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Problem Statement

Let I be a countable index set, and for α ∈ I, let Xα be a Bernoulli
random variable with

pα , P(Xα = 1) = 1 − P(Xα = 0) > 0.
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W ,

∑

α∈I

Xα, λ , E(W ) =
∑

α∈I

pα

where it is assumed that λ ∈ (0,∞).
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Problem Statement

Let I be a countable index set, and for α ∈ I, let Xα be a Bernoulli
random variable with

pα , P(Xα = 1) = 1 − P(Xα = 0) > 0.

Let
W ,

∑

α∈I

Xα, λ , E(W ) =
∑

α∈I

pα

where it is assumed that λ ∈ (0,∞).

Let Po(λ) denote the Poisson distribution with parameter λ.

Problem: Derive tight bounds for the entropy of W .
In this talk, error bounds on the entropy difference H(W ) − H(Po(λ)) are
introduced, providing rigorous bounds for the Poisson approximation of the
entropy H(W ). These bounds are exemplified.
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Poisson Approximation

Poisson Approximation

Binomial Approximation to the Poisson

If X1,X2, . . . ,Xn are i.i.d. Bernoulli random variables with parameter λ
n ,

then for large n, the distribution of their sum is close to a Poisson
distribution with parameter λ: Sn ,

∑n
i=1 Xi ≈ Po(λ).
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Poisson Approximation

Binomial Approximation to the Poisson

If X1,X2, . . . ,Xn are i.i.d. Bernoulli random variables with parameter λ
n ,

then for large n, the distribution of their sum is close to a Poisson
distribution with parameter λ: Sn ,

∑n
i=1 Xi ≈ Po(λ).

General Poisson Approximation (Law of Small Numbers)

For random variables {Xi}n
i=1 on N0 , {0, 1, . . .}, the sum

∑n
i=1 Xi is

approximately Poisson distributed with mean λ =
∑n

i=1 pi as long as

P(Xi = 0) is close to 1,

P(Xi = 1) is uniformly small,

P(Xi > 1) is negligible as compared to P(Xi = 1),

{Xi}n
i=1 are weakly dependent.
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Poisson Approximation

Information-Theoretic Results for Poisson Approximation

Maximum Entropy Result for Poisson Approximation

The Po(λ) distribution has maximum entropy among all probability
distributions that can be obtained as sums of independent Bernoulli RVs:

H(Po(λ)) = sup
S∈B∞(λ)

H(S)

B∞(λ) ,
⋃

n∈N

Bn(λ)

Bn(λ) ,

{

S : S =

n
∑

i=1

Xi, Xi ∼ Bern(pi) independent,

n
∑

i=1

pi = λ

}

.
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Maximum Entropy Result for Poisson Approximation

The Po(λ) distribution has maximum entropy among all probability
distributions that can be obtained as sums of independent Bernoulli RVs:

H(Po(λ)) = sup
S∈B∞(λ)

H(S)

B∞(λ) ,
⋃

n∈N

Bn(λ)

Bn(λ) ,

{

S : S =

n
∑

i=1

Xi, Xi ∼ Bern(pi) independent,

n
∑

i=1

pi = λ

}

.

Due to a monotonicity property, then

H(Po(λ)) = lim
n→∞

sup
S∈Bn(λ)

H(S).

I. Sason (Technion) Seminar Talk, ETH, Zurich, Switzerland August 20, 2012. 4 / 32



Poisson Approximation

Maximum Entropy Result for Poisson Approximation (Cont.)

For n ∈ N, the maximum entropy distribution in the class Bn(λ) is

Binomial
(

n, λ
n

)

, so

H(Po(λ)) = lim
n→∞

H
(

Binomial
(

n,
λ

n

))

.
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, so

H(Po(λ)) = lim
n→∞

H
(

Binomial
(

n,
λ

n

))

.

