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Overview

Dissertation Overview

This work can generally be divided into two parts:

1 Aspects of the asymptotic tradeoff between performance and
decoding complexity for graph-based codes.

2 Fundamental performance limitations of finite-length block codes.
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Overview

On the asymptotic performance vs. complexity tradeoff
The research in this part is motivated by two core questions:

Question
How good can LDPC codes be, even under optimal decoding?

This question is addressed via information-theoretic upper bounds
on the achievable rates of optimally decoded binary linear block
codes.

The bounds refer to transmission over
I A memoryless binary-input output-symmetric (MBIOS) channel.
I A set of independent parallel MBIOS channels.
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Overview

On the asymptotic performance vs. complexity tradeoff
The research in this part is motivated by two core questions:

Question
What are the fundamental limitations on the complexity of iterative
decoding algorithms, as a function of the gap between the code rate
and the channel capacity?

The complexity of iterative decoding algorithms is composed of two
main factors:

The graphical complexity of the Tanner graph representing the
code (which serves to measure decoding complexity per iteration).

The number of iterations required for successful decoding.
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Overview

On the asymptotic performance vs. complexity tradeoff
The research in this part is motivated by two core questions:

Question
What are the fundamental limitations on the complexity of iterative
decoding algorithms, as a function of the gap between the code rate
and the channel capacity?

This question is addressed by deriving

Information-theoretic lower bounds on the parity-check density of
binary linear block codes

I For memoryless binary-input output-symmetric (MBIOS) channels.
I For parallel MBIOS channels with application to puncturing.

Lower bounds on the number of decoding iterations for
graph-based codes transmitted over the binary erasure channel.
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Overview

Fundamental limitations of finite-length block codes

This study is performed by examining sphere-packing lower bounds on
the block error probability.

We present

A new sphere-packing bound for finite-length block codes
transmitted over symmetric memoryless channels.

A log-domain algorithm which facilitates the exact calculation of
the 1959 sphere-packing bound regardless of the block length.
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Asymptotic Analysis Parity-check density vs. performance: Single MBIOS channel

Parity-check density versus performance of binary

linear block codes over memoryless symmetric

channels: New bounds and applications

G. Wiechman (Technion) Performance vs. Complexity Tradeoff January 14, 2008 5 / 55



Asymptotic Analysis Parity-check density vs. performance: Single MBIOS channel

Related work - Achievable rates of LDPC codes

Right-regular LDPC codes cannot achieve capacity on a BSC,
even under ML decoding. Gap to capacity is lower bounded by an
expression which decreases to zero exponentially fast in aR

(Gallager, 1961).

Burshtein et al. generalized Gallager’s bound for MBIOS channels
(IEEE Trans. on IT, September 2002).

Sason and Urbanke observed that Gallager’s result holds when
considering the average right degree of irregular ensembles.
(IEEE Trans. on IT, July 2003).
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Asymptotic Analysis Parity-check density vs. performance: Single MBIOS channel

Related work - Graphical Complexity
Goal: Achieving a fraction 1 − ε of capacity.

Conjecture (Khandekar and McEliece, ISIT 2001)

For a large class of channels, if the design rate of a suitably
designed ensemble forms a fraction 1 − ε of the channel
capacity, then the decoding complexity scales like 1

ε
ln 1

ε
.

The logarithmic term in this expression is attributed to the
graphical complexity (i.e., the decoding complexity per iteration)
and the number of iterations scales like 1

ε
.

For the BEC, the absolute reliability of the messages allows
every edge in the graph to be used only once during the iterative
decoding so the decoding complexity behaves like ln 1

ε
.
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Asymptotic Analysis Parity-check density vs. performance: Single MBIOS channel

Related work - Graphical Complexity
Goal: Achieving a fraction 1 − ε of capacity.

Theorem (Sason & Urbanke IEEE Trans. on IT, July 2003)

For a sequence of binary linear block codes achieving a
fraction 1 − ε of the capacity of an MBIOS channel (under
any decoding algorithm), the parity-check density grows at

least like K1+K2 ln 1
ε

1−ε
.

A logarithmic behavior is achievable under ML decoding for
general MBIOS channels.

For the BEC, it is even achievable under iterative decoding
(for the right-regular ensembles introduced by Shokrollahi).

G. Wiechman (Technion) Performance vs. Complexity Tradeoff January 14, 2008 7 / 55



Asymptotic Analysis Parity-check density vs. performance: Single MBIOS channel

Motivation

Previous work is based on applying a two-level quantization to the
channel information.
⇒ replaces information from the MBIOS channel with information
from a physically-degraded BSC.

Bounding technique depends on binary information by considering
the syndrome of the information sequence.

