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Providing highly flexible connectivity is a major architectural challenge for hardware implementation of
reconfigurable neural networks. We perform an analytical evaluation and comparison of different config-
urable interconnect architectures (mesh NoC, tree, shared bus and point-to-point) emulating variants of
two neural network topologies (having full and random configurable connectivity). We derive analytical
expressions and asymptotic limits for performance (in terms of bandwidth) and cost (in terms of area and
power) of the interconnect architectures considering three communication methods (unicast, multicast
and broadcast). It is shown that multicast mesh NoC provides the highest performance/cost ratio and
consequently it is the most suitable interconnect architecture for configurable neural network implemen-
tation. Routing table size requirements and their impact on scalability were analyzed. Modular hierarchi-
cal architecture based on multicast mesh NoC is proposed to allow large scale neural networks emulation.
Simulation results successfully validate the analytical models and the asymptotic behavior of the net-
work as a function of its size.
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1. Introduction

The inherent parallelism of multi-processor VLSI systems on
chip (SoC) enables the efficient emulation of biological neural net-
works (NN) and the construction of artificial neural networks for
complex tasks such as pattern recognition. When the structure
and connectivity are implemented rigidly in hardware, the emu-
lated neural networks suffer from limited flexibility and function-
ality [6,7], requiring redesign if any connectivity or function needs
to be changed. To overcome these limitations, we seek a SoC archi-
tecture that enables programmable and reconfigurable NN. Such
architecture could serve as a generic medium for neuroscience
and machine learning research, enabling emulation of arbitrary
neural network topology and supporting dynamic connectivity
changes as a result of training.

The high level architectural framework for this research is a
multiprocessing chip (CMP) comprising a large number of homoge-
neous processors, specially reconfigured to optimize neuronal and
synaptic functions implementation (Fig. 1). Each processor emu-
lates multiple neurons. Connectivity within the processor is imple-
mented in software.

A key issue in emulating reconfigurable neural networks is the
complexity of dynamic and flexible neural connectivity. The pur-
pose of this work is to find best suitable on-chip interconnect
architecture for NN emulation. We investigate and compare four
interconnect architectures (mesh NoC, tree, bus, point-to-point)
ll rights reserved.
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and three packet-based communication methods (unicast, multi-
cast and broadcast) and study how they support configurable com-
munications for spiking neural networks. We show that mesh NoC
using multicast is the most suitable architecture for a wide range of
neural network topologies. It is evident from the analysis that the
NoC maximally preserves the inherent parallelism of neural net-
works, the mesh topology provides high operational frequency
and preserves relative latency, and multicast closely emulates
one-to-many neural communications. We analyze routing tables
(RT) size requirements for each architecture. We discuss methods
for reducing RT size and propose modular hierarchical architecture
that facilitates scalability and allows large-scale neural network
emulation.

Background and related work are presented in Section 2. Sec-
tion 2.1 provides a short overview of spiking neural networks
and their basic properties. Previous work in the field of neural net-
works implementation is presented in Section 2.2. Early imple-
mentations demonstrated a clear trade-off between flexible
connectivity and high element count. Later implementations em-
ployed an arbitrated shared bus and an Address Event Representa-
tion (AER) protocol. More recent papers present spiking NN
implemented on NoC, raising the need for comparative analysis
that will answer the question of which architectural choices are
preferred, and whether indeed packet switching is the appropriate
interconnect solution for the emulation of large scale neural net-
works, thus motivating the present paper.

Theoretical cost and performance analysis is provided in
Section 3. Two types of neural network models are investigated:
Hopfield network defined by all-to-all connectivity of the
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Fig. 1. Neural network on SoC.
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neurons, and Randomly Connected NN, defined by local connec-
tivity with a probability for connection that decreases exponen-
tially with distance. In Section 3.1, the metrics for performance
and cost evaluation are defined. Performance is measured by
the zero-load effective bandwidth of the interconnect (BWeff)
which reflects the network capacity, the delivered spike rate
which is the average rate in which the network can receive or
deliver spikes from or to a single neuron (fp, out), and the maxi-
mum spiking frequency of the neuron (offered spike rate, which
depends on the biological model, fspike, max). We also define a K-
factor, representing the ratio between offered and delivered
spike rates. Another figure of merit reflects spike latencies. The
cost is presented by area and dissipated power. Finally, the per-
formance to cost ratio, R, is defined as bandwidth divided by
area and power. In Section 3.2, we compare the performance
of unicast, multicast and broadcast mesh NoC emulating neural
network topologies having full and random configurable connec-
tivity. It is evident from the analysis that for both NN topologies
multicast is the preferred communication method as it provides
higher bandwidth and higher frequency. Intuitively, while in uni-
cast NoC each spike produces multiple packets, one for each des-
tination, and in broadcasting NoC the packet always traverses all
links, multicast provides optimal network utilization, as only one
packet per spike is generated and it is routed only to the rele-
vant destinations. The tree NoC is analyzed in Section 3.3. We
show that in order to support general configurable connectivity,
a full fat-tree is required, resulting in longer links and lower
operational frequency. Thus, although the tree has a shorter
diameter (in number of hops), it provides lower average band-
width and higher realization cost than MC mesh NoC. Shared
bus and point-to-point architectures are analyzed and compared
to MC mesh NoC in Sections 3.4 and 3.5, respectively. While lim-
ited parallelism of the shared bus yields much lower bandwidth
at the same cost as the mesh NoC, point-to-point architecture
provides slightly better bandwidth than MC mesh NoC but at a
much higher realization cost. In Section 3.6, analytical results
are discussed and asymptotic limits are summarized.