Proofs rely on convexity arguments a la Mateev (1978), Shepp & Olkin
(1978), Karlin & Rinott (1981), Harremoës (2001).
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Maximum Entropy Result for Poisson Approximation (Cont.)

For n ∈ N, the maximum entropy distribution in the class Bn(λ) is

Binomial
(

n, λ
n

)

, so

H(Po(λ)) = lim
n→∞

H
(

Binomial
(

n,
λ

n

))

.

Proofs rely on convexity arguments a la Mateev (1978), Shepp & Olkin
(1978), Karlin & Rinott (1981), Harremoës (2001).

Recent generalizations and extensions by Johnson et al. (2007–12):

Extension of this maximum entropy result to the larger set of
ultra-log-concave probability mass functions.

Generalization to maximum entropy results for discrete compound
Poisson distributions.
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Poisson Approximation

Information-Theoretic Ideas in Poisson Approximation

Nice surveys on the information-theoretic approach for Poisson
approximation are available at:

1 I. Kontoyiannis, P. Harremoës, O. Johnson and M. Madiman,
“Information-theoretic ideas in Poisson approximation and
concentration,” slides of a short course (the slides are available at the
homepage of I. Kontoyiannis), September 2006.

2 O. Johnson, Information Theory and the Central Limit Theorem,
Imperial College Press, 2004.
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Poisson Approximation

Total Variation Distance

Let P and Q be two probability measures defined on a set X . Then, the
total variation distance between P and Q is defined by

dTV(P,Q) , sup
Borel A⊆X

|P (A) − Q(A)|

where the supermum is taken w.r.t. all the Borel subsets A of X .
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dTV(P,Q) , sup
Borel A⊆X

|P (A) − Q(A)|

where the supermum is taken w.r.t. all the Borel subsets A of X .
If X is a countable set then this definition is simplified to

dTV(P,Q) =
1

2

∑

x∈X

|P (x) − Q(x)| =
||P − Q||1

2

so the total variation distance is equal to one-half of the L1-distance
between the two probability distributions.
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Total Variation Distance

Let P and Q be two probability measures defined on a set X . Then, the
total variation distance between P and Q is defined by

dTV(P,Q) , sup
Borel A⊆X

|P (A) − Q(A)|

where the supermum is taken w.r.t. all the Borel subsets A of X .
If X is a countable set then this definition is simplified to

dTV(P,Q) =
1

2

∑

x∈X

|P (x) − Q(x)| =
||P − Q||1

2

so the total variation distance is equal to one-half of the L1-distance
between the two probability distributions.

Question: How to get bounds on the total variation distance and the
entropy difference for the Poisson approximation ?

I. Sason (Technion) Seminar Talk, ETH, Zurich, Switzerland August 20, 2012. 7 / 32



Poisson Approximation

Chen-Stein Method

The Chen-Stein method forms a powerful probabilistic tool to calculate
error bounds for the Poisson approximation (Chen 1975).

This method is based on the simple property of the Poisson distribution
where Z ∼ Po(λ) with λ ∈ (0,∞) if and only if

λ E[f(Z + 1)] − E[Z f(Z)] = 0

for all bounded functions f that are defined on N0 , {0, 1, . . .}.
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The Chen-Stein method forms a powerful probabilistic tool to calculate
error bounds for the Poisson approximation (Chen 1975).

This method is based on the simple property of the Poisson distribution
where Z ∼ Po(λ) with λ ∈ (0,∞) if and only if

λ E[f(Z + 1)] − E[Z f(Z)] = 0

for all bounded functions f that are defined on N0 , {0, 1, . . .}.
This method provides a rigorous analytical treatment, via error bounds, to
the case where W has approximately a Poisson distribution Po(λ). The
idea behind this method is to treat analytically (by bounds)

λ E[f(W + 1)] − E[W f(W )]

which is shown to be close to zero for a function f as above.
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Poisson Approximation

The following theorem relies on the Chen-Stein method:

Bounds on the Total Variation Distance for Poisson Approximation,
[Barbour & Hall, 1984]