Questions
1 Can we apply a finer quantization which gives a more accurate

representation of the information available from the channel?
2 Can we work with the original (or equivalent) information?

In this work, we reply both questions in the affirmative.
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Asymptotic Analysis Parity-check density vs. performance: Single MBIOS channel

Bounds without quantization of the channel information

Define a new channel whose output is the LLR of the original.

The LLR is equivalent to the original channel information.

Channel symmetry property ⇒ new channel is a multiplicative
channel, where the binary input (converted to +1,-1) multiplies an
independent noise (so it only effects the sign of the output).

The noise is distributed according to the pdf of the LLR of the
original channel, given that the transmitted symbol is 0.

The absolute value of the output provides side info. on the noise.

The syndrome is calculated w.r.t. the sign of the channel output.
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Asymptotic Analysis Parity-check density vs. performance: Single MBIOS channel

Theorem ("Un-Quantized" Lower Bound on Conditional Entropy)
Let C be a binary linear block code of length n and rate R.

I Communication over an MBIOS channel with capacity C bits
ch. use .

I x, y – transmitted codeword and received sequence, respectively.

I a – pdf of the LLR given that the transmitted symbol is 0.

I For an arbitrary full-rank parity-check matrix of C:

Γk – fraction of the parity-checks involving k variables

Γ(x) ,
∑

k

Γk xk .
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Asymptotic Analysis Parity-check density vs. performance: Single MBIOS channel

Theorem ("Un-Quantized" Lower Bound on Conditional Entropy)
The conditional entropy of the transmitted codeword given the
received sequence satisfies

H(X|Y)

n
≥ 1 − C − (1 − R)

(

1 − 1
2 ln(2)

∞
∑

p=1

Γ(gp)

p(2p − 1)

)

where

gp ,

∫ ∞

0
a(l)(1 + e−l) tanh2p

(

l
2

)

dl
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Asymptotic Analysis Parity-check density vs. performance: Single MBIOS channel

Sequences of Codes

From Fano’s inequality, for a sequence of codes achieving
vanishing bit error probability (under any decoding algorithm)

H(X|Y)

n
→ 0 .

Substituting this in the lower bound on conditional entropy and
solving for R yields an upper bound on the achievable rates.
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Asymptotic Analysis Parity-check density vs. performance: Single MBIOS channel

Sequences of Codes

Assume also R = (1 − ε)C, this gives:

0 ≥ 1 − C − (1 − (1 − ε)C)

(

1 − 1
2 ln(2)

∞
∑

p=1

Γ(gp)

p(2p − 1)

)

gp≥0
≥ 1 − C − (1 − (1 − ε)C)

(

1 − Γ(g1)

2 ln(2)

)

Jensen
≥ 1 − C − (1 − (1 − ε)C)

(

1 − gaR
1

2 ln(2)

)

where aR is the average right degree of the sequence.

The lower bound on the density of the considered parity-check
matrix H follows from the equality ∆(H) = 1−R

R aR.
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Asymptotic Analysis Parity-check density vs. performance: Single MBIOS channel

Notes on the "Un-Quantized" Bounds

The "un-quantized" bounds are not subject to optimization
therefore their calculation is rapid.

Tighter than the quantized bounds for any number of quantization
levels.

For the BEC, the "un-quantized" bound on the asymptotic
parity-check density merges with the bound of Sason and
Urbanke, which was shown to be tight.

The bounds are valid when considering ensembles of LDPC
codes and replacing the rate with the design rate of the ensemble.
In that case, one can relax the requirement that the parity-check
matrices are full rank.
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Asymptotic Analysis Parity-check density vs. performance: Single MBIOS channel

Numerical Results: Thresholds

Comparison of the bounds for rate-1/2 irregular ensembles
I Binary-input AWGN Channel.
I Average right degree increases with ensemble number.
I Shannon capacity limit for R = 1

2 is 0.187 dB
I Provides bounds on loss due to message-passing decoding.

Ensemble 2-Levels 4-Levels 8-Levels Un-Quantized DE
Number Bound Bound Bound Lower Bound Threshold

1 0.269 dB 0.370 dB 0.404 dB 0.417 dB 0.809 dB
2 0.201 dB 0.226 dB 0.236 dB 0.239 dB 0.335 dB
3 0.198 dB 0.221 dB 0.229 dB 0.232 dB 0.310 dB
4 0.194 dB 0.208 dB 0.214 dB 0.216 dB 0.274 dB
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Asymptotic Analysis Parity-check density vs. performance: Single MBIOS channel

Numerical Results: Parity-Check Density
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Channel: Binary−input AWGN

Code rate: 1/2 bits per ch. use
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Asymptotic Analysis Parity-check density vs. performance: Parallel MBIOS channels

On achievable rates and complexity of LDPC codes

over parallel channels: Bounds and applications
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Asymptotic Analysis Parity-check density vs. performance: Parallel MBIOS channels

Parallel Channels

Transmission takes place over J independent MBIOS channels.

