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Abstract 

A regular (two-flop) synchronizer and six multi-
synchronous synchronizers are implemented on a 
programmable logic device and are measured. An 
experiment system and method for measuring 
synchronizers and metastable flip-flops are described. Two 
separate settling time constants are shown for a metastable 
flop, confirming earlier results of Dike and Burton  [1]. 
Clocking cross-talk between asynchronous clocks is 
demonstrated. The regular synchronizer is useful for 
communications between asynchronous clock domains, 
while the other synchronizers can provide higher 
bandwidth communications between multi-synchronous 
and mesochronous domains. 

1. Introduction 
Synchronization is a challenging topic that has been 

investigated intensively. Most treatments of the subject, 
however, were limited to paper designs and analytic 
studies. Actual laboratory measurements and in-depth 
analysis of synchronizers have been performed in very few 
cases  [1] [2] [3] [4].  

Large VLSI chips tend to employ asynchronous inter-
module timing due to two principal reasons. First, it is 
sometimes more economical (in terms of area, power and 
design time) to break a large synchronous chip (or section 
of a chip) into multi-synchronous modules, which use the 
same basic clock frequency but do not require the exact 
same phase of the clock  [5]. Multi-synchronous timing can 
be based on thrifty clock distribution networks, which 
avoid the heavy area and power penalty of assuring 
minimal skew across a large chip. Second, interfacing the 
chip to a variety of external busses ticking at different 
frequencies imposes a requirement for the chip to contain 
multiple unrelated clock domains. A communication chip 
that connects a 100MHz data link to a 66MHz PCI bus is 
one such example. Both types of multiple-clock domain 
chips are sometimes termed GALS (globally 
asynchronous, locally synchronous) systems. 

Two separate clock domains are ‘mesochronous’ if 
they are clocked at the same frequency but at a fixed 
relative phase difference  [6]. If the phase difference drifts 
over time, they are called ‘multi-synchronous’  [5]. If the 
clock frequencies are close but different, they are 

‘plesiochronous.’ In multi-synchronous GALS systems, all 
modules receive the same clock frequency. The design of 
inter-module communications can take advantage of that 
fact and employ mesochronous synchronizers for higher 
bandwidth than possible with the more general two-flop 
synchronizers  [7]. However, relative clock phases drift 
over time (typically due to intra-die temperature and 
voltage temporal variations) thus requiring adaptive multi-
synchronous synchronizers  [5] that either periodically or 
continuously adapt to the varying phase differences. 
Similar conditions often arise among separate chips on a 
board, where the chips are clocked by the same system 
clock. 

The analysis of synchronizers for on-chip cross-clock 
domain communications is quite difficult. Circuit 
simulations of synchronizers only provide a partial 
characterization  [1] [2] [4]. Typical logic validation tools 
are totally ignorant of synchronization failures. Post-
production testing also provides very little help. The only 
useful metric proposed in the literature is that of MTBF, 
which is only indirectly driven out of approximately 
defined parameters. In this paper we extend the work of  [1] 
[2] [3], which have considered only simple synchronizers, 
and we show lab measurement validation of a variety of 
multi-synchronous adaptive synchronizers. 

Section 2 explains the experiment system and the data 
analysis method, and demonstrates them investigating a 
metastable flip-flop. Section 3 describes seven different 
synchronizers, one general and six for multi-synchronous 
applications, and validates their performance by means of 
timing measurements. The findings are analyzed in Section 
4. Full-color figures of this paper are available on the web  
[11]. 

2. The Experiment System 
This section describes the setup used for all the 

experiments. It demonstrates the waveforms of normally 
switching and metastable flip-flops, and discusses clock 
cross-talk noise. 