Let W =
∑n

i=1 Xi be a sum of n independent Bernoulli random variables
with E(Xi) = pi for i ∈ {1, . . . , n}, and E(W ) = λ. Then, the total
variation distance between the probability distribution of W and the
Poisson distribution with mean λ satisfies

1

32

(

1 ∧ 1

λ

)

n
∑

i=1

p2
i ≤ dTV(PW ,Po(λ)) ≤

(

1 − e−λ

λ

) n
∑

i=1

p2
i

where a ∧ b , min{a, b} for every a, b ∈ R.
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Poisson Approximation

Generalization of the Upper Bound on the Total Variation Distance
for a Sum of Dependent Bernoulli Random Variables

Let I be a countable index set, and for α ∈ I, let Xα be a Bernoulli
random variable with

pα , P(Xα = 1) = 1 − P(Xα = 0) > 0.

Let
W ,

∑

α∈I

Xα, λ , E(W ) =
∑

α∈I

pα

where it is assumed that λ ∈ (0,∞). Note that W is a sum of (possibly
dependent and non-identically distributed) Bernoulli RVs {Xα}α∈I .
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Generalization of the Upper Bound on the Total Variation Distance
for a Sum of Dependent Bernoulli Random Variables

Let I be a countable index set, and for α ∈ I, let Xα be a Bernoulli
random variable with

pα , P(Xα = 1) = 1 − P(Xα = 0) > 0.

Let
W ,

∑

α∈I

Xα, λ , E(W ) =
∑

α∈I

pα

where it is assumed that λ ∈ (0,∞). Note that W is a sum of (possibly
dependent and non-identically distributed) Bernoulli RVs {Xα}α∈I .

For every α ∈ I, let Bα be a subset of I that is chosen such that α ∈ Bα.
This subset is interpreted [Arratia et al., 1989] as the neighborhood of
dependence for α where Xα is independent or weakly dependent of all of
the Xβ for β /∈ Bα.
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Poisson Approximation

Generalization (Cont.)

Furthermore, the following coefficients were defined by [Arratia et al.,
1989]:

b1 ,
∑

α∈I

∑

β∈Bα

pαpβ

b2 ,
∑

α∈I

∑

α6=β∈Bα

pα,β, pα,β , E(XαXβ)

b3 ,
∑

α∈I

sα, sα , E
∣

∣E(Xα − pα |σ({Xβ})β∈I\Bα
)
∣

∣

where σ(·) in the conditioning of last equality denotes the σ-algebra that
is generated by the random variables inside the parenthesis.
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Poisson Approximation

Generalization (Cont.)

Then, the following upper bound on the total variation distance holds:

dTV(PW ,Po(λ)) ≤ (b1 + b2)

(

1 − e−λ

λ

)

+ b3

(

1 ∧ 1.4√
λ

)

.
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Then, the following upper bound on the total variation distance holds:

dTV(PW ,Po(λ)) ≤ (b1 + b2)

(

1 − e−λ

λ

)

+ b3

(

1 ∧ 1.4√
λ

)

.

Proof Methodology: The Chen-Stein method [Arratia et al., 1989].
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Poisson Approximation

Generalization (Cont.)

Then, the following upper bound on the total variation distance holds:

dTV(PW ,Po(λ)) ≤ (b1 + b2)

(

1 − e−λ

λ

)

+ b3

(

1 ∧ 1.4√
λ

)

.

Proof Methodology: The Chen-Stein method [Arratia et al., 1989].

