

COMPUTER ARCHITECTURE WITH

ASSOCIATIVE PROCESSOR REPLACING LAST

LEVEL CACHE AND SIMD ACCELERATOR
L. Yavits, A. Morad, R. Ginosar

Abstract—This study presents a computer architecture where a last level cache and a SIMD accelerator are replaced by an

Associative Processor. Associative Processor combines data storage and processing, and functions as a parallel SIMD

processor and a memory at the same time. An analytic performance model of this computer architecture is introduced.

Comparative analysis supported by cycle-accurate simulation and emulation shows that this architecture may outperform a

conventional computer architecture comprising a SIMD coprocessor and a shared last level cache while consuming less power.

Index Terms— Multicore, SIMD, Associative Processor, Processing In Memory, PIM.

—————————— ——————————

1 INTRODUCTION

achine learning, data mining, network routing,
search engines and other big data applications can
be significantly sped up by massively parallel

SIMD machines [42]. Many of today’s computing archi-
tectures include vector, or SIMD coprocessors [1][16][24].
However data transfer between processing units (PUs)
and memory significantly limits the performance of SIMD
architectures [32]. High utilization of SIMD processor
requires very high computation-to-bandwidth ratio and
large data sets [30].

Power dissipation and on-chip communication are
among the main factors limiting the scalability of parallel
architectures [8]. Data synchronization and communica-
tion between PUs of SIMD processor and their private
and shared memories lead to wasting energy on non-
processing tasks and limit the speedup of parallel SIMD
architectures [46].

When operating at high rates, arrays of computing el-
ements in SIMD processors are very active, resulting in
irregular thermal density and hotspots [41] and further
limiting the scalability of conventional SIMD architec-
tures.

 The Associative Processor (AP) is a viable alternative to
conventional SIMD processors [13][40][47]. The AP com-
prises a modified Content Addressable Memory (CAM)
and facilitates processing in addition to storage. AP can
be used as an efficient accelerator of massively-parallel
fine-grain SIMD workloads.

In this study we propose to replace the last level cache
(LLC) of a baseline CPU architecture (Fig. 1(a)), or the
combination of the LLC and a dedicated SIMD coproces-
sor (Fig. 1(b)), by an AP (Fig. 1(c)). The goals we set to

achieve are as follows:
 Convert the data cache into a massively-parallel pro-

cessor capable of performing a variety of data-
parallel fine-grain tasks.

 Eliminate a power- and bandwidth-limited SIMD
coprocessor.

 Combine data storage and data processing and elim-
inate performance degradation and energy dissipa-
tion due to massive PU-to-memory data synchroniza-
tion.

The AP may be operated in two modes:
 Conventional Cache mode, in which the AP serves as

data cache during the execution of the sequential
segments of a workload;

 Associative Processing mode, in which the parallelizable
segments of a workload are executed on the AP. No
data synchronization between sequential and parallel
segments is required since the data is stored in the
AP prior to the parallel execution and remains there
after the parallel segment completes.

The AP delivers a number of advantages over a con-
ventional SIMD architecture:
 Data processing and data storage are unified. There is

no need for data transfer between memory and PUs;
 Two basic operations of AP are essentially standard

memory operations: write and read. The third basic
operation, compare, is implemented similarly to read,
and is performed along memory rows rather than
columns. Therefore the per-bit power consumption
of the AP is almost identical to that of RAM, which
may consume an order of magnitude lower active
power (and lower leakage power) per area than log-
ic [34];

 In conventional cache mode, use of CAM instead of
RAM enables full associativity. Consequently, it may
allow reduction of hardware and software complexi-
ty of the cache (for example, the elimination of costly
tag array circuitry), as well as elimination of conflict

————————————————

 Leonid Yavits (*), E-mail: yavits@tx.technion.ac.il.
 Amir Morad (*), E-mail: amirm@tx.technion.ac.il.
 Ran Ginosar (*), E-mail: ran@ee.technion.ac.il.
 (*) Authors are with the Department of Electrical Engineering, Technion-

Israel Institute of Technology, Haifa 32000, Israel.

M

mailto:yavits@tx.technion.ac.il
mailto:amirm@tx.technion.ac.il
mailto:ran@ee.technion.ac.il

(interference) misses.
 There are fewer hotspots. AP power is distributed

uniformly over the entire processing array rather
than being concentrated around PUs as in the case of
conventional SIMD. Since leakage power may super-
linearly depend on temperature [5], this could pro-
vide a significant advantage.

The drawback in replacing the LLC by the AP is that
the effective cache size in the conventional cache mode is
nearly halved, since the AP bit cell is about twice the size
of a RAM cell (Fig. 3). This may lead to certain perfor-
mance degradation during the execution of the sequential
portion of a workload, but the speedup achieved during
the execution of the parallel portion of the workload may
yield a significant improvement in the overall system per-
formance.

The first contribution of this paper is the integration of
an AP on-chip of a standard CPU. The memory of the AP
replaces the LLC, while the processing of the AP replaces
the on-chip SIMD accelerator. This contribution leads to
improvement in performance, reduction in power dissi-
pation, and lower temperature, enabling 3D integration.

Another contribution of our work is the comparative
performance and power analysis of AP vs. a conventional
SIMD processor, supported by analytical modeling, cycle-
accurate simulation and emulation. Thanks to modern
feature scaling and aggressive memory integration on one
side, and the rise of big data on the other, we believe we
are at an inflection point where AP may outperform con-
ventional SIMD in both performance and power.

The rest of this paper is organized as follows. Section 2
discusses the related work. Section 3 provides a detailed
description of the AP and its operation. Section 4 presents
simulation and analytical modeling of AP and compares
it to a conventional SIMD processor. Section 5 combines
analytical, simulation and emulation methods to compare
performance and power consumption of the three archi-
tectures of Fig. 1, and Section 6 offers conclusions.

CPU

L1

L2/LLC

Baseline CPU Architecture

CPU

L1

SIMD Coprocessor

CPU + LLC and SIMD Coprocessor

CPU

L1

L2/LLC

Associative
Processor

CPU + Associative Processor

(a) (b)

(c)

Fig. 1. (a) Baseline CPU with the LLC, (b) CPU with the LLC and the

SIMD coprocessor, (c) CPU with the AP replacing the LLC.

2 RELATED WORK

A major notion of our work is using AP to unify pro-
cessing and storage, i.e. achieve 'processing in memory'
(PIM). Hence we place our research in the context of prior

work on PIM. The concept of mixing memory and logic
has been around since 1960s. The DAPP, STARAN, CM-2,
and GAPP computer architectures [36] used large number
of PUs positioned in proximity of memory arrays to im-
plement massively parallel SIMD computer.

M. Gokale et al. [15] designed TeraSys, a computer ar-
chitecture comprising a conventional host processor, with
at least part of its memory replaced by PIM array, inte-
grating memory and ALUs in close proximity. M. Hall et
al. [19] developed DIVA, the Data-Intensive Architecture,
combining PIM memories with external host processors.
One of their main focuses was performing selected com-
putation in processing elements near memory and reduc-
ing the quantity of data transferred across the long and
slow processor-memory interface. G. Almási et al. [3] de-
veloped Cyclops, an architecture combining memory and
a large number of simple PUs. According to their find-
ings, standard benchmarks are not efficient when evaluat-
ing the performance of PIM architecture. Instead, they
focused on scientific kernels including FFT, matrix-matrix
and matrix-vector multiplication, etc. T. Sterling et al. [43]
developed Gilgamesh, a PIM based massively parallel
architecture, with the focus on advanced mechanisms for
virtualizing tasks and data. P. Kogge et al. [25] developed
HTMT, a parallel multilevel memory architecture, where
each RAM level is a PIM memory (memory blocks inter-
connected to ALUs). J. Suh et al. [44] introduced a SLIIC
QL computer featuring a processor integrated on the
same die with DRAM. J. Brockman et al. [9] developed
PIM lite, a PIM architecture featuring a multithreaded
core with SIMD accelerator integrated with DRAM on the
same chip. Last, G. Lipovsky et al. [28] developed a dy-
namic associative access memory architecture that com-
bined DRAM and a single-bit processing element, capable
of associative and conventional arithmetic processing,
placed in DRAM’s sense amplifier area. More recently, it
became impractical to embed processing on DRAM chips,
as the IC technology of DRAM does not support logic
circuits. All these PIM architectures placed processing in
proximity of memory. In contrast, this work considers AP,
in which processing is carried out within each bit cell.

Prior work on the AP concept was conducted over the
years. Foster [13] laid the foundations for associative pro-
cessing. J. Potter et al. [35] developed an associative pro-
graming model and language and applied it to a wide
variety of applications including image processing, graph
algorithms, data base management, graphics, etc. I.
Scherson et al. [40] developed high-speed AP architec-
tures [40]. The present authors have implemented a com-
plete stand-alone AP as a VLSI chip [47].

This work progresses from processing in proximity of
memory to processing combined inside memory PIM. Its
key contribution is to integrate an AP on-chip of a stand-
ard CPU. The memory of the AP replaces the LLC, while
the processing of the AP replaces the on-chip SIMD accel-
erator.

3 THE ASSOCIATIVE PROCESSOR

In this section we present the architecture of the AP

and explain the principles of associative computing.

3.1 Associative Processor Architecture

AP is based on modified CAM. The CAM allows com-
paring all data words to a key, tagging the matching
words, and possibly reading some or all of the tagged
words one by one. In addition, standard memory read
and write operations of a single word at a time can also
take place.