Performance simulations are summarized in Section 4. The sim-
ulations help to gain insight into the network behavior and to vali-
date our analytical models. Traffic of the fully connected and the
exponentially connected NNs, emulated on mesh NoC, were simu-
lated using UC, MC and BC communications. Maximum input rate
as a function of network size is derived. Maximum and average of-
fered spike rates are derived and compared to maximum input rate.
Good fit is achieved between empirical results and the analytical
model. Simulations show that full network connectivity incurs high-
er average delay and lower achievable firing rate than exponential
connectivity. In addition, multicast enables higher firing rate than
unicast and broadcast, and scales better with network size.

The size of the routing tables is discussed in Section 5, as well as
architectures for table size reduction. In Section 5.1, we analyze
routing tables and general storage requirements for each proposed
architecture and communication methods. Allowing arbitrary con-
nectivity requires O(n2) storage entries, regardless of the architec-
ture, a major scaling limitation. For the MC mesh NoC architecture,
which is best in terms of performance and cost (Section 3), distrib-
uted routing is preferred over source routing. In Section 5.2, we
find that when only bounded connectivity is allowed, the routing
table size is independent of the network size. Non-uniform storage
allocation further decreases the overall storage size or, alterna-
tively, extends the connectivity bounds. Finally, in Section 6 we
propose modular hierarchical architecture. Modularity helps ex-
tend the architecture from a single chip to a multi-chip card and
further to multi-card system, supporting NN of up to one million
neurons. Conclusions and possible future research are presented
in Section 7.
2. Background and related work

2.1. Spiking neural networks

Artificial neural networks have evolved over three different
generations [31], with each generation raising a level of biological
realism relative to its predecessor. The first generation McCulloch-
Pitts threshold neuron [31] produces a ‘high’ output if the linear
combination of the inputs exceeds a threshold. Neurons of the sec-
ond generation employ a continuous activation function that out-
puts a firing rate, which is more biologically realistic and more
computationally powerful [5]. The third generation spiking neural
networks [32] are inspired by neurobiological studies indicating
that neural information is not entirely encoded by firing rate but
also by spike timing and by spatio-temporal codependency be-
tween spikes of different neurons. Spiking neurons communicate
by short pulses. Spiking Neural Networks (SNN) are the subject
of this paper.

Various models of spiking neurons exist [33]. They differ from
each other in the level of biological realism, but their common
principle is the leaking integration of charge produced by incoming
spike. They fire a short spike when the integrated charge exceeds a
threshold.

Modeling of SNN connectivity structure also varies. In the fully
connected Hopfield network [4] every neuron sends its output to
all other neurons. It is useful for our discussion since it represents
an upper bound on connectivity. The alternative RNDC NN (ran-
domly connected neural network) model [1] is inspired by neuro-
biological data [34] suggesting that connectivity is rather
stochastic and the probability of connection between two neurons
decreases exponentially with the distance between them, while
the number of connections for each neuron increases with dis-
tance. RNDC connectivity is a simple representative of various
NN models suggesting decrease of connection probability with
distance.