Special Case

If {Xα}α∈I are independent and α , {1, . . . , n}, then b1 =
∑n

i=1 p2
i and

b2 = b3 = 0, which gives the previous upper bound on the total variation
distance.
⇒ pi = λ

n for all i ∈ {1, . . . , n} (i.e., a sum of n i.i.d. Bernoulli random

variables with parameter λ
n) gives that

dTV(PW ,Po(λ)) ≤ λ2

n
↘ 0.
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Interplay Between Total Variation Distance and Entropy Difference

Total Variation Distance vs. Entropy Difference

An upper bound on the total variation distance between W and the
Poisson random variable Z ∼ Po(λ) was introduced. This bound was
derived by Arratia et al. (1989) via the Chen-Stein method.
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distributions ensure that their entropies are close ?
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Interplay Between Total Variation Distance and Entropy Difference

Total Variation Distance vs. Entropy Difference

An upper bound on the total variation distance between W and the
Poisson random variable Z ∼ Po(λ) was introduced. This bound was
derived by Arratia et al. (1989) via the Chen-Stein method.

Questions
1 Does a small total variation distance between two probability

distributions ensure that their entropies are also close ?

2 Can one get, under some conditions, a bound on the difference
between the entropies in terms of the total variation distance ?

3 Can one get a bound on the difference between the entropy H(W )
and the entropy of the Poisson RV Z ∼ Po(λ) (with λ =

∑

pi) in
terms of the bound on the total variation distance ?

4 How the entropy of the Poisson RV can be calculated efficiently (by
definition, it becomes an infinite series) ?
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Interplay Between Total Variation Distance and Entropy Difference

Question 1

Does a small total variation distance between two probability distributions
ensure that their entropies are also close ?
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Interplay Between Total Variation Distance and Entropy Difference

Question 1

Does a small total variation distance between two probability distributions
ensure that their entropies are also close ?

Answer 1

Answer: In general, NO. The total variation distance between two
probability distributions may be arbitrarily small whereas the difference
between the two entropies is arbitrarily large.
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Interplay Between Total Variation Distance and Entropy Difference

Question 1

Does a small total variation distance between two probability distributions
ensure that their entropies are also close ?

Answer 1

Answer: In general, NO. The total variation distance between two
probability distributions may be arbitrarily small whereas the difference
between the two entropies is arbitrarily large.

A Possible Example [Ho & Yeung, ISIT 2007]

For a fixed L ∈ N, let P = (p1, p2, . . . , pL) be a probability mass function.
For M ≥ L, let

Q =

(

p1 −
p1√

log M
, p2 +

p1

M
√

log M
, . . . , pL +

p1

M
√

log M
,

p1

M
√

log M
, . . . ,

p1

M
√

log M

)

.
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Interplay Between Total Variation Distance and Entropy Difference

Example (cont.)

Then

dTV(P,Q) =
2 p1√
log M

↘ 0

when M → ∞. On the other hand, for a sufficiently large M ,

H(Q) − H(P ) ≈ p1

(

1 − L

M

)

√

log M ↗ ∞.
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Interplay Between Total Variation Distance and Entropy Difference

Example (cont.)

Then

dTV(P,Q) =
2 p1√
log M

↘ 0

when M → ∞. On the other hand, for a sufficiently large M ,

H(Q) − H(P ) ≈ p1

(

1 − L

M

)

√

log M ↗ ∞.

Conclusion

It is easy to construct two random variables X and Y whose supports are
finite although one of their supports is not bounded such that the total
variation distance between their distributions is arbitrarily close to zero
whereas the difference between their entropies is arbitrarily large.
⇒ If the alphabet size of X or Y is not bounded, then

dTV(PX , PY ) → 0 does NOT imply that |H(PX) − H(PY )| → 0.
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Interplay Between Total Variation Distance and Entropy Difference

Question 2

Can one get, under some conditions, a bound on the difference between
the entropies in terms of the total variation distance ?
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Interplay Between Total Variation Distance and Entropy Difference

Question 2

Can one get, under some conditions, a bound on the difference between
the entropies in terms of the total variation distance ?