Unlike CAM, typical operations in AP are consecutive
compare and write, usually involving just a few bit col-
umns. The AP enhances the CAM by allowing parallel
writing into selected bits of all tagged words. The archi-
tecture of AP is presented in Fig. 2. The Associative Pro-
cessing Array comprises bit cells (further described be-
low) organized in bit-columns and word-rows. Typically,
a word-row makes a PU (although parts of a row, or al-
ternatively multiple rows, may also be configured as a
PU). Since we operate the AP in dual mode (conventional
cache and associative processing), single PU may be
aligned with a cache line (for example 64 bytes) for higher
efficiency. Several special registers are appended to the
associative processing array. The KEY register contains a
key data word to be written or compared against. The
MASK register defines the active fields for write and read
operations, enabling bit selectivity. The TAG register
marks the rows that are matched by the compare opera-
tion and may be affected by consecutive parallel write.
The AP may require a microcontroller and an instruction
cache. An optional Interconnect allows PUs of the AP to
communicate in parallel. Since associative processing op-
eration is mainly bitwise, the Interconnect can be a rela-
tively simple circuit-switched network. The Interconnect
is further discussed in Section 3.2. Reduction Tree ([37],
earlier introduced as ‘response counter’ in [47]) is an ad-
der tree, enabling quick parallel summation of TAG bits.
This operation is useful whenever a vector needs to be
reduced into a scalar.

Controller

Associative
Processing

Array

TA
G

I-Cache

In
te

rc
o

n
n

e
ct

MASK

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

Bit
Cell

R
e

d
u

ct
io

n
 T

re
e

KEY

Fig. 2. Associative processor architecture

A static memory based associative bit cell is shown in

Fig. 3. Its two main components are the 6-Transistors (6T)
SRAM bit cell and the 4T N-type XOR. Two additional
transistors (gated by the Mask wire) are used to mask the
write operation at the bit (column) level. Alternative de-
signs have also been proposed, to reduce power dissipa-
tion [27], to save area [33] or to exploit non-transistor
technology [37].

Fig. 3. NOR-type Associative Bit Cell

To compare the key data word to the data stored in the

associative memory (the entire row, a number of bits or a
single bit), the Match line is precharged and the inverted
key is set on Bit and Bit-not lines. In the columns that
should be ignored during comparison, Bit and Bit-not
lines are set to 0. If all unmasked bits in a row match the
key (i.e. every unmasked bit in a row is different from the
corresponding inverted key bit), the Match line remains
high and a 1 is written into the corresponding TAG bit. If
the key differs from the row data (even in one bit), the
Match line discharges and a 0 is written into the TAG bit.

In AP, compare is typically followed by a parallel write
into the unmasked bits of all tagged words. To write data
(from the KEY register) into the associative memory, each
TAG bit (set earlier by the compare) is connected to the
corresponding Word line. If a row matched during the
compare, the key data is written into it in accordance with
the MASK pattern. Otherwise (in the case of mismatch),
the write does not affect the row. Typically, 12.5-25% of
the rows are written during a write in arithmetic opera-
tions as further shown in Section 3.2.

A compare-write sequence is illustrated in Fig. 4. A
KEY value ‘001’ with MASK value ‘011’ is compared
against the associative memory content. Afterwards a
KEY value ‘111’ with MASK value ‘110’ is written into all
associative memory rows that matched during Compare.
In Compare, an inverted KEY bit is compared with each
associative memory bit of its bit-column in parallel. The
results of bit-compares are AND-ed in each row to gener-
ate a match or mismatch. The AND output is stored in a
TAG bit. The masked-out bit columns do not affect the
Compare result. In consequent Write, the KEY value is
broadcast to the entire associative memory array. The
logic AND of a MASK bit and the TAG bit is used to ena-
ble / disable the write operation: only the rows that
matched during the Compare and only the bits which
MASK is 1 are written.

Fig. 4. Compare-Write Logic Sequence

To read data from memory, the Bit and Bit-not lines

are precharged and the Word line is asserted. Parallel
write and sequential read operations are enabled only for
the columns whose mask bits are set in the MASK regis-
ter.

A complete design of an AP is presented in [47].

3.2 Associative Computing

AP is a massively parallel SIMD accelerator. It can im-
plement a wide range of processing tasks, as well as clas-
sical CAM operations such as associative search, sorting
and ordering. In addition it supports standard memory
operations (word and block read and write). AP is effi-
cient for computational tasks that require fine-grain mas-
sive data parallelism, such as high-resolution image pro-
cessing or large data set sparse linear algebra algorithms
as may be required in machine learning.

Arithmetic operations in the AP can be performed in
parallel on all PUs in a word-parallel, bit-serial manner.
For instance, vector addition may be performed as fol-
lows [13]. Two 𝑚 bit columns hold vectors A and B (Fig.
5). Their sum A+B is written over B. A one-bit column C
holds the carry bit. The addition is carried out in 𝑚 sin-
gle-bit addition parallel steps (1):

𝑐[∗] | 𝑠[∗]𝑖 = 𝑎[∗]𝑖 + 𝑏[∗]𝑖 + 𝑐[∗]

∀ 𝑖 = 0, … , 𝑚 − 1
(1)

where 𝑖 is the bit index and ‘∗’ is the word index in the
vector. The single-bit addition (TABLE 1) is carried out in
a series of compare-write steps (as illustrated by Fig. 4). In
each such step, one input entry of the truth table (a three
bit input pattern) is matched against the contents of the
𝑎[∗]𝑖 , 𝑏[∗]𝑖 , 𝑐[∗] bit columns in the associative array, and
the matching rows (PUs) are tagged; then the logic result
(two-bit output of the truth table in TABLE 1) is written
into 𝑏𝑖 and 𝑐 bits of all tagged rows. During each compare
and write step, all but three input bit columns and two
output bit columns respectively are masked out, so that
2.5 bit columns are active on average. Some input combi-
nations do not change the output and therefore can be
skipped (“No action” in the table). Since the operation
overwrites one of the inputs, computation must be carried
out according to the order indicated in TABLE 1 [13].

Overall, four compare - write steps are required to
complete the single-bit addition. Therefore, fixed point 𝑚
bit addition takes 8𝑚 ∈ 𝑂(𝑚) cycles. Subtraction and

comparison operations are performed similarly and also
require 𝑂(𝑚) cycles. Note the stark contrast with SIMD
architectures of low PU count that require 𝑂(𝑁) cycles to
add N data elements (without taking into account the
load / store / move time).

Fixed precision multiplication and division in AP are
implemented by long multiplication and division respec-
tively, consisting of a series of add-shift and subtract-shift
operations, executed bit-serially but in parallel for all data
words. The addition or subtraction are done as described
above (multiplication is usually done “MSB first”), while
shift is implemented by activating different bit columns
and therefore requires no cycles. Thus, fixed point 𝑚 −
𝑏𝑖𝑡 × 𝑚 − 𝑏𝑖𝑡 vector multiplication requires 𝑂(𝑚2) cy-
cles [13], regardless of the length of the vectors.

Floating point arithmetic for APs is somewhat more
complex to implement. Different exponents require shift-
ing mantissas by different lengths, resulting in a sequence
of bit-serial operations. Still, a direct implementation of
IEEE single precision floating point element-by-element
vector multiplication (𝐵 =)𝐴 × 𝐵 requires only 4400 cy-
cles, regardless of the length of the vector.

KEY

T
A
G

...1 0A Am ...1 0B BmC

MASK

Fig. 5. Addition Example

TABLE 1

IMPLEMENTING FULL ADDER IN ASSOCIATIVE PROCESSOR

Entry Input
C

Input
B

Input
A

Output
C

Output
B

Comments

0 0 0 0 0 0 No action

1 0 0 1 0 1 2nd pass

2 0 1 0 0 1 No action

3 0 1 1 1 0 1st pass

4 1 0 0 0 1 3rd pass

5 1 0 1 1 0 No action

6 1 1 0 1 0 4th pass

7 1 1 1 1 1 No action

Pass = COMPARE cycle followed by WRITE cycle

Arithmetic operations are presented in this Section
under the assumption that the relevant operands are lo-
cated in the same PU. However, many workloads require
inter-PU data communications. Depending on the work-
load, communication requirements may vary from no
communications (for “embarrassingly parallel” tasks such
as Black-Scholes option pricing) to relatively intense

communications (e.g., for FFT). In some cases, support for
special pre-defined communication patterns or permuta-
tions can be of advantage (e.g., for FFT). The inter-PU
communication can be implemented serially, through a
series of associative memory reads and writes. Alterna-
tively, the dedicated Interconnect introduced in Sec-
tion 3.1 can be employed to provide parallel communica-
tion capabilities, i.e. to allow all PUs to communicate in
parallel.

4 ANALYTIC MODEL AND COMPARATIVE ANALYSIS

Analytical modeling is becoming an increasingly im-
portant technique used in the design of chip multiproces-
sors [11][20][23][29][45]. In this section we develop an
analytical performance and power consumption model of
the conventional SIMD and the AP and compare their
relative performance, area and power consumption under
constrained area and power resources. Here we study
only the parallelizable portion of a workload. For simplic-
ity, we assume that the parallelizable portion contains
single-cycle instructions (i.e. arithmetic, control, register
file access and alike). We also assume the performance of
the baseline sequential CPU to be 1 for the sake of esti-
mating the relative speedup delivered by the reference
SIMD coprocessor and the AP.

