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Abstract

One of the main goals of information theory has been to design practical codes for reliable
transmission and lossy compression, approaching the fundamental information-theoretic limits
with feasible complexity. Recently, a new type of codes has been suggested for reliable com-
munication over memoryless channels, and for lossy compression of memoryless and stationary
sources with continuous alphabets. These codes, named as sparse regression codes (SPARCs)
or sparse superposition codes, rely on a coding technique where the codewords are linear com-
binations of columns of the design matrix of the code. SPARCs were originally developed for
communication over the additive white Gaussian noise (AWGN) channel, and they were proved
to asymptotically achieve the channel capacity. Subsequently, SPARCs were adapted for lossy
compression, and it was shown that they asymptotically attain the rate-distortion function of
a Gaussian memoryless source with a computational complexity which grows polynomially in
the blocklength of the source output.

The main focus of this thesis is the examination of the performance of SPARCs for lossy
compression of memoryless sources, obtained by tightening the existing asymptotic bounds
on the probability of excess distortion, and by adapting these bounds to finite blocklengths.
Furthermore, an improvement of the encoding scheme for lossy compression with SPARCs
is proposed, analyzed, and examined by computer simulations. We also discuss the tradeoff
between performance and complexity of SPARCs in the context of lossy compression.
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List of Abbreviations and Notations

SPARC Sparse regression code

AWGN Additive white Gaussian noise

∥ · ∥ Euclidean norm

| · | Scaled Euclidean norm

< ·, · > Inner product

Φ(·) Gaussian cumulative distribution function

ϕ(·) Gaussian probability density function

Q(·) Complementary Gaussian cumulative distribution function

ZM Maximum of M i.i.d. standard Gaussian random variables

eM Expectation of maximum of M i.i.d. standard Gaussian random variables

FX Cumulative distribution function of a random variable X

fX Probability density function of a random variable X

W (·) Lambert W function

γ̄(·, ·) Incomplete Gamma function
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Chapter 1

Introduction

1.1 Background on Sparse Regression Codes
From its inception, one of the goals of coding theory has been to design high-performance and
low-complexity codes for reliable communication over noisy channels and for lossless or lossy
data compression. While it is well known that such codes exist in principle when no system
constraints on complexity and delay are imposed [1], the main practical challenge has been
to construct codes with low computational and storage complexity for both the encoder and
decoder while approaching the information-theoretic fundamental limits of source and channel
coding in practice. Starting from the 1990’s, several practical codes which asymptotically
approach these theoretical limits have been designed such as turbo codes [2], codes defined on
sparse graph (e.g., low-density parity-check (LDPC) codes) [3], polar codes [4, 5] and spatially-
coupled LDPC codes [6]. These codes, however, have been mainly studied for discrete-input
channels and sources with a discrete output alphabet.

There are yet many channel and source models of practical interest with a continuous
alphabet. In particular, the additive white Gaussian noise (AWGN) channel and the Gaussian
memoryless source have been of special interest (e.g., [1, 7, 8]). A recently developed approach
for these cases is the sparse regression code (SPARC) (a.k.a. sparse superposition code) [9].

+Xi Yi

Ni ∼ N (0, σ2)

Figure 1.1: The AWGN channel

For the AWGN channel model (Figure 1.1), independent and identically distributed (i.i.d.)
samples of an additive Gaussian noise with zero mean and variance σ2 are added to input
symbols which are subject to an input power constraint P . The capacity of the AWGN channel
is given by C = 1

2
log2

(
1 + P

σ2

)
bits per channel use [1]. The aim of the designer is to reliably

transmit information over the channel at rates approaching the channel capacity with a decoding
error probability which asymptotically decays to zero when the blocklength n of the code is
increased, while keeping the processing delay and encoding/decoding complexity reasonable.
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Gaussian codebooks, for which each codeword is an i.i.d. Gaussian random vector, have been
proved to achieve the capacity of the AWGN channel. However, these codes are not practical
due to the high decoding complexity of un-structured Gaussian codebooks. In practice, the
popular approach for communication over the AWGN channel is coded modulation, a method
which consists of two separate steps: finite-alphabet coding and modulation; one example is a
combination of a standard modulation scheme like Quadrature Amplitude Moderation (QAM)
and a known capacity-achieving binary code, such as LDPC codes [10]. While these methods
show good empirical results in simulation and practice, it has not been proved that they manage
to achieve the capacity of the AWGN channel. Other proposed codes for communication over
the AWGN channel are lattice codes; however, they are infeasible for high dimensional lattices
[11].

A SPARC code is a type of a structured Gaussian codebook, which manages to achieve
similar results in performance with reasonable complexity. A SPARC code has an n×N design
matrix A with i.i.d. Gaussian entries, where n is the blocklength. The columns of the matrix
A are divided into L sections of M columns each (see Figure 1.2), and hence N = ML. A
SPARC codeword is a linear combination of L columns of the matrix A, one from each section.

Section 1
M columns︷ ︸︸ ︷ Section 2

M columns︷ ︸︸ ︷ Section L
M columns︷ ︸︸ ︷

A =


. . .




n

Figure 1.2: A is an n×N matrix, divided
into L sections with M columns each

For coding over a noisy channel, the entries of the design matrix A are i.i.d. Gaussian
random variables with zero mean and variance equal to 1

n
. A codeword of a SPARC is a linear

combination of L columns from A, one from each section; it is obtained by multiplying the
design matrix A by a sparse (column) vector β = {β1, β2, . . . , βN}⊤ of length N , which contains
a single non-zero entry in each of the L blocks of M consecutive entries, i.e., there exists exactly
one non-zero βi for i ∈ {1, . . . ,M}, one non-zero βi for i ∈ {M + 1, . . . , 2M}, and finally one
non-zero βi for i ∈ {(L − 1)M + 1, . . . , LM}. The values of the non-zero entries {βj} in each
section are determined to accommodate the average power constraint P per channel symbol,
and therefore they are set to {

√
nPj}Lj=1 with

∑L
j=1 Pj = P . For lossy compression, the entries

of the design matrix A are i.i.d. samples of a standard Gaussian distribution, and the non-zero
entries of the sparse vector β are determined to minimize the distortion in the reconstruction,
as it is explained in Chapter 3.
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Since there are L sections with M columns each, the total number of codewords in the
SPARC is ML. This holds since each such codeword corresponds to one possible choice of the
sparse vector β (recall that the values of the non-zero entries in each of the L segments are
fixed, and there are M possibilities for choosing the single non-zero entry of β in each segment).
Hence, since the number of codewords exp(nR) is equal to ML, the code rate R satisfies the
equality

nR = L logM (1.1)

where, unless mentioned explicitly, the logarithms are expressed on the natural base. For a
pair of values of blocklength n and code rate R, there are multiple valid choices for M and L.
For example, picking L = 1, we have an unstructured Gaussian codebook since the matrix A

is comprised of one big section; in this case, the number of columns in A grows exponentially
in n. A more practical choice, which is often used for SPARCs, is M = Lb for some positive
constant b; here, (1.1) gives

nR = bL logL, (1.2)

⇒ L = exp

(
W

(
nR

b

))
, (1.3)

where W (·) denotes the Lambert W function [12]; this function, as presented in Section 2.2, is
the inverse function of f(x) = xex for x ≥ −1

e
. In view of the following asymptotic result for

the Lambert W function (see (2.25)):

W (x) = log x− log log x+O

(
log log x

log x

)
(1.4)

and, since the number of columns in the design matrix A is equal to ML = Lb+1, it therefore
follows that the number of columns in A grows only polynomially in n (more precisely, it scales
like

(
n

logn

)b+1

).
Codewords of a SPARC are statistically dependent when they are constructed by linear

combinations which contain at least one shared column; this is equivalent to having at least
one shared non-zero entry in the sparse vectors which are used to construct the two codewords
from the design matrix.

The decision on how to allocate the power among the L non-zero entries of the sparse
vector β has a large effect on the performance of the SPARC. Two possible power allocations
which have been studied in the literature are the flat power allocation where Pj = P

L
for all

j ∈ {1, . . . , L}, and the exponentially decaying power allocation with Pj = C exp(−aj) for
a > 0 and j ∈ {1, . . . , L} (the former is a special case of the latter when a ↓ 0). For both power
allocations, it has been proved that there exists a decoder which asymptotically approaches the
channel capacity [13, 14].
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Channel Coding with Sparse Regression Codes

p(y|x)
Channel

m

Message
m̂

Decoded message
Encoder Decoder

yx

Figure 1.3: A standard channel coding set-up

For communication over the AWGN channel, encoding with SPARCs is done as follows: each
input block of k = nR bits is partitioned into L blocks of log2M bits, so that each of these
blocks is a binary representation of an integer between 0 and M − 1. The non-zero entry in
every section of the sparse vector β is at the index of that integer plus one, and the input
codeword to be sent through the channel is given by Aβ.

The error probability of a SPARC is measured by its section error rate,

Esec =
1

L

L∑
ℓ=1

1
{
β̂ℓ ̸= βℓ

}
, (1.5)

where β̂ is the decoded version of the vector β, and βℓ represents the sub-vector of the sparse
vector β in section ℓ ∈ {1, . . . , L}. The section error rate denotes the fraction of sections
which are decoded erroneously. Assuming a uniform mapping between the input stream to the
encoder (and, therefore, an equi-probable distribution for the non-zero index in each section),
the bit error rate is approximately equal to one-half the section error rate, i.e., Eber ≈ 1

2
Esec. For

a given decoding algorithm, it is of interest to bound the probability P(Esec > ϵ) as a function
of ϵ > 0. In order to improve the decoding error probability of the message, one can use a
concatenated code where the SPARC serves as an inner code and a Reed-Solomon (RS) code is
the outer code; an RS code of rate 1− 2ϵ, whose symbols over the Galois field are represented
by log2M bits, can correct up to a fraction ϵ of the section errors in the SPARC.

Several decoders were proposed and analyzed for SPARCs. The first one, analyzed in [13],
is an optimal decoder when the codewords are equally likely, and it is based on the following
decision rule:

β̂opt = argmin
β

∥y −Aβ∥2, (1.6)

where y = (y1, . . . , yn) is the output sequence of the channel, and the minimum is taken over all
possible sparse vectors β. Joseph and Barron showed in [13] that, at all rates below the channel
capacity, the error probability of the optimal decoder decays exponentially in n; however, this
decoder is not practical computationally since the minimization in (1.6) is performed over an
exponentially growing number of vectors in n.

The adaptive successive decoder, which originally appeared in [14], was the first practical
decoder to be proposed for SPARCs. The decoding goes as follows: in Step 1, the decoder
calculates the inner products between every column of the design matrix A with the normalized
output sequence y, (i.e., y

∥y∥), and the results are compared to a pre-specified threshold. For
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each inner product that exceeds this threshold, the corresponding column in A is picked as
part of the solution, and therefore at the end of the step, we have the first estimate for the
sparse vector β̂1. In step i, for i > 1, a residual Ri is produced according to Ri = Ri−1 −Aβ̂i

with R0 = y. Then, the decoder calculates the inner products between the columns of A and
the normalized residual Ri

∥Ri∥ , and again picks those (from the as yet undecoded sections) who
surpass the pre-specified threshold. The number of steps the decoder runs is predetermined,
but it may finish beforehand if one column has been already selected from each section, or if
no inner product surpasses the threshold in a certain step.

Consider the AWGN channel with average power constraint P , and assume a power alloca-
tion of the SPARC which is given by Pℓ ∝ exp(−αℓ) for ℓ ∈ {1, . . . , L} and α > 0. The error
probability of the adaptive successive decoder was analyzed in [14], providing an upper bound
which decays exponentially in L at any rate below the channel capacity. The empirical results
at rates close to capacity are, however, quite large for the section error rate when practical
blocklengths are used.

The next two suggested decoders for SPARCs are iterative soft-decision decoders. Both of
them aim to iteratively update the posterior probabilities of each entry of β being the true
non-zero in its section. The objective of these decoders is to produce a test statistics vector at
each iteration which has the form

stati ≈ β + τiZi, (1.7)

where Zi is a standard Gaussian random variable independent of β. The test statistics sequence
stati is what one would expect to receive at the output of an AWGN channel with noise variance
τ 2i . From the test statistics vector, it is possible to extract the next estimate for βi, by using
the optimal Bayesian estimator,

βi+1 = E[β|β + τiZi = stati] = ηi(stati), (1.8)

where ηi denotes the conditional expectation. For index j in section ℓ ∈ {1, . . . , L} of β, we
have

ηi,j(s) =
√
nPℓ

exp(
√
nPℓ sj/τ

2
i )∑

k∈secℓ exp(
√
nPℓ sk/τ 2i )

. (1.9)

In addition to updating βi iteratively, we must also update the variance τ 2i accordingly, so
that it reflects the variance of the difference between β and βi. Starting with τ 20 = σ2 + P , we
define

τ 2i = σ2 +
1

n
E
∥∥β − η(β + τi−1Zi−1)

∥∥2, (1.10)

with the expectation being over both β and Zi−1. This way, the variance of the Gaussian
part of stati would consist of two independent terms: one is the inherent Gaussian noise of the
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channel, and the other derived from the difference between β and its estimate βi. The recursion
function of τi can be rewritten as

τ 2i = σ2 + P (1− x(τi−1)), (1.11)

where xi , x(τi−1) is the expected value of a function of standard Gaussian random variables,
and has an exact expression in [18, Sec.3]. In [18], it is shown that for rates below the channel
capacity and with an exponential power allocation, the recursion of τi has a fixed point close
to σ2, i.e. that the gap between βi and β diminishes.

However, the open question is still how to generate the coveted test statistics sequence
stati, which should be approximately equal to β + τiZi in each step. The adaptive-successive
soft-decision decoder proposes one method to reach this goal. It is based on the following fits:
Fit1 , y, Fit2 , Aβ1, . . . ,Fiti , Aβi. From these fits, we recursively define Gi: set G0 , y,
and subsequently define Gi to be the part of Fiti that is orthogonal to G0,G1, . . . ,Gi−1. The
actual components from which we build the test statistics vector are Zi, which are defined as

Zk =
√
n
A⊤Gk

∥Gk∥
(1.12)

for k ≥ 0. Then, we define

stati = τi

i∑
k=0

λkZk + βi. (1.13)

The coefficients {λk} are chosen so that the demand on the distribution of the test statistics in
(1.7) is met.

Choosing suitable values for {λk} is based upon identifying what the distribution of {Zk}
is, which was outlined in [15]. One possible choice, first proposed in [16], is

(λ1, λ2, . . . , λi) =

(
1

τ0
, −

√
1

τ 21
− 1

τ 20
, . . . , −

√
1

τ 2i
− 1

τ 2i−1

)
. (1.14)

In [16], it is shown that this choice guarantees an approximately correct distribution for stati;
as a result, it is proved that for every rate below the channel capacity, with the exponen-
tially decaying power allocation, the error probability of this decoder decays exponentially in
n/(log n)2k+1, where k is the number of steps the decoder executes.

Another way to obtain a test statistics sequence stati which satisfies (1.7) is used by the
approximate message-passing (AMP) decoder. Originally, the AMP decoding algorithm gives a
fast solution to the problem

β = argmin
β̂

{
∥y −Aβ̂∥22 + λ∥β̂∥1

}
, (1.15)

for some λ > 0. This is not quite the problem which the decoder of the SPARC needs to solve,
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since in (1.6) the minimum is only over possible codewords, i.e. that there is exactly one non-
zero entry in each section of β, rather than over all possible vectors. However, if the decoding
problem could be described with min-sum like message passing updates, then an AMP decoder
could find an approximate solution to it, as per [17]. This was done in [18], with the following
set of update rules:

ri = y −Aβi +
ri−1

τ 2i−1

(
P − ∥βi∥2

n

)
, (1.16)

stati = A⊤ri + βi, (1.17)

and with βi and τi updating according to (1.8) and (1.10) respectively. In [19] it was proved
that the error probability of the AMP decoder decays exponentially in n/(log n)2T , where T is
the number of iterations that is required for a successful decoding.

In terms of computational complexity, both soft-decision decoders are similar, and require
O(nN) time; in practice, the adaptive successive soft-decision decoder is more costly, as each
iteration requires orthogonalization and expensive computation of coefficients. The computa-
tional complexity can be reduced by replacing the i.i.d. Gaussian design matrix A with lines
randomly selected from an N × N Hadamard matrix as suggested in [18]; this reduces the
computational complexity of the AMP decoder to O(ML logL), and greatly improves storage
complexity, as the matrix does not have to be saved in the memory.

Some other improvements to the SPARCs have recently been proposed. Spatially coupled
SPARCs, in which the design matrix A is comprised of blocks with different variances, appear to
have better empirical results than regular SPARCs [20],[21]. Other suggested techniques include
new power allocation routines, using an outer LDPC code, and using an online estimate of the
parameter τ 2i (see (1.10)) [22].