Each code bit is a-priori assigned to one of the J channels.

A fraction pj of the code bits is transmitted over the j ’th channel.

Code

Error−

Correction
Channel

Mapper

n bitsk bits

Channel 1

Channel 2

Channel J

Decoder
.

.

.

p1n

p2n

pJn
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Asymptotic Analysis Parity-check density vs. performance: Parallel MBIOS channels

Why Parallel Channels ?

Parallel channels are used to model various scenarios:

Punctured LDPC codes.

Non-uniformly error protected codes.

Multi-level codes.

LDPC coded modulation.

etc.

G. Wiechman (Technion) Performance vs. Complexity Tradeoff January 14, 2008 17 / 55



Asymptotic Analysis Parity-check density vs. performance: Parallel MBIOS channels

Lower Bound on Cond. Entropy for Parallel Channels

Theorem
Let C be a binary linear block code of length n and design rate Rd. The
conditional entropy of the transmitted codeword given the received
sequence satisfies

H(X|Y)

n
≥ 1 −

J
∑

j=1

pjCj − (1 − Rd)

·



1 − 1
2n(1 − Rd) ln 2

∞
∑

p=1

∑n(1−Rd)
m=1

∏J
j=1(gj,p)

βj,m

p(2p − 1)





where

gj,p ,

∫ ∞

0
a(l ; j) (1 + e−l) tanh2p

(

l
2

)

dl , j ∈ {1, . . . , J}, p ∈ N.
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Asymptotic Analysis Parity-check density vs. performance: Parallel MBIOS channels

Notes

Problem
The values βj,m are not usually known.
Therefore the bound cannot be practically evaluated for specific codes.
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Asymptotic Analysis Parity-check density vs. performance: Parallel MBIOS channels

Notes

Problem
The values βj,m are not usually known.
Therefore the bound cannot be practically evaluated for specific codes.

Solution
Consider the expected conditional entropy over an ensemble of codes.
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Asymptotic Analysis Parity-check density vs. performance: Parallel MBIOS channels

Notes

Problem
The calculation of the expectation over the bound is not tractable
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Asymptotic Analysis Parity-check density vs. performance: Parallel MBIOS channels

Notes

Problem
The calculation of the expectation over the bound is not tractable

Suggestion
Bound the expectation using Jensen’s inequality.
Leads to an inherent loss in the tightness of the bounds.
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Asymptotic Analysis Parity-check density vs. performance: Parallel MBIOS channels

Notes

Problem
The calculation of the expectation over the bound is not tractable

Observation
We only consider sequences of ensembles where n → ∞.

We only need the limit of the expectation when n → ∞.
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Asymptotic Analysis Parity-check density vs. performance: Parallel MBIOS channels

Notes

Problem
The calculation of the expectation over the bound is not tractable

Observation
We only consider sequences of ensembles where n → ∞.

We only need the limit of the expectation when n → ∞.

The calculation of the limit is possible

The resulting bounds are valid only for sequences of ensembles.
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Asymptotic Analysis Parity-check density vs. performance: Parallel MBIOS channels

Intentionally punctured codes

Introduced by Ha and McLaughlin (IEEE Trans. on IT, Nov. 2004).

I Code bits are separated according to the degree of the
corresponding node.

I Each set is punctured at a different rate.

Can be modeled as transmission over a set of parallel channels.

I Each channel transmits bits whose corresponding nodes have a
fixed degree.

I The channels are composed of a concatenation of a BEC (which
models the puncturing) and the communication channel.
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Asymptotic Analysis Parity-check density vs. performance: Parallel MBIOS channels

Numerical Results

Original ensemble design rate 1/2.

Transmission over binary input AWGN channel.

Puncturing patterns optimized for iterative decoding.

Provides bound on inherent loss due to iterative decoding.

