
 

 

COMPUTER ARCHITECTURE WITH 

ASSOCIATIVE PROCESSOR REPLACING LAST 

LEVEL CACHE AND SIMD ACCELERATOR 
L. Yavits, A. Morad, R. Ginosar 

Abstract—This study presents a computer architecture where a last level cache and a SIMD accelerator are replaced by an 

Associative Processor. Associative Processor combines data storage and processing, and functions as a parallel SIMD 

processor and a memory at the same time. An analytic performance model of this computer architecture is introduced. 

Comparative analysis supported by cycle-accurate simulation and emulation shows that this architecture may outperform a 

conventional computer architecture comprising a SIMD coprocessor and a shared last level cache while consuming less power.  

Index Terms— Multicore, SIMD, Associative Processor, Processing In Memory, PIM.   
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1 INTRODUCTION 

achine learning, data mining, network routing, 
search engines and other big data applications can 
be significantly sped up by massively parallel 

SIMD machines [42]. Many of today’s computing archi-
tectures include vector, or SIMD coprocessors [1][16][24]. 
However data transfer between processing units (PUs) 
and memory significantly limits the performance of SIMD 
architectures [32]. High utilization of SIMD processor 
requires very high computation-to-bandwidth ratio and 
large data sets [30].   

Power dissipation and on-chip communication are 
among the main factors limiting the scalability of parallel 
architectures [8]. Data synchronization and communica-
tion between PUs of SIMD processor and their private 
and shared memories lead to wasting energy on non-
processing tasks and limit the speedup of parallel SIMD 
architectures [46].   

When operating at high rates, arrays of computing el-
ements in SIMD processors are very active, resulting in 
irregular thermal density and hotspots [41] and further 
limiting the scalability of conventional SIMD architec-
tures. 

 The Associative Processor (AP) is a viable alternative to 
conventional SIMD processors [13][40][47]. The AP com-
prises a modified Content Addressable Memory (CAM) 
and facilitates processing in addition to storage. AP can 
be used as an efficient accelerator of massively-parallel 
fine-grain SIMD workloads.    

In this study we propose to replace the last level cache 
(LLC) of a baseline CPU architecture (Fig. 1(a)), or the 
combination of the LLC and a dedicated SIMD coproces-
sor (Fig. 1(b)), by an AP (Fig. 1(c)). The goals we set to 

achieve are as follows: 
 Convert the data cache into a massively-parallel pro-

cessor capable of performing a variety of data-
parallel fine-grain tasks.  

 Eliminate a power- and bandwidth-limited SIMD 
coprocessor. 

 Combine data storage and data processing and elim-
inate performance degradation and energy dissipa-
tion due to massive PU-to-memory data synchroniza-
tion. 

The AP may be operated in two modes: 
 Conventional Cache mode, in which the AP serves as 

data cache during the execution of the sequential 
segments of a workload;  

 Associative Processing mode, in which the parallelizable 
segments of a workload are executed on the AP. No 
data synchronization between sequential and parallel 
segments is required since the data is stored in the 
AP prior to the parallel execution and remains there 
after the parallel segment completes.    

The AP delivers a number of advantages over a con-
ventional SIMD architecture:  
 Data processing and data storage are unified. There is 

no need for data transfer between memory and PUs; 
 Two basic operations of AP are essentially standard 

memory operations: write and read. The third basic 
operation, compare, is implemented similarly to read, 
and is performed along memory rows rather than 
columns.  Therefore the per-bit power consumption 
of the AP is almost identical to that of RAM, which 
may consume an order of magnitude lower active 
power (and lower leakage power) per area than log-
ic [34]; 

 In conventional cache mode, use of CAM instead of 
RAM enables full associativity. Consequently, it may 
allow reduction of hardware and software complexi-
ty of the cache (for example, the elimination of costly 
tag array circuitry), as well as elimination of conflict 
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(interference) misses.  
 There are fewer hotspots. AP power is distributed 

uniformly over the entire processing array rather 
than being concentrated around PUs as in the case of 
conventional SIMD. Since leakage power may super-
linearly depend on temperature [5], this could pro-
vide a significant advantage. 

The drawback in replacing the LLC by the AP is that 
the effective cache size in the conventional cache mode is 
nearly halved, since the AP bit cell is about twice the size 
of a RAM cell (Fig. 3). This may lead to certain perfor-
mance degradation during the execution of the sequential 
portion of a workload, but the speedup achieved during 
the execution of the parallel portion of the workload may 
yield a significant improvement in the overall system per-
formance. 

The first contribution of this paper is the integration of 
an AP on-chip of a standard CPU. The memory of the AP 
replaces the LLC, while the processing of the AP replaces 
the on-chip SIMD accelerator. This contribution leads to 
improvement in performance, reduction in power dissi-
pation, and lower temperature, enabling 3D integration. 

Another contribution of our work is the comparative 
performance and power analysis of AP vs. a conventional 
SIMD processor, supported by analytical modeling, cycle-
accurate simulation and emulation. Thanks to modern 
feature scaling and aggressive memory integration on one 
side, and the rise of big data on the other, we believe we 
are at an inflection point where AP may outperform con-
ventional SIMD in both performance and power. 

The rest of this paper is organized as follows. Section 2 
discusses the related work. Section 3 provides a detailed 
description of the AP and its operation. Section 4 presents 
simulation and analytical modeling of AP and compares 
it to a conventional SIMD processor. Section 5 combines 
analytical, simulation and emulation methods to compare 
performance and power consumption of the three archi-
tectures of Fig. 1, and Section 6 offers conclusions. 
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Fig. 1. (a) Baseline CPU with the LLC, (b) CPU with the LLC and the 

SIMD coprocessor, (c) CPU with the AP replacing the LLC. 

2 RELATED WORK 

A major notion of our work is using AP to unify pro-
cessing and storage, i.e. achieve 'processing in memory' 
(PIM). Hence we place our research in the context of prior 

work on PIM. The concept of mixing memory and logic 
has been around since 1960s. The DAPP, STARAN, CM-2, 
and GAPP computer architectures [36] used large number 
of PUs positioned in proximity of memory arrays to im-
plement massively parallel SIMD computer. 

M. Gokale et al. [15] designed TeraSys, a computer ar-
chitecture comprising a conventional host processor, with 
at least part of its memory replaced by PIM array, inte-
grating memory and ALUs in close proximity. M. Hall et 
al. [19] developed DIVA, the Data-Intensive Architecture, 
combining PIM memories with external host processors. 
One of their main focuses was performing selected com-
putation in processing elements near memory and reduc-
ing the quantity of data transferred across the long and 
slow processor-memory interface. G. Almási et al. [3] de-
veloped Cyclops, an architecture combining memory and 
a large number of simple PUs. According to their find-
ings, standard benchmarks are not efficient when evaluat-
ing the performance of PIM architecture. Instead, they 
focused on scientific kernels including FFT, matrix-matrix 
and matrix-vector multiplication, etc. T. Sterling et al. [43] 
developed Gilgamesh, a PIM based massively parallel 
architecture, with the focus on advanced mechanisms for 
virtualizing tasks and data. P. Kogge et al. [25] developed 
HTMT, a parallel multilevel memory architecture, where 
each RAM level is a PIM memory (memory blocks inter-
connected to ALUs). J. Suh et al. [44] introduced a SLIIC 
QL computer featuring a processor integrated on the 
same die with DRAM. J. Brockman et al. [9] developed 
PIM lite, a PIM architecture featuring a multithreaded 
core with SIMD accelerator integrated with DRAM on the 
same chip. Last, G. Lipovsky et al. [28] developed a dy-
namic associative access memory architecture that com-
bined DRAM and a single-bit processing element, capable 
of associative and conventional arithmetic processing, 
placed in DRAM’s sense amplifier area. More recently, it 
became impractical to embed processing on DRAM chips, 
as the IC technology of DRAM does not support logic 
circuits. All these PIM architectures placed processing in 
proximity of memory. In contrast, this work considers AP, 
in which processing is carried out within each bit cell. 

Prior work on the AP concept was conducted over the 
years. Foster [13] laid the foundations for associative pro-
cessing. J. Potter et al. [35] developed an associative pro-
graming model and language and applied it to a wide 
variety of applications including image processing, graph 
algorithms, data base management, graphics, etc.  I. 
Scherson et al. [40] developed high-speed AP architec-
tures [40]. The present authors have implemented a com-
plete stand-alone AP as a VLSI chip [47]. 