Answer 2

Yes, it is true when the alphabet sizes of X and Y are finite and fixed.
The following theorem is an L1 bound on the entropy (see [Cover and
Thomas, Theorem 17.3.3] or [Csiszár and Körner, Lemma 2.7]):

Let P and Q be two probability mass functions on a finite set X such that

||P − Q||1 ,
∑

x∈X

|P (x) − Q(x)| ≤ 1

2
.

Then, the difference between their entropies to the base e satisfies

|H(P ) − H(Q)| ≤ ||P − Q||1 log

( |X |
||P − Q||1

)

.
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Interplay Between Total Variation Distance and Entropy Difference

Answer 2 (cont.)

This inequality can be written in the form

|H(P ) − H(Q)| ≤ 2dTV(P,Q) log

( |X |
2dTV(P,Q)

)

when dTV(P,Q) ≤ 1
4 , thus bounding the difference of the entropies in

terms of the total variation distance when the alphabet sizes are finite and
fixed.
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Interplay Between Total Variation Distance and Entropy Difference

Answer 2 (cont.)

This inequality can be written in the form

|H(P ) − H(Q)| ≤ 2dTV(P,Q) log

( |X |
2dTV(P,Q)

)

when dTV(P,Q) ≤ 1
4 , thus bounding the difference of the entropies in

terms of the total variation distance when the alphabet sizes are finite and
fixed.

Further Improvements of the Bound on the Entropy Difference in
Terms of the Total Variation Distance

This inequality was further improved by S. Wai Ho & R. Yeung (see
Theorem 6 and its refinement in Theorem 7 in their paper entitled “The
interplay between entropy and variation distance,” IEEE Trans. on
Information Theory, Dec. 2010.)
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Interplay Between Total Variation Distance and Entropy Difference

Question 3

Can one get a bound on the difference between the entropy H(W ) and
the entropy of the Poisson RV Z ∼ Po(λ) (with λ =

∑

pi) in terms of the
bound on the total variation distance ?
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Interplay Between Total Variation Distance and Entropy Difference

Question 3

Can one get a bound on the difference between the entropy H(W ) and
the entropy of the Poisson RV Z ∼ Po(λ) (with λ =

∑

pi) in terms of the
bound on the total variation distance ?

Answer 3

From the reply to the first question, since the Poisson distribution is
defined over an infinitely countable set, it is not clear that the difference

H(W ) − H(Po(λ))

can be bounded in terms of the total variation distance dTV(W,Po(λ)).
But, we provide an affirmative answer and derive such a bound.
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Interplay Between Total Variation Distance and Entropy Difference

New Result (Answer 3 (cont.))

Let I be an arbitrary finite index set with m , |I|. Under the setting of
this work and the notation used in slides 9–10, let

a(λ) , 2

[

(b1 + b2)

(

1 − e−λ

λ

)

+ b3

(

1 ∧ 1.4√
λ

)

]

b(λ) ,

[

(

λ log
( e

λ

))

+

+ λ2 +
6 log(2π) + 1

12

]

exp

{

−λ − (m − 1) log

(

m − 1

λe

)}

where, in the last equality, (x)+ , max{x, 0} for every x ∈ R. Let
Z ∼ Po(λ) be a Poisson random variable with mean λ. If a(λ) ≤ 1

2 and

λ ,
∑

α∈I pα ≤ m − 1, then the difference between the entropies (to the
base e) of Z and W satisfies the following inequality:

|H(Z) − H(W )| ≤ a(λ) log

(

m + 2

a(λ)

)

+ b(λ).
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Interplay Between Total Variation Distance and Entropy Difference

A Tighter Bound for Independent Summands

If the summands {Xα}α∈I are also independent, then

0 ≤ H(Z) − H(W ) ≤ g(p) log

(

m + 2

g(p)

)

+ b(λ)

if g(p) ≤ 1
2 and λ ≤ m − 1, where

g(p) , 2θ min

{

1 − e−λ,
3

4e(1 −
√

θ)3/2

}

p ,
{

pα

}

α∈I
, λ ,

∑

α∈I

pα

θ ,
1

λ

∑

α∈I

p2
α.