2.1 Hardware  
Figure 1 describes the hardware used for the 

experiments. The setup follows that of Dike & Burton  [1]. 
All designs have been implemented on the same Altera 
EPF10K20 programmable logic device (PLD). Two pulse 
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generators provide the clock and data inputs, operating at 
25.175 and 25.2 MHz, respectively. The slight difference 
in the frequencies result in inputs having uniformly 
distributed delays in reference to the clock, at a periodicity 
of 25 KHz. The data output of the PLD is connected to the 
trigger input of a HP83480A oscilloscope. The clock 
signal is connected through the PLD to the data channel of 
the scope. The digital sampling scope is capable of 
continuous data accumulation and the results are available 
for statistical analysis. 
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Figure 1: Experiment setup 

2.2 Synchronous Sampling of a Flip-Flop 
In this experiment the data pulse-generator is turned 

off. A toggling flop's output serves as a synchronous input 
for the flop under test (Figure 2). Each data point 
accumulated by the scope represents one sampled rising 
transition of the CLOCK signal (Figure 3). Its horizontal 
displacement indicates the delay from the clock input to 
the data output of the flip-flop. 
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Figure 2: Synchronous sampling circuit 

Figure 4 shows the result of synchronous sampling by a 
flip-flop. The delay between the clock and the output edge 
is fixed, with only about 10ps delay variation (the scope’s 
jitter at its trigger input is specified at 2.5ps). The variation 
appears to be symmetrically distributed around the center 
value. This experiment represents an accumulation of 2.2 
million data points, collected over about 5 minutes. Note 
that only 0.06% of all edges are sampled—this is used 
below to filter out safe edges and to constrain the 
measurement to potential metastable ones. The distribution 
of the accumulated data along the horizontal (time) axis is 
shown in Figure 5; the method used to generate that chart 
is explained below in Section  2.4. 

 

Figure 3: Collected data (the dotted area) 

 

Figure 4: A synchronous flop 
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Figure 5: Flip-flop propagation delay frequency 
distribution for synchronous sampling; t=0 
represents the average propagation delay 

2.3 Clock Cross-Talk Noise 
The following experiment demonstrates the effect of 

clock cross-talk noise. The circuit shown in Figure 2 uses 
only one clock source. When turning the second pulse 
generator on, a much noisier waveform is received, even 
though that other signal is not used in the design. Figure 6 
demonstrates this phenomenon. 
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Figure 6: Synchronized sampled data with clock 
cross-talk noise 

The noise distorts the 'clean' signal of Figure 4 in two 
ways: Delay variation increases from 10ps to 150ps, and 
the distribution around the mean is asymmetric and 
multimodal. It appears that the noise is injected through 
capacitive coupling of the two clock distribution networks, 
which may be laid down side by side in the PLD. Note that 
different designs may demonstrate different levels of cross-
talk noise, depending on the actual placement and routing 
that happen to be generated for each implementation. 
Unlike custom chip design, the PLD user typically has 
very little control of such physical parameters. These 
distortions should be taken into consideration while 
analyzing the experiments in this paper, which all depend 
on the two clocks operating simultaneously.  

2.4 Data Analysis  
The digital sampling scope, operating in a special data 

accumulation mode, collects the data in the form of a two-
dimensional array of counter values. Each counter 
represents the number of edges that have been sampled 
when passing through the corresponding point on the scope 
display. The array consists of 256×451 counter values. The 
data file is subsequently aligned to enable accumulation 
along the curved data axis, as shown on the left side of 
Figure 7. Next, the data values are integrated along the 
vertical axis, resulting in the chart on the right hand side of 
the figure.  
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Figure 7: Data analysis method 

2.5 Metastable Behavior of a Flip-Flop 
The two pulse generators, being asynchronous to each 

other, provide the clock and data inputs of the synchronizer 
flop, as in Figure 8. A clock-data conflict occurs roughly at 
a 25 KHz rate, and occasionally it leads to metastable 
behavior. Most normal switching events are filtered out by 

means of the clear signal, which precedes the data input 
transition by Td.  
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Figure 8: Circuit demonstrating metastability 