This work progresses from processing in proximity of 
memory to processing combined inside memory PIM. Its 
key contribution is to integrate an AP on-chip of a stand-
ard CPU. The memory of the AP replaces the LLC, while 
the processing of the AP replaces the on-chip SIMD accel-
erator.   

3 THE ASSOCIATIVE PROCESSOR 

In this section we present the architecture of the AP 



 

 

and explain the principles of associative computing. 

3.1 Associative Processor Architecture  

AP is based on modified CAM. The CAM allows com-
paring all data words to a key, tagging the matching 
words, and possibly reading some or all of the tagged 
words one by one. In addition, standard memory read 
and write operations of a single word at a time can also 
take place. 

Unlike CAM, typical operations in AP are consecutive 
compare and write, usually involving just a few bit col-
umns.  The AP enhances the CAM by allowing parallel 
writing into selected bits of all tagged words. The archi-
tecture of AP is presented in Fig. 2. The Associative Pro-
cessing Array comprises bit cells (further described be-
low) organized in bit-columns and word-rows. Typically, 
a word-row makes a PU (although parts of a row, or al-
ternatively multiple rows, may also be configured as a 
PU). Since we operate the AP in dual mode (conventional 
cache and associative processing), single PU may be 
aligned with a cache line (for example 64 bytes) for higher 
efficiency. Several special registers are appended to the 
associative processing array. The KEY register contains a 
key data word to be written or compared against. The 
MASK register defines the active fields for write and read 
operations, enabling bit selectivity. The TAG register 
marks the rows that are matched by the compare opera-
tion and may be affected by consecutive parallel write.  
The AP may require a microcontroller and an instruction 
cache. An optional Interconnect allows PUs of the AP to 
communicate in parallel. Since associative processing op-
eration is mainly bitwise, the Interconnect can be a rela-
tively simple circuit-switched network. The Interconnect 
is further discussed in Section 3.2. Reduction Tree ([37], 
earlier introduced as ‘response counter’ in [47]) is an ad-
der tree, enabling quick parallel summation of TAG bits. 
This operation is useful whenever a vector needs to be 
reduced into a scalar. 
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Fig. 2. Associative processor architecture 

 

A static memory based associative bit cell is shown in 

Fig. 3. Its two main components are the 6-Transistors (6T) 
SRAM bit cell and the 4T N-type XOR. Two additional 
transistors (gated by the Mask wire) are used to mask the 
write operation at the bit (column) level. Alternative de-
signs have also been proposed, to reduce power dissipa-
tion [27], to save area [33] or to exploit non-transistor 
technology [37].   

 

 
Fig. 3. NOR-type Associative Bit Cell 

 
To compare the key data word to the data stored in the 

associative memory (the entire row, a number of bits or a 
single bit), the Match line is precharged and the inverted 
key is set on Bit and Bit-not lines. In the columns that 
should be ignored during comparison, Bit and Bit-not 
lines are set to 0. If all unmasked bits in a row match the 
key (i.e. every unmasked bit in a row is different from the 
corresponding inverted key bit), the Match line remains 
high and a 1 is written into the corresponding TAG bit. If 
the key differs from the row data (even in one bit), the 
Match line discharges and a 0 is written into the TAG bit.    

In AP, compare is typically followed by a parallel write 
into the unmasked bits of all tagged words. To write data 
(from the KEY register) into the associative memory, each 
TAG bit (set earlier by the compare) is connected to the 
corresponding Word line. If a row matched during the 
compare, the key data is written into it in accordance with 
the MASK pattern. Otherwise (in the case of mismatch), 
the write does not affect the row. Typically, 12.5-25% of 
the rows are written during a write in arithmetic opera-
tions as further shown in Section 3.2.  

A compare-write sequence is illustrated in Fig. 4. A 
KEY value ‘001’ with MASK value ‘011’ is compared 
against the associative memory content. Afterwards a 
KEY value ‘111’ with MASK value ‘110’ is written into all 
associative memory rows that matched during Compare. 
In Compare, an inverted KEY bit is compared with each 
associative memory bit of its bit-column in parallel. The 
results of bit-compares are AND-ed in each row to gener-
ate a match or mismatch. The AND output is stored in a 
TAG bit. The masked-out bit columns do not affect the 
Compare result. In consequent Write, the KEY value is 
broadcast to the entire associative memory array. The 
logic AND of a MASK bit and the TAG bit is used to ena-
ble / disable the write operation: only the rows that 
matched during the Compare and only the bits which 
MASK is 1 are written.     



 

 

 
Fig. 4. Compare-Write Logic Sequence 

 
To read data from memory, the Bit and Bit-not lines 

are precharged and the Word line is asserted. Parallel 
write and sequential read operations are enabled only for 
the columns whose mask bits are set in the MASK regis-
ter. 

A complete design of an AP is presented in [47]. 
 

3.2 Associative Computing 

AP is a massively parallel SIMD accelerator. It can im-
plement a wide range of processing tasks, as well as clas-
sical CAM operations such as associative search, sorting 
and ordering. In addition it supports standard memory 
operations (word and block read and write). AP is effi-
cient for computational tasks that require fine-grain mas-
sive data parallelism, such as high-resolution image pro-
cessing or large data set sparse linear algebra algorithms 
as may be required in machine learning.  

Arithmetic operations in the AP can be performed in 
parallel on all PUs in a word-parallel, bit-serial manner. 
For instance, vector addition may be performed as fol-
lows [13]. Two 𝑚 bit columns hold vectors A and B (Fig. 
5). Their sum A+B is written over B. A one-bit column C 
holds the carry bit. The addition is carried out in 𝑚 sin-
gle-bit addition parallel steps (1):  

 
𝑐[∗] | 𝑠[∗]𝑖 = 𝑎[∗]𝑖 + 𝑏[∗]𝑖 + 𝑐[∗]   

∀ 𝑖 = 0, … , 𝑚 − 1 
(1) 

 

where 𝑖 is the bit index and ‘∗’ is the word index in the 
vector. The single-bit addition (TABLE 1) is carried out in 
a series of compare-write steps (as illustrated by Fig. 4). In 
each such step, one input entry of the truth table (a three 
bit input pattern) is matched against the contents of the 
𝑎[∗]𝑖 , 𝑏[∗]𝑖 , 𝑐[∗] bit columns in the associative array, and 
the matching rows (PUs) are tagged; then the logic result 
(two-bit output of the truth table in TABLE 1) is written 
into 𝑏𝑖 and 𝑐 bits of all tagged rows. During each compare 
and write step, all but three input bit columns and two 
output bit columns respectively are masked out, so that 
2.5 bit columns are active on average. Some input combi-
nations do not change the output and therefore can be 
skipped (“No action” in the table). Since the operation 
overwrites one of the inputs, computation must be carried 
out according to the order indicated in TABLE 1 [13].  

Overall, four compare - write steps are required to 
complete the single-bit addition. Therefore, fixed point 𝑚 
bit addition takes 8𝑚 ∈ 𝑂(𝑚)  cycles. Subtraction and 

comparison operations are performed similarly and also 
require 𝑂(𝑚) cycles. Note the stark contrast with SIMD 
architectures of low PU count that require 𝑂(𝑁) cycles to 
add N data elements (without taking into account the 
load / store / move time). 

Fixed precision multiplication and division in AP are 
implemented by long multiplication and division respec-
tively, consisting of a series of add-shift and subtract-shift 
operations, executed bit-serially but in parallel for all data 
words. The addition or subtraction are done as described 
above (multiplication is usually done “MSB first”), while 
shift is implemented by activating different bit columns 
and therefore requires no cycles. Thus, fixed point 𝑚 −
𝑏𝑖𝑡 × 𝑚 − 𝑏𝑖𝑡 vector multiplication requires 𝑂(𝑚2) cy-
cles [13], regardless of the length of the vectors.  