Lossy Compression with Sparse Regression Codes

As it is mentioned above, SPARCs can be also utilized for lossy compression of sources with con-
tinuous alphabet. Specifically, for a memoryless Gaussian source with zero mean and variance
σ2, SPARCs can approach its distortion-rate function with the mean-square error distortion:

D(R) = σ2e−2R. (1.18)

For general zero-mean ergodic sources with a fixed variance, SPARCs attain the distortion-rate
function of a Gaussian memoryless source in (1.18); this is the best possible feat for universal
lossy compression of zero-mean ergodic sources with fixed variance when Gaussian codebooks
are utilized [23].

The construction of SPARCs for lossy source compression is similar to channel coding, with
codewords of the form Aβ where the design matrix A is composed of i.i.d. standard Gaussian
entries, and the sparse vector β has a single non-zero entry in each section. The only difference
in comparison to SPARCs for power-limited channel coding is that the non-zero entries of β

9



are not subject to satisfy a power constraint, so that they can be chosen arbitrarily to help the
source encoder to reduce the distortion.

Similarly to optimal decoding in communication over a noisy channel, optimal encoding for
lossy compression is based on the following rule:

β̂opt = argmin
β

∥S−Aβ∥2, (1.19)

where S is a source sequence of length n, and the minimization is carried over all possible sparse
vectors β whose non-zero entries in each of the L sections are fixed. Every non-zero index in
each section of β̂opt is converted into a sequence of log2M bits based on its index in the section,
hence the rate of the code is

R =
L logM

n
. (1.20)

The reconstructed approximation of the source S in the decoder is Ŝ = Aβ̂opt. Papers [24] and
[25] show that with this optimal encoding scheme, the excess-distortion probability which is
given by P

(
1
n
∥s−Aβ̂opt∥2 > D

)
decays exponentially in the source blocklength n, with the

optimal excess-distortion exponent for memoryless discrete and Gaussian sources. This is in
contrast to the error exponent of optimal decoding of SPARCs over the AWGN channel, which
is sub-optimal.

Since the optimal encoder is impractical due to the fact that the number of codewords grows
exponentially with n, a sub-optimal feasible encoder for lossy compression was designed and
suggested in [26]. This proposal is a variant of successive cancellation, in which the non-zero
indices in every section of β are picked sequentially: the encoder initializes a residual vector to
R0 = S, and chooses the non-zero index mi in each section i ∈ {1 . . . , L} of A, as the one which
maximizes the inner product between the columns of A and the normalized residual Ri−1

∥Ri−1∥ .
The residual is updated by

Ri = Ri−1 − ciAmi
, (1.21)

where

ci =

√
2σ2 logM

(
1− 2R

L

)i−1

, (1.22)

and is also the non-zero coefficients of β. At the end of the run, the encoded codeword is Aβ.
A more detailed description of the encoding algorithm is provided in Chapter 3.

In [26], it is proved that the probability of excess distortion for this feasible encoder expo-
nentially tends to 0 in n. While the results in [26] show that the rate-distortion function is
asymptotically achievable for a memoryless Gaussian source, there are no explicit implications
for the case where the blocklength of the source is finite; furthermore, even though the bound
on the excess distortion decays exponentially to 0, it is rather loose for practical values of n.

10



1.2 Structure of the Thesis
We outline in the following the structure of the thesis.

• Chapter 2 provides preliminaries, notation, and new related results on Lambert’s W
function which are relevant to our analysis.

• Chapter 3 proposes a new version of lossy compression with SPARCs, improving the
performance of the algorithm in [26], especially at high code rates. This is done by using
better approximations than those used in [26].

• Chapter 4 provides an asymptotic analysis of the encoding algorithm, demonstrating that
the distortion-rate function of a Gaussian memoryless source is achievable.

• In Chapter 5, an adaptation of the main theorem from [26] is derived for lossy compression
of memoryless Gaussian sources with SPARCs of finite blocklength. The new theorem is
derived in view of the modifications which follow from the new compression algorithm,
and by improving the upper bound on the probability of excess distortion from [26].
It is further shown that the new theorem is applicable for memoryless non-Gaussian
sources as well, and that SPARCs can successfully compress any memoryless source with a
finite second moment up to the compression rate which corresponds to the rate-distortion
function of a Gaussian memoryless source with the same variance.

• In Chapter 6, we find an asymptotic upper bound on the gap to the distortion-rate
function which follows from the main result in Theorem 1 for the memoryless Gaussian
case. The result scales similarly to [26], but it has a better (smaller) coefficient.

• Chapter 7 contains computer simulations of the new algorithm for lossy compression with
SPARCs: first, we compare the performance of our improved algorithm to its original
version in [26]; then, we examine the quality of our bound on the probability of excess
distortion from Theorem 1 by comparing the bound with computer simulations.

• Chapter 8 summarizes briefly this thesis, and provides some open questions.
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Chapter 2

Preliminaries, and New Related
Results for the Lambert W Function

Chapter 2 is organized as follows: the first section is dedicated to the basic notation and
basic results that are used throughout this thesis. The second section introduces the Lambert
W function, and known approximations and bounds for it are detailed. Then, new tighter
upper and lower bounds on the Lambert W function are derived in the third section, and they
compared numerically to the previously known bounds. In the last section of the chapter,
a closed-form approximation for the expected value of the maximum of M i.i.d. standard
Gaussian random variables is presented, which is used multiple times in the course of this
thesis.

2.1 Preliminaries and Notation
Throughout this document, unless stated otherwise, logarithms are on the natural base.

Notation 1. Let r, s ∈ Rn. The norm, scaled norm, and inner product are given, respectively,
by

∥r∥ =

(
n∑

i=1

r2i

) 1
2

, (2.1)

|r| = ∥r∥√
n
, (2.2)

⟨r, s⟩ =
n∑

i=1

risi. (2.3)

Notation 2. Let Φ be the cumulative distribution function of a standard Gaussian random
variable, ϕ the corresponding probability density function, and Q the complementary Gaussian

12



cumulative distribution function, i.e.

Φ(z) =
1√
2π

∫ z

−∞
e−

t2

2 dt, (2.4)

ϕ(z) = Φ′(z) =
1√
2π

e−
z2

2 , (2.5)

Q(z) = 1− Φ(z) = 1−Q(−z), (2.6)

for all z ∈ R.

Notation 3. LetX1, . . . , XM be i.i.d. standard Gaussian random variables. Let their maximum
and its expected value be denoted by

ZM = max
i∈{1,...,M}

Xi, (2.7)

eM = E [ZM ] . (2.8)

The cumulative distribution function of ZM satisfies

FZM
(z) = P

(
max

i∈{1,...,M}
Xi ≤ z

)
(2.9)

= P(X1 ≤ z)P(X2 ≤ z) · · ·P(XM ≤ z) (2.10)
= ΦM(z), (2.11)

for all z ∈ R. Consequently, the probability density function of ZM is given by

fZM
(z) = F ′

ZM
(z) =M ΦM−1(z)ϕ(z) (2.12)

=M QM−1(−z)ϕ(z), (2.13)

for all z ∈ R; and thus, the expectation eM in (2.8) satisfies

eM =

∫ ∞

−∞
z fZM

(z) dz. (2.14)

Lemma 1. Let X1, . . . , XM be i.i.d. standard Gaussian random variables, then

eM ≤
√

2 logM. (2.15)

Proof. By invoking Jensen’s inequality, it follows from (2.7) and (2.8) that for all t ∈ R,

exp(t eM) ≤ E [exp (t ZM)] ≤
M∑
i=1

E [exp (tXi)] =M exp
(
1
2
t2
)
, (2.16)
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which implies that for all t > 0,

eM ≤ logM

t
+
t

2
. (2.17)

Minimization of the right side of (2.17) over t > 0 yields the optimized value t =
√
2 logM ,

leading to the required result.

Remark. The proof appears in [27, Eq. (A.3)]. This result can be specialized from the maximal
inequality in [28, Lemma 2.3] by letting T = {1, . . . ,M}, A = R and ψ(t) = t2 for all t ∈ R.

2.2 The Lambert W Function
The Lambert W function is a set of functions, namely the branches of the inverse relation of
the function f(z) = zez. Hence, the function W (·) satisfies the identity

z = W (z) eW (z), (2.18)

for all z ∈ C. Since the function f is not injective (i.e., it is one-to-one), the relation W is
multi-valued (except at zero). If the attention is restricted to real-valued W , then the complex
variable z is replaced by the real variable x, and the relation is defined only for x ≥ −1

e
, and it

is double valued on (−1
e
, 0) (see Figure 2.1).

−1 0 1 2 3 4 5
−4

−3

−2

−1

0

1

2

x

W
(x
)

The Two Real Branches of W (x)

W0(x)
W−1(x)

Figure 2.1: The two real branches of the Lambert W function. The solid line is
W0(x), the principal branch; the dashed line is W−1(x).

The additional constraint W ≥ −1 defines a single-valued function, denoted by W0(x)
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where W0(0) = 0 and W0(−1
e
) = −1, which refers to the principal branch of the Lambert W

function (the solid line in Figure 2.1). The secondary (lower) branch (see the dashed line in
Figure 2.1) satisfies W ≥ −1, and it is denoted by W−1(x), decreasing from W−1(−1

e
) = −1

to W−1(0
−) = −∞. Unless the branch is not explicitly stated, it refers to the principal branch

W0.
Among its uses, the Lambert W function can be employed to solve exponential equations.

For example, the equation xbx = a has the solution

x =
W (a log b)

log b
. (2.19)

In [12], many other practical applications of Lambert-W function are detailed, which show how
important it is to have good approximations and bounds on this function.

We begin by presenting some known results. Two useful identities that are derived directly
from (2.18) are

eW (x) =
x

W (x)
, for x ̸= 0, (2.20)

logW (x) = log x−W (x), for x > 0. (2.21)

The following asymptotic expansion to W (x) was developed in [12] for large values of x,

W (x) = log x− log log x+
∞∑
k=0

∞∑
m=1

ckm(log log x)
m(log x)−k−m, (2.22)

with ckm = (−1)k

m!
[k+m
k+1

], and where [k+m
k+1

] is a Stirling cycle number of the first kind, defined by

x(x+ 1) . . . (x+ n− 1) :=
n∑

k=0

[n
k
]xk. (2.23)

This expansion is absolutely convergent, and can be expressed (after rearranging terms) as

W (x) = L1 − L2 +
L2

L1

+
L2(−2 + L2)

2L2
1

+
L2(6− 9L2 + 2L2

2)

6L3
1

+O

(
L4
2

L4
1

)
, (2.24)

where L1 := log x and L2 := log log x. In [30], the following upper and lower bounds were
proved:

log x− log log x+
1

2

log log x

log x
≤ W (x) ≤ log x− log log x+

e

e− 1

log log x

log x
, (2.25)

for every x ≥ e.
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2.3 New Bounds on the Lambert W Function
The next lemma provides new bounds to the Lambert W function, which are tighter than the
previously known ones.

Lemma 2. For x ≥ e,

s(x) ≤ eW (x) ≤ t(x), (2.26)

with

s(x) , x

log t(x)
, (2.27)

t(x) , x

log x− log log
(

x
v(x)

) , (2.28)

v(x) , log x− log

(
log

(
x

log x

)
− log

(
1− log log x

1 + log x

))
. (2.29)

Furthermore, both the upper and lower bounds coincide if and only if x = e.

Proof. From [30, Theorem 2.5], for all x > 1,

W (x) ≥
(

log x

1 + log x

)
(log x− log log x+ 1) (2.30)

= log x− log x

1 + log x
· log log x, (2.31)

with equality if and only if x = e. Denote the right side of (2.31) by f(x). The function f is
monotonically increasing on [e,∞) since both log x

1+log x
and (log x− log log x+ 1) are nonnegative

increasing functions in this domain. Since f(e) = 1, we have f(x) ≥ 1 for all x ≥ e. Thus,
taking logarithms on both sides of (2.31) gives

logW (x) ≥ log

(
log x− log x

1 + log x
· log log x

)
(2.32)

= log log x+ log

(
1− log log x

1 + log x

)
. (2.33)

From (2.21),

W (x) = log x− logW (x) (2.34)

≤ log x− log log x− log

(
1− log log x

1 + log x

)
(2.35)

= log

(
x

log x

)
− log

(
1− log log x

1 + log x

)
, (2.36)
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where (2.35) follows from (2.33). Hence,

logW (x) ≤ log

(
log

(
x

log x

)
− log

(
1− log log x

1 + log x

))
, (2.37)

and by invoking (2.21) once again, it follows that

W (x) = log x− logW (x) (2.38)

≥ log x− log

(
log

(
x

log x

)
− log

(
1− log log x

1 + log x

))
(2.39)

= v(x), (2.40)

with (2.40) is due to the definition of v in (2.29). The function v is positive on [e,∞), since for
x ≥ e

v(x) ≥ log x− log

(
log x− log

(
1 + log x− log log x

1 + log x

))
(2.41)

≥ log x− log (log x+ log (1 + log x)) (2.42)

≥ log x− log

(
2 log x+ log

(
2

e

))
(2.43)

= log

(
x

2 log x+ log
(
2
e

)) (2.44)

≥ 3
2
− 3

2
log 2 (2.45)

≈ 0.4603, (2.46)

where (2.41) holds since log log x ≥ 0 for x ≥ e; (2.42) holds since log x ≥ log log x for x ≥ e;
(2.43) holds since 2x

e
≥ 1 + log x for x ≥ e; (2.45) is obtained by minimization of the right side

of (2.44) for x ≥ e where the minimal value is attained at x = 1√
2
e3/2. Therefore, for all x ≥ e,

logW (x) ≥ log v(x), (2.47)

and then we continue in a similar fashion where from (2.21)

W (x) = log x− logW (x) (2.48)

≤ log
x

v(x)
, (2.49)

where (2.49) follows from (2.47). Again using (2.21),

W (x) = log x− logW (x) (2.50)

≥ log x− log log
x

v(x)
(2.51)

=
x

t(x)
, (2.52)
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with t(x) as defined in (2.28). Since

x

t(x)
= log x− log log

(
x

h(x)

)
(2.53)

≥ log x− log log
( x

0.46

)
(2.54)

≥ log(0.46e) ≥ 0.22, (2.55)

where (2.54) is due to (2.45), and (2.55) is found by minimization. Thus,

logW (x) ≥ log

(
x

t(x)

)
, (2.56)

and using (2.21) one last time,

W (x) = log x− logW (x) (2.57)
≤ log t(x). (2.58)

From (2.52) and (2.58) and the identity in (2.20), it follows that for all x ≥ e,

x

log t(x)
≤ eW (x) ≤ t(x). (2.59)

Corollary 1. For large x,

W (x) ≈ log x− log log x+
log log x

log x
. (2.60)

Proof. From Lemma 2 and (2.20),

x

t(x)
≤ W (x) ≤ log t(x). (2.61)

For large x,

t(x) ≈ x

log x− log log( x
log x

)
, (2.62)

and therefore,

x

t(x)
≈ log x− log log

(
x

log x

)
(2.63)

= log x− log(log x− log log x) (2.64)

= log x− log

(
log x

(
1− log log x

log x

))
(2.65)

≈ log x− log log x+
log log x

log x
, (2.66)
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where in (2.66), the first-order Taylor approximation log(1− x) ≈ −x was used. Consequently,

log t(x) ≈ log

 x

log x− log log
(

x
log x

)
 (2.67)

= log x− log

(
log x− log log

(
x

log x

))
(2.68)

≈ log x− log

(
log x

(
1− log log x

log x

))
(2.69)

≈ log x− log log x+
log log x

log x
. (2.70)

Comparison to existing bounds: From the previously known bound in (2.25), we have

x

log x
exp

(
1

2

log log x

log x

)
≤ eW (x) ≤ x

log x
exp

(
e

e− 1

log log x

log x

)
. (2.71)

Another bound can be derived by using the inequality in (2.25) once more, this time along with
the identity in (2.20),

x

log x− log log x+ e
e−1

log log x
log x

≤ eW (x) ≤ x

log x− log log x+ 1
2
log log x
log x

. (2.72)

Figure 2.2 shows the ratio between each of the bounds in (2.26), (2.71) and (2.72) and the exact
value of eW (x). The new bound, in (2.26), is a significant improvement to the those in (2.71)
and (2.72), and is almost identical to eW (x).
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Figure 2.2: Comparison of the upper and lower bounds on the Lambert W
function: the solid line is the ratio between the new upper and lower bounds
in (2.26) and the exact value of eW (x), the dashed line is the ratio between the
bounds in (2.71) and the exact value of eW (x), and the dotted line is the ratio
between the bounds in (2.72) and the exact value of eW (x). The new upper and
lower bounds are much tighter than the previously reported bounds, and they are
almost equal to the exact value of eW (x).