The accumulated data is shown in Figure 9. The 
frequency distribution of the incremental flop clock-to-
output propagation delay (that is, how much longer it takes 
relative to normal propagation delay) is plotted in Figure 
10. The peak around zero represents a large number of 
cases with normal propagation delay. The dip in the chart 
between zero and 300ps is explained by Dike & Burton  [1] 
as resulting from Miller effects. When closely examined, 
the chart to the left of 300ps reveals two slightly different 
slopes, representing two separate values for the time 
constants τ, as first discovered by Dike & Burton  [1]: Deep 
metastability is characterized by τms=130ps in the region to 
the left of the 700ps point, and the deterministic region 
(which shows an incremental delay between 300-700ps) 
shows τdet=120ps. Thus, the deterministic region includes 
cases where the flop propagation delay is longer by up to 
700 ps relative to the normal flop delay, and in deep 
metastability the flop takes more than 700 ps to resolve 
and settle to either 0 or 1. Note how very close these two 
τ values are.  

 

Figure 9: A metastable flip-flop 
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Figure 10: Flip-flop propagation delay frequency 
distribution for metastable sampling; t=0 
represents the normal propagation delay 

3. Adaptive Synchronization Circuits 
In this section different adaptive synchronizers are 

presented.  The test circuit is shown in Figure 11. As 
explained in Section  2.1, the slight frequency difference of 
the two pulse generators results in the data edges 
continuously sweeping over the clock edges, and resulting 
in periodic clock-data conflicts (at the beat frequency, 
namely the difference of the two clock frequencies). This 
setup actually creates a plesiochronous environment in 
order to test mesochronous  [6] [7] and multi-synchronous  
[5] synchronizers. 
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Figure 11: Synchronizer experiments setup 

3.1 Two-Flop Synchronizer 
A standard two-flop synchronizer is shown in Figure 

12. It incurs at least one clock cycle penalty on latency, 
and in certain cases it may consequently limit the 
throughput.  
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Figure 12: A two-flop synchronizer 

The measured behavior of a two-flop synchronizer is 
shown in Figure 13. MTBF for the two-flop synchronizer 
is estimated at  
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This is quite safe—recall that our universe is only 1010 
years old… The synchronized output should appear like 
that of Figure 4, but, apparently due to clock noise, it 
resembles that of Figure 6 instead. 

 

 

Figure 13: Two-flop synchronizer output  

3.2 Data Delay Synchronizer 
The data delay adaptive synchronizer  [5] delays the 

input data if the data are suspected to switch during the 
'danger zone' around the clock rising edge. A 
programmable digital delay line is inserted before the first 
latch (Figure 14). Data timing is determined and the delay 
is programmed during a training session. In our 
measurements, the output of the synchronizer is blocked 
during the training session. Note that the adaptation rate, 
which is also the rate of entering a training session, is 25 
KHz in the measurement system (the beat frequency). The 
synchronized output is shown in Figure 20. The delay 
variation is approximately one half that of the two-flop 
synchronizer, but we believe that it is only an artifact of 
the specific PLD place and route of this circuit.  Figure 21 
shows the output of the delay line; multiple delay regions 
are evident. They are all aligned once latched, as in Figure 
20. 
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Figure 14: The data delay synchronizer  
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The delay-line delays the input signal to a 'safe' time, 
when sampling of the signal can be done correctly, without 
metastable behavior. The delay line FSM controller 
generates the clr_delay signal at the start of a training 
session, setting the delay line to its minimum value. The 
inc_delay control signal increments the amount of delay in 
the delay-line by one unit every iteration of the training 
session.  

A training session begins upon arrival of the conflict 
signal, which suggests that the data is in the danger zone. 
The training session stops when conflict180  arrives, 
indicating that the data is around the middle of the cycle, 
and therefore safe to sample. Those two conflict signals are 
synchronized by the sync_derive units. The conflict detect 
modules are designed with margins so that missing a signal 
(due to metastable state in the sync-derive synchronizers) 
will not prevent the circuit from entering its training 
session eventually.   