Floating point arithmetic for APs is somewhat more 
complex to implement. Different exponents require shift-
ing mantissas by different lengths, resulting in a sequence 
of bit-serial operations. Still, a direct implementation of 
IEEE single precision floating point element-by-element 
vector multiplication (𝐵 =)𝐴 × 𝐵 requires only 4400 cy-
cles, regardless of the length of the vector.  
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Fig. 5. Addition Example 

 
TABLE 1 

IMPLEMENTING FULL ADDER IN ASSOCIATIVE PROCESSOR 

Entry Input 
C 

Input 
B 

Input 
A 

Output 
C 

Output 
B 

Comments 

0 0 0 0 0 0 No action 

1 0 0 1 0 1 2nd pass 

2 0 1 0 0 1 No action 

3 0 1 1 1 0 1st pass 

4 1 0 0 0 1 3rd pass 

5 1 0 1 1 0 No action 

6 1 1 0 1 0 4th pass 

7 1 1 1 1 1 No action 

Pass = COMPARE cycle followed by WRITE cycle  

 

Arithmetic operations are presented in this Section 
under the assumption that the relevant operands are lo-
cated in the same PU. However, many workloads require 
inter-PU data communications. Depending on the work-
load, communication requirements may vary from no 
communications (for “embarrassingly parallel” tasks such 
as Black-Scholes option pricing) to relatively intense 



 

 

communications (e.g., for FFT). In some cases, support for 
special pre-defined communication patterns or permuta-
tions can be of advantage (e.g., for FFT). The inter-PU 
communication can be implemented serially, through a 
series of associative memory reads and writes. Alterna-
tively, the dedicated Interconnect introduced in Sec-
tion 3.1 can be employed to provide parallel communica-
tion capabilities, i.e. to allow all PUs to communicate in 
parallel. 

4 ANALYTIC MODEL AND COMPARATIVE ANALYSIS 

Analytical modeling is becoming an increasingly im-
portant technique used in the design of chip multiproces-
sors [11][20][23][29][45]. In this section we develop an 
analytical performance and power consumption model of 
the conventional SIMD and the AP and compare their 
relative performance, area and power consumption under 
constrained area and power resources. Here we study 
only the parallelizable portion of a workload. For simplic-
ity, we assume that the parallelizable portion contains 
single-cycle instructions (i.e. arithmetic, control, register 
file access and alike). We also assume the performance of 
the baseline sequential CPU to be 1 for the sake of esti-
mating the relative speedup delivered by the reference 
SIMD coprocessor and the AP.  

We verify our analytical modeling findings using cy-
cle-accurate simulation of the AP. The simulator, our 
simulation methodology and simulation results are de-
scribed in details in Section 4.4. 

4.1 Reference SIMD Processor 

Fig. 6 presents the computer architecture comprising 
the sequential CPU, the shared LLC and the SIMD copro-
cessor, as depicted in Fig. 1(b). The reference SIMD co-
processor contains a number of baseline PUs (BPUs), each 
containing a floating point ALU and a register file. The 
BPUs are connected to the shared LLC through a band-
width-limited interface, and are interconnected using an 
interconnection network (not shown). 

Let the serial execution time of the parallelizable por-
tion 𝑓 of the program on the baseline sequential CPU be 
𝑇1. The execution time 𝑇𝑓,𝑆𝐼𝑀𝐷 of that parallelizable por-
tion on the SIMD coprocessor can then be written as fol-
lows: 

 

𝑇𝑓,𝑆𝐼𝑀𝐷 =
𝑇1

𝑛𝑆𝐼𝑀𝐷
+

𝑇C

𝑛𝑆𝐼𝑀𝐷
+ 𝑇S (2) 

 
where  𝑛𝑆𝐼𝑀𝐷 is the number of BPUs, 𝑇C is the time spent 
exclusively on inter-BPU communication, and 𝑇S is the 
time spent exclusively on synchronization of the LLC to 
the private SIMD memory [46]. The synchronization con-
sists of the time to move data from LLC to SIMD before 
the parallel segment begins, and from SIMD to LLC after 
the parallel segment completes. Since it involves access to 
a shared resource, 𝑇S might depend on the number of 
BPUs in the SIMD coprocessor [12][39]. This is especially 
the case when the data set size is scaled down to the pro-
cessor size.  
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Fig. 6. CPU with SIMD coprocessor and shared LLC 

 
While a number of BPUs (or all BPUs) can communi-

cate with each other in parallel (although using a poten-
tially congested interconnection network that affects 𝑇𝐶), 
the LLC-to-SIMD synchronization is done essentially se-
rially for each BPU. Therefore the inter-BPU communica-
tion time scales by the number of BPUs while 𝑇S does not 
scale. The speedup of the SIMD processor over the se-
quential CPU can be written as follows: 

 

𝑆𝑆𝐼𝑀𝐷 =
𝑇1

𝑇𝑓,𝑆𝐼𝑀𝐷
=

1

1
𝑛𝑆𝐼𝑀𝐷

+
𝐼𝑐

𝑛𝑆𝐼𝑀𝐷
+ 𝐼𝑠

 

 

(3) 

where 𝐼𝑐 = 𝑇𝐶/𝑇1 is the connectivity intensity, or ratio of the 
time spent on inter-BPU communication to the serial exe-
cution time, and 𝐼𝑠 = 𝑇𝑆/𝑇1 is the synchronization intensity, 
or the ratio of time spent on LLC-to-SIMD synchroniza-
tion to the serial execution time.  

The area of the SIMD processor can be presented as 
follows: 

𝐴𝑆𝐼𝑀𝐷 = 𝑛𝑆𝐼𝑀𝐷(𝐴𝐴𝐿𝑈 + 𝐴𝑅𝐹) (4) 

 
where 𝐴𝐴𝐿𝑈 is the ALU area and 𝐴𝑅𝐹 is the register file 
area. As noted above, the inter-PU connection network is 
omitted. 

For easy comparison between PU and memory areas, 
we represent all area values (ALU, registers, memory) in 
terms of baseline SRAM cell area. Let the baseline SRAM 
cell area be 1. In 22nm CMOS technology, the actual fig-
ure is in the range of 0.1𝜇𝑚2 [4]. Then we can write:  

 
𝐴𝐴𝐿𝑈 = 𝐴𝐴𝐿𝑈𝑜𝑚2  

𝐴𝑅𝐹 = 𝐴𝑅𝐹𝑜𝑘𝑚 (5) 

 
where 𝐴𝐴𝐿𝑈𝑜 is the area of a single bit of the ALU and 𝐴𝑅𝐹𝑜 
is the area of a register bit (a flip-flop), both measured in 
baseline SRAM cell area units; 𝑚 is data wordlength and 
𝑘 is the size of the register file. This model is quite basic 
and does not take into account numerous aspects of SIMD 
design (instruction cache, communication and control, 
etc.). Its purpose is providing the best case reference fig-
ures for the comparative analysis of the conventional 
SIMD processor’s speedup, area and power. 

The average power of the SIMD processor (over the 
execution span 𝑇𝑓,𝑆𝐼𝑀𝐷) can be written as follows: 

 



 

 

𝑃𝑆𝐼𝑀𝐷 =
𝐸𝐶𝑂𝑀𝑃 + 𝐸𝐶 + 𝐸𝑆 + 𝐸𝐿𝐸𝐴𝐾

𝑇𝑓,𝑆𝐼𝑀𝐷
 =

=

𝑃𝐶𝑂𝑀𝑃

𝑛𝑆𝐼𝑀𝐷
+

𝐼𝑐𝑃𝐶

𝑛𝑆𝐼𝑀𝐷
+ 𝐼𝑠𝑃𝑆

(
1

𝑛𝑆𝐼𝑀𝐷
+

𝐼𝑐

𝑛𝑆𝐼𝑀𝐷
+ 𝐼𝑠)

+ 𝑃𝐿𝐸𝐴𝐾 

(6) 

where 𝑇𝑓,𝑆𝐼𝑀𝐷 is the execution time of the parallelizable 
portion of the program on the SIMD processor (2); 𝐸𝐶𝑂𝑀𝑃 
and 𝑃𝐶𝑂𝑀𝑃 are the energy and the average power con-
sumption during computation; 𝐸𝐶 and 𝑃𝐶 are the energy 
and the average power consumed during inter-BPU 
communication; 𝐸𝑆 and 𝑃𝑆 are the energy and the average 
power consumed during LLC-to-SIMD synchronization; 
𝐸𝐿𝐸𝐴𝐾 and 𝑃𝐿𝐸𝐴𝐾 are the leakage energy and power; 𝐼𝑐 and 
𝐼𝑠 are the connectivity and synchronization intensities as 
defined above.    

