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Outline

e Performance bounds
— Non-binary linear block codes under ML decoding

— Binary and non-binary linear block codes under
generalized decoding rules

* Polar coding
— Wire-tap channel
— Parallel channels with arbitrary input-permutation



Performance analysis of coded
communication systems

 Upper and lower bounds on the decoding error
probability are interesting as both theoretical and
engineering tools

 Union bounds are useless at rates exceeding the
channel cut-off rate

* Modern coding schemes perform reliably at rates
close to the capacity



A bounding tour

* Gallager

— Fully random block code ensembles
— Informative at all rates below capacity

 Duman and Salehi
— Structured codes and code ensembles
— DS2 and generalizations for various memoryless channels
— Facilitates the derivation of previously reported bounds

* Shulman and Feder
— Structured codes and code ensembles
— Coincides with Gallager’s random coding bound
— Non-binary adaptations

* Sphere Packing lower bounds



New results

* Chapter 2: “Performance bounds for non-binary
linear block codes over memoryless symmetric
channels,” IEEE Trans. on Information Theory, vol.
55, no. 3, pp. 977-996, March 2009.

* Chapter 3: “Performance Bounds for Erasure, List
and Decision Feedback Schemes with Linear
Block Codes,” IEEE Trans. on Information Theory,
vol. 56, no. 8, pp. 3754-3778, August 2010.



Non-binary linear block codes under
ML decoding

 Message independence proposition for memoryless
symmetric channels
* Adaptation of Gallager’s’65 technique for structured codes
or ensembles
— Adapt the DS2 bound for non-binary codes

— Derivation of particular bounds which are easy to calculate and
provide some insight to the problem.

e Applications for the non-binary regular LDPC ensembles of
Gallager
— A derivation of the exact complete composition spectra
— A comparison to the ultimate code performance (SP59, ISP)
— Transmissions over various memoryless channel models



Memoryless symmetric channels

Definition (discrete memoryless channels)

Input-alphabet &
Output alphabet Y
transition probability p

17 :YxX =Y

1. T(-,x) : Y — Y is bijective

2. pylz1) = p(T(y, T2 — 21)|22)



Particular cases

e Continuous-output alphabet
 MBIOS channels

=0
T ={ ¥, 22

* Coding schemes with a random coset
mechanism

T((y,’U),CL') — (y,’v—x), ye)y, r,ve X



Message independence

Proposition
— Al. Linear block codes
— A2. Memoryless symmetric channels

The block error probability under ML decoding is
independent on the transmitted message.

Example

Gallager’s symmetry does not guarantee message
independence



The DS2 bound
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Ensemble symmetry
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Binary and non-binary linear block codes under
generalized decoding rules

* Generalized decoding rules

— Forney’s optimal decoding rule with erasure and list decoding
— LR test decoding
— Fixed-size list decoding

 Message independence properties for linear block
codes

e Performance bounds

— Gallager type (DS2)
— Error exponents
— Finite block length analysis



Generalize
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Exponential Error Bounds for Erasure, List,

and Decision Feedback Schemes

G. DAVID FORNEY, JR., MEMBER, IEEE

F Abstract—By an extension of Gallager's bounding methodl,
exponential error bounds applicable to coding sch

erasures, variable-size lists, and decision feedback are ohulned.
The bounds are everywhere the tightest known.

INTRODUCTION

NE of the central problems of coding theory is the
O question of the crror probability obtainable by

coding on memoryless channels. Coding theory's
first result, and still its most important, was Shannon’s (1
proof that every memoryless channel has a capacity C,
such that arbitrarily small error probabilities can be
obtained if and only if the code rate R is less than C.
Many years of continuing attempts to make more precise
statements about error probabilities' culminated in Gal-
Iager’s elagant derivation™ of an exponential npper bound
on attainable error probabilities, and in a nearly identical
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Error probabilities

Block error probability

Fojm = Z p(y %)




Error probabilities

Block error probability

P = Y _ plyXm)

YEAS,

Undetected error probability
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Error probabilities

Block error probability

P = Y _ plyXm)

YEAS,

Undetected error probability

ue|m_ y‘ Y P y‘Xm
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Erasure probability

Px|m — Lem — Pue|m



Error probabilities

Block error probability

P = Y _ plyXm)

yEAS,

Undetected error probability

ue|m_ y‘ Y 4 y‘Xm

m/#Fmyeh, ./

Expected number of incorrect codewords




Optimal decoding

Pf(y, Xm) T
A, = e Yy": > e
Y y Zm'#m Pl‘(y, Xm/) = ¢

Chapter 4: “Optimal generalized decoding of convolutional
codes,” Proceedings of the Tenth International Symposium on Communication
Theory and Applications, pp. 6—10, Ambleside, UK, July 2009



Optimal generalized decoding of

convolutional codes
* Via the BCJR algorithm

Pr(y,xm) _ Pr(y,xm)
D mim PI(Y: Xmr)  Pr(y) — Pr(y, xm)

 Viathe VA

— path and branch metrics: standard add-compare-select

— recursive evaluation of the denuminator via the
generalized metrics
e Multiply by the branch metric (addition)
* Add the not survived metrics

e Channel state information at the RX




undetected bit error rate
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Optimal decoding
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Error exponents for
feedback schemes
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Message independence for
generalized decoding

Proposition
Al. Linear block codes
A2. Memoryless symmetric channels

The block error probability and undetected error probability under Forney’s
optimal decoding rule are independent of the transmitted message.
For list decoding: the block error probability and the average number of

incorrect codewords are independent of the transmitted message.

