
1

Parallel VLSI Architecture for MAP Turbo Decoder

Reuven Dobkin, Michael Peleg and Ran Ginosar
VLSI Systems Research Center, Electrical Engineering Department

Technion—Israel Institute of Technology
Haifa 32000, Israel

[ran@ee.technion.ac.il]

Extended Abstract

Summary - Turbo codes achieve performance near the Shannon limit. Standard
sequential VLSI implementation of turbo decoding requires many iterations and
incurs a long latency, which cannot be tolerated in some applications. A novel parallel
VLSI architecture for turbo decoding is described, comprising multiple SISO
elements, operating jointly on one turbo coded block, and a new parallel interleaver.
Latency is reduced ten-fold and more and throughput is increased up to eight-fold
relative to sequential decoders, using the same area of silicon, and achieving the same
coding gain. The parallel architecture scales favorably—latency and throughput
improve with growing block size and chip area.

 Index Terms: maximum a posteriori (MAP) algorithm, turbo codes, parallel
architectures, decoders, interleaver.

1. Introduction

Turbo-codes [1,2] have received considerable attention since their introduction in
1993. This is thanks to achieving performance near the Shannon capacity limit along
with reasonable complexity and flexibility in terms of providing different block sizes
and code rates.

A turbo encoder consists of convolutional encoders connected either in parallel or in
series. In the parallel scheme (Figure 1) one encoder receives the original information
bits while the other receives them interleaved. The output comprises the original bits
concatenated with the output of the two encoders. A turbo decoder is composed of
decoding stages, performed by SISO (Soft-In Soft-Out) decoding units, with
interleavers between them.

CE1

CE2

I

u

c1

c2

SISO2
Punc-
turing

c'1

To
modulator

SISO1 I

I -1

I

c'2

u
c1
c2

u

Figure 1 Turbo encoder and decoder, I denotes interleaver

2

The decoding is performed in an iterative way: information from one SISO is
processed by the other SISO until the desired degree of convergence is achieved.

VLSI implementations of turbo decoders [4] consist either of a number of SISOs
connected in a pipeline or of a number of SISOs independently processing their own
encoded blocks. Both architectures are equivalent in terms of coding gain, throughput,
latency and complexity. These architectures are referred to as sequential architectures
in this paper. Due to iterative decoding the latency is very high, which may be
inappropriate for many applications such as mobile communications, interactive video
and telemedicine. One way to reduce the latency is to reduce the number of required
decoding iterations, but this may degrade coding gain. Another approach, described in
 [3], is to optimize the SISO algorithm. However the gain in total decoding latency is
rather small.

This paper presents a novel parallel turbo decoding architecture, which significantly
reduces decoding latency and improves decoder throughput, without any degradation
in coding gain relative to sequential architectures. Performance of the sequential and
parallel architectures are compared. This paper also presents a method of parallel
interleaving required in the proposed parallel turbo decoder architecture.

After a brief review of the decoding APP algorithm in Section 2, the sequential
decoder architecture is discussed in Section 3. The novel parallel decoding architecture
is detailed and compared to the sequential architecture in terms of coding gain,
throughput, latency and required silicon area in Section 4.

2. Turbo Coding – Theory of Operation

 2.1. Encoder

 The turbo encoder consists of two parallel concatenated convolutional encoders (CE)
and an interleaver as depicted in Figure 1. The interleaver permutes the bit sequences
(u). The interleaving is a crucial component of the turbo encoding influencing the
performance [2] [5].

For every new input block, the encoder starts in a known trellis state. In order to finish
in a known trellis state, traditionally some extra input bits, called tail bits, are
generated. There are several configurations of termination [5] that are traditionally
applied in turbo code: Termination after CE1 only, terminations after CE1 and CE2,
and others. The problem is that such terminations result in changes in the block size
and in some cases at least one of the added terminations is not interleaved. The
tailbiting termination technique [6], which is mostly used for recursive convolutional
codes, keeps the block size unchanged. The technique finds a data dependent initial
state such that the initial and the final states of the encoder are identical. The parallel
decoder architecture analyzed in this paper employs the tailbiting termination
technique. However, it is applicable to the other techniques as well.