2.4 A Closed-Form Approximation for eM
The following lemma gives a closed-form asymptotic approximation to eM as defined in (2.8).
It relies on [29], which describes a general method to find the expected value of extreme values
of M continuously distributed random variables. As an example, the method is applied to the
Gaussian distribution.

Lemma 3. For large M , the following asymptotic result holds:

eM =
√

2 logM − log logM + log 4π − 2γ

2
√
2 logM

+O

(
log logM

log1.5M

)
, (2.73)

where γ is the Euler-Mascheroni constant,

γ = lim
n→∞

(
n∑

k=1

1

k
− log n

)
≈ 0.577216 . (2.74)
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Proof. Let ξM be the following random variable,

ξM ,M(1− Φ(ZM)), (2.75)

with Φ and ZM as defined in (2.4) and (2.7), respectively. The cumulative distribution function
of ξ is given by

FξM (x) = P(ξM ≤ x) (2.76)

= P
(
1− x

M
≤ Φ(ZM)

)
(2.77)

=

∫ ∞

Φ−1(1− x
M )
MΦM−1(t)ϕ(t) dt, (2.78)

where (2.78) follows from (2.12). By applying Leibniz’s integral rule, the probability density
function is given by

fξM (x) = F ′
ξM

(x) (2.79)

= −M ΦM−1
(
Φ−1

(
1− x

M

))
ϕ
(
Φ−1

(
1− x

M

))
· d

dx

{
Φ−1

(
1− x

M

)}
(2.80)

= −M
(
1− x

M

)M−1

ϕ
(
Φ−1

(
1− x

M

))
·

(
− 1

M

1

ϕ
(
Φ−1

(
1− x

M

))) (2.81)

=
(
1− x

M

)M−1

, (2.82)

for all x ∈ [0,M ]. By letting M → ∞, the function fξM (x) converges to

lim
M→∞

fξM (x) = e−x, x ≥ 0. (2.83)

Since fξM (x) is uniformly bounded for all M on every finite interval of x, the distribution of
ξM as M → ∞ is equal to the exponential probability density function in (2.83). We continue
by expressing ZM as function of ξM . From its definition in (2.75),

ξM =M

∫ ∞

ZM

1√
2π

e−
t2

2 dt. (2.84)

Since

P(ZM ≤ 0) = ΦM(0) = 2−M , (2.85)

it follows that, as M → ∞, the probability that ZM > 0 tends to 1 exponentially in M .
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Integrating (2.84) by parts, we have
√
2π ξM
M

=

∫ ∞

ZM

(
−1

t

)
·
(
−te−

t2

2

)
dt (2.86)

=
1

ZM

e−
Z2
M
2 −

∫ ∞

ZM

1

t2
e−

t2

2 dt. (2.87)

The integral in the right side of (2.87) can be upper bounded as follows: let

g(x) , 1

x3
e−

x2

2 −
∫ ∞

x

1

t2
e−

t2

2 dt (2.88)

for x > 0. Then,

g′(x) = − 3

x4
e−

x2

2 − 1

x2
e−

x2

2 +
1

x2
e−

x2

2 (2.89)

= − 3

x4
e−

x2

2 < 0, (2.90)

and

lim
x→∞

g(x) = 0. (2.91)

Since the function g(·) is monotonically decreasing on (0,∞), and it tends to 0 as we let x→ ∞,
it is nonnegative on (0,∞), i.e. ∫ ∞

x

1

t2
e−

t2

2 ≤ 1

x3
e−

x2

2 , x > 0. (2.92)

Hence, (2.87) can be rewritten as
√
2π ξM
M

=
1

ZM

e−
Z2
M
2

(
1 +O

(
1

Z2
M

))
, (2.93)

⇒ M2

2πξ2M
= Z2

Me
Z2
M

(
1 +O

(
1

Z2
M

))
. (2.94)

The random variable ξM is bounded asymptotically in probability as follows:

lim inf
M→∞

P

(
1

logM
≤ ξM ≤ logM

)
= lim inf

M→∞

∫ logM

1
logM

(
1− x

M

)M−1

dx (2.95)

= lim inf
M→∞

∫ 1− 1
M logM

1− logM
M

MyM−1dy (2.96)

= lim inf
M→∞

(
1− 1

M logM

)M

−
(
1− logM

M

)M

, (2.97)

where (2.95) follows from ξM ’s probability density function in (2.82), and (2.96) comes from
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substituting y = 1− x
M

. From the inequality log(1− x) ≤ −x for x ∈ [0, 1),

lim sup
M→∞

(
1− logM

M

)M

= lim sup
M→∞

exp

(
M log

(
1− logM

M

))
(2.98)

≤ lim sup
M→∞

1

M
(2.99)

= 0. (2.100)

Similarly, from the inequality log(1− x) ≥ −x− x2 for x ∈ [0, 1
2
],

lim inf
M→∞

(
1− 1

M logM

)M

= lim inf
M→∞

exp

(
M log

(
1− 1

M logM

))
(2.101)

≥ lim inf
M→∞

exp

(
− 1

logM
− 1

M log2M

)
(2.102)

= 1. (2.103)

Consequently, as M → ∞, ξM is upper bounded by logM and lower bounded by 1
logM

with
probability that tends to 1, and henceforth we assume that

1

logM
≤ ξM ≤ logM. (2.104)

In view of (2.94), we next use the Lambert W function. Using the asymptotic approximation
in Corollary 1,

W (x) = log x− log log x+O

(
log log x

log x

)
, (2.105)

we have

log(M2)− log(2πξ2M)− log log

(
M2

2πξ2M

)
+O

(
log logM

logM

)
= Z2

M +O

(
1

Z2
M

)
. (2.106)

Therefore,

ZM =
√

2 logM ·

√√√√
1−

log 2π + 2 log ξM + log
(
2 logM − log(2πξ2M)

)
+O

(
log logM
logM

)
2 logM

,

(2.107)

and by using another Taylor approximation where (1 − x)1/2 ≈ 1 − 1
2
x for values of x which
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are close to zero, it follows that

ZM =
√

2 logM

1−
log 2π + 2 log ξM + log

(
2 logM − log(2πξ2M)

)
+O

(
log logM
logM

)
4 logM

 (2.108)

=
√
2 logM −

log
(
2 logM − log(2πξ2M)

)
+ log 2π

2
√
2 logM

− log ξM√
2 logM

+O

(
log logM

log1.5M

)
.

(2.109)

Finally, we use a Taylor approximation for log(x),

ZM =
√

2 logM − log logM + log 4π

2
√
2 logM

− log ξM√
2 logM

+O

(
log logM

log1.5M

)
. (2.110)

Therefore, in view of (2.83), the expected value of ZM is approximately equal to

eM =
√
2 logM − log logM + log 4π − 2γ

2
√
2 logM

+O

(
log logM

log1.5M

)
, (2.111)

where we rely on the following identity:

γ = −
∫ ∞

0

e−t log t dt. (2.112)

Two important results stem from Lemma 3. First, a simpler (albeit less accurate) asymptotic
approximation of eM can be acquired,

lim
M→∞

eM√
2 logM

= 1; (2.113)

second, we can deduce that for a large enough M ,

√
2 logM − log logM + log 4π

2
√
2 logM

≤ eM ≤
√

2 logM − log logM − 2γ

2
√
2 logM

. (2.114)

Remark. In (2.106), the approximation from Corollary 1 was applied rather than the tight
bounds of Lemma 2, even though a close approximation of eM for finite M could be extracted
by using it. However, using Lemma 2 is unnecessary for our purpose, since there are approx-
imations of eM which are sufficiently tight even for small values of M . Figure 2.3 shows a
comparison between eM as calculated by its expression in (2.14), and several approximations:

1. Upper bound:
√
2 logM (2.115)

2. Approx. 1:
√
log

(
M2

2π log
(

M2

2π

)
)

(2.116)
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3. Approx. 2:
√
log

(
M2

2π log
(

M2

2π

)
)(

γ
2 logM

+ 1
)

(2.117)

4. Approx. 3: (1− γ)Q−1
(

1
M

)
+ γQ−1

(
1

Me

)
(2.118)
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Figure 2.3: A comparison between eM and its approximations. The bold line is
an exact calculation of eM . The solid line is the upper bound (2.115), The dashed
line is approximation 1 (2.116), The dotted line is approximation 2 (2.117), The
dash-dot line is approximation 3 (2.118).
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Chapter 3

Lossy Compression with the Sparse
Regression Codebook

The following lossy compression algorithm is the one which was described in [26]. We then
propose a modification to the encoder which improves the performance of the compression, and
enables reaching a tighter upper bound on the probability of excess distortion.

3.1 Original Encoding Algorithm
Let S be an ergodic source, emitting a sequence of length n whose symbols have zero mean and
variance σ2. Let A be an n × N matrix with i.i.d. N (0, 1) entries independent of S, and let
N =ML with M > L and M,L ∈ N. Let b satisfy M = Lb.

Conceptually, the columns of the matrix A are divided into L sections with M columns
each; a codeword is generated by a linear combination of L columns, one from every section.
The linear combination can be thought of as multiplying A with a sparse vector β of length
N , consisting of a single non-zero entry in M consecutive components.

Thus, if the rate R of the code is expressed in nats per source symbol, the number of
codewords is ML = exp(nR), and therefore

nR = L logM = bL logL. (3.1)

The non-zero entries of β are marked by {ci}Li=1 and are given by

ci = σ

√
2R

L

(
1− 2R

L

)i−1

. (3.2)

The Algorithm. The codeword Aβ̂, that corresponds to a source sequence S of length n, is
determined in the following way:

1. Set R0 = S. (3.3)
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2. For i ∈ {1, . . . , L}, choose

mi , argmax
j:(i−1)M<j≤iM

⟨
Aj,

Ri−1

∥Ri−1∥

⟩
, (3.4)

where Aj is the j’s column in the matrix A, and define recursively

Ri = Ri−1 − ciAmi
. (3.5)

3. At the end of the L’th step, the sparse vector β̂ of length N is comprised of the values of
{ci}Li=1 in indices {mi}Li=1 respectively, and its entries are zero elsewhere. The codeword
after the lossy compression is equal to Aβ̂.

3.2 Modified Encoding Algorithm
The modification in the encoding algorithm from the one described in Section 3.1, is a new set
of coefficients {ci}Li=1. Instead of using (3.2), we propose the following,

ci =
σeM√
n

√(
1− e2M

n

)i−1

, i ∈ {1, . . . , L}, (3.6)

with eM as defined in (2.8). In Chapter 4, the reason for the change is explained more thor-
oughly, but in essence the improvement is due to the fact that eM is a more accurate ap-
proximation of the maximum of M i.i.d. standard Gaussian random variables than

√
2 logM .

Indeed, by replacing the asymptotic approximation eM ≈
√
2 logM in (3.6), we have

ci ≈ σ

√
2 logM

n

√(
1− 2 logM

n

)i−1

(3.7)

= σ

√
2R

L

(
1− 2R

L

)i−1

, (3.8)

which is identical to (3.2). The improvement that this change induces is more significant for
higher values of the rate R and lower values of the source blocklength n, as can be seen in the
computer simulations in Chapter 7, Figure 7.1.
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Chapter 4

Preliminary Asymptotic Analysis

To be self-contained, we provide the following result:

Lemma 4. [26, Lemma 1]. Let {Aj}Nj=1 be N mutually independent random vectors of length n,
and suppose that the components of each vector are i.i.d. standard Gaussian random variables.
Let R be a random vector independent of {Aj}Nj=1 whose support lies on the n-dimensional unit
sphere, i.e.,

n∑
i=1

r2i = 1, (4.1)

and let

Tj = ⟨Aj,R⟩ (4.2)

for every j ∈ {1, . . . , N}. Then, {Tj}Nj=1 are i.i.d. standard Gaussian random variables which
are independent of R.

Proof. The joint probability density function of {Tj}Nj=1 is given by

fT1,T2,...,TN
(t1, t2, . . . , tN) =

∫
Rn

fT1,T2,...,TN ,R(t1, t2, . . . , tN , r) dr (4.3)

=

∫
Rn

fT1,T2,...,TN |R(t1, t2, . . . , tN |r) fR(r) dr, (4.4)

for all t = (t1, . . . , tN) ∈ RN . By assumption, for all j ∈ {1, . . . , N}, Aj = (A1,j, . . . , An,j)
⊤

is a column Gaussian random vector with i.i.d. components of zero mean and a unit variance.
Since the vectors {Aj}Nj=1 are mutually independent and are also independent of R, the random
variables {Tj}Nj=1 are mutually independent given R. Furthermore, since a linear combination of
jointly Gaussian random variables is Gaussian, the random variable Tj is Gaussian conditioned
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on R, and

E[Tj|R = r] = E

[
n∑

i=1

Ai,jri

∣∣∣R = r

]
=

n∑
i=1

E[Ai,j]ri = 0, (4.5)

Var[Tj|R = r] = Var

[
n∑

i=1

Ai,jri

∣∣∣R = r

]
=

n∑
i=1

Var[Ai,j]r
2
i =

n∑
i=1

r2i = 1, (4.6)

where (4.6) is due to (4.1), and since {Ai,j} are independent and of unit variance. Therefore,

fT1,T2,...,TN |R(t|r) =
N∏
i=1

ϕ(ti) (4.7)

for all r ∈ Rn such that ∥r∥ = 1, with ϕ as given in (2.5). Substituting (4.7) into (4.4) gives

fT1,T2,...,TN
(t) =

∫
Rn

N∏
i=1

ϕ(ti) fR(r) dr =
N∏
i=1

ϕ(ti). (4.8)

The random vector (T1, . . . , TN) therefore has i.i.d. standard Gaussian components.

Let S, A and {Ri}Li=1 be as defined by the encoding algorithm in Section 3.2. If L is large
enough, so is n (see (3.1)), and by the ergodicity of S and the law of large numbers, we get
from (2.2) that

|S|2 = 1

n

n∑
i=1

S2
i ≈ E

[
S2
1

]
= σ2, (4.9)

|Aj|2 =
1

n

n∑
i=1

A2
i,j ≈ E

[
A2

1,j

]
= 1, ∀j ∈ {1, . . . , N}. (4.10)

In addition, Lemma 4 implies that for all j ∈ {M(i − 1) + 1, . . . ,Mi}, the inner products⟨
Aj,

Ri−1

∥Ri−1∥

⟩
are M i.i.d. standard Gaussian random variables, so for large M ,

⟨
Ami

,
Ri−1

∥Ri−1∥

⟩
= max

(i−1)M+1≤j≤iM

⟨
Aj,

Ri−1

∥Ri−1∥

⟩
≈ eM (4.11)

with eM as defined in (2.8), and the approximation in the right side of (4.11) follows from the
concentration of ZM around its average eM [27, (A.7)]. The goal is to find an approximation
for the residue after L steps, |RL|2, and additionally, to show that our choice for {ci}Li=1 in (3.6)
achieves the minimal residue at each step of the recursion in Section 3.2. From (2.2) and (3.5),

|Ri|2 = |Ri−1|2 + c2i |Ami
|2 − 2ci

n
⟨Ami

,Ri−1⟩ (4.12)

≈ |Ri−1|2
(
1 +

c2i
|Ri−1|2

− 2ci
|Ri−1|

· eM√
n

)
, (4.13)

where (4.13) holds due to the approximations in (4.10) and (4.11). Let ti , ci
|Ri−1| for all
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i ∈ {1, . . . , L}. In order to determine the value of ti which minimizes the right side of (4.13) -
thus approximating the solution of the minimization problem of |Ri| - we set the derivative of
f(ti) = t2i − 2tieM√

n
+ 1 to zero, and get ti = eM√

n
. The minimum of the approximated residue is

therefore given by

|Ri|2 ≈ |Ri−1|2
(
1− e2M

n

)
, (4.14)

ci = |Ri−1|
eM√
n
. (4.15)

Using the approximation in (4.9), |R0| = |S| ≈ σ, and it follows from (4.14) and (4.15) that

|Ri|2 ≈ σ2

(
1− e2M

n

)i

(4.16)

ci =
σeM√
n

√(
1− e2M

n

)i−1

, (4.17)

which coincides with {ci}Li=1 in (3.6). After L steps of the recursion,

|RL|2 ≈ σ2

(
1− e2M

n

)L

. (4.18)

The following Proposition shows that for a large enough L, the residue in (4.18) is approximately
equal to σ2e−2R, the distortion-rate function of a memoryless Gaussian source.

Proposition 1. Let M = Lb for some b > 0. Let R > 0 satisfy (3.1). Then,

lim
L→∞

(
1− e2M

n

)L

= e−2R, (4.19)

with eM given in (2.8).