We note that emulation of both types of NNs on a multiple pro-
cessor architecture results in uniform traffic among the processors.
Traffic is uniform if all the links of the interconnect are equally uti-
lized. More formally, traffic is uniform if the rate of traffic messages
crossing any crosscut that divides the processors into two roughly
equal groups is the same regardless of how the crosscut is drawn.
Uniformity of traffic can easily be explained by observing unifor-
mity in average spike firing rates of all neurons.
2.2. Neural network implementation

Parallel processors and special purpose hardware are most suit-
able for fast emulation of computationally intensive neural net-
works, for both real time applications and for very large tasks
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such as long-term learning simulations, which (thanks to the high
performance of modern hardware) can be executed much faster
than real time. Previous highly flexible and configurable imple-
mentations were limited to emulating a small number of neurons
[8], while systems of many neurons offered limited flexibility [6,7],
and flexible systems of many neurons required very large imple-
mentations [9], due to the quadratic complexity of a fully con-
nected design. Analog implementations of spiking neural
networks appear to execute faster, and require less power than
some digital ones [35], but they are usually much less flexible, less
programmable and employ fixed interconnect. Hence, they are less
suitable for general purpose neural network chips. Systolic array
implementations of NN, such as SYNAPSE [36] imply a fixed inter-
connect topology and are limited in the models that they can
implement. Systolic arrays are most suitable to conventional static
neural networks (compute-bounded problem), but inadequate for
the simulation of spiking neural networks (interconnect-bounded
problem).

Hierarchical and simplified communication methods have been
used to mitigate the complexity of full connectivity. Shared bus
neural network implementations typically provide efficient event
driven communications, whereby only the address of the spiking
neuron is broadcast to all bus elements. Non-arbitrated shared
bus, which detects and ignores collisions, was described in [10].
Other works employed arbitrated buses using the Address Event
Representation (AER) asynchronous protocol [11–13]. That repre-
sentation is useful for either point-to-point connections [11,12]
or broadcasting over a shared bus [13]. The former case requires
expensive communication network while parallelism is quite lim-
ited in the latter case.

Network on Chip (NoC) architecture have been proposed by Jan-
tsch et al. [39,14–16] to solve interconnect problems in SoC. NoC
are particularly attractive for spiking neural networks, as they
facilitate parallelism, reconfigurability, independence of the net-
work topology, and network expandability. Multicast NoCs [40]
closely emulate one-to-many neural communications. A small 2D
torus network with four processing elements (neurons) per routing
node is described in [17]. The architecture supports deadlock free
XY routing, and uses wormhole packet switched communication.
The packet combines the outputs of four logical neurons and is sent
to the router of the next layer of the layered neural network router,
thus enabling only layered structure and not allowing arbitrary
communications. That NoC architecture is less applicable to spik-
ing neural networks. Scaling is also limited.

An FPGA-based mesh NoC using XY unicast routing for clustered
neural network has been proposed in [19]. As shown in this paper,
unicast communications may be a limiting factor in neural net-
work implementations.

Spinnaker, a large scale multi-chip spiking neural-network sys-
tem was reported in [18]. A hierarchy of seven chips, 20 processors
per chip and 1000 spiking neurons per processor is contemplated.
Small AER packets are exchanged using multicast NoC. As the abil-
ity to emulate arbitrary neural network connectivity depends
strongly on the size of routing tables, the paper addresses optimi-
zation techniques to reduce table sizes.

While [18] employs a mesh, [17] uses 2D torus and [19] de-
scribes a more complex hierarchy. While [17,19] rely on unicast,
[18] chooses multicast. While [17] uses wormhole routing,
[18,19] employs short AER packets. Packets in [18] consist of
source address and [19] uses destination address. This variety of
approaches raises the question of which architectural choices are
preferred over others, and whether indeed NoC is the appropriate
solution for the emulation of large scale neural networks. This pa-
per attempts to address these questions, by an analytical evalua-
tion and comparison of different interconnect architectures
emulating different neural network topologies. Previous cost/per-
formance characterizations employed either analytical [22,23] or
empirical [24,25] approaches. We adopt the method of [20], for
its generality and applicability to NoC and non-NoC architectures,
as explained in the following section.

Storage size is a big obstacle to scalable NoC design. It is sug-
gested in [27] that there is a trade off between the efficiency of
routing scheme and its storage requirements. It is shown that gen-
eral routing schemes, which guarantee a stretch factor of k (reflect-
ing that the average path is k times longer than optimal), require
storing a total of O(n(1+1/k)logn) bits of routing information in the
network, tag the vertices with O(logn)-bit names and use
O(logn)-bit packet headers. For optimal routing path (k = 1) the
storage requirement is O(n2 logn). There exist different approaches
toward the reduction of routing table size. Interval routing is pre-
sented in [28] and is extended for regular meshes and tori in [29].
Interval routing reduces RT sizes in large networks by grouping the
set of destination addresses that share the same output port into
intervals of consecutive integers. In turn-table routing [30], used
for irregular mesh, the router performs a default operation (‘‘route
XY” or ‘‘don’t turn”) unless it finds the destination address in its
routing table. Both approaches decrease routing tables within the
routers but do not deal with O(n2 logn) destination entries within
the sources. In this paper we evaluate the scalability of different
interconnect architectures by analyzing their total storage require-
ments (in routers, sources and destinations) and compare them to
each other and to the lower bound in [27]. In addition, a scalable
modular NoC architecture is proposed
3. Network architecture