 2.2. Decoder

The decoding is performed using the iterative decoding scheme shown in Figure 1.
Each SISO produces an increasingly better correction term, referred to as extrinsic
information, which is appropriately (de)interleaved and used as a priory information

3

by the next SISO [2]. According to the original BCJR algorithm and using notations
from [4], the probability distributions obtained as SISO output is:

∑
=

− ⋅⋅⋅=
u)e(u :e

E
kk

S
kuk)]e(s[B]I);e(c[P)]e(s[AH O) ;u(P 1

where

1) (;) and (;)P u I P c I are estimation of probability distribution of the encoder
input (u) and output (c) symbols.

2) (;)P u O is new refined value of distribution (;)P u I .

3) The index k indicates the time step and runs over the entire transmission
length.

4) The symbol s represents a code state (state in trellis).

5) e is a generic trellis edge, while c(e) and u(e) are the output and input coder
symbols associated with the edge e.

6))(esS and)(es E indicate the starting and ending states for the generic trellis
edge e.

7) cH is a normalization constant.

8) 1−kA and kB are probability distributions accumulated in the forward and
backward directions along the trellis, according to the following updating
relations:

∑

∑

=
+++

=
−

⋅⋅=

⋅⋅=

see
kk

E
kk

see
kk

S
kk

IecPIeuPesBsB

IecPIeuPesAsA

)(s :
111

)(s :
1

S

E

]);([]);([)]([)(

]);([]);([)]([)(

In practice, expensive multiplications are avoided by working in the log domain and
using the E-function operator [7]. Introducing the following definitions:

)](log[)(
)](log[)(
O)] (u;log[P O) ;(
I)] (u;log[P I) ;(
I)] (c;log[P I) ;(

k

k

k

k

k

sBs
sAs

u
u
c

k

k

k

k

k

≡
≡
≡
≡
≡

β
α

π
π
π

the previously presented equations of forward and backward metric calculations take
the form of:

{ }

{ }
E

S

1
: s ()

1 1 1
: s ()

() [() [(); I] [(); I]

() [() [(); I] [(); I]

S
k k k k

e e s

E
k k k k

e e s

s E s e u e c e

s E s e u e c e

α α π π

β β π π

−
=

+ + +
=

= + +

= + +

Then, the output metric of the SISO is calculated as follows:

{ }1: u(e) u
(; O) [()] [();] [()]S E

k k k ke
u E s e c e I s eπ α π β−=

= + +

4

The traditional decoding is performed by computing first the β metrics for the entire
block (going backwards) and storing them. When all the values of β are available,
the α values and output metrics (; O)k uπ are computed (going forward). Adopting
graphical representation introduced in [10], the algorithm is shown in Figure 2. Note
the graphical notations from Table 1.

Graphical Notations
Input of the intrinsic (channel)
information and the extrinsic information
from the previous decoding stage to SISO.
Dummy α state metrics calculation (no
store).
Dummy β state metrics calculation (no
store).
Valid β state metrics calculation and
store.
Valid α metrics and SISO output metrics,

(; O)k uπ , calculation.

Table 1: Graphical Notations

N

1

Bl
oc

k

Execution Time
Figure 2: Traditional SISO Algorithm

Storing all β metrics requires an unacceptable amount of memory. Therefore the
sliding window approach is used [4] [8] [9]. The backward (and/or forward) metrics are
initialized at an intermediate point instead of at the end (or at the beginning, for
forward metrics) of the block. The degradation due this optimization is negligible
when an appropriate intermediate point (sufficient window size) is used [4] [8]. It is
implemented using sliding windows.

