
IEEE COMMUNICATIONS LETTERS, VOL. 4, NO. 3, MARCH 2000 89

Improved Upper Bounds on the Ensemble
Performance of ML Decoded Low Density Parity

Check Codes
Igal Sason, Student Member, IEEEand Shlomo Shamai (Shitz), Fellow, IEEE

Abstract—In this letter, we study improved upper bounds on
the performance of low density parity check codes over binary-
input additive white Gaussian noise channels, assuming that the
codes are maximum-likelihood decoded. Our results demonstrate
the phenomenal performance of the low density parity check codes.

Index Terms—AWGN channel, distance spectrum, error bounds,
error floor, low density parity check codes, maximum-likelihood
decoding, Shannon capacity, turbo codes.

I. INTRODUCTION

L OW DENSITY parity check (LDPC) codes were rediscov-
ered by MacKay and Neal [4], [5], after being first intro-

duced by Gallager in his seminal work [2], [3]. The experiments
with LDPC codes indicate that like turbo codes [1], they exhibit
low bit error rates at low signal-to-noise ratios. The performance
of LDPC codes was extensively investigated since and their ex-
ceptional performance with the suboptimal and practical itera-
tive decoding algorithm was reported in the literature, as evi-
denced in [2]–[11] and references therein.

In this paper, the phenomenal performance of LDPC codes
with large block length and maximum-likelihood (ML) de-
coding is demonstrated by the tangential sphere bound. This
improved upper bound on the block error probability for a
binary-input additive white Gaussian noise (AWGN) channel
[8], [9] depends on the distance spectrum of the code, and it
is not subject to problems typical for the more popular union
bounds in regions of low signal-to-noise ratios. The technique
is applied in [12]–[14] for upper bounding the performance
of uniformly interleaved turbo and turbo-block codes with
structured or random component codes, operating over an
AWGN channel and ML decoded. These upper bounds are also
compared in [12]–[14] to simulation results of the “Log-MAP”
iterative decoding algorithm, indicating in various cases the
suboptimality of the iterative decoding algorithm at low values
of energy per bit-to-noise spectral density , as com-
pared to the optimal ML decoding algorithm. The use of the
tangential sphere bound to upper bound the performance of
uniformly interleaved turbo codes was limited to interleavers
of length not exceeding some few thousands of bits because
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of inherent overflow limitations associated with the numerical
calculation of the code distance spectrum.

This difficulty is circumvented in the case of upper bounding
the ensemble performance of LDPC codes even withlargeblock
length due to the existingexponentialupper bound on the en-
semble distance spectrum of binary LDPC codes, de-
rived by Gallager [3].

Hence, for these ensembles of LDPC codes, we
combine here Gallager’s upper bound on the code distance spec-
trum with the tangential sphere bounding technique, yielding a
tight upper bound on the block error probability for these codes,
ML decoded and coherently detected. For simplicity, we assume
here that the signaling is antipodal (although it is not necessary)
and that the modulated signals possess the same energy for each
one of the codewords.

The letter is organized as follows: in Section II, we define
briefly the ensemble of LDPC codes, adhering to Gallager [3].
In Section III, our main results are presented followed by a sum-
mary and conclusions in Section IV.

II. PRELIMINARIES

The considered ensembles of binary LDPC codes
which are presented by Gallager in [3, Sec. 2.B], are specified
by a sparse parity check matrix containing mostly 0’s and only
a relatively small number of 1’s. An LDPC code is a
block code of length with a parity check matrix , where each
column contains a small fixed number of 1’s and each
row contains a small fixed numberof 1’s (where ) [2]. It
follows easily from this definition that the rateof an
LDPC code satisfies the inequality [3].

Following Gallager [2], [3], we will restrict our attention to
the following ensemble of LDPC codes which we de-
fine via their parity check matrices in the following way: Divide
the parity check matrix into submatrices, each containing a
single 1 in each column. The first of these submatrices contains
all its 1’s in descending order: that is, theth row contains 1’s in
columns to . The other submatrices are column
permutations of the first. The ensemble of LDPC codes
discussed here is then the ensemble of all codes resulting from
random permutations of the columns of each of the bottom
submatrices in the matrix , with equal probability. Assuming
that all rows of the parity check matrix are independent, the rate
of an code is equal to . In general the rate is
always lower bounded by and it will typically be very
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Fig. 1. The normalized logarithm (base 2) of Gallager’s upper bound on the
ensemble distance spectrum of(n; j; k) LDPC codes (normalized by the block
lengthn), versus the normalized Hamming weights of the codewords, forn =
10 000,j = 3, 4, 5, 6, andk = 2j. The code rate of the ensembles of LDPC
codes approaches one half. It is also compared to the distance spectrum of the
ensemble of fully random block codes with rate1=2 and length 10 000.

close to this quantity for large values ofand relatively small
values of and . Gallager’s upper bound on the ensemble dis-
tance spectrum of binary LDPC codes is derived in [3,
Sec. 2.2].