Figure 15 describes the implementation of a delay-line 
in the Altera PLD device, using multiplexers and Altera 
delay elements (“lcells”), which provide a nominal 1.5 
nsec fixed delay each. Minimal delay is achieved by 
loading the shift register with all ‘1’s. The delay is 
increased by left shift with a ‘0’ entering from the right. 

data

data_del.....
lcelllcell

'0'

'1'

'0'

'1'

'0'

'1'

'0'

'1'

SHIFT REGISTER 0  

Figure 15: Delay-line circuit in Altera PLD 

The conflict detect module (Figure 16) is designed to 
detect situations where the data signal is inside a time 
window around the clock rising edge. Both rising and 
falling edges of the data signal are analyzed. The time 
window is set by the fixed delay-lines in the module. Note 
that conflict signals in the module have half a cycle width: 
If the delayed_data_g2 (or delayed_data_n_g2) signal is 
high it will be high only when its ME's R2 input is high, 
and since the latter is a clock signal it will be high only for 
half a cycle. Since it is connected to an AND gate, 
conflict1 and conflict2 will be of half-cycle width, 
propagating to the output conflict signal. The conflict 
signal may altogether be missed, due to the very clock-data 
conflict that it tries to detect! The sync_derive circuits, 
which synchronize the conflict signals, sample the conflict 
at both the rising and falling edges of the clock, in order 
not to miss its high value, and repeat the sampling every 
cycle to increase the probability of catching a conflict. 
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Figure 16: Conflict detector circuit 

The mutual exclusion element (ME) is shown in Figure 
17. This LUT-based PLD implementation provides a very 
high probability of mutual exclusion, and in practice we 
have been unable to detect any failure. But this circuit 
cannot completely guarantee it; for absolute mutual 
exclusion, either a full-custom or gate-based cells are 
required  [8]. To counter that limitation, the conflict 
detector is operated multiple times during a training 
session; the probability of a mutual exclusion element 
failing on all attempts is negligible.  
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Figure 17: PLD mutual exclusion element  

The sync derive module (Figure 18) synchronizes the 
conflict-detector output. The conflict signal can suffer 
delay and the chance of being missed, as described above. 
The synchronizer samples the conflict signal every cycle, 
to increase the likelihood that it is eventually caught. The 
training session allows ample time for conflict resolution; 
it may take many cycles. Hence, the conflict signal is 
synchronized with a two-flop synchronizer. Since the 
conflict signal is only half a clock period wide, it is 
sampled at both the rising and falling edges of the clock. 
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Figure 18: Sync derive circuit 
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Upon arrival of a conflict signal, the FSM (Figure 19) 
resets the delay line to its minimum value. It subsequently 
iterates between WAIT_ CONFLICT180 and 
TRAINING_INC states. In each iteration it increments the 
delay line by one unit, and checks whether conflict_180 
signal has arrived. 
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TRAINING_ON

WAIT
CONFLICT

180

conflict_180

counter_done

INC_DELAY
START_COUNTER

TRAINING_ON

TRAINING_INC

conflict

CLR_DELAY
START_COUNTER

TRAINING_ON

TRAINING_CLR

IDLE

 

Figure 19: Data Delay FSM  

 

Figure 20: Data delay synchronizer output  

 

Figure 21: Delay line output of the data delay 
synchronizer 

3.3 Dual Data Delay Synchronizer 
To minimize the slow-down caused by training 

sessions in plesiochronous or periodic applications  [5] [7], 

a second delay line is introduced in Figure 22. Imminent 
clock-data conflicts are continuously monitored; once 
detected, the delay is adjusted off-line and subsequently 
loaded into the data delay. The synchronized output is 
shown in Figure 24.  Note that the synchronizer is 
insensitive to small mismatches in the delays of the two 
delay lines. The PLD technology, however, can assure 
sufficiently tight matching of the two delays; similar 
matching is also feasible in custom VLSI designs. 
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Figure 22: The dual data delay synchronizer 
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Figure 23: Dual data delay FSM  