Decoding with the sliding window is performed as follows. The block is divided into
windows of size WL. For each window, initial values of α and β are calculated. The
initial α values are the last values of α of the previous window, and the initial
β values are calculated by dummy β metrics calculation over the next window
(initial values of β for the dummy β calculation is arbitrary). Note that the initial
values of α may be also calculated by dummy α metrics calculation over the
previous window. Decoding with sliding window is shown in Figure 3.

5

Execution Time

WL

}

Execution over
one window

N

1

Bl
oc

k
Figure 3: Sliding Window SISO Algorithm

When tailbiting termination is employed, the last WL bits of the block (tail window)
are sent to the SISO prior to the whole block send. The SISO performs dummy α
calculation over this window in order to get initial α values for the first window of
the block. The initial β values for the last window are calculated and stored during
the valid β state metrics calculation over the first window. Note that the cost of using
tailbiting is additional latency of WL cycles per decoding iteration. The decoding
with sliding window and tailbiting is shown in Figure 4.

Execution Time

Tail
Window

N

1

Bl
oc

k

{

Figure 4: Sliding Window with Tailbiting SISO Algorithm

3. Sequential Decoder Architecture

The detailed scheme of an iterative decoder is depicted in Figure 5.

SISO2SISO1 I I-1

I

u
c1
c2

I-1

Figure 5: Iterative Decoder Detailed Scheme, I denotes interleaver

One iteration of the decoder can be divided into two stages:

i. “Interleaving Stage”. The result of the previous iteration plus u, and c1 bits are
processed by SISO1. The result is passed through interleaver I.

6

ii. “DeInterleaving Stage”. The extrinsic data from Interleaving Stage plus an
interleaved version of u, and c2 are processed by SISO2. The result is passed
through deinterleaver 1I − .

The order of operation of the two decoding stages is the same: Add, compute (SISO)
and de/interleave. When CE1 and CE2 are identical, SISO1 is identical to SISO2. In
addition, the same memory unit can perform the interleaving and deinterleaving
processes while suitable interleaver/de-interleaver addresses are provided. Therefore,
the above two stages can be implemented by the same hardware block, used twice for
each iteration.

In order to decode a block the following decode resource hardware modules are
needed: A SISO, an interleaver memory, an adder, memories for channel data (u, c1,
c2), an interleaving address memory and control logic. When parallel processing of,
say, n blocks is required to achieve higher data rate, the entire decoding resource
should be duplicated n time. Interleaving addresses can be generated by logic, instead
of storing them in memory, but a memory provides flexible interleaver design. All
resources can share the same interleaving address memory, using appropriate FIFOs.

The maximal input rate, Uncoded
inF , for the sequential architecture (with input double

buffer) is:

int2
Uncoded eff

in
NRF F

NI
= ⋅

⋅
(1)

Where int
int 5
eff F NF

N WL
⋅=

+ ⋅
where

NR: number of resources,

NI: number of iterations,

N: block size,

WL: window length,

int
effF : effective processing rate, and

intF : internal clock rate.

For given silicon area the throughput of the decoder, Uncoded
inF , depends on the number

of decode resources that can be placed on that area. The area efficiency of sequential
and parallel architectures is discussed below.

Latency of the sequential architecture is that of the decode resource:

int

2 (5)
Seq

NI N WLD
F

⋅ ⋅ + ⋅= (2)

The latency consist of the SISO delay due to prior input of five windows (as evident
in Figure 4) in addition to processing N metrics of the block, all multiplied by number
of iterations.

7

4. Parallel Decoder Architecture

The parallel decoding architecture applies all available SISOs in parallel to one
incoming block (Figure 6). The decomposition of the processing to sub-blocks is
facilitated by the sliding windows technique which allows independent decoding of
sub-blocks without degradation in error-correction performance [8]. Dummy α and
dummy β metrics are calculated in order to determine the initial values of α and β
for each sub-block, providing flexibility of choosing size and position of the
sub-block.