Just as in the case of area comparison, we represent all 
power values (ALU, registers, memory) through the write 
power consumption of a baseline SRAM memory cell. Let 
the power consumption of the baseline SRAM cell during 
write from ‘0’ to ‘1’ or from ‘1’ to ‘0’ be 1. In 22nm CMOS 
technology, the actual figure is in the range of 1𝜇𝑊 [22]. 
Then we can further write the SIMD power consumption 
as follows: 

 
𝑃𝐶𝑂𝑀𝑃 = 𝑛𝑆𝐼𝑀𝐷(𝑃𝐴𝐿𝑈𝑜𝑚2 + 𝑃𝑅𝐹𝑜𝑘𝑚)  

𝑃𝐶 = 𝑛𝑆𝐼𝑀𝐷𝑃𝐶𝑜𝑚 (7) 

𝑃𝑆 = 𝑃𝑆𝑜𝑚  

  
where 𝑃𝐴𝐿𝑈𝑜 and  𝑃𝑅𝐹𝑜 are the average per-bit power con-
sumptions of the ALU and RF respectively during com-
putation. 𝑃𝐶𝑜 is the per-bit power consumption during the 
inter-BPU communication. 𝑃𝑆𝑜 is the per-bit power con-
sumed performing LLC-to-SIMD synchronization. We 
assume the amount of data that needs to be synchronized 
with LLC, as well as transferred during inter-BPU com-
munication, is limited to a single data word per BPU. 
𝑃𝐶𝑂𝑀𝑃, 𝑃𝐶 and 𝑃𝑆 are measured in SRAM cell write power 
consumption units.   

Leakage power can be expressed as follows: 
   

𝑃𝐿𝐸𝐴𝐾 = βA𝑉𝛼 = γA (8) 

 
where 𝐴 is the area, 𝑉 is the supply voltage, α and β are 
constants, and γ is the leakage area coefficient that de-
pends on silicon process and operating conditions. There-
fore the total power can be written as follows: 
 

𝑃𝑆𝐼𝑀𝐷 =
𝑃𝐴𝐿𝑈𝑜𝑚2 + 𝑃𝑅𝐹𝑜𝑘𝑚 + 𝐼𝐶𝑃𝐶𝑜𝑚 + 𝐼𝑠𝑃𝑆𝑜𝑚

1
𝑛𝑆𝐼𝑀𝐷

+
𝐼𝑐

𝑛𝑆𝐼𝑀𝐷
+ 𝐼𝑠

+ 

+γ𝑛𝑆𝐼𝑀𝐷(𝐴𝐴𝐿𝑈𝑜𝑚2 + 𝐴𝑅𝐹𝑜𝑘𝑚) 

(9) 

 

   

4.2 Associative Processor  

In this section we construct the analytical model for the 
speedup, area and power consumption of the AP. The 
execution time of the parallelizable portion 𝑓 of the pro-

gram on the AP can be written as follows: 
 

𝑇𝑓,𝐴𝑃 =
𝑇1

𝑠𝐴𝑃𝐸𝑛𝐴𝑃
+

𝑇C

𝑛𝐴𝑃
+ 𝑇S(𝑁 − 𝑛𝐴𝑃) 

(10) 

 
 

where 𝑛𝐴𝑃 is the number of PUs in the AP, 𝑁 is the data 
set size, 𝑠𝐴𝑃𝐸 is the speedup of associative PU relative to 
the BPU, 𝑇C and 𝑇S are as defined in (2). Since AP in our 
research replaces the LLC, there is no need for data syn-
chronization unless the entire data set does not fit in the 
AP. In other words, 𝑇S(𝑁 − 𝑛𝐴𝑃) = 0 for 𝑁 ≤ 𝑛𝐴𝑃. 

Assuming single precision floating point arithmetic, 
the longest among frequently used arithmetic operations 
is multiplication, which in one direct implementation 
takes 4400 cycles vs. 1 cycle on the baseline sequential 
CPU or the BPU. Lacking a-priori knowledge of the work-
loads to be executed on the AP, we assume the worst case 
scenario comprising a continuous series of floating point 
multiplications. In this case 𝑠𝐴𝑃𝐸 = 1/4400. The speedup 
of the AP can then be written as follows: 

 

𝑆𝐴𝑃 =
1

1
𝑠𝐴𝑃𝐸𝑛𝐴𝑃

+
𝐼𝑐

𝑛𝐴𝑃
+ 𝐼𝑠

′
 

(11) 

 
where 𝐼𝑠

′ =𝐼𝑠(𝑁 − 𝑛𝐴𝑃). The area of the AP can be written 
as follows: 

 
𝐴𝐴𝑃 = 𝑛𝐴𝑃(𝐴𝐴𝑃𝑜𝑘𝑚 + 2𝐴𝐴𝐿𝑈𝑜) (12) 

 
where 𝑘 is the size of the associative PU (in data words), 
including temporary storage, 𝐴𝐴𝑃𝑜 is the AP cell area, 
measured in SRAM cell area units, and 2𝐴𝐴𝐿𝑈𝑜 is the per-
PU reduction tree size. Similarly to the reference SIMD 
coprocessor, we ignore the area of the interconnection 
network. 

The average power of the AP can be written as follows:   
 

𝑃𝐴𝑃 =
𝐸𝐶𝑂𝑀𝑃 + 𝐸𝐶 + 𝐸S(𝑁 − 𝑛𝐴𝑃)+𝐸𝐿𝐸𝐴𝐾

𝑇𝑓,𝐴𝑃
= 

=

𝑃𝐶𝑂𝑀𝑃

𝑛𝐴𝑃
+

𝐼𝑐𝑃𝐶

𝑛𝐴𝑃
+ 𝐼𝑠

′𝑃𝑆

1
𝑛𝐴𝑃

+
𝐼𝑐

𝑛𝐴𝑃
+ 𝐼𝑠

′
+ γ𝑛𝐴𝑃𝐴𝐴𝑃𝑜𝑘𝑚 

 

𝑃𝐶 = 𝑛𝐴𝑃𝑃𝐶𝑜 (13) 

𝑃𝑆 = 𝑃𝑆𝑜𝑚  

 
where 𝐸𝐶𝑂𝑀𝑃 and 𝑃𝐶𝑂𝑀𝑃 are the AP computation energy 
and power consumption; 𝐸𝐶 and 𝑃𝐶 are the AP energy 
and power consumption during inter-PU communica-
tion; 𝐸𝑆 and 𝑃𝑆 are the energy and the average power con-
sumed during synchronization, if the entire data set does 
not fit in the AP; 𝐸𝐿𝐸𝐴𝐾 and 𝑃𝐿𝐸𝐴𝐾 are the AP leakage ener-
gy and power. 𝑃𝐶𝑜 is the per-bit power consumption dur-
ing the inter-PU communication; 𝑃𝑆𝑜 is the per-bit power 
during synchronization. Note that for comparison pur-
poses we use the same leakage power (represented as a 
function of area only as in (8)) for both the AP and the 
SIMD processor. This might be somewhat unfair to the 



 

 

AP: First, the leakage power per area could be lower for 
memory than for logic [34]. Second, the AP has fewer 
hotspots [48]. Since the leakage power is highly tempera-
ture dependent, hotspots may lead to higher leakage in 
the SIMD processor [5].  

In order to further detail 𝑃𝐶𝑂𝑀𝑃, recall the implementa-
tion of single-bit addition (on which other arithmetic op-
erations are based) described in Section 3.2. In each pass 
of the single-bit addition, a three bit input combination 
𝑎[∗]𝑖 , 𝑏[∗]𝑖 , 𝑐[∗] is compared in parallel in all PUs and af-
terwards a two bit result 𝑏[∗]𝑖 , 𝑐[∗] is written into the 
tagged PUs; that sequence is repeated m times for m-bit 
words. Since there are eight independent logic combina-
tions (TABLE 1), each PU has 1/8 probability of match 
and 7/8 of mismatch (in which case the Match line dis-
charges). Similarly, each PU has 1/8 probability of write 
and 7/8 probability of a miswrite (when Bit and Bit-not 
lines are charged without Word line being asserted). Since 
we define the power consumption of a single SRAM cell 
during write operation as 1, 𝑃𝐶𝑂𝑀𝑃 can be presented as:   
 

𝑃𝐶𝑂𝑀𝑃 =   
2 ∙ (1

8⁄ + 7
8⁄ ∙ 𝑝𝑚𝑤) + 3 ∙ (1

8⁄ ∙ 𝑝𝑚 + 7
8⁄ ∙ 𝑝𝑚𝑚)

2
𝑛𝐴𝑃 

(14) 

 
 
for 2-bit write and 3-bit compare operations, where 𝑝𝑚𝑤 is 
the normalized per-bit power consumption of a miswrite, 
𝑝𝑚𝑚 is the normalized per-bit power consumption of a 
mismatch, and 𝑝𝑚 is the normalized per-bit power con-
sumption of a match (TABLE 3).  