If a conflict_180 signal has not arrived for a given 
number of cycles (Figure 23), counter_done rises and the 
machine clears the delay line. Then it waits until a 
conflict_180 signal arrives. If it doesn't arrive after a given 
number of cycles it increments the delay in 
TRAINING_INC state. When conflict_180 signal arrives, 
the value of the mirror delay is transferred to the delay line 
through the UPDATE_DELAY state. 
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Figure 24: Dual data delay synchronizer output 

3.4 Clock Delay Synchronizer 
While Data Delay Synchronizers may adjust the delay 

independently for each separate input channel, they 
employ a large number of delay elements, which may incur 
a prohibitive area and power price. In contrast, the Clock 
Delay Synchronizer  [7] adjusts only the timing of the first 
latching clock (Figure 26).  The output is shown in Figure 
25.  

 

Figure 25: Clock delay synchronizer output  
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Figure 26: Clock delay synchronizer  

The input data are sampled by two flip-flops FF0 and 
FF1. CLK is the receiving module's clock. CLK samples 
FF0 and CLK delayed by TKO samples FF1. The conflict-
detector and sync_derive circuits are described in Section  
3.2.  The control FSM is shown in Figure 27. Upon 
conflict_sync, FF1 is selected. Otherwise, FF0 is selected. 
Note that the clock delay synchronizer may be adjusted 
continuously, rather than through training sessions. The 
two alternative selections are evident in Figure 28: The 

bright line on the right is the output of FF0, and the one on 
the left is FF1. The two darker lines result from switching 
of the selector. An alternative design, more appropriate for 
wide data buses, samples the data only once but applies 
either CLK or CLK+TKO to the sampling register (Figure 
29). 

conflict

'0' '1'

conflict
 

Figure 27: Clock delay synchronizer FSM 

 

Figure 28: Selector output in the clock delay 
synchronizer 
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Figure 29: Simpler Clock delay synchronizer  
 

3.5 FIFO Synchronizer 
The dual-clock asynchronous FIFO provides another 

common means for crossing clock domains. A simplified 
version is suitable for multi-synchronous applications  [7]. 
The input data are latched into a cyclic FIFO register 
(Figure 30) using XCLK, the transmitter clock, and are 
read using the receiver’s clock, CLK. The XP pointer 
selects the register that latches the input data, while RP 
selects the register being read. The pointers are 
incremented by their respective clocks. The difference 
between XP and RP determines the FIFO latency, and it 
can be set as low as approximately one clock cycle 
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(depending on the phase difference of the two clocks). 
During a training session, XP is synchronized with CLK 
and compared with RP. If they are misaligned, RP is 
modified. Alternatively, if a longer latency is allowed, RP 
may be adjusted continuously during operation. The 
waveform of the experiment is shown in Figure 31. 

DATA
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x_ff1
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x_ff3
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XCLK

CLK rp
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Figure 30: FIFO synchronizer with multi-
synchronous support 

It is interesting to compare the area utilization of the 
FIFO and the delay-line synchronizer circuits (Section  
3.2). Assume that for a wide data bus (e.g., 32 bits) we can 
ignore the control circuits. The FIFO synchronizer requires 
three flops per data bit. When operating at, e.g., 200 MHz 
(a typical SOC clock frequency), and assuming that the 
delay of each delay unit is 50 psec, the delay-line 
synchronizer requires about 100 buffers per data line, 
making the FIFO synchronizer a favorable solution. On the 
other hand, in very high-speed designs operating at, e.g., 2 
GHz (a typical CPU design), only 10 delay buffers per data 
line may be required. In such cases, the delay-line 
synchronizer may turn out to be more area-efficient. 
Further analysis is provided in Section 4. 