The proof relies on the upper bounds on the total variation distance by
Barbour and Hall (1984) and by Cekanavic̆ius and Roos (2006), the
maximum entropy result, and the derivation of the general bound.
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Interplay Between Total Variation Distance and Entropy Difference

Question 4

How the entropy of the Poisson RV can be calculated efficiently ?
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Interplay Between Total Variation Distance and Entropy Difference

Question 4

How the entropy of the Poisson RV can be calculated efficiently ?

Answer 4

The entropy of a random variable Z ∼ Po(λ) is equal to

H(Z) = λ log
( e

λ

)

+
∞

∑

k=1

λke−λ log k!

k!

so the entropy of the Poisson distribution (in nats) is expressed in terms of
an infinite series that has no closed form.
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Interplay Between Total Variation Distance and Entropy Difference

Answer 4 (Cont.)

Sequences of simple upper and lower bounds on this entropy, which are
asymptotically tight, were derived by Adell et al. [IEEE Trans. on IT, May
2010]. In particular, from Theorem 2 in this paper

− 31

24λ2
− 33

20λ3
− 1

20λ4
≤ H(Z) − 1

2
log(2πeλ) +

1

12λ
≤ 5

24λ2
+

1

60λ3

which gives tight bounds on the entropy of Z ∼ Po(λ) for λ � 1.

For λ ≥ 20, the entropy of Z is approximated by the average of its
above upper and lower bounds, asserting that the relative error of this
approximation is less than 0.1% (and it scales like 1

λ2 ).

For λ ∈ (0, 20), a truncation of the above infinite series after its first
d10λe terms gives an accurate approximation.
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Applications

Example: Random Graphs

The setting of this problem was introduced by Arratia et al. (1989) in the
context of applications of the Chen-Stein method.
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Applications

Example: Random Graphs

The setting of this problem was introduced by Arratia et al. (1989) in the
context of applications of the Chen-Stein method.

Problem Setting

On the cube {0, 1}n, assume that each of the n2n−1 edges is assigned
a random direction by tossing a fair coin.
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Applications

Example: Random Graphs

The setting of this problem was introduced by Arratia et al. (1989) in the
context of applications of the Chen-Stein method.

Problem Setting

On the cube {0, 1}n, assume that each of the n2n−1 edges is assigned
a random direction by tossing a fair coin.

Let k ∈ {0, 1, . . . , n} be fixed, and denote by W , W (k, n) the
random variable that is equal to the number of vertices at which
exactly k edges point outward (so k = 0 corresponds to the event
where all n edges, from a certain vertex, point inward).
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Applications

Example: Random Graphs

The setting of this problem was introduced by Arratia et al. (1989) in the
context of applications of the Chen-Stein method.

Problem Setting

On the cube {0, 1}n, assume that each of the n2n−1 edges is assigned
a random direction by tossing a fair coin.

Let k ∈ {0, 1, . . . , n} be fixed, and denote by W , W (k, n) the
random variable that is equal to the number of vertices at which
exactly k edges point outward (so k = 0 corresponds to the event
where all n edges, from a certain vertex, point inward).

Let I be the set of all 2n vertices, and Xα be the indicator that
vertex α ∈ I has exactly k of its edges directed outward. Then
W =

∑

α∈I Xα with Xα ∼ Bern(p), p = 2−n
(n
k

)

, ∀α ∈ I.

I. Sason (Technion) Seminar Talk, ETH, Zurich, Switzerland August 20, 2012. 23 / 32



Applications

Example: Random Graphs

The setting of this problem was introduced by Arratia et al. (1989) in the
context of applications of the Chen-Stein method.

Problem Setting

On the cube {0, 1}n, assume that each of the n2n−1 edges is assigned
a random direction by tossing a fair coin.

Let k ∈ {0, 1, . . . , n} be fixed, and denote by W , W (k, n) the
random variable that is equal to the number of vertices at which
exactly k edges point outward (so k = 0 corresponds to the event
where all n edges, from a certain vertex, point inward).