Model (13) is fairly basic and does not account for cer-
tain statistics that work in favor of the AP. For example, a 
certain percentage of associative memory cells that are 
written a new value in fact do not change (consuming 
considerably less power); similarly, a certain percentage 
of asserted bit lines do not recharge (or discharge) since 
the same value is asserted. Our goal is to create a simple 
power model that reflects the worst case power consump-
tion of the AP. 

4.3 Modeling under constrained area 

The number of AP PUs may be derived as the function 
of the constrained area budget 𝐴 using (12) as follows: 

 

𝑛𝐴𝑃 =
𝐴

𝐴𝐴𝑃𝑜𝑘𝑚 + 2𝐴𝐴𝐿𝑈𝑜
 

 

(15) 

We can further substitute 𝑛𝐴𝑃 in (11) and (13) by (15) and 
obtain the speedup and the power consumption of the AP 
as function of the area budget. The area parameters we 
use for modeling purposes are presented in TABLE 2. 

Speedup vs. area for the reference SIMD coprocessor 
and the AP is shown in Fig. 7. For mathematical simplici-
ty, synchronization intensity 𝐼𝑠 is assumed to be constant 
0.01 (namely, synchronization takes 1% of the serial exe-
cution time).  

TABLE 2 

AREA MODEL PARAMETERS 

Parameter Description Attributed 
to 

Value 

𝐴𝐴𝐿𝑈𝑜 ALU bit cell area  SIMD 20 (1) 

𝐴𝑅𝐹𝑜 Register bit (FF) area  SIMD 3 (1) 

𝑆𝐴𝑃𝐸 AP speedup relative to se-
quential CPU   

AP 1/4400 

𝐴𝐴𝑃𝑜 AP bit area  AP 2 (1) 

𝑚 Data wordlength  Both 32 

𝑘 Register file size in SIMD, 
AP PU size (in 32-bit words)  

Both 8 

(1) Area parameters are relative to the area of SRAM bit cell; the values 

are based on typical standard cell libraries. 

 
As the area budget increases, the speedup of the refer-

ence SIMD coprocessor exhibits diminishing returns 
caused by the LLC-to-SIMD synchronization. Eventually 
the speedup saturates:  

 

lim
𝑛𝑆𝐼𝑀𝐷→∞

𝑆𝑆𝐼𝑀𝐷 = lim
𝑛𝑆𝐼𝑀𝐷→∞

1

1
𝑛𝑆𝐼𝑀𝐷

+
𝐼𝐶

𝑛𝑆𝐼𝑀𝐷
+ 𝐼𝑠

=
1

𝐼𝑠
 

(16) 

 
As evident from Fig. 7, the speedup of the AP is lower 

than the speedup of the reference SIMD coprocessor at 
low area, but it increases to reach the breakeven point at 
around 30𝑚𝑚2. Diminishing returns affect the AP 
speedup to a lesser extent, since they only occur when the 
data set does not fit into the AP. To demonstrate this ef-
fect, we assume that the data set size grows with the AP 
size (same as for SIMD) until 𝑛𝐴𝑃 = 𝑁 = 104, after which 
the data set size 𝑁 grows twice as fast as the 𝑛𝐴𝑃. This is 
what causes the AP speedup to eventually saturate as 
well.   

 

(c)

(a)

(d)

(b)

 
Fig. 7. Analytical results under constrained area: (a) Speedup (b) Power (c) 

Performance / Power ratio (d) 𝐸𝑛𝑒𝑟𝑔𝑦 × 𝐷𝑒𝑙𝑎𝑦  

 
The power consumption vs. area budget for the SIMD 

and the APs is shown in Fig. 7(b). The power consump-
tion of the AP is lower than that of the SIMD processor 
when area is under 30𝑚𝑚2. For larger area, the AP con-
sumes more power than the SIMD processor. Note that 



 

 

even when the speedups saturate, power consumption 
continues to grow with area, due to the leakage.  

The performance/power ratio vs. area for the SIMD 
and the APs is shown in Fig. 7(c). For the SIMD processor, 
the performance/power ratio drops because speedup 
saturates while power dissipation continues to grow with 
increasing area. For lower area, AP underperforms SIMD 
in terms of performance/power ratio. But as SIMD’s 
speedup saturates, AP yields better performance/power 
ratio. Eventually, the latter also drops, as the AP speedup 
saturates. 

The energy-delay product (𝐸𝐷) vs. area for SIMD and 
AP is shown in Fig. 7(d). Since the task size is not con-
stant, we use normalized delay, i.e. the ratio of the delay 
to the serial execution time. The SIMD processor’s 𝐸𝐷 
reaches a minimum around 5𝑚𝑚2 (where the speedup 
saturates) and begins to grow again due to growing pow-
er consumption. The AP’s 𝐸𝐷 follows a similar pattern 
but reaches its minimum at much larger area budget. 
Both performance/power and 𝐸𝐷 product breakeven 
points (at which AP begins to outperform SIMD) occur at 
20𝑚𝑚2. 

4.4 AP Simulation 

The purpose of the simulation is to validate the analyt-
ic results obtained in Section 4.3. The workloads are de-
fined, followed by description of the cycle-accurate AP 
simulator, our simulation methodology and simulation 
results.  

4.4.1 Workloads 

The following workloads have been selected for per-
formance and power consumption simulations: 

 𝑁-option pairs Black-Scholes option pricing (BSC) 
 𝑁-point Fast Fourier Transform (FFT) 
 Dense Matrix Multiplication  of two √𝑁×√𝑁 ma-

trices (DMM) 
 𝑁-point Vector Reduction (VR) 

where 𝑁 is the data set size, for simplicity scaled to the 
processor size (following the methodology suggested 
in  [17]), i.e. 𝑁 = 𝑛𝐴𝑃. Note that simulations do not cover 
the cases where the data size exceeds the size of the pro-
cessor (requiring data synchronization).    

 

4.4.2 Simulator 

We simulate the AP using an in-house cycle-accurate 
simulator. The workloads are hand-coded. For FFT, we 
use optimized parallel implementation outlined in [38]. 
For Black-Scholes, we used a direct implementation opti-
mized for associative processing, based on formulation 
in [7]. Vector reduction is implemented using the reduc-
tion tree. Matrix multiplication uses AP’s compare and 
arithmetic capabilities to match the input matrix element 
pairs and multiply them. The singleton products are 
summed by the reduction tree.    

The first step of AP programing is identification of the 
finest data parallelization level and mapping of the work-
loads on the associative processing array. For matrix mul-
tiplication, each pair of elements to be multiplied is pro-

cessed by a single PU. For FFT, each multiply-accumulate 
operation is carried out by a single PU. For Black-Scholes 
option pricing, a single PU handles a single call option of 
a single security at a single strike price and a single expi-
ration time. For vector reduction, a single PU retains a 
single vector element. At the next step, we break each 
fine-grain data thread into a series of arithmetic and data 
communication operations, and manually allocate tempo-
rary storage. At the last step, each arithmetic and com-
munication operation is converted into a series of com-
pares, writes and data moves. Simulation times are pre-
sented in TABLE 4.  

For power simulation, we follow the methodology of 
SimpleScalar [10], which allows keeping track of what 
units are active during execution and records the total 
energy consumed for a workload. During the AP execu-
tion, we record and count all baseline operations (match, 
mismatch, write, miswrite, data move, reduction). Using 
power models of each baseline operation, detailed in TA-
BLE 3, we are able to estimate the total energy consumed 
during execution of each case.  

