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Outline

• Performance bounds

– Non-binary linear block codes under ML decoding

– Binary and non-binary linear block codes under 
generalized decoding rules

• Polar coding

– Wire-tap channel

– Parallel channels with arbitrary input-permutation



Performance analysis of coded 
communication systems

• Upper and lower bounds on the decoding error 
probability are interesting as both theoretical and 
engineering tools

• Union bounds are useless at rates exceeding the 
channel cut-off rate

• Modern coding schemes perform reliably at rates 
close to the capacity



A bounding tour

• Gallager
– Fully random block code ensembles
– Informative at all rates below capacity

• Duman and Salehi
– Structured codes and code ensembles
– DS2 and generalizations for various memoryless channels
– Facilitates the derivation of previously reported bounds

• Shulman and Feder
– Structured codes and code ensembles
– Coincides with Gallager’s random coding bound
– Non-binary adaptations

• Sphere Packing lower bounds



New results

• Chapter 2: “Performance bounds for non-binary 
linear block codes over memoryless symmetric 
channels,” IEEE Trans. on Information Theory, vol. 
55, no. 3, pp. 977–996, March 2009.

• Chapter 3: “Performance Bounds for Erasure, List 
and Decision Feedback Schemes with Linear 
Block Codes,” IEEE Trans. on Information Theory, 
vol. 56, no. 8, pp. 3754–3778, August 2010.



Non-binary linear block codes under 
ML decoding

• Message independence proposition for memoryless
symmetric channels

• Adaptation of Gallager’s’65 technique for structured codes 
or ensembles
– Adapt the DS2 bound for non-binary codes
– Derivation of particular bounds which are easy to calculate and 

provide some insight to the problem.

• Applications for the non-binary regular LDPC ensembles of 
Gallager
– A derivation of the exact complete composition spectra
– A comparison to the ultimate code performance (SP59, ISP)
– Transmissions over various memoryless channel models



Memoryless symmetric channels

Definition (discrete memoryless channels) 

Input-alphabet 

Output alphabet

transition probability



Particular cases

• Continuous-output alphabet

• MBIOS channels 

• Coding schemes with a random coset
mechanism



Message independence

Proposition

– A1. Linear block codes

– A2. Memoryless symmetric channels

The block error probability under ML decoding is 
independent on the transmitted message.

Example

Gallager’s symmetry does not guarantee message 
independence



The DS2 bound

Theorem (Non-binary Shulman-Feder)



Ensemble symmetry

Theorem



Example



Example



Binary and non-binary linear block codes under 

generalized decoding rules

• Generalized decoding rules
– Forney’s optimal decoding rule with erasure and list decoding

– LR test decoding

– Fixed-size list decoding

• Message independence properties for linear block 
codes

• Performance bounds
– Gallager type (DS2)

– Error exponents

– Finite block length analysis



Generalized decoding



Generalized decoding



Generalized decoding



Generalized decoding



Error probabilities

Block error probability



Error probabilities

Block error probability

Undetected error probability



Error probabilities

Block error probability

Undetected error probability

Erasure probability



Error probabilities

Block error probability

Undetected error probability

Expected number of incorrect codewords



Optimal decoding

Chapter 4: “Optimal generalized decoding of convolutional
codes,” Proceedings of the Tenth International Symposium on Communication
Theory and Applications, pp. 6–10, Ambleside, UK, July 2009



Optimal generalized decoding of 
convolutional codes

• Via the BCJR algorithm

• Via the VA
– path and branch metrics: standard add-compare-select
– recursive evaluation of the denuminator via the 

generalized metrics
• Multiply by the branch metric (addition)
• Add the not survived metrics

• Channel state information at the RX



Example



Optimal decoding

Error exponents for 
feedback schemes



Message independence for 
generalized decoding

Proposition
A1. Linear block codes
A2. Memoryless symmetric channels

The block error probability and undetected error probability under Forney’s 
optimal  decoding rule are independent of the transmitted message.

For list decoding: the block error probability and the average number of 
incorrect codewords are independent of the transmitted message. 

Similar propositions for LR test and fixed-size list-decoding.



Block codes under optimal decoding

Proposition:



Block codes under optimal decoding

Proposition:

Corollary (random coding):



Linear block codes
Memoryless symmetric channels
Optimal decoding



Example



Performance of 
Feedback schemes



Polar codes

• Arikan, IEEE IT July 2009

• Arikan and Telatar, ISIT 2009

• Korada and Urbanke, IEEE IT, April 2010



Recursive definition of polar codes



Recursive definition of polar codes



Combined channels and information sets

Combined channels

Information bits:

Pre-determined bits



Split channels
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outputs
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The ‘magic’ of channel polarization

Magic no. 1:
The split channels polarize
to perfect or nothing

Magic no. 2:
There are enough “good” indices
The symmetric capacity is achievable
index ordering is non-trivial and non-consecutive

Magic no. 3:
Successive cancellation decoding
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Chapter 5: Polar coding for the wiretap channel

Theorem: For symmetric and degraded channels

Achievable rates



Polar secrecy encoding

Index sets fixed
bit

fixed
bit

fixed
bit

information 
bit

information 
bit
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A secrecy achieving property
Theorem  (physically-degraded and symmetric wire-tap channels)



Secrecy achieving polar coding

Index sets
Good for both
Good only for the legitimate
The rest

1. A Polarization argument for the set sizes 
2. Successive decoding for the legitimate user
3. Analysis of the equivocation rate – based on 

Fano’s inequality 



Secret and private messages with 
polar coding

fixed
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bit
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bit

information 
bit

information 
bit

information 
bit

Random
bit

Random
bit

+

+

+

+

Secret bit

Secret bit
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Chapter 6: Polar coding for Arbitrarily 
Permuted Parallel Channels

Achievable rates:

Theorem (Willems and Gorokhov):



Monotone index sets

Corollary:

Binary –input memoryless degraded symmetric channels.

Rates:

There exists “good” monotone index sets:



Monotone index sets

Polarized for the worse channel:

What is good for the worse, is good for the almost worse

Polarization gives the rest of the “good” indices:

Repeat this,…Finally:



Parallel polar coding for 2 channels

Channel 1

Channel 2



Parallel polar coding for 2 channels

Channel 1

Channel 2

@ receiver 1

@ receiver 2

Index set 
design

Received 
vector

Index set 
design

Received 
vector

The decoding process for the stronger channel generates the 
“predetermined and fixed” bits for the degraded channel



Parallel polar coding for 3 channels
Channel 1

Channel 2

Channel 3

A repetion code for the 
good indices of channel 1 
which are not good for 
channel 2

A parity check code for 
the good indices of 
channel 2 which are not 
good for channel 3



Encoding and decoding for 3 channels



The general case

• Theorem (MDS codes):

For an MDS code of dimension     every      symbols completely 

characterize the codeword

• Combined MDS & Polar codes for the genral
degraded case

• The proposed technique does not achieve the 
capacity in the non-degraded case



Non-degraded parallel channels

• The worst Bhattacharyya parameter whole the split 
channels

• A parallel polarization based on the corresponding 
erasure channels

• Upper and (improved) lower bounds based on a 
compound setting



Upper and lower bounds

• A lower bound for the compound setting

• A lower bounds for the parallel transmission scheme

• An Upper bound

• A BSC+BEC Example (0.982 bits per channel use)



Summary

• Performance bounds

– Non-binary linear block codes under ML decoding

– Binary and non-binary linear block codes under 
generalized decoding rules

• Polar coding

– Wire-tap channel

– Parallel channels with arbitrary input-permutation