Proof. From (2.114),

lim sup
L→∞

(
1− e2M

n

)L

≤ lim sup
L→∞

(
1− 2 logM − log logM − log 4π

n

)L

(4.20)

= lim sup
L→∞

(
1− 2R

L
+

log logL+ log 4bπ
b
R
L logL

)L

(4.21)

= lim sup
L→∞

(
1− 2R

L
(1− f(L))

)L

(4.22)

= lim sup
L→∞

exp

(
L log

(
1− 2R

L
(1− f(L))

))
(4.23)

where (4.21) follows from (3.1) and M = Lb, and with

f(L) , log logL+ log 4bπ

2b logL
. (4.24)
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From the inequality log(1− x) ≤ −x for x ∈ [0, 1),

lim sup
L→∞

(
1− e2M

n

)L

≤ lim sup
L→∞

e−2R+2Rf(L) (4.25)

= e−2R. (4.26)

For the lower bound we use (2.15) and (3.1) to get

lim inf
L→∞

(
1− e2M

n

)L

≥ lim inf
L→∞

(
1− 2 logM

n

)L

(4.27)

= lim inf
L→∞

(
1− 2R

L

)L

(4.28)

= e−2R. (4.29)

From (4.25)–(4.26) and (4.27)–(4.29), the result in (4.19) follows.

The asymptotic analysis in Chapter 4 yields the achievability of the Gaussian distortion-
rate function. The result in [26] is similar, but it is validated under the approximation
eM ≈

√
2 logM (see (2.113)), and although asymptotically e2M

n
≈ 2R

L
, it was not clear whether

(4.19) holds without replacing eM with its approximations.
The change we make in the recursion is taking the sequence of {ci}Li=1 as given in (3.6),

without relying on the approximation of eM by
√
2 logM . This modification has two principal

effects: on the one hand, it improves the approximation for (4.11), enabling us to get a tighter
bound to the probability of excess distortion; but, on the other hand, it increases the residue
after the L’th step, |RL|. As mentioned above, despite the increase in |RL| the distortion-rate
function is still approachable, making our choice for {ci}Li=1 a valid one.
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Chapter 5

Non-Asymptotic Upper Bound on the
Distortion

This chapter derives a probabilistic non-asymptotic upper bound on the distortion of the
SPARC from Section 3.2. First, Theorem 1 in Chapter 5.1 bounds the probability of ex-
cess distortion by the sum of three separate probabilities; then, in Sections 5.2–5.4 we prove
that each of these three probabilities tend to 0 exponentially with n, the length of the source.
Theorem 2 summarizes the results of this section, for the case of a memoryless Gaussian source.

5.1 Main Theorem
The following theorem relies on [26, Theorem 1]. However, it has three important modifications:
first, the algorithm analyzed by Theorem 1 has been modified in the set of parameters {ci}
as described in Section 3.2, in order to improve the performance of the code. Second, it is
stated for finite L and M , rather than having just an asymptotic result for large enough M

and L; finally, the bound on the probability of excess distortion is substantially tightened in
comparison to [26].

Theorem 1. Let S be an ergodic source sequence of length n whose symbols have zero mean
and variance σ2. Let δ0, δ1, δ2 be positive constants such that

∆ , δ0 + 5R (δ1 + δ2) <
1

2
. (5.1)

Let A be an n ×ML matrix with i.i.d. N (0, 1) entries independent of S, with M > L and
M,L ∈ N satisfying (3.1). Let b satisfy M = Lb. For the SPARC defined by the matrix A and
for L ≥ 10R, the encoding algorithm in Section 3.2 produces a codeword Aβ̂, for which

P

[
|S−Aβ̂|2 > σ2

(
1− e2M

n

)L (
1 + wL∆

)2 ]
< p0 + p1 + p2, (5.2)
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with eM as defined in (2.8), and

w , 1 +
e2M

2(n− e2M)
, (5.3)

p0 = P

[ ∣∣∣∣ |S|σ − 1

∣∣∣∣ > δ0

]
, (5.4)

p1 = P

[
1

L

L∑
i=1

|γi| > δ1

]
, (5.5)

p2 = P

[
1

L

L∑
i=1

|ϵi| > δ2

]
, (5.6)

where γi and ϵi are defined to satisfy

max
(i−1)M<j≤iM

⟨
Aj,

Ri−1

∥Ri−1∥

⟩
=

⟨
Ami

,
Ri−1

∥Ri−1∥

⟩
= eM(1 + ϵi), (5.7)

|Ami
|2 = 1 + γi, (5.8)

for i ∈ {1, . . . , L}.

Proof. We first find an accurate recursion for |Ri|. To that end, we denote the multiplicative
deviation of |Ri|2 from its approximated value in (4.16) by ∆i, i.e.,

|Ri|2 = σ2

(
1− e2M

n

)i

(1 + ∆i)
2, (5.9)

with ∆i ≥ −1. According to the recursion in (3.5), and the notation in (2.2),

|Ri|2 = |Ri−1|2 + c2i |Ami
|2 − 2ci∥Ri−1∥

n

⟨
Ami

,
Ri−1

∥Ri−1∥

⟩
(5.10)

= σ2

(
1− e2M

n

)i−1

(1 + ∆i−1)
2 + c2i (1 + γi)−

2ciσ√
n

(
1− e2M

n

) i−1
2

(1 + ∆i−1) eM(1 + ϵi)

(5.11)

= σ2

(
1− e2M

n

)i−1 [
(1 + ∆i−1)

2 +
e2M
n

(1 + γi)−
2e2M
n

(1 + ∆i−1)(1 + ϵi)

]
(5.12)

= σ2

(
1− e2M

n

)i
[
n (1 + ∆i−1)

2

n− e2M
+

e2M
n− e2M

(1 + γi)−
2e2M

n− e2M
(1 + ∆i−1)(1 + ϵi)

]
(5.13)

= σ2

(
1− e2M

n

)i [
(1 + ∆i−1)

2 +
e2M

n− e2M

(
∆2

i−1 + γi − 2ϵi(1 + ∆i−1)
)]

, (5.14)

where (5.11) holds by assembling (5.7)–(5.9); (5.12) follows from (3.6). Thus, we obtain the
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following recursion for ∆i:

(1 + ∆i)
2 = (1 + ∆i−1)

2 +

(
e2M

n− e2M

)(
∆2

i−1 + γi − 2ϵi(1 + ∆i−1)
)
. (5.15)

Let A be the event which satisfies the following conditions:

1.
∣∣∣ |S|σ − 1

∣∣∣ ≤ δ0, (5.16)

2. 1
L

∑L
i=1 |γi| ≤ δ1, (5.17)

3. 1
L

∑L
i=1 |ϵi| ≤ δ2. (5.18)

By the union bound, it follows that

P[Ac] ≤ p0 + p1 + p2, (5.19)

where p0, p1 and p2 are the probabilities defined in (5.4)–(5.6). We next derive an upper bound
for the distortion in (5.9) after the final step conditioned on the event A.

Lemma 5. For L ≥ 10R, conditioning on the event A, we have

∆i ≥ ∆0 −
2e2M

n− e2M

i∑
j=1

(|γj|+ |ϵj|) , i = 1, . . . , L. (5.20)

Proof: See Appendix 1.

Lemma 6. For L ≥ 10R, conditioning on the event A,

|∆i| ≤ |∆0|wi +
2e2M

n− e2M

i∑
j=1

wi−j(|γj|+ |ϵj|), i ∈ {1, . . . , L}. (5.21)

with w as defined in (5.3).

Proof: See Appendix 2.
Lemma 6 guarantees that conditioning on the event A, for L ≥ 10R,

|∆L| ≤ |∆0|wL +
2e2M

n− e2M

L∑
j=1

wL−j(|γj|+ |ϵj|) (5.22)

= wL

(
|∆0|+

2e2ML

n− e2M

L∑
j=1

w−j |γj|+ |ϵj|
L

)
. (5.23)
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Since w ≥ 1 (see (5.3) and (A.2)), and from (5.16)–(5.18),

|∆L| ≤ wL

(
|∆0|+

2e2ML

n− e2M

L∑
j=1

|γj|+ |ϵj|
L

)
(5.24)

≤ wL

(
δ0 +

2e2ML

n− e2M
(δ1 + δ2)

)
, (5.25)

≤ wL (δ0 + 5R(δ1 + δ2)) (5.26)
= wL∆, (5.27)

where in (5.25), |∆0| ≤ δ0 due to (3.3), (5.9) and (5.16), (5.26) holds due to (A.3), and (5.27)
holds due to (5.1). By the definition of ∆L in (5.9),

|RL|2 = σ2

(
1− e2M

n

)L

(1 + ∆L)
2 (5.28)

≤ σ2

(
1− e2M

n

)L (
1 + wL∆

)2 (5.29)

holds under the conditioning on the event A. Therefore,

P

[
|RL|2 > σ2

(
1− e2M

n

)L (
1 + wL∆

)2] ≤ P[Ac] (5.30)

≤ p0 + p1 + p2, (5.31)

where (5.31) is (5.19).

Discussion on Theorem 1: Theorem 1 determines that the probability of excess distortion
as in the left side of (5.30), is bounded by the sum of the probabilities p0, p1 and p2 as defined
in (5.4)–(5.6).

1. By their definition, only p0 depends on the distribution of the source sequence S. Since
we assume that S is ergodic, p0 tends asymptotically to 0 by letting n→ ∞. In Lemma 7
we show that under a condition, which applies to the Gaussian case among others, p0
decays to zero exponentially in n.

2. Lemmas 9 and 10 give tight exponential bounds on p1 and p2 respectively. Thus, when
the conditions of Lemma 7 hold, the probability of excess distortion decays exponentially
with n.

3. Asymptotically, the difference between the Gaussian distortion-rate function,

D(R) = σ2e−2R, (5.32)

and σ2
(
1− e2M

n

)L (
1 + wL∆

)2 (see the left side in (5.30)), can be arbitrarily small, by a
proper choice of L and ∆ (i.e., L large enough and ∆ small enough and close to zero).
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This holds since by the definition of w in (5.3),

wL =

(
1 +

e2M
2(n− e2M)

)L

(5.33)

≤ exp

(
e2ML

2(n− e2M)

)
(5.34)

≤ e5R/4, (5.35)

where (5.34) follows from the inequality 1 + x ≤ ex for x ∈ R, and (5.35) follows from
(A.4). Therefore, from Proposition 1, for every ϵ > 0 there exist L′ ≥ 10R and ∆ > 0

such that

σ2

(
1− e2M

n

)L (
1 + wL∆

)2 ≤ σ2e−2R(1 + ϵ) (5.36)

for all L ≥ L′. Hence, it achieves the distortion-rate function of a memoryless Gaussian
source; otherwise, for other memoryless i.i.d. source models, it achieves the distortion-rate
function of a Gaussian source with the same variance.

5.2 Exact Expression for p0 and Exponential Upper Bounds
In this section, Lemma 7 gives an upper bound to p0 for a general source S under certain
conditions, followed by two examples (an i.i.d. Gaussian source and an i.i.d. Uniform source);
in Lemma 8, an accurate expression for p0 is acquired for the i.i.d. Gaussian case.

Lemma 7. Let X be a random variable with zero mean and variance σ2, such that X2 has
a moment-generating function MX2(t) in a neighborhood of t = 0. Let S be an i.i.d. source
sequence of length n, generated according to the probability distribution of X, and let δ ∈ (0, 1).
Then,

p0 , P

(∣∣∣∣ |S|σ − 1

∣∣∣∣ > δ

)
≤ inf

t>0

{
e−n[t(1+δ)2−logMX2( t

σ2 )]
}
+ inf

t>0

{
en[t(1−δ)2+logMX2(− t

σ2 )]
}
,

(5.37)

which decays exponentially to 0 with n.

Proof. From (2.2),

p0 = P

(
∥S∥2

σ2
> n(1 + δ)2

)
+ P

(
∥S∥2

σ2
< n(1− δ)2

)
. (5.38)

The upper bound follows from the Chernoff bound. Applying it on the first term in the right
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side of (5.38) yields

P

(
∥S∥2

σ2
> n(1 + δ)2

)
≤ inf

t>0

{
e−tn(1+δ)2

n∏
i=1

E

[
et

S2
i

σ2

]}
(5.39)

= inf
t>0

{
e−tn(1+δ)2

(
E

[
et

X2

σ2

])n}
(5.40)

= inf
t>0

{
e−tn(1+δ)2Mn

X2

(
t

σ2

)}
. (5.41)

Similarly, by applying the Chernoff bound on the second term in (5.38), we have

P

(
∥S∥2

σ2
< n(1− δ)2

)
≤ inf

t>0

{
etn(1−δ)2

n∏
i=1

E

[
e−t

S2
i

σ2

]}
(5.42)

= inf
t>0

{
etn(1−δ)2Mn

X2

(
− t

σ2

)}
. (5.43)

Combining (5.38), (5.39)–(5.41) and (5.42)–(5.43) yields (5.37). Let f1(t) and f2(t) be the
following functions,

f1(t) , t(1 + δ)2 − logMX2

(
t

σ2

)
, (5.44)

f2(t) , t(1− δ)2 + logMX2

(
− t

σ2

)
. (5.45)

Then,

f ′
1(t) = (1 + δ)2 −

M ′
X2

(
t
σ2

)
σ2MX2

(
t
σ2

) , (5.46)

f ′
2(t) = (1− δ)2 −

M ′
X2

(
− t

σ2

)
σ2MX2

(
− t

σ2

) , (5.47)

and at t = 0,

f1(0) = f2(0) = 0, (5.48)
f ′
1(0) = (1 + δ)2 − 1 > 0, (5.49)
f ′
2(0) = (1− δ)2 − 1 < 0. (5.50)

Therefore, there exists t1 > 0 and t2 > 0 such that

f1(t1) > 0, (5.51)
f2(t2) < 0. (5.52)

From (5.37), (5.44), (5.45), (5.51) and (5.52), p0 has a bound that is exponentially decreasing
with n to 0.

37



Example 1 (Memoryless Gaussian Source). If S is an i.i.d. source sequence of length n,
generated according to the Gaussian distribution N (0, σ2), then

MX2(t) =
(
1− 2σ2t

)− 1
2 , (5.53)

and from (5.37) we have

p0 ≤ inf
0<t< 1

2

{
e−n[t(1+δ)2+ 1

2
log(1−2t)]

}
+ inf

t>0

{
en[t(1−δ)2− 1

2
log(1+2t)]

}
. (5.54)

In order to minimize the terms in (5.54), we define

f1(t) , t(1 + δ)2 +
1

2
log(1− 2t), (5.55)

f2(t) , t(1− δ)2 − 1

2
log(1 + 2t), (5.56)

and set the derivative of f1 and f2 to zero to find the optimal t’s,

t∗1 =
1

2
− 1

2(1 + δ)2
, (5.57)

t∗2 =
1

2(1− δ)2
− 1

2
(5.58)

Substituting t∗1 and t∗2 into (5.54) yields

p0 ≤ e−
n
2 (δ2+2δ−2 log(1+δ)) + e−

n
2 (δ2−2δ−2 log(1−δ)). (5.59)

Example 2 (Memoryless Uniform Source). If S is an i.i.d. source sequence of length n,
generated according to the Uniform distribution over [−a, a] for some a > 0, then

MX2(t) =
1

2a

∫ a

−a

etx
2

dx =


√
π

2a
√
t
erfi
(
a
√
t
)
, for t > 0

√
π

2a
√
−t

erf
(
a
√
−t
)
, for t < 0,

(5.60)

where erf(·) is the Gaussian error function and erfi(·) is the Gaussian imaginary error function,

erf(x) , 2√
π

∫ x

0

e−s2ds, (5.61)

erfi(x) , 2√
π

∫ x

0

es
2

ds, (5.62)

for x ≥ 0. Then, from (5.37),

p0 ≤ inf
t>0

{
exp

(
−n
(
t(1 + δ)2 − log

( √
π

2
√
3t

erfi
(√

3t
))))}

+ inf
t>0

{
exp

(
n

(
t(1− δ)2 + log

( √
π

2
√
3t

erf
(√

3t
))))}

. (5.63)
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Lemma 8. Let S be an i.i.d. source sequence of length n, generated according to the Gaussian
distribution N (0, σ2), and let δ ∈ (0, 1). Then,

p0 , P

(∣∣∣∣ |S|σ − 1

∣∣∣∣ > δ

)
= 1− γ̄

(
n

2
,
n(1 + δ)2

2

)
+ γ̄

(
n

2
,
n(1− δ)2

2

)
(5.64)

where γ̄ is the incomplete Gamma function,

γ̄ (a, x) =
1

Γ(a)

∫ x

0

ta−1e−tdt. (5.65)

Proof. Following the assumption of the lemma, ∥S∥2
σ2 is Chi-squared distributed with n degrees

of freedom. Continuing from (5.38), we have

p0 =

∫ ∞

n(1+δ)2

x
n
2
−1e−

x
2

2
n
2Γ
(
n
2

) dx+ ∫ n(1−δ)2

0

x
n
2
−1e−

x
2

2
n
2Γ
(
n
2

) dx (5.66)

= 1−
∫ n(1+δ)2

0

x
n
2
−1e−

x
2

2
n
2Γ
(
n
2

) dx+ ∫ n(1−δ)2

0

x
n
2
−1e−

x
2

2
n
2Γ
(
n
2

) dx (5.67)

= 1− 1

Γ
(
n
2

) ∫ n(1+δ)2

0

1

2

(x
2

)n
2
−1

e−
x
2 dx+

1

Γ
(
n
2

) ∫ n(1−δ)2

0

1

2

(x
2

)n
2
−1

e−
x
2 dx (5.68)

= 1− 1

Γ
(
n
2

) ∫ n
2
(1+δ)2

0

t
n
2
−1e−tdt+

1

Γ
(
n
2

) ∫ n
2
(1−δ)2

0

t
n
2
−1e−tdt (5.69)

= 1− γ̄

(
n

2
,
n(1 + δ)2

2

)
+ γ̄

(
n

2
,
n(1− δ)2

2

)
. (5.70)

Table 5.1 presents a brief comparison between the exact expression of p0 for the Gaussian
case in (5.64), the bound in (5.59) and the bound from [26],

p0 ≤ 2e−
3nδ2

4 . (5.71)

For certain values of n and δ, only the exact expression can be used to evaluate the probability
p0, since the bounds in (5.59) and (5.71) can be greater than 1. For other values, the exact
expression is significantly better than both bounds.