Let I be the set of all 2n vertices, and Xα be the indicator that
vertex α ∈ I has exactly k of its edges directed outward. Then
W =

∑

α∈I Xα with Xα ∼ Bern(p), p = 2−n
(n
k

)

, ∀α ∈ I.

Problem: Estimate the entropy H(W ).
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Applications

Example: Random Graphs (Cont.)

The problem setting implies that λ =
(n
k

)

(since |I| = 2n).

The neighborhood of dependence of a vertex α ∈ I, denoted by Bα,
is the set of vertices that are directly connected to α (including α

itself since it is required that α ∈ Bα). Hence, b1 = 2−n(n + 1)
(

n
k

)2
.

If α and β are two vertices that are connected by an edge, then a
conditioning on the direction of this edge gives that

pα,β , E(XαXβ) = 22−2n

(

n − 1

k

)(

n − 1

k − 1

)

for every α ∈ I and β ∈ Bα \ {α}, so by definition (see slide 10),

b2 = n 22−n

(

n − 1

k

)(

n − 1

k − 1

)

.
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Applications

Example: Random Graphs (Cont.)

b3 = 0 (since the conditional expectation of Xα given (Xβ)β∈I\Bα
is,

similarly to the un-conditional expectation, equal to pα). The
directions of the edges outside the neighborhood of dependence of α
are irrelevant to the directions of the edges connecting the vertex α.

In the following, the bound on the entropy difference is applied to get
a rigorous error bound on the Poisson approximation of the entropy
H(W ).

By symmetry, the cases with W (k, n) and W (n − k, n) are
equivalent, so

H
(

W (k, n)
)

= H
(

W (n − k, n)
)

.
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Applications

Numerical Results for the Example of Random Graphs

Table: Numerical results for the Poisson approximations of the entropy H(W )
(W = W (k, n)) by the entropy H(Z) where Z ∼ Po(λ), jointly with the
associated error bounds of these approximations. These error bounds are
calculated from the new theorem (see slide 18).

n k λ =
(n
k

)

H(W ) ≈ Maximal relative error

30 26 2.741 · 104 6.528 nats 0.94%

30 25 1.425 · 105 7.353 nats 4.33%

100 95 7.529 · 107 10.487 nats 1.6 · 10−19

100 85 2.533 · 1017 21.456 nats 2.6 · 10−10

100 75 2.425 · 1023 28.342 nats 1.9 · 10−4

100 70 2.937 · 1025 30.740 nats 2.1%
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Generalization of the Error Bounds on the Entropy

Generalization: Bounds on the Entropy for a Sum of Non-Negative,
Integer-Valued and Bounded Random Variables

A generalization of the earlier bound was derived in the full-paper
version, considering the accuracy of the Poisson approximation for the
entropy of a sum of non-negative, integer-valued and bounded
random variables.

This generalization is enabled via the combination of the proof of the
previous bound, considering the entropy of the sum of Bernoulli
random variables, with the approach of Serfling (Section 7 in his
paper from 1978).
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Bibliography

Full Paper Version

This talk presents in part the first half of the paper:
I. Sason, “An information-theoretic perspective of the Poisson
approximation via the Chen-Stein method,” submitted to the IEEE
Trans. on Information Theory, June 2012. [Online]. Available:
http://arxiv.org/abs/1206.6811.

A generalization of the bounds that considers the accuracy of the
Poisson approximation for the entropy of a sum of non-negative,
integer-valued and bounded random variables is introduced in the full
paper.

The second part of this paper derives lower bounds on the total
variation distance, relative entropy and other measures that are not
covered in this talk.
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P. Harremoës, “Binomial and Poisson distributions as maximum entropy
distributions,” IEEE Trans. on Information Theory, vol. 47, no. 5,
pp. 2039–2041, July 2001.
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