Design Capacity Lower bound Iterative (IT) Fractional gap to
rate limit (ML decoding) Decoding cap. (ML vs. IT)

0.500 0.187 dB 0.270 dB 0.393 dB ≥ 40.3%
0.592 0.635 dB 0.716 dB 0.857 dB ≥ 36.4%
0.671 1.083 dB 1.171 dB 1.330 dB ≥ 35.6%
0.774 1.814 dB 1.927 dB 2.115 dB ≥ 37.2%
0.838 2.409 dB 2.547 dB 2.781 dB ≥ 37.1%
0.912 3.399 dB 3.607 dB 3.992 dB ≥ 35.1%
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Asymptotic Analysis Number of iterations for turbo-like ensembles over the BEC

Bounds on the number of iterations for turbo-like

ensembles over the binary erasure channel
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Asymptotic Analysis Number of iterations for turbo-like ensembles over the BEC

Conjecture (Khandekar and McEliece, ISIT 2001)
For a large class of channels, if the design rate of a suitably designed
ensemble forms a fraction 1 − ε of the channel capacity, then the
decoding complexity scales like 1

ε
ln 1

ε
.

The logarithmic term in this expression is attributed to the graphical
complexity (i.e., the decoding complexity per iteration) and the number
of iterations scales like 1

ε
.

For the BEC, the absolute reliability of the messages allows every
edge in the graph to be used only once during the iterative decoding
so the decoding complexity behaves like ln 1

ε
.
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Asymptotic Analysis Number of iterations for turbo-like ensembles over the BEC

Theorem (Lower bound on the number of iterations for LDPC
ensembles transmitted over the BEC)

Let
{

(nm, λ, ρ)
}

m∈N
be a sequence of LDPC ensembles (nm −−−→

m→∞
∞).

Transmission over a BEC with erasure probability p.

Assume that the sequence achieves 1 − ε of the channel capacity
with vanishing bit erasure prob. under message-passing decoding.

L2(ε) - fraction of variable nodes of degree 2.

l(ε, p, Pb) - number of iterations which is required to achieve an
average bit erasure probability Pb over the ensemble.

Under the condition that Pb < p L2(ε):

l(ε, p, Pb) ≥
2

1 − p

(

√

p L2(ε) −
√

Pb

)2 1
ε

.
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Asymptotic Analysis Number of iterations for turbo-like ensembles over the BEC

On the fraction of variable nodes of degree 2

The lower bound on the number of iterations becomes trivial when
L2(ε) vanishes.

For various capacity-achieving sequences of LDPC ensembles
L2(ε) −−−→

ε→∞

1
2 .

In fact, under some mild conditions, it can be proved that the
fraction of degree-2 variable nodes for capacity-achieving LDPC
ensembles is strictly positive (for more details, see Lemma 5 in a
preprint of a paper by Sason, Sept. 2007).
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Asymptotic Analysis Number of iterations for turbo-like ensembles over the BEC

On the fraction of variable nodes of degree 2

Corollary
If L2(ε) does not vanish and Pb < p L2(ε) then

l(ε, p, Pb) = Ω

(

1
ε

)

.

This supports the conjecture by Khandekar and McEliece.
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Asymptotic Analysis Number of iterations for turbo-like ensembles over the BEC

Proof Outline

p 1  0
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c(x) = 1 − ρ(1 − x)

Define the EXIT functions.

v(x) =

{

λ−1
(

x
p

)

0 ≤ x ≤ p

1 p < x ≤ 1
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Asymptotic Analysis Number of iterations for turbo-like ensembles over the BEC

Proof Outline

p 1  0

1

Left to Right Message Erasure Probability
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c(x)

v(x)

Asymptotically, as the block length tends
to infinity, we assume vanishing bit erasure
prob. under message-passing decoding.

⇒ Density evolution implies:
c(x) < v(x) for all x ∈ (0, 1).
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Asymptotic Analysis Number of iterations for turbo-like ensembles over the BEC

Proof Outline
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Area theorem:
∫ 1

0

(

v(x)− c(x)
)

dx =
C − R

aL
=

Cε

aL

aL - average left degree of the ensemble.
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Asymptotic Analysis Number of iterations for turbo-like ensembles over the BEC

Proof Outline
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The EXIT functions can be used to track
the progress of the iterative decoder.

h0

v0

h1

h2

h3

h4

v3

v2

v1

G. Wiechman (Technion) Performance vs. Complexity Tradeoff January 14, 2008 26 / 55



Asymptotic Analysis Number of iterations for turbo-like ensembles over the BEC

Proof Outline
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Set 1: Slope of hypotenuse = c′(0) = ρ′(1)

Area of i’th triangle: Ai = |vi|
2
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Slope = ρ′(1)

Based on
{

hi

}

i
and

{
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}

i
define

two sets of right-angled triangles.
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Asymptotic Analysis Number of iterations for turbo-like ensembles over the BEC

Proof Outline
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Set 2: Slope of hypotenuse = v′(0) = 1
pλ2

Area of i’th triangle: Bi = |vi|
2 p λ2

2

v0

v3

v2

v1

Slope = 1
p λ2

Slope = ρ′(1)

Monotonicity and concavity of c(x) and v(x):
Triangles are trapped between c(x) and v(x).

