyd zexazqd z`zeze` xear ik mben ok enk .zeixnep ze`vez ii lr mben ,ipepia r xvw jxe`a miewiaihi`d iqe`bd uexrd iab lr mixeyne phase shift keying (PSK) zhiya mippte`ndly iq`lwd mixekd zfix` mqgl zpiiprn daihpxhl` deedn ISP-d mqg ,(AWGN)beq iabl zeixeixt` zegpd gipn epi`e ala iqe`bd uexrl m`zend 1959 zpyn Shannon.(dibxp` ieey mpid zeze`d ik dgpdl xarn) oept`d