 
TABLE 3 

POWER MODEL PARAMETERS 

Parameter Description Value 

𝑝𝑛𝑤 per-bit power consumption 
during a miswrite  

0.1 (1) 

𝑝𝑚 per-bit power consumption 
during a match 

0.1 (1) 

𝑝𝑚𝑚 per-bit power consumption 
during a mismatch 

0.75 (1) 

γ static power coefficient 5 ∙ 10−2 W/mm2(2) 

(1) Based on [22], relative to the power consumption of SRAM bit cell 

during write from 0 to 1 or from 1 to 0 operation 

(2) Based on typical industry data at typical conditions for advanced 

technologies 

 
TABLE 4 

DATA SET SIZES AND SIMULATION TIMES 

Workload Date Set Size Simulation Time 

BSC 28 ÷ 220 4 sec ÷  1hr 50min 

FFT 28 ÷ 220 3 sec ÷  2hr 35min 

DMM 28 ÷ 220 2 sec ÷ 12hr 55min 

VR 28 ÷ 220 2 sec ÷  6 sec 

Simulations performed on Intel® Core™2 Quad CPU Q8400 with 8GB 

RAM 

4.4.3 Results 

We simulate speedup and power per workload for 16 
different values of area. In all cases, the PU size is 256 bits 
(TABLE 2). 

Simulated speedup results are presented in Fig. 8(a). 
DMM uses the reduction tree as an accelerator. BSC is an 
embarrassingly parallel workload. Hence DMM and BSC 
obtain higher speedup than FFT. VR is an outlier, since it 
is implemented using the word- and bit-parallel reduc-
tion tree rather than bit-serial associative arithmetic, thus 
achieving considerably higher speedup.    

Power consumption results are presented in Fig. 8(b). 
All workloads consume power of the same order of mag-
nitude (hence we use linear rather than log-log scale).  



 

 

This happens because all workloads are implemented 
using mostly identical associative primitives (compare 
and write). Although VR and to a lesser extent DMM use 
the relatively power-hungry reduction tree, reduction 
time is almost negligible compared to the time of associa-
tive operations. Performance/power ratio and 𝐸𝐷 prod-
uct are shown in Fig. 8(c) and (d) respectively. Among 
DMM, FFT and BSC workloads, DMM shows the best 
performance/power and 𝐸𝐷, thanks to the accelerated 
reduction operation. Since BSC is an embarrassingly par-
allel workload, its performance/power ratio remains al-
most constant with data set size / area. The power con-
sumption of VR is significantly higher than that of the rest 
of the workloads. However since its speedup is also at 
least an order of magnitude higher, VR exhibits consider-
ably better performance/power ratio and 𝐸𝐷 product.   
 

 
Fig. 8. Simulation results: (a) Speedup (b) Power (c) Performance / Power 

ratio (d) 𝐸𝑛𝑒𝑟𝑔𝑦 × 𝐷𝑒𝑙𝑎𝑦 

 

 
Fig. 9. Speedup Breakeven Points Distribution 

4.5 Sensitivity to parameter variation 

The parameters used in our modeling are technology 
and design dependent. In order to determine how the 
changes in these parameters affect the results, we ran-
domize the parameters in TABLE 2 using uniform distri-
bution of ∓50%.  

Fig. 9 shows the distribution of the speedup breakeven 
point (i.e. the area at which the speedup of the SIMD pro-
cessor is the same as that of the associative processor,  

~30𝑚𝑚2 in Fig. 7). As expected, the distribution of 
speedup breakeven point is close to lognormal (because 
at least some of the independent random parameters are 
positive and multiplicative), with a mean value of 
~32𝑚𝑚2. 

5 CPU WITH AP VS. CPU WITH LLC AND SIMD 

COPROCESSOR 

While in the previous section the AP has been com-
pared with a standalone SIMD processor, in this section 
they are considered in the context of a CPU architecture.  

Complexity and runtime requirements make it chal-
lenging to rely on cycle-accurate simulation for the large-
scale design space exploration that we undertake.  We use 
analytical modeling to compare the performance and the 
power consumption of a CPU with an AP (Fig. 1(c)) vs. 
CPU with a LLC and a SIMD coprocessor (Fig. 1(b)), un-
der constrained area resource. In this analysis we assume 
that the areas of the CPU and the L1 cache are constant. 
The variable area budget is therefore assigned entirely to 
the LLC in the baseline architecture (Fig. 1(a)), or divided 
among the LLC and the SIMD coprocessor (Fig. 1(b)), or 
assigned entirely to the AP (Fig. 1(c)).  We begin our 
comparative analysis with performance and follow with 
power consumption.  

We confirm our analytic results by emulation, whereby 
the workload is executed and performance is measured 
on a state-of-art computer system with SIMD accelerator, 
as explained in Section 5.3. Emulation results are also 
combined with the results of cycle-accurate simulations of 
AP, to derive the performance of CPU with the AP.  

5.1 Performance Modeling 

Following [11] and [31], we can present the execution 
time of a workload on the baseline CPU architecture (Fig. 
1(a)) as a function of its LLC size 𝐴𝐿𝐿𝐶 = 𝐴 as follows: 

 
𝑇1(𝐴𝐿𝐿𝐶) = 𝑀[𝑔 ∙ 𝐶𝑃𝐼𝑀𝐸𝑀 + (1 − 𝑔) ∙ 𝐶𝑃𝐼𝐶𝑃𝑈] (17) 

 
where 𝐴 is the area budget, 𝑀 is the number of instruc-
tions in the workload, 𝑔 is the fraction of memory access 
instructions, 𝐶𝑃𝐼𝐶𝑃𝑈 is the average number of cycles per 
instruction for instructions that require no memory access 
(assumed to be constant, as defined in TABLE 5), and 
𝐶𝑃𝐼𝑀𝐸𝑀 is the average number of cycles per memory ac-
cess. 𝐶𝑃𝐼𝑀𝐸𝑀 can in turn be presented as follows [49]: 

 
𝐶𝑃𝐼𝑀𝐸𝑀 = (1 − 𝑚1)𝑑𝐿1 + 𝑚1(1 − 𝑚2)𝑑𝐿𝐿𝐶

+ 𝑚1𝑚2𝑑𝐷 
(18) 

 
where 𝑚1 and 𝑚2 are miss rates of L1 and LLC respective-
ly, 𝑑𝐿1 and 𝑑𝐿𝐿𝐶 are access times of L1 and LLC respective-
ly, and 𝑑𝐷 is the off-chip DRAM access time.  

The miss rate of the LLC can be written as follows [21]: 
 

𝑚2 = 𝑚1√𝐴𝐿1
𝐴𝐿𝐿𝐶

⁄  (19) 

 
where 𝐴𝐿1 and 𝐴𝐿𝐿𝐶 = 𝐴 are the areas of the L1 and the 



 

 

LLC respectively.  
The execution time of the same workload on the CPU 

with the LLC and the SIMD coprocessor can be written as 
follows: 

 

𝑇2 = (1 − 𝑓) ∙ 𝑇1(𝐴𝐿𝐿𝐶𝑜) +
𝑓 ∙ 𝑀

𝑠𝑆𝐼𝑀𝐷(𝐴𝑆𝐼𝑀𝐷𝑜)
 (20) 

 
where 𝑓 is the parallelizable portion of the program and 
𝑠𝑆𝐼𝑀𝐷 is the speedup of the SIMD coprocessor as defined 
in (3); 𝐴𝐿𝐿𝐶𝑜 and 𝐴𝑆𝐼𝑀𝐷𝑜 are the areas of the LLC and the 
SIMD coprocessor, respectively, so that 𝐴𝐿𝐿𝐶𝑜 + 𝐴𝑆𝐼𝑀𝐷𝑜 =
𝐴. The parallelizable portion of the workload is assumed 
to contain single-cycle instructions, similarly to Section 4. 

The execution time of the same workload on the CPU 
with the AP can be written as: 

 

𝑇3 = (1 − 𝑓) ∙ 𝑇1(𝐴 𝐴𝐴𝑃𝑜⁄ ) +
𝑓 ∙ 𝑀

𝑆𝐴𝑃
 (21) 

 
where 𝑆𝐴𝑃 is the speedup of the AP as defined in (11); 
𝐴 𝐴𝐴𝑃𝑜⁄  is the effective area of the LLC implemented by 
the AP (operated in the conventional cache mode during 
the execution of the serial fraction of the workload), 
where 𝐴𝐴𝑃𝑜 (the area of the AP cell in SRAM cell units) is 
2, as defined in TABLE 2.  