 

Figure 31: FIFO synchronizer output  

3.6 Clock-Edge Synchronizer 
The clock-edge synchronizer  [9] analyzes four different 

samples of the same input data, taken with four different 
phases of the clock, and selects the safest sample out of the 
four possibilities. This synchronizer incurs a significant 

data latency, because phase selection is performed only 
after data sampling and analysis. Another disadvantage is 
the requirement for a 90 degrees phase of the input clock. 
Figure 32 shows the structure of this synchronizer, and the 
measured data are shown in Figure 33.  
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Figure 32: The clock edge synchronizer 

The input is sampled by four different phases of the 
clock, and an additional clock cycle is allowed for settling 
of any metastability and aligning the four samples with the 
clock. Edge detectors locate the edge at a quarter cycle 
resolution. The decision logic selects the sample that is 
about one half cycle away from the first edge. The entire 
selection process takes about five clock cycles, and the 
latched inputs are delayed by the shift-registers until the 
selection process is done.   

 

Figure 33: Clock-edge synchronizer output  

3.7 Low Latency Clock Edge Synchronizer 
The low-latency clock-edge synchronizer is an 

adaptation of the clock-edge synchronizer described above 
to multi-synchronous synchronization. We take advantage 
of the fact that most of the time the data arrival phase stays 
stationary. In Figure 34, the decision logic monitors the 
input and changes the selection setting only if there is a 
change in data arrival timing. Note that only two data 
phases are employed, as opposed to four in the original 
design. The resulting output waveform is shown in Figure 
35, and is quite similar to that of Figure 33, validating that 
in multi-synchronous situations there is no need for the 
more complex circuit of Section  3.6. A similar 
synchronizer has been proposed in  [10]. 
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Figure 34: Low latency clock-edge synchronizer 

 

Figure 35: Low-latency clock-edge synchronizer 
output  

4. Analysis 
Table 1 shows hardware complexity (in terms of PLD 

logic elements), latency (in clock cycles), throughput and 
applicable modes of adaptation for the synchronizers and 
32-bit data channels. All synchronizers are appropriate for 
multi-synchronous clock domains, while the two-flop one 
can also bridge asynchronous domains. In some cases, 
continuous adaptation can be obtained at the cost of either 
increased latency (Clock Edge and FIFO synchronizer) or 
increased hardware (Dual Data Delay synchronizer). The 
Clock Delay synchronizer is suitable for continuous 
operation without any added complexity. 

 
Table 1: Comparing the synchronizers for 32-bit 
wide data channels 

Synchronizer HW 
(LE) 

Latency 
(cycles) Throughput Adaptation 

Mode 
Two-Flop 35 1-2 1/Latency None 
Data Delay 700 0-1 1 Training 
Dual Data Delay 725 0-1 1 Continuous 
Clock Delay 90 0-1 1 Continuous 
FIFO (*) 135 0-1 1 Training 
Clock Edge 676 5 1 Continuous 
Low Latency 
Clock Edge 100 0-1 1 Training 

(*) FIFO can adapt continuously at the cost of increased latency. 

5. Summary 
Actual measurements of a variety of synchronizers 

have been presented. We follow the methods of  [1] and  [2] 
for testing the metastability settling time constants of 
synchronization circuits. Failures of simple flip-flops has 
been demonstrated and measured. Subsequently, we 
analyzed a standard two-flop synchronizer as a base line, 
and investigated the characteristic settling of a number of 
plesiochronous synchronizers. All appear to perform 
successfully, providing a spectrum of area, power, latency 
and throughput trade offs to the designer.  

All experiments were carried out on a standard 
programmable logic device, requiring a fully digital 
implementation and not allowing for any custom circuits or 
layout. Thus, the tested synchronizers are appropriate for 
FPGA and SoC designs based on standard cells. The two-
flop synchronizer is appropriate for any asynchronous 
clock domain crossing, while the remaining synchronizers 
are suitable only for mesochronous, multi-synchronous or 
plesiochronous domain crossings. 

We have also demonstrated the effects of multiple 
clocks on synchronization. Cross-talk between clocks of 
different frequencies has shown to result in increased jitter 
and calls for additional safety margins in the construction 
of successful synchronizers. 

Additional research is required to further study 
synchronizers, such as identifying the time width of the 
danger zone, establishing methods for pre-silicon 
validation, optimizing the circuits, and verifying them on 
ASIC and full-custom VLSI. 
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