We verify our analytical modeling findings using cy-
cle-accurate simulation of the AP. The simulator, our
simulation methodology and simulation results are de-
scribed in details in Section 4.4.

4.1 Reference SIMD Processor

Fig. 6 presents the computer architecture comprising
the sequential CPU, the shared LLC and the SIMD copro-
cessor, as depicted in Fig. 1(b). The reference SIMD co-
processor contains a number of baseline PUs (BPUs), each
containing a floating point ALU and a register file. The
BPUs are connected to the shared LLC through a band-
width-limited interface, and are interconnected using an
interconnection network (not shown).

Let the serial execution time of the parallelizable por-
tion 𝑓 of the program on the baseline sequential CPU be
𝑇1. The execution time 𝑇𝑓,𝑆𝐼𝑀𝐷 of that parallelizable por-
tion on the SIMD coprocessor can then be written as fol-
lows:

𝑇𝑓,𝑆𝐼𝑀𝐷 =
𝑇1

𝑛𝑆𝐼𝑀𝐷
+

𝑇C

𝑛𝑆𝐼𝑀𝐷
+ 𝑇S (2)

where 𝑛𝑆𝐼𝑀𝐷 is the number of BPUs, 𝑇C is the time spent
exclusively on inter-BPU communication, and 𝑇S is the
time spent exclusively on synchronization of the LLC to
the private SIMD memory [46]. The synchronization con-
sists of the time to move data from LLC to SIMD before
the parallel segment begins, and from SIMD to LLC after
the parallel segment completes. Since it involves access to
a shared resource, 𝑇S might depend on the number of
BPUs in the SIMD coprocessor [12][39]. This is especially
the case when the data set size is scaled down to the pro-
cessor size.

LLC (Shared by CPU and SIMD)

BPU BPU BPU BPU BPU

CPU

L1 Cache

LLC to SIMD Synchronization

Fig. 6. CPU with SIMD coprocessor and shared LLC

While a number of BPUs (or all BPUs) can communi-

cate with each other in parallel (although using a poten-
tially congested interconnection network that affects 𝑇𝐶),
the LLC-to-SIMD synchronization is done essentially se-
rially for each BPU. Therefore the inter-BPU communica-
tion time scales by the number of BPUs while 𝑇S does not
scale. The speedup of the SIMD processor over the se-
quential CPU can be written as follows:

𝑆𝑆𝐼𝑀𝐷 =
𝑇1

𝑇𝑓,𝑆𝐼𝑀𝐷
=

1

1
𝑛𝑆𝐼𝑀𝐷

+
𝐼𝑐

𝑛𝑆𝐼𝑀𝐷
+ 𝐼𝑠

(3)

where 𝐼𝑐 = 𝑇𝐶/𝑇1 is the connectivity intensity, or ratio of the
time spent on inter-BPU communication to the serial exe-
cution time, and 𝐼𝑠 = 𝑇𝑆/𝑇1 is the synchronization intensity,
or the ratio of time spent on LLC-to-SIMD synchroniza-
tion to the serial execution time.

The area of the SIMD processor can be presented as
follows:

𝐴𝑆𝐼𝑀𝐷 = 𝑛𝑆𝐼𝑀𝐷(𝐴𝐴𝐿𝑈 + 𝐴𝑅𝐹) (4)

where 𝐴𝐴𝐿𝑈 is the ALU area and 𝐴𝑅𝐹 is the register file
area. As noted above, the inter-PU connection network is
omitted.

For easy comparison between PU and memory areas,
we represent all area values (ALU, registers, memory) in
terms of baseline SRAM cell area. Let the baseline SRAM
cell area be 1. In 22nm CMOS technology, the actual fig-
ure is in the range of 0.1𝜇𝑚2 [4]. Then we can write:

𝐴𝐴𝐿𝑈 = 𝐴𝐴𝐿𝑈𝑜𝑚2

𝐴𝑅𝐹 = 𝐴𝑅𝐹𝑜𝑘𝑚 (5)

where 𝐴𝐴𝐿𝑈𝑜 is the area of a single bit of the ALU and 𝐴𝑅𝐹𝑜
is the area of a register bit (a flip-flop), both measured in
baseline SRAM cell area units; 𝑚 is data wordlength and
𝑘 is the size of the register file. This model is quite basic
and does not take into account numerous aspects of SIMD
design (instruction cache, communication and control,
etc.). Its purpose is providing the best case reference fig-
ures for the comparative analysis of the conventional
SIMD processor’s speedup, area and power.

The average power of the SIMD processor (over the
execution span 𝑇𝑓,𝑆𝐼𝑀𝐷) can be written as follows:

𝑃𝑆𝐼𝑀𝐷 =
𝐸𝐶𝑂𝑀𝑃 + 𝐸𝐶 + 𝐸𝑆 + 𝐸𝐿𝐸𝐴𝐾

𝑇𝑓,𝑆𝐼𝑀𝐷
 =

=

𝑃𝐶𝑂𝑀𝑃

𝑛𝑆𝐼𝑀𝐷
+

𝐼𝑐𝑃𝐶

𝑛𝑆𝐼𝑀𝐷
+ 𝐼𝑠𝑃𝑆

(
1

𝑛𝑆𝐼𝑀𝐷
+

𝐼𝑐

𝑛𝑆𝐼𝑀𝐷
+ 𝐼𝑠)

+ 𝑃𝐿𝐸𝐴𝐾

(6)

where 𝑇𝑓,𝑆𝐼𝑀𝐷 is the execution time of the parallelizable
portion of the program on the SIMD processor (2); 𝐸𝐶𝑂𝑀𝑃
and 𝑃𝐶𝑂𝑀𝑃 are the energy and the average power con-
sumption during computation; 𝐸𝐶 and 𝑃𝐶 are the energy
and the average power consumed during inter-BPU
communication; 𝐸𝑆 and 𝑃𝑆 are the energy and the average
power consumed during LLC-to-SIMD synchronization;
𝐸𝐿𝐸𝐴𝐾 and 𝑃𝐿𝐸𝐴𝐾 are the leakage energy and power; 𝐼𝑐 and
𝐼𝑠 are the connectivity and synchronization intensities as
defined above.

Just as in the case of area comparison, we represent all
power values (ALU, registers, memory) through the write
power consumption of a baseline SRAM memory cell. Let
the power consumption of the baseline SRAM cell during
write from ‘0’ to ‘1’ or from ‘1’ to ‘0’ be 1. In 22nm CMOS
technology, the actual figure is in the range of 1𝜇𝑊 [22].
Then we can further write the SIMD power consumption
as follows:

𝑃𝐶𝑂𝑀𝑃 = 𝑛𝑆𝐼𝑀𝐷(𝑃𝐴𝐿𝑈𝑜𝑚2 + 𝑃𝑅𝐹𝑜𝑘𝑚)

𝑃𝐶 = 𝑛𝑆𝐼𝑀𝐷𝑃𝐶𝑜𝑚 (7)

𝑃𝑆 = 𝑃𝑆𝑜𝑚

where 𝑃𝐴𝐿𝑈𝑜 and 𝑃𝑅𝐹𝑜 are the average per-bit power con-
sumptions of the ALU and RF respectively during com-
putation. 𝑃𝐶𝑜 is the per-bit power consumption during the
inter-BPU communication. 𝑃𝑆𝑜 is the per-bit power con-
sumed performing LLC-to-SIMD synchronization. We
assume the amount of data that needs to be synchronized
with LLC, as well as transferred during inter-BPU com-
munication, is limited to a single data word per BPU.
𝑃𝐶𝑂𝑀𝑃, 𝑃𝐶 and 𝑃𝑆 are measured in SRAM cell write power
consumption units.

Leakage power can be expressed as follows:

𝑃𝐿𝐸𝐴𝐾 = βA𝑉𝛼 = γA (8)

where 𝐴 is the area, 𝑉 is the supply voltage, α and β are
constants, and γ is the leakage area coefficient that de-
pends on silicon process and operating conditions. There-
fore the total power can be written as follows:

𝑃𝑆𝐼𝑀𝐷 =
𝑃𝐴𝐿𝑈𝑜𝑚2 + 𝑃𝑅𝐹𝑜𝑘𝑚 + 𝐼𝐶𝑃𝐶𝑜𝑚 + 𝐼𝑠𝑃𝑆𝑜𝑚

1
𝑛𝑆𝐼𝑀𝐷

+
𝐼𝑐

𝑛𝑆𝐼𝑀𝐷
+ 𝐼𝑠

+

+γ𝑛𝑆𝐼𝑀𝐷(𝐴𝐴𝐿𝑈𝑜𝑚2 + 𝐴𝑅𝐹𝑜𝑘𝑚)

(9)

4.2 Associative Processor

In this section we construct the analytical model for the
speedup, area and power consumption of the AP. The
execution time of the parallelizable portion 𝑓 of the pro-

gram on the AP can be written as follows:

𝑇𝑓,𝐴𝑃 =
𝑇1

𝑠𝐴𝑃𝐸𝑛𝐴𝑃
+

𝑇C

𝑛𝐴𝑃
+ 𝑇S(𝑁 − 𝑛𝐴𝑃)

(10)

where 𝑛𝐴𝑃 is the number of PUs in the AP, 𝑁 is the data
set size, 𝑠𝐴𝑃𝐸 is the speedup of associative PU relative to
the BPU, 𝑇C and 𝑇S are as defined in (2). Since AP in our
research replaces the LLC, there is no need for data syn-
chronization unless the entire data set does not fit in the
AP. In other words, 𝑇S(𝑁 − 𝑛𝐴𝑃) = 0 for 𝑁 ≤ 𝑛𝐴𝑃.