G. Wiechman (Technion) Performance vs. Complexity Tradeoff January 14, 2008 26 / 55



Asymptotic Analysis Number of iterations for turbo-like ensembles over the BEC

Proof Outline (Cont.)

Based on the previous statements and the stability condition

C ε

aL
≥ 1

2

(

1
ρ′(1)

+ pλ2

) l−1
∑

i=0

|vi |2

≥ pλ2

l−1
∑

i=0

|vi |2

where l is an arbitrary natural number.

Cauchy-Schwartz inequality:
(

∑l−1
i=0 |vi |

)2
≤ l

∑l−1
i=0 |vi |2

⇒ C ε ≥
aL pλ2

(

∑l−1
i=0 |vi |

)2

l

G. Wiechman (Technion) Performance vs. Complexity Tradeoff January 14, 2008 27 / 55



Asymptotic Analysis Number of iterations for turbo-like ensembles over the BEC

Proof Outline (Cont.)
l – Number of iterations required to achieve a bit erasure prob. Pb.

Based on density evolution
l−1
∑

i=0

|vi | ≥ 1 − L−1
(

Pb

p

)

.

Substituting this and solving for l

l ≥
aL pλ2

(

1 − L−1
(

Pb
p

))2

(1 − p)ε

(a)

≥
aL λ2

(

√

p L2 −
√

Pb

)2

L2 (1 − p)ε

(b)
=

2
1 − p

(

√

p L2 −
√

Pb

)2 1
ε

.

(a) follows since L(x) ≤ L2 x2 for x > 0 and also Pb < p L2.
(b) is based on the equality aL λ2 = 2 L2
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Asymptotic Analysis Number of iterations for turbo-like ensembles over the BEC

The graphical complexity perspective
In the asymptotic case where we let the block length tend to infinity

The graphical complexity of capacity-approaching LDPC and
systematic irregular repeat-accumulate (IRA) ensembles is
un-bounded as the gap to capacity vanishes and scales at least
like ln 1

ε
(Sason & Urbanke, Trans. on IT, 2003 and 2004).

Adding state nodes to the graph enables an improved tradeoff:
I Capacity-achieving ensembles of non-systematic IRA codes with

bounded graphical complexity (Pfister et al., Trans. on IT,
July 2005).

I Capacity-achieving ensembles of systematic
accumulate-repeat-accumulate (ARA) codes with bounded
graphical complexity (Pfister & Sason, Trans. on IT, June 2007).
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Asymptotic Analysis Number of iterations for turbo-like ensembles over the BEC

Question
Can state nodes also reduce the number of decoding iterations?
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Asymptotic Analysis Number of iterations for turbo-like ensembles over the BEC

Theorem
For:

systematic ARA ensembles.

systematic and non-systematic IRA ensembles.

Under mild conditions, the number of iterations required to achieve an
average bit erasure probability Pb satisfies

l(ε, p, Pb) = Ω

(

1
ε

)

.
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Asymptotic Analysis Number of iterations for turbo-like ensembles over the BEC

Proof outline: Graph reduction (Pfister & Sason ’07)

Graph reduction transforms the Tanner graphs of variants of RA
codes transmitted over a BEC to Tanner graphs of LDPC codes.

The degree-distributions of the resulting LDPC ensembles are
given in terms of the channel erasure probability and the original
degree-distributions of the RA-based ensemble.

The information from the channel is also used in the
graph-reduction process.

The resulting LDPC codes do not receive channel information
(i.e., they are transmitted over a BEC with erasure prob. 1).
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Asymptotic Analysis Number of iterations for turbo-like ensembles over the BEC

Proof outline (Cont.)

Based on density evolution:

Lemma
In the asymptotic case where the block length tends to infinity, let us
define

lARA(ε, p, Pb) - number of iterations required to achieve an average
bit erasure prob. Pb of the systematic bits over the ARA ensemble.

lLDPC(ε, p, Pb) - number of iterations required to achieve an

average bit erasure probability 1 −
√

1 − Pb
p over the LDPC

ensemble resulting from graph reduction.

Then
lARA(ε, p, Pb) ≥ lLDPC(ε, p, Pb)

Similar lemmas are derived for the other RA-based codes.
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Proof outline (Cont.)

⇒ It suffices to find a lower bound on the number of iterations for the
LDPC ensemble.

Problem:

The LDPC ensemble created by graph reduction is transmitted over
the BEC with erasure probability 1.
⇒ The gap to capacity is not defined.
⇒ The lower bound on the number of iterations for LDPC ensembles
cannot be applied.