(n, δ) Exact p0 Chernoff Bound (New) Looser Chernoff Bound [26]
(5.64) (5.59) (5.71)

(10, 0.1) 0.66 > 1 > 1
(1000, 0.1) 7.86 · 10−6 6.19 · 10−5 1.1 · 10−3

Table 5.1: Comparison between the exact value of p0 and its Chernoff upper bounds.
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5.3 An Upper Bound on p1

Lemma 9. Let {Ami
} for i ∈ {1, . . . , L} be the columns of the matrix A as defined in (3.4),

and let γi be given by

γi = |Ami
|2 − 1, 1 ≤ i ≤ L. (5.72)

Then, for all δ ∈ (0, 1),

p1 , P

(
1

L

L∑
i=1

|γi| > δ

)
(5.73)

≤

(
inf

0<t< 1
2

{(
et(1−δ)

√
1 + 2t

)n

γ̄
(

n
2
, n
2
+ nt

)
+

(
e−t(1+δ)

√
1− 2t

)n [
1− γ̄

(
n
2
, n
2
− nt

)]})L

(5.74)

where γ̄(·, ·) denotes the incomplete Gamma function in (5.65).

Proof. From (5.72) and (5.73),

p1 = P

(
1

L

L∑
i=1

∣∣|Ami
|2 − 1

∣∣ > δ

)
. (5.75)

Since the columns in each section of the matrix A are i.i.d., for an arbitrary sequence of columns
{Aki}

L
i=1 with ki ∈ {(i− 1)M + 1, . . . , iM}, we have

p1 = P

(
1

L

L∑
i=1

∣∣|Aki |2 − 1
∣∣ > δ

)
(5.76)

= P

(
1

L

L∑
i=1

∣∣∣∣∣ 1n
n∑

j=1

A2
j,ki

− 1

∣∣∣∣∣ > δ

)
, (5.77)

and
{∣∣∣ 1n∑n

j=1A
2
j,ki

− 1
∣∣∣}L

i=1
are i.i.d. random variables. Applying the Chernoff bound to (5.77)

yields

p1 ≤ inf
t>0

{
e−tδL

(
E
[
et|

1
n

∑n
j=1 A

2
j,k1

−1|
])L}

. (5.78)

Since Aj,k1 ∼ N (0, 1), the random variable X1 ,
∑n

j=1A
2
j,k1

is Chi-squared distributed with n

degrees of freedom, and

E
[
et|

1
n
X1−1|

]
=

1

2
n
2Γ
(
n
2

) ∫ ∞

0

et|
x
n
−1|x

n
2
−1e−

x
2 dx (5.79)

=
1

2
n
2Γ
(
n
2

) (et ∫ n

0

e−(
1
2
+ t

n)xx
n
2
−1dx+ e−t

∫ ∞

n

e−(
1
2
− t

n)xx
n
2
−1dx

)
. (5.80)

Both integrals in the right side of (5.80) can be expressed in terms of the incomplete Gamma
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function as follows:∫ n

0

e−(
1
2
+ t

n)xx
n
2
−1dx =

∫ t+n
2

0

e−s

(
s

1
2
+ t

n

)n
2
−1(

1
1
2
+ t

n

)
ds (5.81)

= Γ
(n
2

)( 2n

n+ 2t

)n
2

γ̄
(n
2
,
n

2
+ t
)
, (5.82)

and, similarly for t ∈ (0, n
2
),

∫ ∞

n

e−(
1
2
− t

n)xx
n
2
−1dx =

∫ ∞

n
2
−t

e−s

(
s

1
2
− t

n

)n
2
−1(

1
1
2
− t

n

)
ds (5.83)

= Γ
(n
2

)( 2n

n− 2t

)n
2 [

1− γ̄
(n
2
,
n

2
− t
)]
. (5.84)

Note that the integral on the left side of (5.83) diverges to +∞ for all t ≥ n
2
. Substituting

(5.82) and (5.84) into the right side of (5.80) gives

E
[
et|

1
n
X1−1|

]
= et

(
n

n+ 2t

)n
2

γ̄
(
n
2
, n
2
+ t
)
+ e−t

(
n

n− 2t

)n
2 [

1− γ̄
(
n
2
, n
2
− t
)]

(5.85)

for all t ∈ (0, n
2
). Substituting t 7→ nt in (5.85) and then optimizing numerically (5.78) over the

free parameter t ∈ (0, 1
2
), we get the bound on p1 in (5.74).

Remark. A looser but more simple bound than (5.74), not involving the incomplete Gamma
function, can be readily derived from (5.74) by relying on the fact that 0 ≤ γ̄(a, x) ≤ 1 for
a > 0 and x ≥ 0. This yields

p1 ≤

(
inf

0<t< 1
2

{(
et(1−δ)

√
1 + 2t

)n

+

(
e−t(1+δ)

√
1− 2t

)n})L

. (5.86)

(n, L, M , δ) Chernoff Bound Looser Bound Bound in [26, (15)]
(5.74) (5.86) (5.87)

(102, 10, 102, 0.25) 1.83 · 10−4 3.30 · 10−4 > 1
(103, 10, 103, 0.10) 1.57 · 10−8 1.83 · 10−8 > 1

Table 5.2: Comparison between upper bounds on p1

Table 5.2 compares the upper bounds on p1 in (5.74) and (5.86) with the bound in [26]:

p1 ≤ 2MLe−
nδ2

8 . (5.87)

As is illustrated in Table 5.2, the bound on p1 in (5.86) is fairly tight in comparison to (5.74),
whereas its upper bound in (5.87) (see [26, (15)]) is loose and it may even exceed 1.
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5.4 An Upper Bound on p2

Lemma 10. For i ∈ {1, . . . , L}, let ϵi be a random variable which stands for the deviation as
defined in (5.7):

max
(i−1)M<j≤iM

⟨
Aj,

Ri−1

∥Ri−1∥

⟩
= eM(1 + ϵi). (5.88)

Then, for all δ ∈ (0, 1),

p2 , P

(
1

L

L∑
i=1

|ϵi| > δ

)
(5.89)

≤
(
inf
t>0

{
e−teM δ

∫ ∞

−∞
et|z−eM |fZM

(z) dz

})L

, (5.90)

where fZM
(·) is the probability density function in (2.13). Moreover, the infimum in the right

side of (5.90) is a minimum, which can be restricted to the finite interval [0, t∗M ] with

t∗M =
1

eM
log

( √
2M√

πfZM
(−2eM)

)
. (5.91)

Proof. Define the following random variables for i ∈ {1, . . . , L}:

T (i) ,
(
T

(i)
(i−1)M+1, . . . , T

(i)
iM

)
, (5.92)

with

T
(i)
j ,

⟨
Aj,

Ri−1

∥Ri−1∥

⟩
, j ∈ {(i− 1)M + 1, . . . , iM}. (5.93)

Each of the M coordinates in the random vector T (i) is a function of two random vectors:
one of the random columns Aj in the i’th section of the matrix A, and the random vec-
tor Ri−1. In view of (3.5), it follows by induction that the random vector Ri−1 is a func-
tion of {A1, . . . ,A(i−1)M ,R0} only, while Aj for j ∈ {(i− 1)M + 1, . . . , iM} is independent of
{A1, . . . ,A(i−1)M ,R0}; therefore Aj is independent of Ri−1. Furthermore, since {T (i−1), ..., T (1),R0}
is a function of {A1, . . . ,A(i−1)M ,R0}, then Aj for j ∈ {(i− 1)M + 1, . . . , iM} remains inde-
pendent of Ri−1 conditioned on {T (i−1), ..., T (1),R0}. Therefore, according to Lemma 4,

FT (i)|T (i−1),...,T (1),R0
= FT (i) =

iM∏
j=(i−1)M+1

F
T

(i)
j
, i ∈ {1, . . . , L}. (5.94)
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Applying recursively yields

FR0,T (1) = FR0 FT (1)|R0
= FR0 FT (1) , (5.95)

FR0,T (1),T (2) = FR0,T (1) FT (2)|T (1),R0
= FR0 FT (1) FT (2) , (5.96)

...

FR0,T (1),...,T (L) = FR0

L∏
i=1

FT (i) . (5.97)

Hence, from Lemma 4, {T (i)} are i.i.d. Gaussian random vectors for i ∈ {1, . . . , L}, and
independent of R0, whose components are i.i.d. standard Gaussian random variables. It follows
that the maximums of the random vectors {T (i)},

Vi = max
(i−1)M+1≤j≤iM

T
(i)
j , i ∈ {1, . . . , L}, (5.98)

are i.i.d. random variables which are distributed like ZM (see (2.7)). Therefore, the deviations
{ϵi}Li=1, given by ϵi =

Vi

eM
− 1, are also i.i.d. random variables. Applying Chernoff’s bound to

the right side of (5.89) yields

p2 = P

(
1

L

L∑
i=1

|ϵi| > δ

)
≤ inf

t>0

(
e−tδ E

[
et|ϵ1|

])L (5.99)

=

(
inf
t>0

{
e−tδ E

[
e
t
∣∣∣ZM
eM

−1
∣∣∣]})L

(5.100)

=

(
inf
t>0

{
e−teM δ

∫ ∞

−∞
et|z−eM |fZM

(z) dz

})L

, (5.101)

where (5.101) follows from (5.100) by the mapping t 7→ eM t. Following (5.101),

p2 ≤ exp

(
−L sup

t>0

{
teMδ − log

(∫ ∞

−∞
et|z−eM |fZM

(z) dz

)})
. (5.102)

Define, for t > 0,

uδ,M(t) , d

dt

(
log

(∫ ∞

−∞
et|z−eM |fZM

(z) dz

)
− teMδ

)
(5.103)

=

∫∞
−∞ |z − eM | et|z−eM |fZM

(z) dz∫∞
−∞ et|z−eM |fZM

(z) dz
− eMδ (5.104)

=
E
[
|ZM − eM | et|ZM−eM |]

E [et|ZM−eM |]
− eMδ, (5.105)
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so the derivative of uδ,M is equal to

u′δ,M(t) =
E
[
(ZM − eM)2et|ZM−eM |]E [et|ZM−eM |]− (E [|ZM − eM | et|ZM−eM |])2

(E [et|ZM−eM |])
2 (5.106)

≥ 0, (5.107)

where (5.107) follows from the Cauchy-Schwarz inequality; thus, uδ,M is monotonically increas-
ing. Therefore, the infimum in (5.102) can be obtained numerically by the bisection method in
the interval [0, t∗M ] for any t∗M > 0 such that uδ,M(t∗M) ≥ 0.

Let t∗M be as given in (5.91). From (5.105), since δ ∈ (0, 1),

uδ,M(t) >
E
[
|ZM − eM | et|ZM−eM |]

E [et|ZM−eM |]
− eM , (5.108)

so, it is sufficient to show that

E
[
|ZM − eM | et∗M |ZM−eM |]− eME

[
et

∗
M |ZM−eM |] ≥ 0. (5.109)

For t > 0,

E
[
|ZM − eM | et|ZM−eM |]− eM E

[
et|ZM−eM |]

=

∫ ∞

−∞
(|z − eM | − eM) et|z−eM |fZM

(z) dz (5.110)

=

∫ eM

−∞
(−z) et|z−eM |fZM

(z) dz +

∫ ∞

eM

(z − 2eM) et|z−eM |fZM
(z) dz (5.111)

≥
(∫ −eM

−2eM

(−z) et|z−eM |fZM
(z) dz −

∫ eM

0

zet|z−eM |fZM
(z) dz

)
+

∫ 2eM

eM

(z − 2eM)et|z−eM |fZM
(z) dz,

(5.112)

where (5.112) holds since the integrand of the left integral in (5.111) is non-negative for z ∈
(−∞, 0], and since the integrand of the right integral is non-negative for z ∈ [2eM ,∞). From
(2.13), note that fZM

(z) ≤ M√
2π

for all z ∈ R, and that fZM
(·) is monotonically increasing on

(−∞, 0]. Consequently, we get from (5.110)–(5.112) that

E
[
|ZM − eM | et|ZM−eM |]− eM E

[
et|ZM−eM |] ≥ e2Me

2teMfZM
(−2eM)− e2M

M√
2π
eteM − e2M

M√
2π
eteM

(5.113)

= e2M

(
fZM

(−2eM) eteM −M

√
2

π

)
eteM . (5.114)

For t = t∗M , the right side of (5.114) is equal to 0, and therefore uδ,M(t∗M) > 0.
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(L, M , δ) Chernoff Bound Bound in [26, (15)]
(5.90) (5.115)

(10, 100, 0.25) 1.95 · 10−2 > 1
(10, 1000, 0.1) 7.96 · 10−1 > 1
(10, 104, 0.25) 4.15 · 10−11 4.7 · 10−2

Table 5.3: Comparison between upper bounds on p2

Table 5.3 compares the bound in (5.90) with the corresponding bound from [26, (15)],

p2 <

(
M2δ

8 logM

)−L

. (5.115)

It should be mentioned that our probability p2 is not identical to the one in [26], since the
deviations {ϵi}Li=1 are defined differently; however, the two probabilities should be similar for
large values of L.

5.5 Summary
The following theorem summarizes the results we have proved in Sections 5.1–5.4.

Theorem 2. Let S be an i.i.d. source sequence of length n, generated according to the Gaussian
distribution N (0, σ2). Let δ0, δ1, δ2 be positive constants such that

∆ , δ0 + 5R (δ1 + δ2) <
1

2
. (5.116)

Let A be as defined in Section 3.2. For the SPARC with the matrix A and for L ≥ 10R, the
encoding algorithm in Section 3.2 produces a codeword Aβ̂, for which

P

[
|S−Aβ̂|2 > σ2

(
1− e2M

n

)L (
1 + wL∆

)2 ]
< 1− γ̄

(
n

2
,
n(1 + δ0)

2

2

)
+ γ̄

(
n

2
,
n(1− δ0)

2

2

)

+

(
inf

0<t< 1
2

{(
et(1−δ1)

√
1 + 2t

)n

γ̄
(

n
2
, n
2
+ nt

)
+

(
e−t(1+δ1)

√
1− 2t

)n [
1− γ̄

(
n
2
, n
2
− nt

)]})L

+

(
inf
t>0

{
e−teM δ2

∫ ∞

−∞
et|z−eM |fZM

(z) dz

})L

, (5.117)

with eM as defined in (2.8) and where fZM
(·) the probability density function in (2.13).

Proof. Apply Lemma 8, Lemma 9 and Lemma 10 on p0, p1 and p2 respectively in Theorem 1.

Table 5.4 compares the bound in (5.117) with the bound in [26],

P
[
|S−Aβ̂|2 > σ2e−2R

(
1 + eR∆

)2]
< 2e−

3nδ20
4 + 2MLe−

nδ21
8 +

(
M2δ2

8 logM

)−L

, (5.118)
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(n, L, M , δ0, δ1, δ2) Our Bound Bound in [26]
(5.117) (5.118)

(103, 10, 103, 0.05, 0.1, 0.1) 0.82 > 1
(103, 50, 2.5 · 103, 0.05, 0.1, 0.1) 0.044 > 1

(5 · 103, 50, 1.25 · 105, 0.03, 0.2, 0.2) 0.0027 0.069

Table 5.4: Comparison between upper bounds on the probability of excess distortion

which is proven for sufficiently large M and L. The probabilities in (5.117) and (5.118) describe
different events, as is evident from their expressions. Furthermore, the encoding algorithm in
Section 3.2 is an altered version of the one in [26]. However, for large values of n and for small
values of ∆, they should be similar.
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Chapter 6

Gap to the Distortion-Rate vs.
Complexity

Throughout Chapter 5, we show that Theorem 1 gives an upper bound on the probability of
excess distortion for the SPARC from Section 3.2; however, Chapter 5 does not give explicit
indication as to how rapidly the excess distortion decays with n, i.e. how fast the distortion of
the SPARC tends to the distortion-rate function of a memoryless Gaussian source, as function
of the source block size n. In this section, an upper bound on this convergence rate is proved
for the case of a memoryless Gaussian source, and it is shown that this bound cannot be
significantly improved via Theorem 1.