Assuming single precision floating point arithmetic,
the longest among frequently used arithmetic operations
is multiplication, which in one direct implementation
takes 4400 cycles vs. 1 cycle on the baseline sequential
CPU or the BPU. Lacking a-priori knowledge of the work-
loads to be executed on the AP, we assume the worst case
scenario comprising a continuous series of floating point
multiplications. In this case 𝑠𝐴𝑃𝐸 = 1/4400. The speedup
of the AP can then be written as follows:

𝑆𝐴𝑃 =
1

1
𝑠𝐴𝑃𝐸𝑛𝐴𝑃

+
𝐼𝑐

𝑛𝐴𝑃
+ 𝐼𝑠

′

(11)

where 𝐼𝑠

′ =𝐼𝑠(𝑁 − 𝑛𝐴𝑃). The area of the AP can be written
as follows:

𝐴𝐴𝑃 = 𝑛𝐴𝑃(𝐴𝐴𝑃𝑜𝑘𝑚 + 2𝐴𝐴𝐿𝑈𝑜) (12)

where 𝑘 is the size of the associative PU (in data words),
including temporary storage, 𝐴𝐴𝑃𝑜 is the AP cell area,
measured in SRAM cell area units, and 2𝐴𝐴𝐿𝑈𝑜 is the per-
PU reduction tree size. Similarly to the reference SIMD
coprocessor, we ignore the area of the interconnection
network.

The average power of the AP can be written as follows:

𝑃𝐴𝑃 =
𝐸𝐶𝑂𝑀𝑃 + 𝐸𝐶 + 𝐸S(𝑁 − 𝑛𝐴𝑃)+𝐸𝐿𝐸𝐴𝐾

𝑇𝑓,𝐴𝑃
=

=

𝑃𝐶𝑂𝑀𝑃

𝑛𝐴𝑃
+

𝐼𝑐𝑃𝐶

𝑛𝐴𝑃
+ 𝐼𝑠

′𝑃𝑆

1
𝑛𝐴𝑃

+
𝐼𝑐

𝑛𝐴𝑃
+ 𝐼𝑠

′
+ γ𝑛𝐴𝑃𝐴𝐴𝑃𝑜𝑘𝑚

𝑃𝐶 = 𝑛𝐴𝑃𝑃𝐶𝑜 (13)

𝑃𝑆 = 𝑃𝑆𝑜𝑚

where 𝐸𝐶𝑂𝑀𝑃 and 𝑃𝐶𝑂𝑀𝑃 are the AP computation energy
and power consumption; 𝐸𝐶 and 𝑃𝐶 are the AP energy
and power consumption during inter-PU communica-
tion; 𝐸𝑆 and 𝑃𝑆 are the energy and the average power con-
sumed during synchronization, if the entire data set does
not fit in the AP; 𝐸𝐿𝐸𝐴𝐾 and 𝑃𝐿𝐸𝐴𝐾 are the AP leakage ener-
gy and power. 𝑃𝐶𝑜 is the per-bit power consumption dur-
ing the inter-PU communication; 𝑃𝑆𝑜 is the per-bit power
during synchronization. Note that for comparison pur-
poses we use the same leakage power (represented as a
function of area only as in (8)) for both the AP and the
SIMD processor. This might be somewhat unfair to the

AP: First, the leakage power per area could be lower for
memory than for logic [34]. Second, the AP has fewer
hotspots [48]. Since the leakage power is highly tempera-
ture dependent, hotspots may lead to higher leakage in
the SIMD processor [5].

In order to further detail 𝑃𝐶𝑂𝑀𝑃, recall the implementa-
tion of single-bit addition (on which other arithmetic op-
erations are based) described in Section 3.2. In each pass
of the single-bit addition, a three bit input combination
𝑎[∗]𝑖 , 𝑏[∗]𝑖 , 𝑐[∗] is compared in parallel in all PUs and af-
terwards a two bit result 𝑏[∗]𝑖 , 𝑐[∗] is written into the
tagged PUs; that sequence is repeated m times for m-bit
words. Since there are eight independent logic combina-
tions (TABLE 1), each PU has 1/8 probability of match
and 7/8 of mismatch (in which case the Match line dis-
charges). Similarly, each PU has 1/8 probability of write
and 7/8 probability of a miswrite (when Bit and Bit-not
lines are charged without Word line being asserted). Since
we define the power consumption of a single SRAM cell
during write operation as 1, 𝑃𝐶𝑂𝑀𝑃 can be presented as:

𝑃𝐶𝑂𝑀𝑃 =
2 ∙ (1

8⁄ + 7
8⁄ ∙ 𝑝𝑚𝑤) + 3 ∙ (1

8⁄ ∙ 𝑝𝑚 + 7
8⁄ ∙ 𝑝𝑚𝑚)

2
𝑛𝐴𝑃

(14)

for 2-bit write and 3-bit compare operations, where 𝑝𝑚𝑤 is
the normalized per-bit power consumption of a miswrite,
𝑝𝑚𝑚 is the normalized per-bit power consumption of a
mismatch, and 𝑝𝑚 is the normalized per-bit power con-
sumption of a match (TABLE 3).

Model (13) is fairly basic and does not account for cer-
tain statistics that work in favor of the AP. For example, a
certain percentage of associative memory cells that are
written a new value in fact do not change (consuming
considerably less power); similarly, a certain percentage
of asserted bit lines do not recharge (or discharge) since
the same value is asserted. Our goal is to create a simple
power model that reflects the worst case power consump-
tion of the AP.

4.3 Modeling under constrained area

The number of AP PUs may be derived as the function
of the constrained area budget 𝐴 using (12) as follows:

𝑛𝐴𝑃 =
𝐴

𝐴𝐴𝑃𝑜𝑘𝑚 + 2𝐴𝐴𝐿𝑈𝑜

(15)

We can further substitute 𝑛𝐴𝑃 in (11) and (13) by (15) and
obtain the speedup and the power consumption of the AP
as function of the area budget. The area parameters we
use for modeling purposes are presented in TABLE 2.

Speedup vs. area for the reference SIMD coprocessor
and the AP is shown in Fig. 7. For mathematical simplici-
ty, synchronization intensity 𝐼𝑠 is assumed to be constant
0.01 (namely, synchronization takes 1% of the serial exe-
cution time).

TABLE 2

AREA MODEL PARAMETERS

Parameter Description Attributed
to

Value

𝐴𝐴𝐿𝑈𝑜 ALU bit cell area SIMD 20 (1)

𝐴𝑅𝐹𝑜 Register bit (FF) area SIMD 3 (1)

𝑆𝐴𝑃𝐸 AP speedup relative to se-
quential CPU

AP 1/4400

𝐴𝐴𝑃𝑜 AP bit area AP 2 (1)

𝑚 Data wordlength Both 32

𝑘 Register file size in SIMD,
AP PU size (in 32-bit words)

Both 8

(1) Area parameters are relative to the area of SRAM bit cell; the values

are based on typical standard cell libraries.

As the area budget increases, the speedup of the refer-

ence SIMD coprocessor exhibits diminishing returns
caused by the LLC-to-SIMD synchronization. Eventually
the speedup saturates:

lim
𝑛𝑆𝐼𝑀𝐷→∞

𝑆𝑆𝐼𝑀𝐷 = lim
𝑛𝑆𝐼𝑀𝐷→∞

1

1
𝑛𝑆𝐼𝑀𝐷

+
𝐼𝐶

𝑛𝑆𝐼𝑀𝐷
+ 𝐼𝑠

=
1

𝐼𝑠

(16)

As evident from Fig. 7, the speedup of the AP is lower

than the speedup of the reference SIMD coprocessor at
low area, but it increases to reach the breakeven point at
around 30𝑚𝑚2. Diminishing returns affect the AP
speedup to a lesser extent, since they only occur when the
data set does not fit into the AP. To demonstrate this ef-
fect, we assume that the data set size grows with the AP
size (same as for SIMD) until 𝑛𝐴𝑃 = 𝑁 = 104, after which
the data set size 𝑁 grows twice as fast as the 𝑛𝐴𝑃. This is
what causes the AP speedup to eventually saturate as
well.

(c)

(a)

(d)

(b)

Fig. 7. Analytical results under constrained area: (a) Speedup (b) Power (c)

Performance / Power ratio (d) 𝐸𝑛𝑒𝑟𝑔𝑦 × 𝐷𝑒𝑙𝑎𝑦

The power consumption vs. area budget for the SIMD

and the APs is shown in Fig. 7(b). The power consump-
tion of the AP is lower than that of the SIMD processor
when area is under 30𝑚𝑚2. For larger area, the AP con-
sumes more power than the SIMD processor. Note that

even when the speedups saturate, power consumption
continues to grow with area, due to the leakage.

The performance/power ratio vs. area for the SIMD
and the APs is shown in Fig. 7(c). For the SIMD processor,
the performance/power ratio drops because speedup
saturates while power dissipation continues to grow with
increasing area. For lower area, AP underperforms SIMD
in terms of performance/power ratio. But as SIMD’s
speedup saturates, AP yields better performance/power
ratio. Eventually, the latter also drops, as the AP speedup
saturates.