To circumvent this obstacle, the proof of this theorem follows along the
same lines as the one for LDPC ensembles with minor technical
adjustments to relate between properties of the RA-based and the
LDPC ensembles.
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An improved sphere-packing bound for finite-length

codes on symmetric memoryless channels
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Sphere-Packing Bounds

Lower bounds on the decoding error probability of optimal block
codes, given in terms of

1 block length
2 rate
3 communication channel

Based on geometrical properties of the decoding regions.

Decay to zero exponentially with the block length.

The 1967 sphere-packing (SP67) bound (Shannon, Gallager &
Berlekamp)

Applies to codes transmitted over discrete memoryless channels
(DMCs).

Valid under optimal ML decoding or even under list decoding.

Error exponent is exact between the critical rate and the channel
capacity.
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Notes on the Classical SP67 Bound

The original focus in the derivation of the SP67 bound was on
asymptotic analysis.

The aim was to make the derivation as simple as possible, as long
as there is no loss in the asymptotic behavior.

Problem: The SP67 bound is in general very loose for codes of
short to moderate block lengths.

Goal: Improve the tightness of the sphere-packing bound for
finite-length codes, especially in light of the remarkable
performance of codes defined on graphs (e.g., turbo, LDPC, RA
codes etc.) even for short to moderate block lengths.

In order to consider possible improvements of the SP67 bound for
finite-length codes, we first outline the original derivation of this bound.
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Derivation of the 1967 Sphere-Packing Bound
Step 1: Lower bound on the error prob. for a code of two codewords

Consider a code which consists of two codewords x1 and x2.

Pi(y) - Probability of receiving y when xi is transmitted (i = 1, 2).

Yi - Decoding region of xi (Y2 = Yc
1).

By considering typical output sequences w.r.t. a certain prob.
distribution, it was shown that for all s ∈ (0, 1)

Pe,1 ,
∑

y∈Y2

P1(y) >
1
4

exp
(

µ(s) − sµ′(s) − s
√

2µ′′(s)
)

or

Pe,2 ,
∑

y∈Y1

P2(y) >
1
4

exp
(

µ(s) + (1 − s)µ′(s) − (1 − s)
√

2µ′′(s)
)

.

where µ(s) , ln
(

∑

y P1(y)1−sP2(y)s
)

, 0 < s < 1.
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Step 2: Fixed-composition block codes

Consider a fixed-composition block code containing M codewords
of length N, transmitted over a DMC, and decoded by a list
decoder of size L.

An arbitrary memoryless probability measure FN over channel
output vectors of length N is introduced. It is used to measure the
size of the decoding regions.

It is easy to show that there is a codeword xm so that the size of
its decoding region does not exceed L

M .
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Step 2: Fixed-composition block codes

Use in Step 1 with the setting: P1(y) = PN(y|xm), P2(y) = FN(y).
⇒ Step 1 provides a lower bound on the conditional error prob. of
this codeword for all values of s for which the inequality related to
the size of the decoding region is violated (we do not know the
exact size of this set, but it is upper bounded by L

M ).

Since we do not know this specific codeword, we replace its
conditional error probability by an upper bound which is the
maximal error probability (over all codewords).

To achieve the tightest universal lower bound:
1 Find FN which maximizes the lower bound.
2 Find the composition which minimizes the lower bound.
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Step 3: Lower bound on the average error prob. of general block codes

Proposition: The average error probability of an (N, M) block code
defined over an alphabet of size K is not less than half the maximal
error probability of a certain (N, M

2 NK ) fixed composition subcode.
Proof outline:

For a block code of length N and alphabet size K , there are at
most

(N+K−1
K−1

)

possible compositions.

Since
(N+K−1

K−1

)

< NK , there exists a fixed composition subcode
with at least M

NK codewords.

Expurgation ⇒ The average error probability of a general block
code is at least half the maximal error probability of the subcode
containing half of the codewords with the lowest error probability.

Combine this conclusion with the lower bound in Step 2 for fixed
composition codes, and the SP67 bound follows.
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Theorem (The 1967 Sphere-Packing Bound)
Let C be a block code consisting of M codewords each of length N.

Assume communication over a DMC, and let P(j |k) designate the
transition probabilities where k ∈ {1, . . . , K} and j ∈ {1, . . . , J} are
the channel input and output alphabets, respectively.

Assume a list decoder where the size of the list is limited to L.

Define

R ,
ln

(M
L

)

N
− code rate in nats per channel use

Pmin − smallest non-zero transition probability of the DMC.