Following (20) and (21), the effective number of cycles 
per instruction for the CPU with the LLC and the SIMD 
coprocessor (Fig. 1(b)) and for the CPU with the AP (Fig. 
1(c)) can be written as follows: 

 

𝐶𝑃𝐼𝑆𝐼𝑀𝐷 =
𝑇2

𝑀
;        𝐶𝑃𝐼𝐴𝑃 =

𝑇3

𝑀
 (22) 

 
We further define the overall speedup of these two ar-

chitectures as follows: 
 

𝑆𝑈𝑆𝐼𝑀𝐷 =
𝑇1(𝐴)

𝑇2
;             𝑆𝑈𝐴𝑃 =

 𝑇1(𝐴)

𝑇3
 (23) 

The timing and area parameters used for modeling 
purposes are specified in TABLE 2 and TABLE 5. 

Fig. 10 shows the effective number of cycles per in-
struction vs. area budget for both architectures for 𝑓 =
0.75, 0.9, 0.99 and 0.999. Fig. 11 shows the overall speedup 
of these architectures for the same 𝑓.  

In Section 4 we established that if area budget and data 
set size are sufficiently large, the AP may outperform the 
SIMD coprocessor. This outcome is supported by our 
findings here. For high 𝑓 (e.g., 0.9 and above), the effec-
tive CPI and overall speedup breakeven points occur at 
relatively low area budget, and the overall speedup is 
relatively high. For lower 𝑓 (e.g., 0.75 and below), the da-
ta set size and the area budget required for the AP to out-
perform the SIMD coprocessor are considerably more 
significant. 

 

TABLE 5 

TIMING AND AREA MODEL PARAMETERS 

Parameter Description Value 

𝑔 fraction of memory access 
instructions 

0.2(3) 

𝐶𝑃𝐼𝐶𝑃𝑈 average number of cycles 
per instruction for instruc-
tions with no memory ac-
cess 

1(3) 

𝐴𝐶𝑃𝑈 CPU area 108 (1) (3) 

𝐴𝐿1 L1 cache area 108 (1) (3) 

𝑑𝐿1 L1 cache access time 1 (2) (3) 

𝑑𝐿𝐿𝐶 LLC access time 5 (2) (3) 

𝑑𝐷 DRAM access time 100 (2) (3) 

𝑚1 L1 cache miss rate 0.05(3) 

(1) Area parameters are relative to the area of SRAM bit cell 

(2) Timing parameters are in cycles 

(3) Values based on typical industry data in advanced technologies 

5.2 Power Modeling 

The power consumption of the baseline architecture in 
Fig. 1(a) can be presented as a function of its LLC size 
𝐴𝐿𝐿𝐶 = 𝐴 based on [18]:  
 

𝑃1(𝐴𝐿𝐿𝐶) = 𝑔 ∙ 𝑃𝑀𝐸𝑀 + (1 − 𝑔) ∙ 𝑃𝐶𝑃𝑈 + 𝑃𝐿𝐸𝐴𝐾 (24) 

 
where 𝑃𝑀𝐸𝑀 can be written as follows: 
 
𝑃𝑀𝐸𝑀 = (1 − 𝑚1)𝑃𝐿1 + 𝑚1(1 − 𝑚2)𝑃𝐿𝐿𝐶 + 𝑚1𝑚2𝑃𝐷 (25) 

 
where 𝑃𝐿1, 𝑃𝐿𝐿𝐶  and 𝑃𝐷 are the power consumption of L1 
cache, LLC, and off-chip DRAM access, respectively. 𝑃𝐿1 
is assumed to be constant and defined in TABLE 6 below; 
𝑃𝐿𝐿𝐶  to 𝑃𝐿1 ratio equals the square root of the LLC to L1 
areas ratio, while 𝑃𝐶𝑃𝑈 is proportional to the CPU ar-
ea [11]: 

𝑃𝐿𝐿𝐶 = 𝑃𝐿1 ∙ √𝐴𝐿𝐿𝐶
𝐴𝐿1

⁄ ;              𝑃𝐶𝑃𝑈 = 𝑃𝐶𝑃𝑈𝑜 ∙ 𝐴𝐶𝑃𝑈 (26) 

 
where 𝑃𝐶𝑃𝑈𝑜 is the power consumption of the baseline 
CPU, assumed to be constant and defined in TABLE 6 
below.   

The power consumption of the CPU with the LLC and 
the SIMD coprocessor can be written as: 

 
𝑃2 = (1 − 𝑓) ∙ 𝑃1(𝐴𝐿𝐿𝐶𝑜) + 𝑓 ∙ 𝑃𝑆𝐼𝑀𝐷(𝐴𝑆𝐼𝑀𝐷𝑜) + 𝑃𝐿𝐸𝐴𝐾 (27) 

 
where 𝑃𝑆𝐼𝑀𝐷 is the power dissipation of the SIMD co-

processor, which is the dynamic component of (6) above. 
The leakage power 𝑃𝐿𝐸𝐴𝐾 is defined in (8) above (with 𝐴 
being the sum of 𝐴𝐶𝑃𝑈 , 𝐴𝐿1, 𝐴𝑆𝐼𝑀𝐷 and 𝐴𝐿𝐿𝐶).  

The power consumption of the CPU with the AP can 
similarly be written as follows: 

 
𝑃3 = (1 − 𝑓) ∙ 𝑃1(𝐴 𝐴𝐴𝑃𝑜⁄ ) + 𝑓 ∙ 𝑃𝐴𝑃 + 𝑃𝐿𝐸𝐴𝐾 (28) 

 
where 𝑃𝐴𝑃 is the power dissipation of the AP, as de-

fined in (13) above. The leakage power 𝑃𝐿𝐸𝐴𝐾 is defined in 
(8) above (with 𝐴 being the sum of 𝐴𝐶𝑃𝑈 , 𝐴𝐿1 and 𝐴𝐴𝑃). The 
power parameters used for modeling are presented in 
TABLE 3 and TABLE 6. 



 

 

 

 
Fig. 10. Effective 𝐶𝑃𝐼𝑆𝐼𝑀𝐷 and 𝐶𝑃𝐼𝐴𝑃 vs. Area  

 

 
Fig. 11. 𝑆𝑈𝑆𝐼𝑀𝐷 and 𝑆𝑈𝐴𝑃 vs. Area  

 
TABLE 6 

POWER MODEL PARAMETERS 

Parameter Description Value 

𝑃𝐶𝑃𝑈𝑜 Baseline CPU power 5 ∙ 10−3 (1) (3) 

𝑃𝐿1 L1 power  5 ∙ 104 (2) (3) 

𝑃𝐷 Power of off-chip 
DRAM access 

103 (2) (3) 

(1) Power of SRAM bit cell unit over area of SRAM bit cell unit 

(2) Relative to the power consumption of SRAM bit cell during write 

(3) Values based on typical industry data in advanced technologies 

 
The power consumption, the performance/power ratio 

and the 𝐸𝐷 product of the CPU with the LLC and the 
SIMD coprocessor vs. the CPU with the AP for 𝑓 =
0.75, 0.9, 0.99 and 0.999 are shown in Fig. 12, Fig. 13 and 
Fig. 14, respectively. Similarly to speedup, the results for 
higher 𝑓 are in line with the findings of Section 4.  

Note the significant difference in behavior of the per-
formance/power ratio and the 𝐸𝐷 product for higher 
values of 𝑓. While at lower 𝑓 the AP consumes a large 
portion of the overall power while making small contri-
bution to the overall speedup, for higher 𝑓 the AP adds to 

the overall speedup quite significantly. Consequently, for 
f=0.999, the CPU with the AP charts exhibit a different 
trend vs. the CPU with the LLC and the SIMD curves.  

Fig. 15 shows the effective 𝐶𝑃𝐼𝐴𝑃 vs. 𝐶𝑃𝐼𝑆𝐼𝑀𝐷 breakeven 
point, namely the area above which the CPU with the AP 
outperforms the CPU with the LLC and the SIMD, as a 
function of 𝑓 and 𝑔. The plateau marks the region of 𝑓 
and 𝑔 values for which a breakeven point cannot be 
achieved under the maximum area budget used in our 
analysis (8𝐴𝐿1). In other words, the CPU with the AP does 
not have enough area to outperform the CPU with the 
LLC and the SIMD coprocessor. However, the SIMD pro-
cessor is also less than useful in the plateau region: it is 
well established that conventional SIMD accelerators are 
inefficient in implementing low parallelizable / low 
arithmetic intensity (the ratio of computations to memory 
traffic [25] )workloads, characteristic of low 𝑓 and high 𝑔 
(the plateau region) [30] [32].    