SISO
(0)

SISO
(1)

SISO
(m-1)

Parallel Interleaver Architecture

Adder(0)

Mem
(0)

Mem
(m-1)

Mem
(1) Interleaver/DeInterleaver Memory Block

Adder(1) Adder(m-1)

Mem U

Mem C1

Mem C2

Interl/DeInterl
Stage

c

u

c

u

c

u

Mode

Figure 6: Parallel Decoder Architecture

The block is divided into m sub-blocks and each sub-block is sent to a separate SISO.
The operations are the same as in the sequential architecture: Add, compute (SISO)
and de/interleave. After SISO processing, the extrinsic metrics are sent (in sets of m
metrics each) to the Parallel Interleaver where they are permuted and sent to the
interleaver memory (Interleaver / Deinterleaver Memory Block in Figure 6). The
interleaver memory, as well as the channel data memories (Mem U, Mem C1, Mem
C2) consist of arrays of m memories, each of depth N/m.

Parallel decoding significantly reduces the processing latency. Figure 7 explains
parallel decoding graphically, comparing it to sequential decoding.

Decoding is performed with tailbiting. For each sub-block the initial α metrics are
calculated over the last window of the previous sub-block (for the first sub-block, ‘last
window’ means last window of the last sub-block thanks to tailbiting). Initial β
values for the last window of a sub-block are β values received for the first window
in the next sub-block (these values are computed and stored during the first window
of each sub-block calculation and thus are ready when the calculation is performed
over the last window of a sub-block).

8

Execution Time

Execution Time

N

1

B
lo

ck

N

(m-1)
m N

1

1
m N

2
m N

k
k

k

{

Tail W indow
for SISO(1)

{

Tail W indow

Sub-Block
for SISO(1)

Sub-Block
for SISO(2)

Sub-Block
for SISO(m)

Figure 7: Sequential and Parallel Decoding

The maximal input rate formula for the parallel architecture is the same as (1) except
for NS (Number of SISOs) substituted for NR:

int2
Uncoded eff

in
NSF F

NI
= ⋅

⋅
(3)

The latency, however, is calculated differently and depends on NS:

int

2 (/ 5)
Par

NI N NS WLD
F

⋅ ⋅ + ⋅= (4)

Parallel and sequential architectures are compared in terms of latency and throughput
for given silicon area. Performance, as can be seen from equations (1)-(4), is highly
correlated to NR and NS. These values are higher for more efficient use of the area.
Parallel architectures are more area efficient thanks to the fact that for each additional
SISO, no additional memories and almost no additional logic are required, whereas
for the sequential architecture, the entire decode resource is duplicated, including
memories and SISO, as described above.

9

The analysis was performed using Synopsys 2000.05, Passport Libraries, 0.35µ
(slow) tools. The ratio of throughput Uncoded

inF of the parallel architecture to that of
sequential one for different block sizes vs. area is shown in Figure 8. It can be seen
that for larger chip area, the parallel architecture can handle larger blocks more
efficiently, and higher input data rates are accommodated.

Parallel / Sequential Input Rate vs Area

0
1
2
3
4
5
6
7
8
9

25 36 49 64 81 100 121 144 169 196 225
Chip Area [mm^2]

Pa
r o

ve
r S

eq

N=1024

N=2048

N=4096

N=8192

N=10240

N=16384

Figure 8: Throughput Ratio Results

The latency decrease results are summarized in Figure 9. The latency of the parallel
architecture is significantly decreased to 6-62% of the sequential latency. As in the
case of throughput, the larger the block size and the larger the chip area, the better the
parallel architecture.

Parallel / Sequential Latency Ratio vs. Block Size

0

0.2

0.4

0.6

0.8

1

1.2

1024 2048 4096 8192 10240 16384
Block Length,N [bits]

Pa
r o

ve
r S

eq

Area: 25 mm^2
Area: 36 mm^2
Area: 49 mm^2
Area: 64 mm^2
Area: 81 mm^2
Area: 100 mm^2
Area: 121 mm^2
Area: 144 mm^2
Area: 169 mm^2
Area: 196 mm^2
Area: 225 mm^2

Figure 9: Latency Ratio Results

The parallel interleaver plays key role in the performance of the entire parallel
decoder. The task is to permute in parallel at least m metrics coming simultaneously
from m SISOs. The parallel interleaver is parameterized by m, the number of
inputs/outputs of the interleaver, and d, the interleaver delay (Figure 10).