Let σ, L, M and n be as defined in the encoding algorithm in Section 3.2. For some positive
∆ < 1

2
, define αL,∆ as

αL,∆ , σ2

(
1− e2M

n

)L (
1 + wL∆

)2
, (6.1)

with eM as defined in (2.8) and w as in (5.3). αL,∆ is the ”reference point” to which the excess
distortion is compared in Theorem 1; as previously shown in Chapter 5, from Proposition 1
and (5.35),

lim
∆→0

lim
L→∞

αL,∆ = σ2e−2R, (6.2)

the distortion-rate function of a memoryless Gaussian source. Let DL,∆ be

DL,∆ ,
∣∣αL,∆ − σ2e−2R

∣∣ , (6.3)

the difference between the Gaussian distortion-rate function and the reference point. From
(6.2), it is clear that

lim
∆→0

lim
L→∞

DL,∆ = 0, (6.4)

hence the reference point tends to the Gaussian distortion-rate function when L → ∞ and
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∆ → 0. Two points remain unclear, however:

1. What is a sufficient condition on ∆ as function of L, so that the upper bound to the
probability of excess distortion in Theorem 1 tends to 0 with n.

2. Using ∆ that holds the condition of item 1, what is the convergence rate of DL,∆ to 0.

In order to resolve item 1, we show that if

∆ =
A log logL

b logL
(6.5)

for some A > 1
4
, then the upper bound in Theorem 1 decreases to 0 with n for the case of a

memoryless Gaussian source.

Lemma 11. Let p0 and p1 be the probabilities defined in (5.4)–(5.5). If the source sequence S

is generated by a memoryless Gaussian distribution, then for δ0 = δ1 =
1

logL
,

lim
L→∞

p0 + p1 = 0. (6.6)

Proof. From (5.71) and (5.87),

p0 + p1 ≤ 2 exp

(
−3nδ20

4

)
+ 2ML exp

(
−nδ

2
1

8

)
. (6.7)

Therefore, if δ0 = δ1 =
1

logL
,

lim sup
L→∞

p0 + p1 ≤ lim sup
L→∞

(
2 exp

(
− 3n

4 log2 L

)
+ 2ML exp

(
− n

8 log2 L

))
(6.8)

= lim sup
L→∞

(
2 exp

(
− 3bL

4R logL

)
+ 2ML exp

(
− bL

8R logL

))
(6.9)

= 0, (6.10)

where (6.9) is due to (3.1). Since p0 + p1 ≥ 0, the limit in (6.6) exists and is equal to 0.

Lemma 12. Let ZM and eM be defined as in (2.7) and (2.8) respectively. Then,

lim sup
M→∞

1

eM

∫ ∞

−∞
eeM |z−eM |fZM

(z) dz < 13.6 +
1

2
√
2
. (6.11)

Proof: See Appendix 3.

Corollary 2. Let p2 be the probability defined in (5.6). If δ2 = A log logL
b logL

for some constant
A > 1

4
, then

lim
L→∞

p2 = 0. (6.12)
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Proof. From (5.90),

p2 ≤ exp

[
−L sup

t>0

{(
teMδ2 − log

(∫ ∞

−∞
et|z−eM |fZM

(z) dz

))}]
(6.13)

≤ exp

[
−L

(
Ae2M log logM

logM
− log

(∫ ∞

−∞
eeM |z−eM |fZM

(z) dz

))]
, (6.14)

where (6.14) follows from (3.1) and by choosing t = eM . According to Lemma 12, for a large
enough M ,

log

(∫ ∞

−∞
eeM |z−eM |fZM

(z) dz

)
≤ log(eM · C), (6.15)

where C = 13.6 + 1
2
√
2
. Thus, from (2.113), for a large enough M ,

log

(∫ ∞

−∞
eeM |z−eM |fZM

(z) dz

)
≤ Ae2M log logM

logM
(6.16)

when A > 1
4
. From (6.14) and (6.16), we have

lim
L→∞

p2 = 0. (6.17)

Lemma 11 and Corollary 2 imply that for a memoryless Gaussian source, choosing ∆ =
A log logL
b logL

for some A > 1
4

guarantees that there exists a partition of ∆ into δ0, δ1 and δ2 (see
(5.1)), such that

lim
L→∞

p0 + p1 + p2 = 0, (6.18)

where p0–p2 are defined as in (5.4)–(5.6). Hence, for such a ∆, the probability of excess
distortion in Theorem 1 tends to 0 with n. The next step is finding the convergence rate of
DL,∆ to 0 when ∆ = A log logL

b logL
. To this end, we first prove the following lemma:

Lemma 13. Let M , L, n, R and b as defined in the encoding algorithm in Section 3.2. Then,

lim
L→∞

logL

log logL

((
1− e2M

n

)L

− e−2R

)
=
R

b
e−2R, (6.19)

with eM as given in (2.8).

Proof: See Appendix 4.

Lemma 14. Let M , L, n, R and b as defined in the encoding algorithm in Section 3.2. Then,

lim sup
L→∞

L
(
wL − eR

)
= R2eR, (6.20)
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with w as given in (5.3).

Proof. From (5.34),

lim sup
L→∞

L
(
wL −R

)
≤ lim sup

L→∞
L

(
exp

(
e2ML

2(n− e2M)

)
− eR

)
(6.21)

≤ lim sup
L→∞

L

(
exp

(
bL logL

2( b
R
L logL− b logL)

)
− eR

)
(6.22)

= lim sup
L→∞

LeR
(
exp

(
R2

L−R

)
− 1

)
, (6.23)

where (6.22) follows from (3.1). Using L’Hôpital’s rule,

lim sup
L→∞

L
(
wL −R

)
≤ lim sup

L→∞

R2L2eR

(L−R)2
exp

(
R2

L−R

)
(6.24)

= R2eR. (6.25)

Corollary 3. Let L, R, b and σ be as defined in the encoding algorithm in Section 3.2. Then,
for a large enough L,

log logL

logL
· Rσ

2e−2R

b
+O

(
ϵ(L) log logL

logL

)
≤ DL,∆, (6.26)

where DL,∆ is as defined in (6.3), and where ϵ(·) is some non-negative function such that

lim
L→∞

ϵ(L) = 0. (6.27)

Furthermore, if

∆ =
A log logL

b logL
(6.28)

for some constant A > 1
4
, then for a large enough L,

DL,∆ ≤ log logL

logL

(
Re−2R + 2Ae−R

) σ2

b
+O

(
ϵ(L) log logL

logL

)
. (6.29)

Proof. From Lemma 13, there exists a non-negative function ϵ(·) such that

lim
L→∞

ϵ(L) = 0, (6.30)

and

R

b
e−2R − ϵ(L) ≤ logL

log logL

((
1− e2M

n

)L

− e−2R

)
≤ R

b
e−2R + ϵ(L); (6.31)
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therefore,

e−2R +
log logL

logL

(
R

b
e−2R − ϵ(L)

)
≤
(
1− e2M

n

)L

≤ e−2R +
log logL

logL

(
R

b
e−2R + ϵ(L)

)
.

(6.32)

Similarly, from Lemma 14,

wL ≤ eR +O

(
1

L

)
. (6.33)

By definition of αL,∆ in (6.1),

αL,∆ = σ2

(
1− e2M

n

)L (
1 + wL∆

)2
, (6.34)

and so, according to (6.32) and (6.33),

αL,∆ ≤ σ2

(
e−2R +

log logL

logL
· R
b
e−2R +

ϵ(L) log logL

logL

)(
1 + eR∆+∆O

(
1

L

))2

(6.35)

≤ σ2

(
e−2R +

log logL

logL
· R
b
e−2R +

ϵ(L) log logL

logL

)(
1 + e2R∆2 + 2eR∆+∆O

(
1

L

))
(6.36)

≤ σ2

[
e−2R +

log logL

logL

(
R

b
e−2R +

2A

b
e−R

)]
+O

(
ϵ(L) log logL

logL

)
, (6.37)

where (6.37) is due to (5.35) and (6.28). Therefore,

DL,∆ ≤ log logL

logL

(
Rσ2

b
e−2R +

2Aσ2

b
e−R

)
+O

(
ϵ(L) log logL

logL

)
. (6.38)

On the other hand, from (6.32),

αL,∆ ≥ σ2

(
e−2R +

log logL

logL
· R
b
e−2R − ϵ(L) log logL

logL

)(
1 + wL∆

)2 (6.39)

≥ σ2

(
e−2R +

log logL

logL
· R
b
e−2R

)
+O

(
ϵ(L) log logL

logL

)
, (6.40)

where (6.40) is due to w,∆ ≥ 0, as per their definitions in (5.1) and (5.3). Subsequently, we
have

DL,∆ ≥ log logL

logL
· Rσ

2e−2R

b
+O

(
ϵ(L) log logL

logL

)
. (6.41)

Two conclusions can be drawn from Corollary 3. Firstly, the inequality in (6.26) gives an
asymptotic lower bound on DL,∆ regardless of the distribution of the source sequence S and of
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∆; thus, it shows that using Theorem 1, the best possible upper bound to the gap between the
distortion of the SPARC and the distortion-rate function of a memoryless Gaussian source is

log logL

logL
· Rσ

2e−2R

b
+O

(
ϵ(L) log logL

logL

)
, (6.42)

where ϵ(·) is some non-negative function such that ϵ(L) −−−→
L→∞

0. Secondly, for the case of a
memoryless Gaussian source sequence S, (6.29) asymptotically upper bounds DL,∆ for a specific
sequence of ∆, such that the probability of excess distortion in Theorem 1 decays to 0. Hence,
it proves that asymptotically,

log logL

logL

(
Rσ2

b
e−2R +

2Aσ2

b
e−R

)
+O

(
ϵ(L) log logL

logL

)
(6.43)

is an upper bound to the gap with probability that tends to 1. The asymptotic lower bound
in (6.42) suggests that this upper bound cannot be significantly improved using Theorem 1,
since the difference between the lower and upper bounds is only in the coefficient, rather than
in their asymptotic behavior.

In [26], a similar result can be derived, wherein the upper bound on the gap between the
distortion of the SPARC and the distortion-rate function of a memoryless Gaussian source is

log logL

logL
· σ

2e−R

b
+O

((
log logL

logL

)2
)
; (6.44)

in comparison with the upper bound in (6.43), our coefficient is smaller, especially for low
values of R.
Remark. The demand for the source sequence to be memoryless Gaussian is necessary solely to
be able to apply the upper bound on p0 in Lemma 11. For other memoryless source distributions,
the same results as in Corollary 3 can be achieved, as long as p0 −−−→

L→∞
0 for δ0 = 1

logL
.
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Chapter 7

Computer Simulations

7.1 Comparison Between the Performance of the Two
Encoding Algorithms

As previously stated, the algorithm presented in Section 3.2 is slightly different than the al-
gorithm in [26], as the set of coefficients {ci}Li=1 was changed to minimize the distortion. The
computer simulation in this section compares the performance of the two SPARCs, with regard
to the distortion as function of the rate. The simulation was conducted by generating an i.i.d.
Gaussian source sequence S with zero mean and unit variance, with b = 2, 3 and over a range
of values for the rate R and L (the number of sections in the matrix A). Each data point in
Figures 7.1a and 7.1b is an average over a total of 100 iterations; every iteration was simulated
by randomly generating a source sequence S and a matrix A, and calculating the distortion
between the codeword and the source sequence for both algorithms.

Figures 7.1a and 7.1b show that for all R’s and L’s examined, and for both b = 2 and b = 3,
the algorithm presented in Section 3.2 performs better than the one in [26]. The improvement
is especially significant for higher values of R, because then the less accurate approximation
used in [26] for the maximum of M i.i.d. Gaussian random variables is more prominent than
for lower R’s.
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Figure 7.1: The distortion as function of the rate for several values of L with
b = 2, 3. The solid lines were calculated using the algorithm in Section 3.2;
the dashed lines were calculated according to the algorithm in [26]; the bold
line is the Distortion-Rate function.
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7.2 Comparison Between the Upper Bound on the Prob-
ability of Excess Distortion and the Simulated Re-
sults

In Chapter 5, an upper bound on the probability of excess distortion is achieved for a finite
source blocklength n, which significantly improves the existing bound from [26]. In this section,
we compare the improvement of the bound while taking into account the difference between
the two encoding algorithms; furthermore, we analyze the tradeoff between the performance
of the SPARC and its computational complexity derived by Theorem 2, and compare it to a
computer simulation.

For the analysis of the tradeoff between complexity and performance guaranteed by The-
orem 2, we fix the parameters R, b, σ2 and ϵ, and calculate the minimal blocklength n such
that

P

[
|S−Aβ̂|2 > σ2e−2R(1 + η)

]
< ϵ, (7.1)

for a range of values of η > 0. From (5.2), the condition in (7.1) boils down to the following
conditions,

• p0 + p1 + p2 ≤ ϵ, (7.2)

•
(
1− e2M

n

)L (
1 + wL∆

)2 ≤ e−2R(1 + η). (7.3)

Therefore, finding the minimal blocklength n derived from Theorem 2 was performed numeri-
cally as follows:

1. Set the parameters R, b, σ2, ϵ and η. Pick an initial value n = n0.

2. For i ≥ 0,

2.1. Compute L and M given n = ni (see (3.1) and recall that M = Lb).

2.2. Find a maximal value for ∆ from (7.3).

2.3. Compute the minimal value of P , p0 + p1 + p2 (see (5.64), (5.74), (5.90)) under
condition (5.1). The minimization is taken with respect to the two free parameters
δ0 and δ1 which then restrict δ2 in (5.1).

2.4. If P > ϵ, set ni+1 = 2ni and return to Step 2.1. If P < ϵ, set nmax = ni, nmin = ni

2

and exit the loop.

3. Perform the bisection method in the interval [nmin, nmax]:

3.1. Set ni =
⌈
1
2
(nmax + nmin)

⌉
.

3.2. Perform Steps 2.1-2.3 with n = ni.
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3.3. If P > ϵ, set nmin = n and return to Step 3.1. If P < ϵ, set nmax = n and return to
Step 3.1. If nmax = nmin + 1, then exit the loop.

In addition, a simulation was conducted to find the actual necessary minimal blocklength n for
the SPARC from Section 3.2, such that it has a distortion greater than D with probability of at
most ϵ. The simulation was carried out by generating random source sequences S and matrices
A for different values of n, and calculating the distortion D that ϵ of them exceed.

Figure 7.2 shows a comparison between the minimal blocklength n derived from Theorem 2,
and the minimal blocklength n acquired via the simulation of the SPARC. It is evident from
Figure 7.2 that a considerable difference exists between the two values; this gap implies that
the bound in Theorem 2 is not tight. The reason for this difference is mainly due to taking the
”worst case scenario” for |∆i| in each of the L steps of Lemma 6, and then summing over them
(See (B.11)–(B.15)).

Figure 7.3 shows a comparison between the minimal blocklength n derived from Theorem 2
and the one derived from [26, Theorem 1]. Since the upper bound on the probability of excess
distortion was improved, the minimal blocklength n from Theorem 2 is significantly lower, as
expected.
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Figure 7.2: Comparison of the minimum blocklength n as func-
tion of the multiplicative gap from the Rate-Distortion, with
R = 0.5, σ2 = 1 and ϵ = 0.01. The solid lines are from the simu-
lation, the dotted lines are derived from our bound.
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Figure 7.3: Comparison of the minimum blocklength n as func-
tion of the multiplicative gap from the Rate-Distortion, with
R = 0.5, σ2 = 1 and ϵ = 0.01. The solid lines are derived from our
bound, the dotted lines are derived from the bound in [26].
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Chapter 8

Research Summary and Open
Questions

8.1 Research Results
The main goal of this thesis was to develop bounds to the probability of excess distortion of
SPARCs for finite-length lossy compression with sparse regressing codes, and thereby to find
the tradeoff between the complexity of the codes and their performance. During the process
toward this goal, several contributions were made.

In Chapter 2, new tight upper and lower bounds on the Lambert W function are derived,
which constitute a major improvement to the existing lower and upper bounds. The Lambert
W function was then used in the estimate of expected value of the maximum among standard
i.i.d. Gaussian random variables (denoted by eM).

In Chapter 3, a modified version of the SPARC encoding algorithm is presented, on the
basis of eM rather than its approximated value (which is an upper bound on eM). The modified
algorithm improves the performance of the SPARCs, as it is supported by our computer simu-
lations, especially for the higher rates. Subsequently, it enables us to derive improved bounds
on the probability of excess distortion.