The energy-delay product (𝐸𝐷) vs. area for SIMD and
AP is shown in Fig. 7(d). Since the task size is not con-
stant, we use normalized delay, i.e. the ratio of the delay
to the serial execution time. The SIMD processor’s 𝐸𝐷
reaches a minimum around 5𝑚𝑚2 (where the speedup
saturates) and begins to grow again due to growing pow-
er consumption. The AP’s 𝐸𝐷 follows a similar pattern
but reaches its minimum at much larger area budget.
Both performance/power and 𝐸𝐷 product breakeven
points (at which AP begins to outperform SIMD) occur at
20𝑚𝑚2.

4.4 AP Simulation

The purpose of the simulation is to validate the analyt-
ic results obtained in Section 4.3. The workloads are de-
fined, followed by description of the cycle-accurate AP
simulator, our simulation methodology and simulation
results.

4.4.1 Workloads

The following workloads have been selected for per-
formance and power consumption simulations:

 𝑁-option pairs Black-Scholes option pricing (BSC)
 𝑁-point Fast Fourier Transform (FFT)
 Dense Matrix Multiplication of two √𝑁×√𝑁 ma-

trices (DMM)
 𝑁-point Vector Reduction (VR)

where 𝑁 is the data set size, for simplicity scaled to the
processor size (following the methodology suggested
in [17]), i.e. 𝑁 = 𝑛𝐴𝑃. Note that simulations do not cover
the cases where the data size exceeds the size of the pro-
cessor (requiring data synchronization).

4.4.2 Simulator

We simulate the AP using an in-house cycle-accurate
simulator. The workloads are hand-coded. For FFT, we
use optimized parallel implementation outlined in [38].
For Black-Scholes, we used a direct implementation opti-
mized for associative processing, based on formulation
in [7]. Vector reduction is implemented using the reduc-
tion tree. Matrix multiplication uses AP’s compare and
arithmetic capabilities to match the input matrix element
pairs and multiply them. The singleton products are
summed by the reduction tree.

The first step of AP programing is identification of the
finest data parallelization level and mapping of the work-
loads on the associative processing array. For matrix mul-
tiplication, each pair of elements to be multiplied is pro-

cessed by a single PU. For FFT, each multiply-accumulate
operation is carried out by a single PU. For Black-Scholes
option pricing, a single PU handles a single call option of
a single security at a single strike price and a single expi-
ration time. For vector reduction, a single PU retains a
single vector element. At the next step, we break each
fine-grain data thread into a series of arithmetic and data
communication operations, and manually allocate tempo-
rary storage. At the last step, each arithmetic and com-
munication operation is converted into a series of com-
pares, writes and data moves. Simulation times are pre-
sented in TABLE 4.

For power simulation, we follow the methodology of
SimpleScalar [10], which allows keeping track of what
units are active during execution and records the total
energy consumed for a workload. During the AP execu-
tion, we record and count all baseline operations (match,
mismatch, write, miswrite, data move, reduction). Using
power models of each baseline operation, detailed in TA-
BLE 3, we are able to estimate the total energy consumed
during execution of each case.

TABLE 3

POWER MODEL PARAMETERS

Parameter Description Value

𝑝𝑛𝑤 per-bit power consumption
during a miswrite

0.1 (1)

𝑝𝑚 per-bit power consumption
during a match

0.1 (1)

𝑝𝑚𝑚 per-bit power consumption
during a mismatch

0.75 (1)

γ static power coefficient 5 ∙ 10−2 W/mm2(2)

(1) Based on [22], relative to the power consumption of SRAM bit cell

during write from 0 to 1 or from 1 to 0 operation

(2) Based on typical industry data at typical conditions for advanced

technologies

TABLE 4

DATA SET SIZES AND SIMULATION TIMES

Workload Date Set Size Simulation Time

BSC 28 ÷ 220 4 sec ÷ 1hr 50min

FFT 28 ÷ 220 3 sec ÷ 2hr 35min

DMM 28 ÷ 220 2 sec ÷ 12hr 55min

VR 28 ÷ 220 2 sec ÷ 6 sec

Simulations performed on Intel® Core™2 Quad CPU Q8400 with 8GB

RAM

4.4.3 Results

We simulate speedup and power per workload for 16
different values of area. In all cases, the PU size is 256 bits
(TABLE 2).

Simulated speedup results are presented in Fig. 8(a).
DMM uses the reduction tree as an accelerator. BSC is an
embarrassingly parallel workload. Hence DMM and BSC
obtain higher speedup than FFT. VR is an outlier, since it
is implemented using the word- and bit-parallel reduc-
tion tree rather than bit-serial associative arithmetic, thus
achieving considerably higher speedup.

Power consumption results are presented in Fig. 8(b).
All workloads consume power of the same order of mag-
nitude (hence we use linear rather than log-log scale).

This happens because all workloads are implemented
using mostly identical associative primitives (compare
and write). Although VR and to a lesser extent DMM use
the relatively power-hungry reduction tree, reduction
time is almost negligible compared to the time of associa-
tive operations. Performance/power ratio and 𝐸𝐷 prod-
uct are shown in Fig. 8(c) and (d) respectively. Among
DMM, FFT and BSC workloads, DMM shows the best
performance/power and 𝐸𝐷, thanks to the accelerated
reduction operation. Since BSC is an embarrassingly par-
allel workload, its performance/power ratio remains al-
most constant with data set size / area. The power con-
sumption of VR is significantly higher than that of the rest
of the workloads. However since its speedup is also at
least an order of magnitude higher, VR exhibits consider-
ably better performance/power ratio and 𝐸𝐷 product.

Fig. 8. Simulation results: (a) Speedup (b) Power (c) Performance / Power

ratio (d) 𝐸𝑛𝑒𝑟𝑔𝑦 × 𝐷𝑒𝑙𝑎𝑦

Fig. 9. Speedup Breakeven Points Distribution

4.5 Sensitivity to parameter variation

The parameters used in our modeling are technology
and design dependent. In order to determine how the
changes in these parameters affect the results, we ran-
domize the parameters in TABLE 2 using uniform distri-
bution of ∓50%.

Fig. 9 shows the distribution of the speedup breakeven
point (i.e. the area at which the speedup of the SIMD pro-
cessor is the same as that of the associative processor,

~30𝑚𝑚2 in Fig. 7). As expected, the distribution of
speedup breakeven point is close to lognormal (because
at least some of the independent random parameters are
positive and multiplicative), with a mean value of
~32𝑚𝑚2.

5 CPU WITH AP VS. CPU WITH LLC AND SIMD

COPROCESSOR

While in the previous section the AP has been com-
pared with a standalone SIMD processor, in this section
they are considered in the context of a CPU architecture.

Complexity and runtime requirements make it chal-
lenging to rely on cycle-accurate simulation for the large-
scale design space exploration that we undertake. We use
analytical modeling to compare the performance and the
power consumption of a CPU with an AP (Fig. 1(c)) vs.
CPU with a LLC and a SIMD coprocessor (Fig. 1(b)), un-
der constrained area resource. In this analysis we assume
that the areas of the CPU and the L1 cache are constant.
The variable area budget is therefore assigned entirely to
the LLC in the baseline architecture (Fig. 1(a)), or divided
among the LLC and the SIMD coprocessor (Fig. 1(b)), or
assigned entirely to the AP (Fig. 1(c)). We begin our
comparative analysis with performance and follow with
power consumption.

We confirm our analytic results by emulation, whereby
the workload is executed and performance is measured
on a state-of-art computer system with SIMD accelerator,
as explained in Section 5.3. Emulation results are also
combined with the results of cycle-accurate simulations of
AP, to derive the performance of CPU with the AP.

5.1 Performance Modeling

Following [11] and [31], we can present the execution
time of a workload on the baseline CPU architecture (Fig.
1(a)) as a function of its LLC size 𝐴𝐿𝐿𝐶 = 𝐴 as follows:

𝑇1(𝐴𝐿𝐿𝐶) = 𝑀[𝑔 ∙ 𝐶𝑃𝐼𝑀𝐸𝑀 + (1 − 𝑔) ∙ 𝐶𝑃𝐼𝐶𝑃𝑈] (17)

where 𝐴 is the area budget, 𝑀 is the number of instruc-
tions in the workload, 𝑔 is the fraction of memory access
instructions, 𝐶𝑃𝐼𝐶𝑃𝑈 is the average number of cycles per
instruction for instructions that require no memory access
(assumed to be constant, as defined in TABLE 5), and
𝐶𝑃𝐼𝑀𝐸𝑀 is the average number of cycles per memory ac-
cess. 𝐶𝑃𝐼𝑀𝐸𝑀 can in turn be presented as follows [49]:

𝐶𝑃𝐼𝑀𝐸𝑀 = (1 − 𝑚1)𝑑𝐿1 + 𝑚1(1 − 𝑚2)𝑑𝐿𝐿𝐶

+ 𝑚1𝑚2𝑑𝐷
(18)

where 𝑚1 and 𝑚2 are miss rates of L1 and LLC respective-
ly, 𝑑𝐿1 and 𝑑𝐿𝐿𝐶 are access times of L1 and LLC respective-
ly, and 𝑑𝐷 is the off-chip DRAM access time.