Similar propositions for LR test and fixed-size list-decoding.



Block codes under optimal decoding

Proposition:

Pe|m < enSTDB(m7 G?a S, p)

M
1
P <"V} Dp(m,Gl,s,p), 520, 0<p<1
m=1

Dgp(m, G, s, p) = (Z G?(Y)p(yxm))
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Block codes under optimal decoding

Proposition:

Pojn < €™ Dp(m, G, s, p)

Puege”(s_l)T ZDBme p), s=>0, 0<p<l1

Corollary (random coding): P, < e "ELU(RT)

Pue < B—HEQ (R,T)



Linear block codes
Memoryless symmetric channels
Optimal decoding
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undetected block error exponent
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Performance of
Feedback schemes
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Polar codes

e Arikan, IEEE IT July 2009
* Arikan and Telatar, ISIT 2009
e Korada and Urbanke, IEEE IT, April 2010



Recursive definition of polar codes
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Combined channels and information sets

Combined channels
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Split channels

Inputs




Split channels

outputs
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The ‘magic’ of channel polarization

Magic no. 1:
The split channels polarize
to perfect or nothing

Magic no. 2:
There are enough “good” indices

The symmetric capacity is achievable
index ordering is non-trivial and non-consecutive

Magic no. 3:
Successive cancellation decoding
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Chapter 5: Polar coding for the wiretap channel

Legitimate user Achievable rates (R, Re)
Y Decod '
Message X | Channel [ Pecodet —=U
U —| Encoder |—» Pe — 0
Py z1x
— Z - 1
Eavesdropper Re S lim —H (U|Z)
N—oo [V

Theorem: For symmetric and degraded channels

( 0<R<C(FPrx) \
!(R,R.): 0<R,<R >
\ R. < C(Py|x) — C(Pzx) )




Index sets

QKB

Polar secrecy encoding
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A secrecy achieving property

Theorem (physically-degraded and symmetric wire-tap channels)
R < C(Py‘X) — C(P2|X)

1

1
lim —H(U|Z) > R
m —H(U|Z) >

n—o0

P, — o



Secrecy achieving polar coding

Index sets

Good for both N
Good only for the legitimate A
The rest B

1. A Polarization argument for the set sizes

Successive decoding for the legitimate user

3. Analysis of the equivocation rate — based on
Fano’s inequality

N



Secret and private messages with
polar coding
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Chapter 6: Polar coding for Arbitrarily

X, X0, channel 1
m' m
encoder XQ; Xﬁ())‘_ channel 2= decoderf—
Xg‘ X channel 3
Theorem (Willems and Gorokhov):
Cm

Permuted Parallel Channels

Achievable rates:

1

—log, M > R— 6

n

P (n) <6, ¥ : [S] — [9]



Monotone index sets

Corollary:

Binary —input memoryless degraded symmetric channels.
C12Cy > 2 Cg.

Rates:

0 < R; <C

There exists “good” monotone index sets:  A(S) € A5~ c ... c AW

A®| > NR,



Monotone index sets

Polarized for the worse channel: Cs, Rs, AY
What is good for the worse, is good for the almost worse
Polarization gives the rest of the “good” indices:
A c A1
Repeat this,...Finally: AB) c A1 ... AW

A®)| > NR,



Parallel polar coding for 2 channels
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Parallel polar coding for 2 channels

The decoding process for the stronger channel generates the
“predetermined and fixed” bits for the degraded channel

Channel 1 @ receiver 1
menm oy e
s design
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Parallel polar coding for 3 channels

Channel 1
7 B
1 1
o HE
1] [ [
Channel 2
nlinilis
1
me s~
Channel 3

A repetion code for the
good indices of channel 1
which are not good for
channel 2

A parity check code for
the good indices of
channel 2 which are not
good for channel 3



Encoding and decoding for 3 channels

x; = u 1Gy (A 5)) +uy oGy, (Aq(f) \«47(13))
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X3 = u3Gn (

3 ) + (111,2 + u22)

Gy (AP AD)

G (AS) \A&?) +baG, ([n] \AS))

Channel P

Channel P>

Channel P;

Transmitted Decoded Transmitted Decoded Transmitted Decoded
Codeword Information Codeword Information Codeword Information
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The general case

* Theorem (MDS codes):

For an MDS code of dimension k every k symbols completely
characterize the codeword

e Combined MDS & Polar codes for the genral
degraded case

* The proposed technique does not achieve the
capacity in the non-degraded case



Non-degraded parallel channels

 The worst Bhattacharyya parameter whole the split
channels

* A parallel polarization based on the corresponding
erasure channels

S — Zf:lB(PS)

 Upper and (improved) lower bounds based on a
compound setting



Upper and lower bounds

A lower bound for the compound setting

C({P}seis) > 1— o Y maxB(F7)

sefo1yr “7

A lower bounds for the parallel transmission scheme

C( SS)—I—S—l—— Z Z max BP")

se[S—1] o €{0, 1}'lC

An Upper bound
A BSC+BEC Example (0.982 bits per channel use)



Summary

e Performance bounds
— Non-binary linear block codes under ML decoding

— Binary and non-binary linear block codes under
generalized decoding rules

* Polar coding
— Wire-tap channel
— Parallel channels with arbitrary input-permutation