After providing a preliminary analysis in Chapter 4, our main result is introduced and
proved in Chapter 5. This gives an upper bound on the probability of excess distortion for
lossy compression of an ergodic source using the modified SPARC encoding algorithm from
Chapter 3. In contrast to previous works, Theorem 1 is proved for finite blocklength n. The
bound in Theorem 1 is expressed as the sum of three separate probabilities, one of which
depends on the distribution of the source; the three probabilities are bounded individually in
Chapter 5, and the complete bound for the Gaussian i.i.d. case is provided in Theorem 2.

Relying on Theorem 1, Chapter 6 tackles the rate in which the distortion of our SPARC lossy
compression scheme approaches the distortion-rate function, as the blocklength n grows. An
asymptotic upper bound on this rate is proved, which scales in a similar fashion to previously
known results, albeit with smaller coefficients; however, we also show that no better asymptotic
bound can be developed, as long as we rely on Theorem 1.
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8.2 Open Questions
Several subjects which were discussed in this research are left open for further research. The
principal issue is the tightness of the bound in Theorem 1: while it is a significant improvement
to the previously known bound in [26], the computer simulations show that there still is a non-
negligible gap between the bound and the empirical performance of the SPARCs. The reason
for this disparity revolves around the method in which the probability of excess distortion is
bounded. As explained thoroughly in Chapter 3, the lossy compression encoding is performed
in L steps, where at each step i ∈ {1, . . . , L}, a column is picked in section i of the design matrix
A. In order to prove Theorem 1, the absolute value of the deviation ∆i (see definition in (5.9))
is bounded, and the bound allows for the ”worst case scenario”: the absolute value of the
deviation from the previous step, |∆i−1|, is added to the absolute value of the deviation created
in the current step. In practice, it is very unlikely that all L deviations have the same sign,
which justifies the gap between the bound and the empirical results. To reach a tight bound
to the probability of excess distortion, we must take into account the sign of the individual
deviation at each step.

A related open question is the asymptotic scaling of the gap between the distortion-rate
function and the performance of the SPARCs. In Chapter 6, for the case of an i.i.d. Gaussian
source, it is shown that the gap tends to 0 in n at least as fast as O

(
log logn
logn

)
; for a general

memoryless source, the rate of the decay depends on the distribution of the source. However, it
is still not clear whether the gap indeed decays to 0 at this rate or in a (much) faster rate. We
have only shown that no bound can be developed which is asymptotically better while using
Theorem 1.

Another possible future research direction is to develop a generalization to the lossy com-
pression scheme of the SPARCs. The main theorem of the thesis, Theorem 1, is applicable to
all ergodic and memoryless sources, not only a memoryless Gaussian source. However, it proves
that all memoryless and ergodic sources approach the distortion-rate function of a memoryless
Gaussian source when compressed by SPARCs, rather than their corresponding distortion-rate
functions; as per [23], this is the best possible result that can be reached using a Gaussian
codebook. An interesting open question is whether it is possible to apply the sparse regression
method to other sources, even finite alphabet sources, and reach their respective asymptotic
informational-theoretic limits.

From a more practical perspective, the aim of any code for lossy compression is not only
to have good asymptotic performance, but also to work well for finite, reasonable blocklengths.
Using the proposed algorithm in Chapter 3, the compression complexity increases polynomially
in n. Although this growth rate in complexity is reasonable, in practice, it is not feasible
to use the encoding algorithm with blocklengths exceeding several hundred source symbols.
One improvement is to use a Hadamard-based design matrix A instead of the structureless
i.i.d. standard Gaussian design matrix from Chapter 3, as suggested in [18]; this significantly
decreases the complexity of the encoder, since it is possible to use the fast Hadamard transform.
However, no theoretical guarantees for SPARCs with Hadamard-based design matrices have
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been developed so far (to the best of our knowledge), which could be an interesting direction
for further research.

A different path to achieve better performance by SPARCs could be obtained by spatially
coupled SPARCs (SC-SPARCs), where the design matrix A contains coupling between blocks.
Recent results in [20] and [21] indicate promising empirical performance of the SC-SPARCs for
channel coding, although they have not yet been adapted for lossy compression, and no finite
blocklength analysis has been performed for these modern coding techniques.
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Appendix A

Proof of Lemma 5

We first show that if (5.20) holds for some i ∈ {1, . . . , L}, then ∆i > −1
2
. Since L > 2R, from

(2.15),

n =
L

R
logM > 2 logM ≥ e2M , (A.1)

⇒ 2e2M
n− e2M

> 0. (A.2)

Furthermore, from (3.1),

2e2ML

n− e2M
≤ 4L logM

n− 2 logM
=

4bL logL
b
R
L logL− 2b logL

=

(
4L
R

L
R
− 2

)
R. (A.3)

Let R be fixed. Then the right side of (A.3) is a function of the form f(x) = dx
x−2

of the free
parameter x = L

R
. Since f is a monotonically decreasing function on (a,∞) when d > 0, under

the assumption that L
R

≥ 10, the maximum of the right side of (A.3) is attained at L
R

= 10.
Substituting this value in the right side of (A.3) implies that

2e2ML

n− e2M
≤ 5R. (A.4)

We conclude from (5.20), (A.2) and (A.4) that conditioning on A, for i ∈ {1 . . . , L},

∆i ≥ ∆0 −
2e2ML

n− e2M

i∑
j=1

|γj|+ |ϵj|
L

(A.5)

≥ −δ0 − 5R(δ1 + δ2) (A.6)

> −1

2
, (A.7)

where (A.7) holds due to the assumption in (5.1).
We next prove (5.20) by induction. For i = 0, it is trivial. Assume that (5.20) holds for

some i − 1, and prove for i ≤ L. The induction hypothesis together with (A.5)–(A.7) imply
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that

1 + ∆i−1 >
1

2
, (A.8)

and therefore, using (5.15) and (A.2) yields

(1 + ∆i)
2 ≥ (1 + ∆i−1)

2 − e2M
n− e2M

(
|γi|+ 2|ϵi|(1 + ∆i−1)

)
(A.9)

= (1 + ∆i−1)
2

[
1− e2M

n− e2M

(
|γi|

(1 + ∆i−1)2
+

2|ϵi|
1 + ∆i−1

)]
. (A.10)

To prove that the expression in the second term in the right side of (A.10) is positive, notice
that from (A.8),

e2M
n− e2M

(
|γi|

(1 + ∆i−1)2
+

2|ϵi|
1 + ∆i−1

)
≤ 4e2M
n− e2M

(|γi|+ |ϵi|) , (A.11)

and from (5.17)–(5.18), (A.4) and (A.11),

e2M
n− e2M

(
|γi|

(1 + ∆i−1)2
+

2|ϵi|
1 + ∆i−1

)
≤ 10R(δ1 + δ2) < 1, (A.12)

where the last inequality holds due to (5.1). This proves that the right side of (A.10) is positive,
which allows taking the square root of both sides of the inequality,

1 + ∆i ≥ (1 + ∆i−1)

[
1− e2M

n− e2M

(
|γi|

(1 + ∆i−1)2
+

2|ϵi|
1 + ∆i−1

)] 1
2

(A.13)

≥ (1 + ∆i−1)

[
1− e2M

n− e2M

(
|γi|

(1 + ∆i−1)2
+

2|ϵi|
1 + ∆i−1

)]
(A.14)

= 1 +∆i−1 −
e2M

n− e2M

(
|γi|

1 + ∆i−1

+ 2|ϵi|
)
, (A.15)

where (A.14) holds since
√
x ≥ x for all x ∈ [0, 1]. Consequently,

∆i ≥ ∆i−1 −
e2M

n− e2M

(
|γi|

1 + ∆i−1

+ 2|ϵi|
)

(A.16)

≥ ∆i−1 −
2e2M (|γi|+ |ϵi|)

n− e2M
(A.17)

≥ ∆0 −
2e2ML

n− e2M

i∑
j=1

|γj|+ |ϵj|
L

, (A.18)

where (A.17) is due to (A.8), and (A.18) from the induction hypothesis, i.e. that (5.20) holds
for some i− 1.
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Appendix B

Proof of Lemma 6

We prove the lemma by induction. For i = 1, by (5.15) and (A.2),

(1 + ∆1)
2 = (1 + ∆0)

2 +
e2M

n− e2M

(
∆2

0 + γ1 − 2ϵ1(1 + ∆0)
)

(B.1)

≤ (1 + |∆0|)2 +
e2M

n− e2M

(
∆2

0 + |γ1|+ 2|ϵ1|
(
1 + |∆0|

))
(B.2)

and therefore,

1 + ∆1 ≤ (1 + |∆0|)
[
1 +

e2M
n− e2M

(
∆2

0

(1 + |∆0|)2
+

|γ1|
(1 + |∆0|)2

+
2|ϵ1|

1 + |∆0|

)] 1
2

(B.3)

≤ (1 + |∆0|)
[
1 +

e2M
2(n− e2M)

(
∆2

0

(1 + |∆0|)2
+

|γ1|
(1 + |∆0|)2

+
2|ϵ1|

1 + |∆0|

)]
, (B.4)

where (B.4) relies of the inequality
√
1 + x ≤ 1 + x

2
which holds for x ≥ 0. Consequently,

∆1 ≤ |∆0|+
e2M

2(n− e2M)

(
∆2

0

1 + |∆0|
+

|γ1|
1 + |∆0|

+ 2|ϵ1|
)

(B.5)

≤ |∆0|+
e2M

2(n− e2M)
(|∆0|+ 2|γ1|+ 2|ϵ1|) (B.6)

≤ |∆0|
(
1 +

e2M
2(n− e2M)

)
+

e2M
n− e2M

(|γ1|+ |ϵ1|) . (B.7)

From Lemma 5,

∆1 ≥ ∆0 −
2e2M

n− e2M
(|γ1|+ |ϵ1|) ≥ −|∆0| −

2e2M
n− e2M

(|γ1|+ |ϵ1|) . (B.8)

Combining (B.7) and (B.8) yields

|∆1| ≤ |∆0|
(
1 +

e2M
2(n− e2M)

)
+

2e2M
n− e2M

(|γ1|+ |ϵ1|) (B.9)

= |∆0|w +
2e2M

n− e2M
(|γ1|+ |ϵ1|) , (B.10)
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where the inequality in (B.10) holds by the definition in (5.3). We next assume that (5.21)
holds for some i − 1, and prove for i ≤ L. From (5.15), and using identical arguments to
(B.1)–(B.7), it follows that

∆i ≤ |∆i−1|
(
1 +

e2M
2(n− e2M)

)
+

e2M
n− e2M

(|γi|+ |ϵi|) . (B.11)

From (A.17),

∆i ≥ ∆i−1 −
2e2M

n− e2M
(|γi|+ |ϵi|) ≥ −|∆i−1| −

2e2M
n− e2M

(|γi|+ |ϵi|) , (B.12)

and combining (B.11) and (B.12) yields

|∆i| ≤ |∆i−1|w +
2e2M

n− e2M
(|γi|+ |ϵi|) . (B.13)

with w as defined in (5.3). Using the induction hypothesis,

|∆i| ≤

[
|∆0|wi−1 +

2e2M
n− e2M

i−1∑
j=1

wi−j−1(|γj|+ |ϵj|)

]
w +

2e2M
n− e2M

(|γi|+ |ϵi|) (B.14)

= |∆0|wi +
2e2M

n− e2M

i∑
j=1

wi−j(|γj|+ |ϵj|). (B.15)
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Appendix C

Proof of Lemma 12

∫ ∞

−∞
eeM |z−eM |fZM

(z) dz =

∫ ∞

eM

eeM (z−eM )fZM
(z) dz +

∫ eM

−∞
e−eM (z−eM )fZM

(z) dz. (C.1)

For the first integral in the right side of (C.1), from (2.13),∫ ∞

eM

eeM (z−eM )fZM
(z) dz =

M e−e2M
√
2π

∫ ∞

eM

eeMz− 1
2
z2+(M−1) log(1−Q(z)) dz. (C.2)

Since log(1−Q(z)) ≤ 0 for all z ∈ R,∫ ∞

eM

eeM (z−eM )fZM
(z) dz ≤ M e−e2M

√
2π

∫ ∞

eM

eeMz− 1
2
z2 dz (C.3)

=
M e−e2M
√
2π

∫ ∞

eM

e−
1
2
(z−eM )2+ 1

2
e2M dz (C.4)

=
M e−

1
2
e2M

√
2π

∫ ∞

0

e−
1
2
u2

du (C.5)

=
1

2
M e−

1
2
e2M . (C.6)

Therefore,

lim sup
M→∞

1

eM

∫ ∞

eM

eeM (z−eM )fZM
(z) dz ≤ lim sup

M→∞

elogM− 1
2
e2M

2eM
(C.7)

=
1

2
√
2
, (C.8)

where in (C.8) we used the following limit,

lim
M→∞

log(M)− 1
2
e2M

log log(M)
=

1

2
, (C.9)
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which follows from (2.73). For the second integral in the right side of (C.1), from (2.13),∫ eM

−∞
e−eM (z−eM )fZM

(z) dz =

∫ eM

−∞

M ee
2
M

√
2π

e−eMz− 1
2
z2+(M−1) log(1−Q(z)) dz (C.10)

≤
∫ 0

−∞
gM(z) dz +

∫ eM− 1
2

0

gM(z) dz +

∫ eM

eM− 1
2

gM(z) dz, (C.11)

where

gM(z) , M√
2π

exp

(
e2M − eMz −

1

2
z2 + (M − 1) log (1−Q(z))

)
. (C.12)

We now bound each of the three integrals in (C.11) individually. For the first,

M ee
2
M

√
2π

∫ 0

−∞
e−eMz− 1

2
z2+(M−1) log(1−Q(z)) dz ≤ M3

√
2π

∫ 0

−∞
e−eMz− 1

2
z2−(M−1) log(2) dz (C.13)

=
M3

√
2π
e−(M−1) log(2)

∫ ∞

0

eeMz− 1
2
z2 dz (C.14)

=
M3

√
2π
e−(M−1) log(2)

∫ ∞

0

e−
1
2
(z−eM )2+ 1

2
e2M dz (C.15)

=
M3

√
2π
e−(M−1) log(2)+ 1

2
e2M

∫ ∞

−eM

e−
1
2
u2

du (C.16)

≤M3 e−(M−1) log(2)+ 1
2
e2M , (C.17)

where (C.13) is due to Q(x) ≥ 1
2

for x ≤ 0 and due to (2.15), and (C.17) follows from Q(x) ≤ 1

for x ∈ R. From (C.17),

lim sup
M→∞

∫ 0

−∞
gM(z) dz ≤ lim sup

M→∞
e−(M−1) log(2)+ 1

2
e2M+3 logM = 0. (C.18)

The second integral in (C.11) is similarly bounded as follows,

M ee
2
M

√
2π

∫ eM− 1
2

0

e−eMz− 1
2
z2+(M−1) log(1−Q(z)) dz

≤ M3

√
2π
e(M−1) log(1−Q(eM− 1

2))
∫ eM− 1

2

0

e−eMz− 1
2
z2 dz (C.19)

=
M3

√
2π
e(M−1) log(1−Q(eM− 1

2))+
1
2
e2M

∫ eM− 1
2

0

e−
1
2
(z+eM )2 dz (C.20)

=M3 e(M−1) log(1−Q(eM− 1
2))+

1
2
e2M
(
Q(eM)−Q

(
2eM − 1

2

))
(C.21)

≤M3 e−(M−1)Q(eM− 1
2)+

1
2
e2MQ(eM) (C.22)

≤M3 e−(M−1)Q(eM− 1
2), (C.23)

where (C.19) is due to (2.15) and since Q(x) is monotonically decreasing for x ∈ R, (C.22)
follows from the inequality log(1− x) ≤ −x for x ∈ [0, 1), and (C.23) follows fromQ(x) ≤ e−

1
2
x2 .
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From the known inequality Q(x) ≥ x
x2+1

· 1√
2π
e−

1
2
x2 ,

3 log(M)− (M − 1)Q
(
eM − 1

2

)
≤ 3 log(M)−

eM − 1
2(

eM − 1
2

)2
+ 1

· 1√
2π
e−

1
2
(eM− 1

2
)2+log(M−1)

(C.24)

= 3 log(M)−
eM − 1

2(
eM − 1

2

)2
+ 1

· 1√
2π
elog(M−1)− 1

2
e2M+ 1

2
eM− 1

8 .