The miss rate of the LLC can be written as follows [21]:

𝑚2 = 𝑚1√𝐴𝐿1
𝐴𝐿𝐿𝐶

⁄ (19)

where 𝐴𝐿1 and 𝐴𝐿𝐿𝐶 = 𝐴 are the areas of the L1 and the

LLC respectively.
The execution time of the same workload on the CPU

with the LLC and the SIMD coprocessor can be written as
follows:

𝑇2 = (1 − 𝑓) ∙ 𝑇1(𝐴𝐿𝐿𝐶𝑜) +
𝑓 ∙ 𝑀

𝑠𝑆𝐼𝑀𝐷(𝐴𝑆𝐼𝑀𝐷𝑜)
 (20)

where 𝑓 is the parallelizable portion of the program and
𝑠𝑆𝐼𝑀𝐷 is the speedup of the SIMD coprocessor as defined
in (3); 𝐴𝐿𝐿𝐶𝑜 and 𝐴𝑆𝐼𝑀𝐷𝑜 are the areas of the LLC and the
SIMD coprocessor, respectively, so that 𝐴𝐿𝐿𝐶𝑜 + 𝐴𝑆𝐼𝑀𝐷𝑜 =
𝐴. The parallelizable portion of the workload is assumed
to contain single-cycle instructions, similarly to Section 4.

The execution time of the same workload on the CPU
with the AP can be written as:

𝑇3 = (1 − 𝑓) ∙ 𝑇1(𝐴 𝐴𝐴𝑃𝑜⁄) +
𝑓 ∙ 𝑀

𝑆𝐴𝑃
 (21)

where 𝑆𝐴𝑃 is the speedup of the AP as defined in (11);
𝐴 𝐴𝐴𝑃𝑜⁄ is the effective area of the LLC implemented by
the AP (operated in the conventional cache mode during
the execution of the serial fraction of the workload),
where 𝐴𝐴𝑃𝑜 (the area of the AP cell in SRAM cell units) is
2, as defined in TABLE 2.

Following (20) and (21), the effective number of cycles
per instruction for the CPU with the LLC and the SIMD
coprocessor (Fig. 1(b)) and for the CPU with the AP (Fig.
1(c)) can be written as follows:

𝐶𝑃𝐼𝑆𝐼𝑀𝐷 =
𝑇2

𝑀
; 𝐶𝑃𝐼𝐴𝑃 =

𝑇3

𝑀
 (22)

We further define the overall speedup of these two ar-

chitectures as follows:

𝑆𝑈𝑆𝐼𝑀𝐷 =
𝑇1(𝐴)

𝑇2
; 𝑆𝑈𝐴𝑃 =

 𝑇1(𝐴)

𝑇3
 (23)

The timing and area parameters used for modeling
purposes are specified in TABLE 2 and TABLE 5.

Fig. 10 shows the effective number of cycles per in-
struction vs. area budget for both architectures for 𝑓 =
0.75, 0.9, 0.99 and 0.999. Fig. 11 shows the overall speedup
of these architectures for the same 𝑓.

In Section 4 we established that if area budget and data
set size are sufficiently large, the AP may outperform the
SIMD coprocessor. This outcome is supported by our
findings here. For high 𝑓 (e.g., 0.9 and above), the effec-
tive CPI and overall speedup breakeven points occur at
relatively low area budget, and the overall speedup is
relatively high. For lower 𝑓 (e.g., 0.75 and below), the da-
ta set size and the area budget required for the AP to out-
perform the SIMD coprocessor are considerably more
significant.

TABLE 5

TIMING AND AREA MODEL PARAMETERS

Parameter Description Value

𝑔 fraction of memory access
instructions

0.2(3)

𝐶𝑃𝐼𝐶𝑃𝑈 average number of cycles
per instruction for instruc-
tions with no memory ac-
cess

1(3)

𝐴𝐶𝑃𝑈 CPU area 108 (1) (3)

𝐴𝐿1 L1 cache area 108 (1) (3)

𝑑𝐿1 L1 cache access time 1 (2) (3)

𝑑𝐿𝐿𝐶 LLC access time 5 (2) (3)

𝑑𝐷 DRAM access time 100 (2) (3)

𝑚1 L1 cache miss rate 0.05(3)

(1) Area parameters are relative to the area of SRAM bit cell

(2) Timing parameters are in cycles

(3) Values based on typical industry data in advanced technologies

5.2 Power Modeling

The power consumption of the baseline architecture in
Fig. 1(a) can be presented as a function of its LLC size
𝐴𝐿𝐿𝐶 = 𝐴 based on [18]:

𝑃1(𝐴𝐿𝐿𝐶) = 𝑔 ∙ 𝑃𝑀𝐸𝑀 + (1 − 𝑔) ∙ 𝑃𝐶𝑃𝑈 + 𝑃𝐿𝐸𝐴𝐾 (24)

where 𝑃𝑀𝐸𝑀 can be written as follows:

𝑃𝑀𝐸𝑀 = (1 − 𝑚1)𝑃𝐿1 + 𝑚1(1 − 𝑚2)𝑃𝐿𝐿𝐶 + 𝑚1𝑚2𝑃𝐷 (25)

where 𝑃𝐿1, 𝑃𝐿𝐿𝐶 and 𝑃𝐷 are the power consumption of L1
cache, LLC, and off-chip DRAM access, respectively. 𝑃𝐿1
is assumed to be constant and defined in TABLE 6 below;
𝑃𝐿𝐿𝐶 to 𝑃𝐿1 ratio equals the square root of the LLC to L1
areas ratio, while 𝑃𝐶𝑃𝑈 is proportional to the CPU ar-
ea [11]:

𝑃𝐿𝐿𝐶 = 𝑃𝐿1 ∙ √𝐴𝐿𝐿𝐶
𝐴𝐿1

⁄ ; 𝑃𝐶𝑃𝑈 = 𝑃𝐶𝑃𝑈𝑜 ∙ 𝐴𝐶𝑃𝑈 (26)

where 𝑃𝐶𝑃𝑈𝑜 is the power consumption of the baseline
CPU, assumed to be constant and defined in TABLE 6
below.

The power consumption of the CPU with the LLC and
the SIMD coprocessor can be written as:

𝑃2 = (1 − 𝑓) ∙ 𝑃1(𝐴𝐿𝐿𝐶𝑜) + 𝑓 ∙ 𝑃𝑆𝐼𝑀𝐷(𝐴𝑆𝐼𝑀𝐷𝑜) + 𝑃𝐿𝐸𝐴𝐾 (27)

where 𝑃𝑆𝐼𝑀𝐷 is the power dissipation of the SIMD co-

processor, which is the dynamic component of (6) above.
The leakage power 𝑃𝐿𝐸𝐴𝐾 is defined in (8) above (with 𝐴
being the sum of 𝐴𝐶𝑃𝑈 , 𝐴𝐿1, 𝐴𝑆𝐼𝑀𝐷 and 𝐴𝐿𝐿𝐶).

The power consumption of the CPU with the AP can
similarly be written as follows:

𝑃3 = (1 − 𝑓) ∙ 𝑃1(𝐴 𝐴𝐴𝑃𝑜⁄) + 𝑓 ∙ 𝑃𝐴𝑃 + 𝑃𝐿𝐸𝐴𝐾 (28)

where 𝑃𝐴𝑃 is the power dissipation of the AP, as de-

fined in (13) above. The leakage power 𝑃𝐿𝐸𝐴𝐾 is defined in
(8) above (with 𝐴 being the sum of 𝐴𝐶𝑃𝑈 , 𝐴𝐿1 and 𝐴𝐴𝑃). The
power parameters used for modeling are presented in
TABLE 3 and TABLE 6.

Fig. 10. Effective 𝐶𝑃𝐼𝑆𝐼𝑀𝐷 and 𝐶𝑃𝐼𝐴𝑃 vs. Area

Fig. 11. 𝑆𝑈𝑆𝐼𝑀𝐷 and 𝑆𝑈𝐴𝑃 vs. Area

TABLE 6

POWER MODEL PARAMETERS

Parameter Description Value

𝑃𝐶𝑃𝑈𝑜 Baseline CPU power 5 ∙ 10−3 (1) (3)

𝑃𝐿1 L1 power 5 ∙ 104 (2) (3)

𝑃𝐷 Power of off-chip
DRAM access

103 (2) (3)

(1) Power of SRAM bit cell unit over area of SRAM bit cell unit

(2) Relative to the power consumption of SRAM bit cell during write

(3) Values based on typical industry data in advanced technologies

The power consumption, the performance/power ratio

and the 𝐸𝐷 product of the CPU with the LLC and the
SIMD coprocessor vs. the CPU with the AP for 𝑓 =
0.75, 0.9, 0.99 and 0.999 are shown in Fig. 12, Fig. 13 and
Fig. 14, respectively. Similarly to speedup, the results for
higher 𝑓 are in line with the findings of Section 4.

Note the significant difference in behavior of the per-
formance/power ratio and the 𝐸𝐷 product for higher
values of 𝑓. While at lower 𝑓 the AP consumes a large
portion of the overall power while making small contri-
bution to the overall speedup, for higher 𝑓 the AP adds to

the overall speedup quite significantly. Consequently, for
f=0.999, the CPU with the AP charts exhibit a different
trend vs. the CPU with the LLC and the SIMD curves.