III. RESULTS

Gallager’s upper bound on the ensemble distance spectrum of
LDPC codes is presented in Fig. 1 for some ensembles

with rate one half and a block length of 10 000 coded bits. The
shaping of the distance spectrum of these ensembles of codes
is rather typical also for larger block lengths and other rates.
However, for every pair of values, there is an effective
minimal Hamming weight increasing linearly withfor large
block length. This observation is discussed in [3, Sec. 2.2] and
is also demonstrated by Fig. 1. Moreover, it is demonstrated in
Fig. 1 that for relatively small values of, , increasing the value
of and such that the ratio of is kept fixed (i.e., keeping
the code rate constant), reduces the number of codewords of low
Hamming weights, thus improving the error floor for these en-
sembles of LDPC codes, as is also indicated in Fig. 2(a) and (b)
here. Increasing the value ofand (as above), for a fixed block
length , affects therefore the upper bound on the distance spec-
trum in similar manner to “spectral thinning” [7], which charac-
terizes the influence of increasing the interleaver length on the
distance spectrum of turbo codes. That justifies the improve-
ment in the ensemble performance of LDPC codes for
fixed , as is also reflected in Fig. 2(a) and (b).

Upper bounds on the performance of ML decoding for some
ensembles of LDPC codes with rate one half are pre-
sented in Fig. 2(a) and (b), and the effect of the block length
on the closeness to the Shannon capacity limit is also demon-
strated. The error bounds are based on Gallager’s upper bound
on the ensemble distance spectrum of LDPC codes combined

(a)

(b)

Fig. 2. Upper bounds on the block error probability of ML decoding
for ensembles of LDPC codes in a binary-input AWGN channel where
j = 3; 4; 5; 6 , andk = 2j (rate of one half). The upper bounds are based on
Gallager’s upper bound on the ensemble distance spectrum of(n; j; k) LDPC
codes and the tangential sphere bound. Union bounds inQ-form appear for
comparison: (a)n= 1008 coded bits and (b)n = 10 000 coded bits.

with two examined upper bounds on the ML decoding error
probability: the tangential sphere bound which is an improved
upper bound and the ubiquitous union bound in-form. The
two error bounds are also compared in Fig. 2(a) and (b), demon-
strating the fact that for large block lengths, the union bounds
are essentially useless at rates above the cutoff rate (for a bi-
nary-input AWGN channel and a rate one half, the cutoff rate
corresponds to dB). In Fig. 2(a) and (b), the
same values of for ensembles of LDPC codes
are compared, for block lengths of coded bits, re-
flecting the dramatic improvement that results by increasing
by a factor of 10.

The considerable advantage of the tangential sphere
bounding technique over the union bounds (especially for large
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Fig. 3. Upper bounds on the block error probability of ML decoding for
some ensembles of(n; j; k) LDPC codes of rate 1/4 in a binary-input
AWGN channel. The upper bounds are based on Gallager’s upper bound on
the ensemble distance spectrum of(n; j; k) LDPC codes and the tangential
sphere bound.

TABLE I
VALUE OF ENERGY PER BIT–TO–NOISESPECTRALDENSITY

E =N REQUIRED FOR ANUPPERBOUND ON THE BLOCK ERROR

PROBABILITY OF 10 WITH THE ML DECODING FOR THEENSEMBLE OF

(n; j; k) LDPC CODES WHEREj = 6. BOUNDS ARE BASED ON THE

TANGENTIAL SPHEREUPPERBOUND FOREQUI-ENERGY SIGNALS OF AN

ANTIPODAL MODULATION. THE GAP (IN DECIBELS) BETWEEN VALUES OF

E =N ACHIEVING UPPERBOUND ON THE BLOCK ERRORPROBABILITY OF

10 (FOR ML DECODING) TO THE SHANNON CAPACITY OF A BINARY-INPUT

AWGN CHANNEL ARE IN PARENTHESES

block lengths) is demonstrated in Fig. 2(a) and (b) (see also
[12]–[14]). For example, the gain achieved for a block error
probability of 10 is 1.72 dB in the case that K, ,
and . As exhibited in Fig. 2(b), there is only a slight
improvement in the ensemble performance of LDPC
codes, by increasing the value ofabove 6 (while keeping

for maintaining the code rate fixed). Therefore, the
ML block error probabilities of ensembles of LDPC
codes, are investigated here for and a variety of rates and
block lengths of and K (see Table I). This
comparison demonstrates the impressive potential performance
of ensembles of LDPC codes of length in the range 5–40 K.
Fig. 3 presents results for ensembles of LDPC codes

of rate 0.250. For example in the case of , , and
K, an upper bound on the value of required to

achieve a block error probability of with ML decoding is
0.46 dB, that is only 0.33 dB away from the channel capacity

(see also Table I).

IV. SUMMARY

We have studied the ensemble performance of ML decoded
LDPC codes using upper bounds for a binary-input AWGN
channel. The bounds are based on Gallager’s upper bound on
the ensemble distance spectrum of LDPC codes [3] (see Fig. 1),
combined with Poltyrev’s tangential sphere upper bound on the
block error probability [7]. The influence of the parameters of
these ensembles of LDPC codes on their performance is inves-
tigated and their closeness to Shannon capacity is demonstrated
for LDPC codes of length 5000–40 000 (coded bits) with a
variety of rates (see Figs. 2, 3, and Table I). Simulation results
of the iterative decoding algorithm for turbo and LDPC codes
[1], [4]–[6], [8], [9] and also upper bounds on the ML decoding
error probability of these codes [12]–[14], substantiates the
conclusion that LDPC codes are strong alternatives for high
performance communication systems, striving to approach the
ultimate limit of channel capacity.
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