Then, the average decoding error probability is lower bounded by

Pe(N, M, L) ≥ exp
{

−N
[

Esp

(

R − O1

( ln N
N

)

)

+ O2

( 1√
N

)

]}
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Theorem (The 1967 Sphere-Packing Bound)
where

Esp(R) , sup
ρ≥0

(

E0(ρ) − ρR
)

E0(ρ) , max
q

E0(ρ, q)

E0(ρ, q) , − ln

(

J
∑

j=1

[

K
∑

k=1

qkP(j |k)
1

1+ρ

]1+ρ

)

O1

( ln N
N

)

,
ln 8
N

+
K ln N

N

O2

( 1√
N

)

,

√

8
N

ln
( e√

Pmin

)

+
ln 8
N

.
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The Valembois & Fossorier (VF) Bound

A. Valembois and M. Fossorier, “Sphere-packing bounds revisited for
moderate block length,” IEEE Trans. on IT, Vol. 50, Decemeber 2004.

Valembois and Fossorier revisited the derivation of the SP67
bound, and found four points where the bound could be tightened
for codes of short to moderate block lengths.

These improvements also make the bound valid for memoryless
channels with discrete input and continuous output.

The resulting sphere-packing bound (referred to as the VF bound)
is uniformly tighter than the SP67 bound.

Derivation of the VF and SP67 bounds rely on similar steps
⇒ Rate loss due to the use of fixed-comp. codes and expurgation.
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Notes on the SP67 and VF bounds

While the SP67 bound can be applied only to a DMC, the VF
bound can be also applied to memoryless channels of continuous
output alphabet (since it does not require that Pmin > 0, and
calculate instead the second derivative of µ exactly).

The rate shift in their error exponents scales like ln N
N for both

bounds. This is due to the need to consider fixed composition
codes (i.e., Step 2 in the derivation of the SP67 and VF bounds).

Both bounds use expurgation of half of the codewords to
transform a lower bound on the maximal error probability to a
lower bound on the average error probability.
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Discussion on Sphere-Packing Bounds

Question
Is it necessary to consider fixed composition codes first ?
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Discussion on Sphere-Packing Bounds

Question
Is it necessary to consider fixed composition codes first ?

Answer
In general, yes! Since it is required to fix the codeword
composition in order to find the optimal tilting measure FN .
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Discussion on Sphere-Packing Bounds

Question
Is it necessary to consider fixed composition codes first ?

Answer
In general, yes! Since it is required to fix the codeword
composition in order to find the optimal tilting measure FN .

However, for symmetric memoryless channels, the lower bound on
the maximal error probability is independent of the composition.

This observation yields that for symmetric memoryless channels,
the sphere-packing bounding technique can be directly applied to
general block codes (without necessarily a fixed composition).
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Discussion on Sphere-Packing Bounds

Question
Is it necessary to consider the maximal error probability first?

Answer
By modifying the first step of the derivation to consider the average
error probability over M pairs of codewords, where the index m of the
selected pair is chosen uniformly at random and known at the decoder,
it is possible to directly consider the average error probability.

This stage also requires that the lower bound on the conditional error
probability is independent of the considered codeword.
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Symmetry conditions

The symmetry conditions required for the ISP bound are mild:

I All memoryless binary-input output-symmetric (MBIOS) channels
are symmetric in this sense

I All M-ary input and symmetric output (MI-SO) channels (see [Wang
et al.,IT Jan 07]) are symmetric in this sense.

The ISP bound is valid in particular for coherently detected M-ary
PSK modulated signals, over fully-interleaved fading channels,
when the decoder has full knowledge of the fading samples.
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An Improved Sphere-Packing (ISP) Bound
The derivation of the ISP bound relies on

I the observation that for symmetric memoryless channels, the lower
bound on the maximal error probability is independent of the
codeword composition.

I the improvements suggested by Valembois and Fossorier for the
derivation of the VF bound.
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An Improved Sphere-Packing (ISP) Bound
The derivation of the ISP bound relies on

I the observation that for symmetric memoryless channels, the lower
bound on the maximal error probability is independent of the
codeword composition.

I the improvements suggested by Valembois and Fossorier for the
derivation of the VF bound.

The ISP bound forms a tighter sphere-packing bound

1 by considering M codeword pairs in the first step of the derivation

⇒ direct analysis of the average error probability,

eliminating the need for expurgation of half of the codewords

2 by the independence of the lower bound on the conditional error
probability from codeword composition

⇒ direct analysis of general block codes,

eliminating the need for considering fixed-composition codes.
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An Improved Sphere-Packing (ISP) Bound
The derivation of the ISP bound relies on

I the observation that for symmetric memoryless channels, the lower
bound on the maximal error probability is independent of the
codeword composition.

I the improvements suggested by Valembois and Fossorier for the
derivation of the VF bound.