Fig. 15 shows the effective 𝐶𝑃𝐼𝐴𝑃 vs. 𝐶𝑃𝐼𝑆𝐼𝑀𝐷 breakeven
point, namely the area above which the CPU with the AP
outperforms the CPU with the LLC and the SIMD, as a
function of 𝑓 and 𝑔. The plateau marks the region of 𝑓
and 𝑔 values for which a breakeven point cannot be
achieved under the maximum area budget used in our
analysis (8𝐴𝐿1). In other words, the CPU with the AP does
not have enough area to outperform the CPU with the
LLC and the SIMD coprocessor. However, the SIMD pro-
cessor is also less than useful in the plateau region: it is
well established that conventional SIMD accelerators are
inefficient in implementing low parallelizable / low
arithmetic intensity (the ratio of computations to memory
traffic [25])workloads, characteristic of low 𝑓 and high 𝑔
(the plateau region) [30] [32].

Fig. 12. Power vs. Area

On the other hand, the combination of 𝑓 close to 1 and

low 𝑔, which is typical for workloads with high level of
fine-grain data parallelism, is advantageous for the CPU
with the AP architecture, allowing it to outperform the
SIMD accelerated architecture over a wide span of the
area budget.

5.3 Emulation Methodology

We validate our analytic modeling findings using
emulation. We follow the methodology established
in [31]. To emulate the CPU with the LLC and the SIMD
coprocessor of Fig. 1(b), we use a stand-alone server fea-
turing Intel ® Pentium ® 4 processor with the SSE2 SIMD
accelerator, operated under Fedora Linux. We evaluate
the performance using a dense matrix multiplication ker-
nel since it has the highest arithmetic intensity among the
workloads considered in Section 4.4.1. With arithmetic
intensity of 𝑂(√𝑁) (where 𝑁 is the data set size and √𝑁 is
the matrix dimension), matrix multiplication is a better fit
for SIMD implementation than FFT (with arithmetic in-
tensity of 𝑂(log2 𝑁) and Black-Scholes (with arithmetic
intensity of 𝑂(1)).

Fig. 13. Performance / Power vs. Area

Fig. 14. 𝐸𝐷 vs. Area

Fig. 15. Effective CPI breakeven point vs. 𝑓 and 𝑔

Synchronization in SSE2 SIMD accelerator has two

main components: MOV instructions that synchronize
SSE2 registers with L1 data cache, and L1 to L2 synchro-
nization when the entire data set does not fit into L1. To
unwind the dependency of execution time on the cache
size and hierarchy (which are constantly improving in
newer CPU revisions), we deduct the data cache miss
penalty time from the execution time.

Fig. 16. Speedup vs. Data Set Size: (a) emulated CPU + LLC + SIMD, (b)

emulated CPU + LLC + SIMD vs. emulated CPU + AP

The results of the CPU with the LLC and the SIMD ac-

celerator’ speedup (over naïve serial execution that takes
𝑂(𝑁1.5) cycles) vs. matrix dimension are presented in Fig.
16(a). They are consistent with findings of D. Aberdeen et
al. [2] who researched matrix multiplication using Intel’s
SSE instruction set.

The analytical model of the CPU with the AP is veri-
fied using a combination of the cycle accurate simulation
of standalone AP (Section 4.4) and the baseline CPU emu-
lation. In this approach, the sequential fraction of the
workload is emulated on the CPU, followed by the cycle-
accurate simulation of the parallel fraction of the work-
load on the AP simulator. The sum of emulated and simu-
lated run times gives us total execution time. The results
of the CPU with AP speedup (over naïve serial execution)
vs. matrix dimension are presented in Fig. 16(b), along
with the speedup of the CPU with the LLC and the SIMD
accelerator taken from Fig. 16(a). These results are quite
expected, since the latter is limited by the SSE2 size, while
the AP scales up with the data set size.

To estimate how the comparison would change if we
had the ability to enlarge the vector accelerator, we sepa-
rate the MOV instructions (analogous to 𝑇𝑆 of (2)) from
the rest of the code (which is analogous to 𝑇1 + 𝑇𝐶 of (2)),
and scale the latter by 𝑛𝑆𝐼𝑀𝐷 𝑛𝑆𝑆𝐸2⁄ , where 𝑛𝑆𝐼𝑀𝐷 is the size
of the hypothetical SIMD accelerator and 𝑛𝑆𝑆𝐸2 = 4 is the
size of SSE2. We then sum up the 𝑇𝑆 and the ideally-
scaled 𝑇1 + 𝑇𝐶 , to estimate SIMD execution time. The
speedup vs. area results are presented in Fig. 17. Area is
received by substituting 𝑛𝑆𝐼𝑀𝐷 into (4). The hypothetical
speedup of the CPU with the LLC and the SIMD accelera-
tor grows with area (with 𝑛𝑆𝐼𝑀𝐷), but it is still affected by
synchronization (MOV part of the code) and therefore
eventually underperforms the CPU with AP, in line with
our analytical modeling findings.

6 DISCUSSION AND CONCLUSIONS

An associate processor is essentially a large memory
with massively-parallel processing capability. It offers
dual use: either the CPU accesses the data in that
memory, or the data is being processed associatively
within the same memory. This paper investigates the
merit of using AP instead of on-chip last level cache
(LLC) combined with a SIMD accelerator.

Fig. 17. Speedup vs. Area: (a) hypothetical CPU + LLC + SIMD, (b) hypo-

thetical CPU + LLC + SIMD vs. emulated CPU + AP

Converting LLC into AP adds parallel processing ca-

pabilities to otherwise sequential architecture. The price
of this conversion is the reduction (approximately halv-
ing) of the effective LLC size in its conventional sequen-
tial processing mode. However, our study shows that
even for workloads with relatively low parallelism (𝑓 ≤
0.75), replacing the LLC by AP may lead to an overall
speedup over the baseline CPU architecture. For 𝑓 close
to 1, such speedup can be quite significant.

An alternative way of improving the performance of
parallelizable workloads is to allocate some of the con-
strained area budget (originally assigned to the LLC) to a
conventional SIMD coprocessor. This study shows that
the speedup of SIMD coprocessor is ultimately limited by
data synchronization between its private memory and the
shared LLC. This effect becomes more significant as the
data set size and the SIMD coprocessor size grow.

The principle advantage of the AP is the unification of
data storage and processing, which in most cases elimi-
nates the need for data synchronization with a higher
level cache. The AP speedup grows faster with area than
the speedup of the conventional SIMD processor. Conse-
quently, when the area budget (and the corresponding
data set size) is sufficiently large, the AP may outperform
the conventional SIMD coprocessor. The speedup breake-
ven point is in the area range of a few square millimeters
to low tens of square millimeters depending on the work-
load, the feature size, the design specifics, etc. AP howev-
er is not universally efficient. While yielding high
speedup when implementing fine-grain massively data-
parallel workloads (such as sparse linear algebra and ma-
chine learning algorithms), its efficiency is much lower
under workloads with low data-level parallelism.

As area budget grows beyond the speedup breakeven
point, AP’s power is similar to that of SIMD coprocessor.
However, AP seems to outperform the conventional
SIMD in terms of performance/power ratio and energy-
delay product over a broad spectrum of area and power
budget for workloads with high data-level parallelism.

Associative processing has been known and extensive-
ly studied since the 1960s. Commercial associative pro-
cessing never quite took off, because only limited
amounts of memory could be placed on a single die [33].
Due to data sets and tasks of limited size, a standalone
bit- and word-parallel SIMD significantly outperformed
APs. However, the progress in IT industry and semicon-
ductor technology in recent years opens the door for re-
considering APs:

 The rise of big data pushes the computational re-
quirements to levels never seen before. The amounts
of data to be processed simultaneously require a new
parallel computing paradigm. This paper shows that
AP’s performance and efficiency improves with data
set size.

 Power consumption, which used to be a secondary
factor in the past, has become a principal limitation to
integration and performance today. The AP is shown
to achieve higher performance/power ratio and en-
ergy-delay product.

 Off-chip memory bandwidth remains to be one of the
main factors limiting performance and scalability of
parallel architectures. Associative processing miti-
gates this limitation by intertwining computing with
data storage.

 In high performance dies, thermal density is becom-
ing the limit on total computation capabilities; associ-
ative processing leads to uniform power and thermal
distribution over the chip area, avoiding hot spots
and enabling higher power dissipation.

Thanks to the memory integration and the feature scal-
ing enabled by current silicon technology on one side,
and the rise of big data on the other, we are at the inflec-
tion point where AP may considerably outperform con-
ventional SIMD in both performance and power.

ACKNOWLEDGMENT

This research was partially funded by the Intel Collabora-
tive Research Institute for Computational Intelligence and
by Hasso-Plattner-Institut.

REFERENCES

[1] “The Intel® Xeon Phi™ Coprocessor”. Available at:
http://www.intel.com/content/www/us/en/high-performance-
computing/high-performance-xeon-phi-coprocessor-brief.html

[2] Aberdeen, D., J. Baxter. "Emmerald: a fast matrix–matrix multiply using
Intel's SSE instructions." Concurrency and Computation: Practice and Expe-
rience 13.2 (2001): 103-119.

[3] Almási G. et al., "Dissecting Cyclops: A detailed analysis of a multi-
threaded architecture", ACM SIGARCH Computer Architecture
News 31.1 (2003): 26-38.

[4] Auth, C., et al. "A 22nm high performance and low-power CMOS
technology featuring fully-depleted tri-gate transistors, self-aligned con-
tacts and high density MIM capacitors." VLSI Technology (VLSIT), 2012
Symposium on. IEEE, 2012.

[5] Banerjee K. et al., “A self-consistent junction temperature estimation
methodology for nanometer scale ICs with implications for perfor-
mance and thermal management,” IEEE IEDM, 2003, pp. 887-890.