(C.25)

From (2.15), (C.23) and (C.25),

lim sup
M→∞

∫ eM− 1
2

0

gM(z) dz ≤ lim sup
M→∞

exp

(
3 log(M)−

eM − 1
2(

eM − 1
2

)2
+ 1

· 1√
2π
elog(M−1)− 1

2
e2M+ 1

2
eM− 1

8

)
(C.26)

≤ lim sup
M→∞

exp

(
3elog log(M) −

eM − 1
2(

eM − 1
2

)2
+ 1

· 1√
2π
e

1
2
eM− 1

8

)
= 0,

(C.27)

since eM ≈
√
2 logM (see (2.113)). The third integral in (C.11) can be bounded as follows,

M ee
2
M

√
2π

∫ eM

eM− 1
2

e−eMz− 1
2
z2+(M−1) log(1−Q(z)) dz ≤ M ee

2
M

2
√
2π

max
eM− 1

2
≤z≤eM

{
e−eMz− 1

2
z2+(M−1) log(1−Q(z))

}
(C.28)

≤ M ee
2
M

2
√
2π

max
eM− 1

2
≤z≤eM

{
e−eMz− 1

2
z2−(M−1)Q(z)

}
(C.29)

where (C.29) follows from the inequality log(1− x) ≤ −x for x ∈ [0, 1). Define

f(x) , eMx+
x2

2
+ (M − 1)Q(x) (C.30)

for x ∈ [eM − 1
2
, eM ]. The derivative of f(x) is

f ′(x) = eM + x− (M − 1)√
2π

e−
x2

2 . (C.31)

To find the minimum of f(x) in the interval, we set the derivative to zero and define ϵ , eM−x,
which yields the following implicit equation,

2eM − ϵ− M − 1√
2π

exp

(
−(eM − ϵ)2

2

)
= 0 (C.32)

⇒ ϵ = eM −

√
2 log

(
M − 1

(2eM − ϵ)
√
2π

)
. (C.33)
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To make sure that there exists ϵ ∈ [0, 1
2
] such that the implicit equation in (C.33) has a solution,

the following step proves that the expression on the right side of (C.33) is positive and arbitrarily
small for a large enough M . On the one hand,

eM −

√
2 log

(
M − 1

(2eM − ϵ)
√
2π

)
≤
√

2 logM

1−

√
log(M − 1)

logM
−

log
(
(2eM − ϵ)

√
2π
)

logM


(C.34)

≤
√

2 logM

(
1− log(M − 1)

logM
+

log
(
(2eM − ϵ)

√
2π
)

logM

)
(C.35)

=

√
2

logM
· log

(
M

M − 1

)
+

√
2 log

(
(2eM − ϵ)

√
2π
)

√
logM

, (C.36)

where (C.34) follows from (2.15) and (C.35) due to
√
x ≥ x for x ∈ [0, 1]. Therefore,

lim sup
M→∞

(
eM −

√
2 log

(
M − 1

(2eM − ϵ)
√
2π

))
≤ 0. (C.37)

On the other hand,

eM −

√
2 log

(
M − 1

(2eM − ϵ)
√
2π

)
≥
√

2 logM − log logM + log(4π)

2
√
2 logM

−

√
2 log

(
M − 1

(2eM − ϵ)
√
2π

)
(C.38)

≥
√

2 logM

1− log logM + log(4π)

4 logM
−

√
1−

log
(
(2eM − ϵ)

√
2π
)

logM


(C.39)

≥
√
2 logM

(
log
(
(2eM − ϵ)

√
2π
)

2 logM
− log logM + log(4π)

4 logM

)
(C.40)

=
1√

2 logM

(
log
(
(2eM − ϵ)

√
2π
)
− log

(√
4π logM

))
(C.41)

=
1√

2 logM
log

(
2eM − ϵ√
2 logM

)
, (C.42)

where (C.38) follows from (2.114) for a large enough M , and (C.40) is due to
√
1− x ≤ 1− x

2

for x ∈ [0, 1]. From (2.113), (C.42) implies that for a large enough M ,

eM −

√
2 log

(
M − 1

(2eM − ϵ)
√
2π

)
≥ 0. (C.43)
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Since for a large enough M the right side of (C.33) is almost constant for ϵ ∈ [0, 1
2
], the implicit

equation in (C.33) has a solution for ϵ ∈ [0, 1
2
] according to the intermediate value theorem.

Therefore, the minimum of f(x) when x ∈ [eM − 1
2
, eM ] is at

x∗ =

√
2 log

(
M − 1

(2eM − ϵ)
√
2π

)
, (C.44)

for some ϵ ∈ [0, 1
2
]. Substituting (C.44) into (C.29) we have

∫ eM

eM− 1
2

gM(z) dz ≤ 1√
8π

exp

(
logM + e2M − eM

√
2 log

(
M − 1

(2eM − ϵ)
√
2π

)
− log

(
M − 1

(2eM − ϵ)
√
2π

))
(C.45)

=
M

M − 1

(
eM − ϵ

2

)
exp

(
e2M − eM

√
2 log

(
M − 1

(2eM − ϵ)
√
2π

))
(C.46)

≤ M

M − 1

(
eM − ϵ

2

)
exp

(√
2 logM

(
eM −

√
2 log

(
M − 1√
16π logM

)))
,

(C.47)

where (C.45) follows from Q(x) ≥ 0 for x ∈ R and (C.47) from (2.15) and since ϵ ≥ 0. From
(2.114), for large enough M ,

∫ eM

eM− 1
2

gM(z) dz ≤ M

M − 1

(
eM − ϵ

2

)
exp

(
2 logM − log logM − 2γ

2
− 2

√
logM log

(
M − 1√
16π logM

))
.

(C.48)

Define

g(x) , 2x− log x

2
− 2

√
x2 − x log(

√
16πx). (C.49)

Then,

g′(x) = 2− 1

2x
−
(
x2 − x log(

√
16πx)

)−0.5
(
2x− log(

√
16πx)− x · 1√

16πx
·
√

4π

x

)
(C.50)

= 2− 1

2x
−

2x− log(
√
16πx)− 1

2√
x2 − x log(

√
16πx)

(C.51)

= 2− 1

2x
− 2x− log(

√
16πx)√

x2 − x log(
√
16πx)

+
1

2
√
x2 − x log(

√
16πx)

(C.52)

= 2

1−

√
1 +

1
4
log2(

√
16πx)

x2 − x log(
√
16πx)

+
1

2x

 1√
1− log(

√
16πx)
x

− 1

 . (C.53)

69



Since

1√
1− t

− 1 ≤ t, for t ∈ [0,
√
5−1
2

], (C.54)

1−
√
1 + t ≤ − t

4
for t ∈ [0, 8], (C.55)

then for a large enough x,

g′(x) ≤ −
1
8
log2(

√
16πx)

x2 − x log(
√
16πx)

+
log(

√
16πx)

2x2
(C.56)

≤ 0. (C.57)

When x ≥ 1
16π
e8 ≈ 59.3, the conditions in (C.54), (C.55) and (C.57) are held, and therefore

g′(x) ≤ 0 (C.58)

for x > 60. Thus, when M ≥ exp(60) the exponent in (C.48) is monotonically decreasing with
M , and subsequently for a large enough M ,

exp

(
2 logM − log logM − 2γ

2
− 2

√
logM log

(
M − 1√
16π logM

))
< 13.6, (C.59)

and therefore,

lim sup
M→∞

1

eM

∫ eM

eM− 1
2

gM(z) dz < 13.6. (C.60)

Combining (C.1), (C.8), (C.11), (C.18), (C.27) and (C.60), we have (6.11).
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Appendix D

Proof of Lemma 13

From (2.114),

lim sup
L→∞

logL

log logL

((
1− e2M

n

)L

− e−2R

)

≤ lim sup
L→∞

logL

log logL

((
1− 2 logM − log logM − log 4π

n

)L

− e−2R

)
(D.1)

= lim sup
L→∞

logL

log logL

(1− 2R

L
+

log logL+ log 4πb
b
R
L logL

)L

− e−2R

 (D.2)

= lim sup
L→∞

logL

log logL

((
1− 2R

L
(1− f(L))

)L

− e−2R

)
, (D.3)

where (D.2) follows from (3.1) and with

f(L) , log logL+ log 4πb

2b logL
. (D.4)

Continuing from (D.3),

lim sup
L→∞

logL

log logL

((
1− e2M

n

)L

− e−2R

)

≤ lim sup
L→∞

logL

log logL

(
exp

(
L log

(
1− 2R

L
(1− f(L))

))
− e−2R

)
(D.5)

≤ lim sup
L→∞

logL

log logL

(
e2Rf(L) − 1

)
e−2R, (D.6)

where (D.6) follows from the inequality log(1 − x) ≤ −x for x ∈ [0, 1). Define ξ , log logL
logL

.
Then,

lim sup
L→∞

logL

log logL

((
1− e2M

n

)L

− e−2R

)
≤ lim sup

ξ→0

1

ξ

(
e

R
b
(ξ+ϵ) − 1

)
e−2R, (D.7)
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for an arbitrarily small ϵ > 0. Hence, from L’Hôpital’s rule,

lim sup
L→∞

logL

log logL

((
1− e2M

n

)L

− e−2R

)
≤ lim sup

ξ→0

R

b
e

R
b
(ξ+ϵ)−2R (D.8)

=
R

b
e−2R+Rϵ/b. (D.9)

Since the result in (D.9) is true for an arbitrarily small ϵ > 0,

lim sup
L→∞

logL

log logL

((
1− e2M

n

)L

− e−2R

)
≤ R

b
e−2R. (D.10)

On the other hand, from (2.114),

lim inf
L→∞

logL

log logL

((
1− e2M

n

)L

− e−2R

)
≥ lim inf

L→∞

logL

log logL

((
1− 2R

L
(1− g(L))

)L

− e−2R

)
,

(D.11)

where

g(L) , log logL+ log b− 2γ

2b logL
− 1

b logL

(
log logL+ log b− 2γ

2
√
2b logL

)2

. (D.12)

Continuing from (D.11),

lim inf
L→∞

logL

log logL

((
1− e2M

n

)L

− e−2R

)

≥ lim inf
L→∞

logL

log logL

(
exp

(
L log

(
1− 2R

L
(1− g(L))

))
− e−2R

)
(D.13)

≥ lim inf
L→∞

logL

log logL

(
exp

(
−2R(1− g(L))− 4R2

L
(1− g(L))2

)
− e−2R

)
(D.14)

= lim inf
L→∞

logL

log logL

(
exp

(
−2R + 2Rg(L)− 4R2

L
(1− g(L))2

)
− e−2R

)
,

(D.15)

where in (D.14) we used the inequality log(1− x) ≥ −x− x2 for x ∈ [0, 1
2
]. Define ξ , log logL

logL
.

Then, for an arbitrarily small ϵ > 0,

lim inf
L→∞

logL

log logL

((
1− e2M

n

)L

− e−2R

)
≥ lim inf

ξ→0

1

ξ

(
exp

(
−2R +

R

b
ξ − ϵ

)
− e−2R

)
(D.16)

=
R

b
e−2R−ϵ, (D.17)
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where (D.17) is due to L’Hôpital’s rule; since ϵ is an arbitrarily small positive number,

lim inf
L→∞

logL

log logL

((
1− e2M

n

)L

− e−2R

)
≥ R

b
e−2R, (D.18)

Combining (D.10) and (D.18) yields (6.19).
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, בעבודה קודמת אשר פותח SPARCs-המפורט אלגוריתם הקידוד של  3בפרק 

, בעיקר בקצבי קוד גבוהים. שפר את ביצועי הקודהמאלגוריתם בולאחריו מוצע שינוי 

 .בעברממדויקים מודיפיקציה זאת לסכימת הקידוד מבוססת על אומדנים יותר 

-ההחדש של  הקידוד מובאת אנליזה אסימפטוטית לביצועי אלגוריתם 4בפרק 

SPARCsניתוח פשוט )אם כי לא ריגורוזי( לכך שקודים אלה מסוגלים, עבור  מציגה, ה

-דחוס מקורות חסרי זיכרון כלשהם לפונקציית הקצבאורך בלוק גדול מספיק, ל

  זיכרון.-עיוות של מקור גאוסי חסר

שאנו מוכיחים המשפט  ., התוצאה המרכזית בעבודת המחקר מוצגת ומוכחת5בפרק 

. SPARCsיתר בקידוד עם  הסתברות שיתקבל עיוותעל הנותן חסם עליון בפרק זה 

על  מתבססהמשפט מחדש ביחס לתוצאות קודמות בכמה מישורים: ראשית, הוא 

לכניסות בעלות  ההוכחה מתייחסת ; שנית,3פורט בפרק אלגוריתם הקידוד החדש ש

אורך סופי, ולא רק אסימפטוטי כפי שהיה קודם לכן; ולבסוף, החסמים על 

אים כי המשפט החדש . בנוסף, אנו מריתר הודקו באופן משמעותי-ההסתברות לעיוות

מסוגלים  SPARCs-, ושהשאינם גאוסייםסטציונריים וחסרי זיכרון חל גם על מקורות 

לדחוס בהצלחה כל מקור סטציונרי וחסר זיכרון עם שונות סופית, לקצב דחיסה 

  עיוות של מקור גאוסי חסר זיכרון עם אותה שונות. -המתאים לפונקציית הקצב

פער בין העיוות ל אסימפטוטי מוצג חסם עליון 6פרק ב, 5המשפט מפרק בהסתמך על 

לבין פונקציית  ,של מקור גאוסי חסר זיכרון SPARCsכתוצאה מקידוד בעזרת 

טוב  חסם עליון. בנוסף, מוכח כי לא ניתן להגיע לקבלוה באורך תלותכ קצב,-העיוות

 כל עוד משתמשים במשפט זה.יותר )עד כדי קבוע( 

מכיל סימולציות מחשב של ביצועי אלגוריתם הקידוד החדש לדחיסה עם עיוות  7פרק 

, בהשוואה לאלגוריתם הקיים. בנוסף, איכות החסם שלנו על SPARCsבעזרת 

-ההסתברות לעיוות יתר נבחנת אל מול החסם הקיים הקודם ואל מול ביצועי קודי ה

SPARCs  .עצמם 

וכן מוצגים נושאים עתידיים להמשך  ,8בפרק בקצרה  ניתנותסיכום תוצאות המחקר 

 מחקר. 



i 
 

 תקציר
היא תכנון של ושל תורת הקידוד אחת מהמטרות העיקריות של תורת האינפורמציה 

עם עיוות,  ת נתוניםדחיסול מעל ערוצים רועשים קודים מעשיים לתקשורת אמינה

ביצוע.  ברת עם סיבוכיותהאינפורמציוניים התאורטיים היסודיים  המגיעים לגבולות

 LDPC, מספר קודים מעשיים כאלה פותחו, כגון קודי טורבו, קודי 90-החל משנות ה

ולמקורות עם אלפבית  וקודי קיטוב; יחד עם זאת, קודים אלה נחקרו בעיקר לערוצים

  דיסקרטי. 

לאחרונה, סוג חדש של קודים הוצע עבור תקשורת אמינה מעל ערוצים חסרי זיכרון, 

עם אלפבית רציף.  ,ועבור דחיסה עם עיוות של מקורות סטציונריים וחסרי זיכרון

 sparse regression codesקודים אלה, הנקראים קודי רגרסיה דלילה )באנגלית: 

(, מבוססים על טכניקת קידוד שבה מילות הקוד הן צירופים SPARCsובקיצור 

במקור לתקשורת פותחו  SPARCs-תכן של הקוד. ההלינאריים של עמודות מטריצת 

(, והוכח שהם מגיעים אסימפטוטית AWGNמעל ערוץ רעש לבן גאוסי אדיטיבי )

כי הם  הותאמו לדחיסה עם עיוות, והראו SPARCs-לקיבול הערוץ. לאחר מכן, ה

-עיוות של מקור גאוסי חסר-מצליחים להשיג אסימפטוטית את פונקציית הקצב

 בלוק. השגדלה פולינומיאלית עם אורך  זמןזיכרון עם סיבוכיות 

עבור דחיסה עם עיוות של  SPARCs-בבחינת ביצועי ה עבודת מחקר זאת מתמקדת

ידי הידוק חסמים אסימפטוטיים קיימים על ההסתברות  מקורות חסרי זיכרון, על

לעיוות יתר, ועל ידי התאמת חסמים אלה לאורכי בלוק סופיים. זאת ועוד, בעבודת 

שיפור , וSPARCsמחקר מוצע שיפור לסכימת הקידוד של דחיסה עם עיוות בעזרת ה

נושא נוסף אשר נידון בעבודה  והן באמצעות סימולציות מחשב.נבחן הן תאורטית  זה

ובין הסיבוכיות שלהם בהקשר של  SPARCsשבין ביצועי קודי  tradeoff-הוא ה

 דחיסה עם עיוות.  

, מוצגים סימונים ומשפטים בסיסיים בהם השתמשנו 2בפרק   העבודה מאורגנת כך:

של  Wון חדשים לפונקציית לאורך התזה. בנוסף, מוכחים חסם עליון וחסם תחת

Lambertואשר רלוונטיים  ,, אשר הדוקים באופן משמעותי מהחסמים הקיימים

 לאנליזה בעבודת מחקר זאת.
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