Though this observation has no effect on asymptotic analysis, it
affects the tightness of the bound for finite-length codes
(especially, for short to moderate block lengths).

This gives the following improvement on the SP67 and VF bounds.
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Theorem (Improved Sphere-Packing Bound)
Let C be an arbitrary block code consisting of M codewords, each
of length N.

Assume communication over a symmetric memoryless channel
specified by the transition probabilities (or densities) P(j |k).

Assume a list decoder where the size of the list is limited to L.

Then, the average decoding error probability is lower bounded by

Pe(N, M, L) ≥ exp
{

−NEISP(R, N)
}

where

EISP(R, N) , inf
x>

√
2

2

{

E0(ρx ) − ρx

(

R − O1

( 1
N

, x
)

)

+ O2

( 1√
N

, x , ρx

)}
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Numerical Results
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Capacity limit

1959 sphere−packing bound
Valembois−Fossorier bound
Improved sphere−packing bound
Random coding upper bound
Tangential sphere upper bound

Transmission over a BPSK modulated AWGN channel

N = 500 bits, R = 0.8 bits
channel use .

The ISP bound gives an improvement of 0.26 and 0.33 dB over the
SP59 and VF bounds, respectively.
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Numerical Results
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Capacity limit 1959 sphere−packing bound

Valembois−Fossorier bound
Improved sphere−packing bound
Random coding upper bound

Transmission over a 8-PSK modulated AWGN channel

N = 5580 bits (1680 channel symbols), R = 2.2 bits
channel use .

ISP bound gives an improvement of 0.2 dB over the VF bound.

0.4 dB gap between ISP lower bound and random-coding upper bound.
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Minimal Block Length as a Function of Performance

Fixing:
1 the communication channel model
2 the code rate
3 the block error probability

Sphere-packing bounds ⇒ lower bounds on the minimal block
length required to achieve the desired performance on the given
channel using an arbitrary block code and decoding algorithm.

Upper bounds on the error prob. of random codes ⇒ upper
bounds on the block length required for ML decoded random
codes to achieve the desired performance on the given
communication channel.
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Comparison of upper and lower bounds on the block the length with
the performance of iteratively decoded codes.
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Summary

Summary
We present new information-theoretic bounds on the thresholds
and parity-check density of binary linear block codes.

Lower bounds on the parity-check density enable to assess more
accurately the tradeoff between performance and complexity
under iterative decoding.

Upper bounds on the thresholds under ML decoding and exact
thresholds under iterative decoding calculated using density
evolution enable to assess more accurately the inherent loss due
to the code structure and the sub-optimality of iterative decoding.

Comparison of quantized and un-quantized results gives insight
on the inherent loss due to quantization of the received sequence.

Generalization of the bounds for parallel channels enables to
study the performance-complexity tradeoff for punctured codes.
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Summary

Summary
We introduce analytic lower bounds on the number of iterations for
the asymptotic case where the block length tends to infinity.

The bounds refer to iteratively decoded ensembles of codes
defined on graphs whose transmission takes place over the BEC.

The bounds show that for all these code families the number of
iterations grows at least like the inverse of the gap to capacity.

The bounds are simple to evaluate and are given in terms of the
channel erasure probability, the required bit erasure probability,
the gap to capacity and the fraction of variable nodes of degree 2.

The behavior of these lower bounds matches experimental results
and a previous conjecture of Khandekar and McEliece.
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Code Number of iterations Graphical complexity
family as function of ε as function of ε

LDPC Ω
(1

ε

)

Θ
(

ln 1
ε

)

Systematic IRA Ω
(1

ε

)

Θ
(

ln 1
ε

)

Non-systematic IRA Ω
(1

ε

)

Θ(1)

Systematic ARA Ω
(1

ε

)

Θ(1)
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Summary

Summary
We introduce an improved sphere-packing (ISP) bound for
finite-length codes whose transmission takes place over
symmetric memoryless channels.

The ISP bound is uniformly tighter than the SP67 and VF bounds,
especially for codes of short to moderate block lengths.

Applications of the ISP bound are exemplified.

The ISP bound provides an interesting alternative to the
sphere-packing bound of Shannon for the Gaussian channel,
especially for high code rates.

The sphere-packing bounds are employed as lower bounds on
minimal block length required to achieve a desired performance
on a given channel model.
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Topics for further research

Performance vs. complexity tradeoff for generalized LDPC codes.

Application of the information-theoretic bounds for parallel
channels to common communication scenarios.

Generalization of the bounds on the number of iterations to
arbitrary MBIOS channels.

Further improvement of sphere-packing bounds for finite-length
codes.

Sphere-packing bounds on the symbol error probability of optimal
codes.
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