[6] Binkert N., et al. "The gem5 simulator." ACM SIGARCH Computer
Architecture News 39.2 (2011): 1-7.

[7] Black F. and M. Scholes, “The pricing of options and corporate liabili-
ties,” Journal of Political Economy, 81 (1973), pp. 637–654, 1973.

[8] Borkar S.. “Thousand Core Chips: A Technology Perspective,” Proc.
ACM/IEEE 44th Design Automation Conf. (DAC), 2007, pp. 746-749.

[9] Brockman J., et al. "A low cost, multithreaded processing-in-memory
system", 31st international symposium on computer architecture, 2004.

[10] Burger D., T. Austin. "The SimpleScalar tool set, version 2.0", ACM
SIGARCH Computer Architecture News 25.3 (1997): 13-25.

[11] Cassidy A. and A. Andreou, “Beyond Amdahl Law - An objective
function that links performance gains to delay and energy”, IEEE
Transactions on Computers, vol. 61, no. 8, pp. 1110-1126, Aug 2012.

http://www.intel.com/content/www/us/en/high-performance-computing/high-performance-xeon-phi-coprocessor-brief.html
http://www.intel.com/content/www/us/en/high-performance-computing/high-performance-xeon-phi-coprocessor-brief.html

[12] Flatt H.., K. Kennedy “Performance of Parallel Processors,” Parallel
Computing, Vol. 12, No. 1, 1989, pp. 1-20.

[13] Foster C., “Content Addressable Parallel Processors”, Van Nostrand
Reinhold Company, NY, 1976

[14] Fung Y., “Associative Processor Architecture - a Survey”, ACM Com-
puting Surveys Journal (CSUR), Volume 9, Issue 1, March 1977, Pages 3
– 27

[15] Gokhale M. et al., “Processing In Memory: the Terasys Massively Paral-
lel PIM Array,” IEEE Computer, 1995, pp. 23-31

[16] Gschwind M. et. al., “Synergistic processing in Cell’s multicore architec-
ture”, IEEE Micro 26 (2), 2006, pp. 10–24

[17] Gunther N., S. Subramanyam, S. Parvu, “A Methodology for Optimiz-
ing Multithreaded System Scalability on Multi - Cores”,
http://arxiv.org/abs/1105.4301

[18] Guz Z. et. al. “Threads vs. Caches: modeling the behavior of parallel
workloads”, 2010 IEEE International Conference on Computer Design
(ICCD), Oct. 2010, Pages: 274-281.

[19] Hall M. et al., "Mapping irregular applications to DIVA, a PIM-based
data-intensive architecture”, ACM/IEEE conference on Supercompu-
ting, 1999.

[20] Hardavellas N. et al., "Toward dark silicon in servers." IEEE Micro 31.4
(2011): 6-15

[21] Hartstein A. et. al., “On the nature of cache miss behavior: is it square
root of 2?”, Journal of Instruction-Level Parallelism, 2008

[22] Hentrich D. et al., "Performance evaluation of SRAM cells in 22nm
predictive CMOS technology," IEEE International Conference on Elec-
tro/Information Technology, 2009.

[23] Hill M., M.. Marty, “Amdahl’s law in the multicore era”, IEEE Com-
puter 41 (7) (July 2008) 33–38.

[24] http://www.arm.com/products/processors/technologies/neon.php
[25] S. Kamil, C. Chan, L. Oliker,, J. Shalf, S. Williams, “An Auto-Tuning

Framework for Parallel Multicore Stencil Computations”, IEEE Interna-
tional Symposium on Parallel & Distributed Processing (IPDPS) 2010,
pages 1-12.

[26] Kogge P. et al., "PIM architectures to support petaflops level computa-
tion in the HTMT machine", International Workshop on Innovative Ar-
chitecture for Future Generation High-Performance Processors and
Systems, 2000.

[27] Li H. et al. “An AND-type match line scheme for high-performance
energy-efficient content addressable memories,” IEEE Journal of Solid-
State Circuits , vol. 41, no. 5, pp. 1108 – 1119, May 2006.

[28] Lipovski G., C. Yu, "The dynamic associative access memory chip and
its application to SIMD processing and full-text database retrieval.",
IEEE International Workshop on Memory Technology, Design and
Testing, 1999.

[29] Loh G., “The Cost of Uncore in Throughput-Oriented Many-Core
Processors”, the Workshop on Architectures and Languages for
Throughput Applications (ALTA), June 2008

[30] Luebke D., “General-purpose computation on graphics hardware”,
Workshop, SIGGRAPH, 2004

[31] Morad T. et. al., ”Performance, power efficiency and scalability of
asymmetric cluster chip multiprocessors”, IEEE Computer Architecture
Letters, Jan.-June 2006, Volume 5, Issue 1, pages 14 – 17.

[32] Owens J. et al., “GPU Computing,” Proceedings of the IEEE, Vol. 96,
No. 5, pp. 879-899, May 2008

[33] Pagiamtzis K. and A. Sheikholeslami, “Content-addressable memory
(CAM) circuits and architectures: a tutorial and survey,” IEEE Journal
of Solid-State Circuits, vol. 41, no. 3, pp. 712 – 727, March 2006

[34] Pollack F., “New microarchitecture challenges in the coming genera-
tions of CMOS process technologies (keynote address)”, MICRO 32,
1999

[35] Potter J., et al. "ASC: an associative-computing para-
digm", Computer 27.11 (1994): 19-25.

[36] Potter, J. and W. Meilander. "Array processor supercomputers", Pro-
ceedings of the IEEE 77, no. 12 (1989): 1896-1914.

[37] Qing G., X. Guo, R. Patel, E. Ipek, and E. Friedman. "AP-DIMM: Asso-
ciative Computing with STT-MRAM," ISCA 2013

[38] Quinn M., “Designing Efficient Algorithms for Parallel Computers”,
McGraw-Hill, 1987, page 125.

[39] Rogers B. et. al., “Scaling the Bandwidth Wall: Challenges in and Ave-
nues for CMP Scaling”. In ISCA ’09: Proceedings of the 36th annual in-
ternational symposium on Computer architecture, pages 371–382, New
York, NY, USA, 2009. ACM

[40] Scherson I. et al., “Bit-Parallel Arithmetic in a Massively-Parallel Asso-
ciative Processor”, IEEE Transactions on Computers, Vol. 41, No. 10,
October 1992

[41] Sheaffer J. et al. "Studying thermal management for graphics-processor
architectures," ISPASS 2005

[42] Steinkraus D., L. Buck, P. Simard, “Using GPUs for machine learning
algorithms,” IEEE ICDAR 2005.

[43] Sterling T., H. Zima. "Gilgamesh: a multithreaded processor-in-
memory architecture for petaflops computing." , ACM/IEEE Confer-
ence on Supercomputing, 2002.

[44] Suh J. et al. "A PIM-based multiprocessor system", 15th International
Symposium on Parallel and Distributed Processing, 2001.

[45] Wentzlaff D., et al., “Core Count vs. Cache Size for Manycore Architec-
tures in the Cloud. Tech. Rep. MIT-CSAIL-TR-2010-008, MIT, 2010.

[46] Yavits L. et al., “The effect of communication and synchronization on
Amdahl’s law in multicore systems”, http://arxiv.org/abs/1306.3302

[47] Yavits L., “Architecture and design of Associative Processor for image
processing and computer vision”, MSc Thesis, Technion – Israel Insti-
tute of technology, 1994, available at
http://webee.technion.ac.il/publication-link/index/id/633

[48] Yavits L. et al., “Thermal analysis of 3D associative proces-
sor”, http://arxiv.org/abs/1307.3853v1

[49] Yavits L. et al., “Cache Hierarchy Optimization”, IEEE Computer Ar-
chitecture Letters, July 2013

Leonid Yavits received his MSc in Electrical Engineer-
ing from the Technion. After graduating, he co-founded
VisionTech where he co-designed a single chip MPEG2
codec. Following VisionTech’s acquisition by Broadcom,
he co-founded Horizon Semiconductors where he co-
designed a Set Top Box on chip for cable and satellite TV.

Leonid is a PhD student in Electrical Engineering in
the Technion. He co-authored a number of patents and
research papers on SoC and ASIC. His research interests
include Processing in Memory and 3D IC design.

Amir Morad received his BSc and MSc in Electrical Engi-
neering from the Technion. Amir co-founded VisionTech,
a major provider of ICs for set top boxes market. Follow-
ing VisionTech’s acquisition by Broadcom, Amir co-
founded Horizon Semiconductors, where he co-designed
SoCs for HD cable and satellite set top boxes.

Amir is a PhD student in Electrical Engineering in the
Technion. He co-authored a number of patents and re-
search papers on SoC and ASICs. His research interests
include analytical modeling and optimization of many-
core architectures.

Ran Ginosar received his BSc from the Technion and
his PhD from Princeton University. After conducting re-
search at AT&T Bell Laboratories, he joined the Technion
where he is now professor at the Electrical Engineering
department and a head of the VLSI Research Center.

Professor Ginosar has been a visiting Associate Profes-
sor with the University of Utah and co-initiated the Asyn-
chronous Architecture Research Project at Intel (Oregon).
He has co-founded a number of VLSI companies. Profes-
sor Ginosar has published numerous papers and patents
on VLSI. His research interests include VLSI architecture,
asynchronous logic and synchronization.

http://www.arm.com/products/processors/technologies/neon.php
http://arxiv.org/abs/1306.3302
http://arxiv.org/abs/1307.3853v1