 

 
Fig. 12. Power vs. Area  

 
On the other hand, the combination of 𝑓 close to 1 and 

low 𝑔, which is typical for workloads with high level of 
fine-grain data parallelism, is advantageous for the CPU 
with the AP architecture, allowing it to outperform the 
SIMD accelerated architecture over a wide span of the 
area budget.    

5.3 Emulation Methodology 

We validate our analytic modeling findings using 
emulation. We follow the methodology established 
in [31]. To emulate the CPU with the LLC and the SIMD 
coprocessor of Fig. 1(b), we use a stand-alone server fea-
turing Intel ® Pentium ® 4 processor with the SSE2 SIMD 
accelerator, operated under Fedora Linux. We evaluate 
the performance using a dense matrix multiplication ker-
nel since it has the highest arithmetic intensity among the 
workloads considered in Section 4.4.1. With arithmetic 
intensity of 𝑂(√𝑁) (where 𝑁 is the data set size and √𝑁 is 
the matrix dimension), matrix multiplication is a better fit 
for SIMD implementation than FFT (with arithmetic in-
tensity of 𝑂(log2 𝑁) and Black-Scholes (with arithmetic 
intensity of 𝑂(1)). 



 

 

 

 
Fig. 13. Performance / Power vs. Area  

 

 
Fig. 14. 𝐸𝐷 vs. Area  

 

 
Fig. 15. Effective CPI breakeven point vs. 𝑓 and 𝑔 

  
Synchronization in SSE2 SIMD accelerator has two 

main components: MOV instructions that synchronize 
SSE2 registers with L1 data cache, and L1 to L2 synchro-
nization when the entire data set does not fit into L1. To 
unwind the dependency of execution time on the cache 
size and hierarchy (which are constantly improving in 
newer CPU revisions), we deduct the data cache miss 
penalty time from the execution time.  

 

 
Fig. 16. Speedup vs. Data Set Size: (a) emulated CPU + LLC + SIMD, (b) 

emulated CPU + LLC + SIMD vs. emulated CPU + AP  

 
The results of the CPU with the LLC and the SIMD ac-

celerator’ speedup (over naïve serial execution that takes 
𝑂(𝑁1.5) cycles) vs. matrix dimension are presented in Fig. 
16(a). They are consistent with findings of D. Aberdeen et 
al. [2] who researched matrix multiplication using Intel’s 
SSE instruction set. 

The analytical model of the CPU with the AP is veri-
fied using a combination of the cycle accurate simulation 
of standalone AP (Section 4.4) and the baseline CPU emu-
lation. In this approach, the sequential fraction of the 
workload is emulated on the CPU, followed by the cycle-
accurate simulation of the parallel fraction of the work-
load on the AP simulator. The sum of emulated and simu-
lated run times gives us total execution time. The results 
of the CPU with AP speedup (over naïve serial execution) 
vs. matrix dimension are presented in Fig. 16(b), along 
with the speedup of the CPU with the LLC and the SIMD 
accelerator taken from Fig. 16(a). These results are quite 
expected, since the latter is limited by the SSE2 size, while 
the AP scales up with the data set size.  

To estimate how the comparison would change if we 
had the ability to enlarge the vector accelerator, we sepa-
rate the MOV instructions (analogous to 𝑇𝑆 of (2)) from 
the rest of the code (which is analogous to 𝑇1 + 𝑇𝐶 of (2)), 
and scale the latter by 𝑛𝑆𝐼𝑀𝐷 𝑛𝑆𝑆𝐸2⁄ , where 𝑛𝑆𝐼𝑀𝐷 is the size 
of the hypothetical SIMD accelerator and 𝑛𝑆𝑆𝐸2 = 4 is the 
size of SSE2. We then sum up the 𝑇𝑆 and the ideally-
scaled 𝑇1 + 𝑇𝐶 , to estimate SIMD execution time. The 
speedup vs. area results are presented in Fig. 17. Area is 
received by substituting 𝑛𝑆𝐼𝑀𝐷 into (4). The hypothetical 
speedup of the CPU with the LLC and the SIMD accelera-
tor grows with area (with 𝑛𝑆𝐼𝑀𝐷), but it is still affected by 
synchronization (MOV part of the code) and therefore 
eventually underperforms the CPU with AP, in line with 
our analytical modeling findings.    

6 DISCUSSION AND CONCLUSIONS 

An associate processor is essentially a large memory 
with massively-parallel processing capability. It offers 
dual use: either the CPU accesses the data in that 
memory, or the data is being processed associatively 
within the same memory. This paper investigates the 
merit of using AP instead of on-chip last level cache 
(LLC) combined with a SIMD accelerator.  

 



 

 

 
Fig. 17. Speedup vs. Area: (a) hypothetical CPU + LLC + SIMD, (b) hypo-

thetical CPU + LLC + SIMD vs. emulated CPU + AP   

 
Converting LLC into AP adds parallel processing ca-

pabilities to otherwise sequential architecture. The price 
of this conversion is the reduction (approximately halv-
ing) of the effective LLC size in its conventional sequen-
tial processing mode. However, our study shows that 
even for workloads with relatively low parallelism (𝑓 ≤
0.75), replacing the LLC by AP may lead to an overall 
speedup over the baseline CPU architecture. For 𝑓 close 
to 1, such speedup can be quite significant.  

An alternative way of improving the performance of 
parallelizable workloads is to allocate some of the con-
strained area budget (originally assigned to the LLC) to a 
conventional SIMD coprocessor. This study shows that 
the speedup of SIMD coprocessor is ultimately limited by 
data synchronization between its private memory and the 
shared LLC. This effect becomes more significant as the 
data set size and the SIMD coprocessor size grow. 

The principle advantage of the AP is the unification of 
data storage and processing, which in most cases elimi-
nates the need for data synchronization with a higher 
level cache. The AP speedup grows faster with area than 
the speedup of the conventional SIMD processor. Conse-
quently, when the area budget (and the corresponding 
data set size) is sufficiently large, the AP may outperform 
the conventional SIMD coprocessor. The speedup breake-
ven point is in the area range of a few square millimeters 
to low tens of square millimeters depending on the work-
load, the feature size, the design specifics, etc. AP howev-
er is not universally efficient. While yielding high 
speedup when implementing fine-grain massively data-
parallel workloads (such as sparse linear algebra and ma-
chine learning algorithms), its efficiency is much lower 
under workloads with low data-level parallelism.   

As area budget grows beyond the speedup breakeven 
point, AP’s power is similar to that of SIMD coprocessor. 
However, AP seems to outperform the conventional 
SIMD in terms of performance/power ratio and energy-
delay product over a broad spectrum of area and power 
budget for workloads with high data-level parallelism.    

Associative processing has been known and extensive-
ly studied since the 1960s. Commercial associative pro-
cessing never quite took off, because only limited 
amounts of memory could be placed on a single die [33]. 
Due to data sets and tasks of limited size, a standalone 
bit- and word-parallel SIMD significantly outperformed 
APs. However, the progress in IT industry and semicon-
ductor technology in recent years opens the door for re-
considering APs: 

 The rise of big data pushes the computational re-
quirements to levels never seen before. The amounts 
of data to be processed simultaneously require a new 
parallel computing paradigm. This paper shows that 
AP’s performance and efficiency improves with data 
set size. 

 Power consumption, which used to be a secondary 
factor in the past, has become a principal limitation to 
integration and performance today. The AP is shown 
to achieve higher performance/power ratio and en-
ergy-delay product. 

 Off-chip memory bandwidth remains to be one of the 
main factors limiting performance and scalability of 
parallel architectures. Associative processing miti-
gates this limitation by intertwining computing with 
data storage.   

 In high performance dies, thermal density is becom-
ing the limit on total computation capabilities; associ-
ative processing leads to uniform power and thermal 
distribution over the chip area, avoiding hot spots 
and enabling higher power dissipation. 

Thanks to the memory integration and the feature scal-
ing enabled by current silicon technology on one side, 
and the rise of big data on the other, we are at the inflec-
tion point where AP may considerably outperform con-
ventional SIMD in both performance and power.  
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