10

1 2

Mem(1) Mem(2) Mem(m)

m

First
Interleaving

Stage

Second
Interleaving

Stage

d

k

1 1

2

d

2

d

1

2

d

Figure 10: The Parallel Interleaver

The interleaving consists of two stages: Each of d m⋅ metrics from the various SISOs
are permuted by the First Interleaving Stage, and are subsequently permuted again in
the target memories (Mem(1)-Mem(m)) of the Second Interleaving Stage.

The Parallel Interleaver spread [11], dispersion, and area/interconnect consumption
characteristics, and their impact on coding gain are under study at the present.

5. Conclusions

A parallel turbo decoder architecture has been presented. A significant latency
reduction was achieved (up to a factor of 16) in comparison with a sequential turbo
decoder. In addition, it was found that the parallel architecture is more area efficient,
improving throughput up to a factor of 8 for the same chip area.

Current research on this subject focuses on detailed design and analysis of the Parallel
Interleaver and additional optimizations of the total latency of the decoder by
decreasing SISO latency.

References

[1] C.Berrou, A.Glavieux, and P.Thitimajshima, “Near Shannon Limit Error-Correcting Coding
and Decoding: Turbo-Codes”, Proceedings of ICC’93, Geneva, Switzerland, pp.1064-1070,
May, 1993.

[2] Berrou, and A.Glavieux, “Near Optimum Error Correcting Coding And Decoding:
Turbo-Codes”, IEEE Transactions on communications, vol. 44, no. 10, October 1996.

[3] Peter A.Beerel, and Keith M.Chugg, “A Low Latency SISO Application to Broadband Turbo
Decoding”, IEEE Journal on selected areas in communications, Vol.19, No.5, May 2001.

[4] G.Masera, G. Piccinini, M.R.Roch, and M.Zamboni, “VLSI Architectures for Turbo-Codes”,
IEEE Transactions on VLSI Systems, Vol. 7, No.3, Sep.1999.

[5] Stewart Crozier, “Turbo-Code design Issues: Trellis Termination Methods, Interleaving
Strategies, and Implementation Complexity”, Communications research Center (CRC),
Ottawa, Canada (www.crc.ca/fec), ICC, June, 1999.

11

[6] Claude Berrou, “Additional information on the EUTELSAT/ENST-Bretagne proposed
channel turbo coding for DVD_RCS”, DVD-TM, Ad Hoc Group on Return Channel over
Satellite, 6th meeting, Geneva, 28-29 July, 1999.

[7] C.Schurgers, F.Catthoor, M.Engles, “Optimizing MAP Turbo Decoder”, IEEE, 2000.

[8] Andrew Hunt, Stewart Crozier, Mark Richards, and Ken Gracie, “Performance Degradation as
a Function of Overlap Depth when using Sub-Block Processing in the Decoding of Turbo
Codes”, Communications research Center (CRC), Ottawa, Canada (www.crc.ca/fec).

[9] Sorin Adrian Barbulescu,"On Sliding Window and Interleaver Design", Institute for
Telecommunication Research, Univercity of South Australia, Mawson Lakes SA 5095,
Australia.

[10] C.Schurgers, F. Catthoor, and M.Engels, "Memory Optimization of MAP Turbo Decoder
Algorithms". IEEE Transactions on VLSI Systems, Vol. 9, No.2, April 2001.

[11] Stewart N.Crozier, "New High-Spread High-Distance Interleavers for Turbo Codes",
Communication Research Center, Canada, stewart.crozier@crc.ca.

	Introduction
	Turbo Coding – Theory of Operation
	Encoder
	Decoder

	Sequential Decoder Architecture
	Parallel Decoder Architecture
	Conclusions
	References