This work investigates the emulation of neural networks on
many processors inside a single SoC. Several neurons can be allo-
cated to each processor. Spikes transmitted between neurons that
are assigned to the same processor are transferred internally with-
in the processor. Spikes between neurons assigned to different pro-
cessors must be transferred over the interconnect. In the following,
Section 3.1 defines cost and performance metrics. In Sections 3.2–
3.5, we consider four alternative implementations for how the pro-
cessors are interconnected, and evaluate how the interconnect
architecture impacts the cost and performance of configurable
neural networks. In Section 3.6, we summarize the results. We
compare the following interconnect architectures:

NoC_Mesh: a mesh network-on-chip.
NoC_Tree: a tree network-on-chip.
AER_BUS: a broadcasting AER protocol on a shared bus.
P2P: a point to point reconfigurable connection matrix.

Note that other common NoC topologies such as hexagon mesh
[18] and torus [17] are closely related to the mesh. In addition, the
wrap-around property of the torus does not reflect biological sys-
tems, as the cortex itself may be modeled as a flat surface.

We consider three different communication methods (‘‘casts”):
unicast (UC), multicast (MC) and broadcast (BC). Two types of neu-
ral network models are investigated: Hopfield network [4], which
requires full connectivity of the neurons, and Randomly Connected
NN (RNDC NN), defined by random exponential connectivity. The
former represents maximal connectivity bounds, whereas the lat-
ter, adopted from [1], represents more realistic scenarios.
3.1. Cost and performance metrics

We use a metric similar to [20]. Cost is associated with inter-
connection area and power dissipation (another cost item, not dis-
cussed in this paper, relates to the size of memory needed for
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routing tables). Performance is evaluated by effective bandwidth,
throughput and maximal spiking frequency of the neurons. The
maximal theoretical bandwidth is:

BWðnn; arch; castÞ ¼

P
i2flinksg

wðiÞf ðiÞ

TotalDistðnn; arch; castÞ ð1Þ

were w(i) is the width of link i, f(i) is its switching frequency, and
TotalDist(nn,arch,cast) is the average total distance traversed by
each neural spike (going to all its destinations), measured in the
number of hops; arch 2 {NoC_Mesh, NoC_Tree, AER_BUS, p2p},
cast 2 {UC, MC, BC}, and nn 2 {Hopfield, RNDC}. While the maxi-
mum BW indicates the possible level of parallelism for a given
architecture, communication method and neural network, it does
not take into account inter-packet interactions and variable latency.
If the network is allowed to operate at maximum BW, it stalls to a
halt due to congestion. It is shown empirically in Section 4 that if
the network operates below the congestion threshold, there are
no congestion effects at all, and we can assume fixed small router
delays. This is modeled by an empirical architecture-specific utiliza-
tion factor Uarch, defining the effective bandwidth:

BWeff ðnn; arch; castÞ ¼ BW � Uarch ð2Þ

For topologies with a constant number of wires per link �w and con-
stant frequency, (1) becomes:

BWeff ¼
�w � TLarch

TotalDist
farchUarch ð3Þ

where TLarch is the total number of links in the architecture. The area
cost of the architecture is calculated as a total wire area consumed
by the interconnect in all metal layers. The NoC circuit area is con-
sidered to be significantly smaller than the area of the interconnect
wires and it scales much better than wires, thus it does not affect
the asymptotic results:

Aarch ¼Wp

X
i2fArch linksg

wðiÞlðiÞ ð4Þ

where l(i) is the length of link i and Wp is the wire pitch for a given
technology. We disregard router delays, since they do not scale with
network size and thus the link delay is also the link cycle time:

Tcycle ¼ R0C0
�l2 ð5Þ

where R0 and C0 are the wire resistance and capacitance per unit
length, respectively, and �l is the average link length. Thus the max-
imum link frequency is:

farch ¼
1

Tcycle
¼ 1

R0C0
�l2

ð6Þ

Power dissipation is estimated as dynamic power dissipated on the
link and gate capacitances:

Parch ¼
X

i2flinksg
CðiÞfarchðiÞV2

DDUarch ð7Þ

The maximum spiking frequency is determined by the biologically
inspired neuron refractory period Trefractory, a ‘‘blanking” time follow-
ing a spike during which the neuron cannot fire again:

fspike;max ¼
1

Trefractory
ð8Þ

In biological cortical neural networks, the refractory period and the
average synaptic (axonal) delay are typically in the same range (2–
10 ms), which in our case equals the packet end-to-end delay:

Trefractory ffi TAx ffi Tcycle � Dist ð9Þ

where Dist is the average distance (in number of hops) between two
connected neurons.
In the special case of unicast NoC implementations, each spike
results in a succession of packets, one per destination. The delay
between issuing the first and the last packets of the same spike
is NavgTcycle, where Navg is the average number of spike destinations
for a given neural network. We arbitrarily choose a minimal time
between successive spikes fired by the same neuron of 10NavgTcycle

(the inter-spike interval should be longer than the time of sending
all packets of one spike: Fig. 2) and the maximal firing frequency
for unicast NoCs combines both issue and refractory delays:

f UC
spike;max ¼

1

minðTcycle � 10Navg ; TcycleDistÞ
� 1

10NavgTcycle
ð10Þ

For multicast and broadcast, only one packet is issued per each
spike regardless of its number of destinations. The maximal firing
frequency for multicast and broadcast NoC is thus implied by (9):

f MCjBC
spike;max ¼

1

TcycleDist
ð11Þ

The above definition of maximal firing frequency reflects the basic
property of refractory time in neural networks in the presence of
the geometrical and electrical delays of the implementation. Note
that the maximal firing frequency does not necessarily match the
maximal NoC bandwidth. Moreover, as shown below, some of the
studied implementations (especially broadcasting NoC and BUS)
are jammed when all neurons fire constantly at their maximal
frequency.

BWeff of (3) is the average rate at which an entire network ab-
sorbs new messages. The average rate at which a single processor
can feed spikes into the network is obtained by dividing into the
number of processors np:

fp;out ¼
BWeff

np
ð12Þ

The fact that the maximal firing rate fspike,max may be different than
fp,out is expressed by a factor K, indicating the degree to which a gi-
ven implementation enables neurons to operate at their maximal
rate and providing a figure of merit for comparing implementations.
In other words K is the ratio of delivered and offered spiking rates:

K ¼ fp;out

fspike;max
ð13Þ

If K > 1, multiple logical neurons can fit efficiently into a single
physical processor. If K < 1, fspike,max is unachievable. Finally, the
cost–performance ratio R is:

R ¼ BWeff ;arch

Aarch � Parch
ð14Þ

As noted above, NN information is encoded both spatially (who sent
the spike) and temporally (when the spike occurred). Thus, the neu-
ral network emulation has to preserve both spatial and temporal
relations among neurons. Timing of spike arrivals at neurons can
be preserved if the spike propagation latencies in the biological
NN are imitated in the emulation. To reflect this property, we define
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Relative Latency Preservation, based on the ratio of the biological to
architectural latencies lNN/larch and considering the normalized var-
iance of that ratio.

The average of lNN/larch ratio is given by:

l lNN

larch

� �
¼ 1

nðn� 1Þ
Xn

i¼1

Xn

j¼1

lNNði; jÞ
larchði; jÞ

� �
ð15Þ

The variance is:

Var
lNN

larch

� �
¼ 1

n2

Xn

i¼1

Xn

j¼1

lNNði; jÞ
larchði; jÞ

� l lNN

larch

� �� �2

ð16Þ

And the relative latency preservation ratio is:

RLP ¼
Var lNN

larch

h i
l lNN

larch

h i ¼
1

n2

Pn
i¼1

Pn
j¼1

lNNði;jÞ
larchði;jÞ

� l lNN
larch

h ih i2

l lNN
larch

h i ð17Þ

lNN(i, j) and larch(i, j) are the latencies between neuron i to neuron j in
the original and emulated networks, respectively. Low levels of RLP
indicate well preserved relative latency, meaning that the emula-
tion process does not distort inter-neuronal delays but only scales
them (usually downwards). RLP = 0 indicates maximum
preservation.

3.2. Mesh NoC

A mesh NoC comprises n processors and n routers arranged in affiffiffi
n
p
�

ffiffiffi
n
p

mesh (Fig. 3).
The total number of links in the mesh is:

TLMesh ¼ 2 �w
ffiffiffi
n
p
ð
ffiffiffi
n
p
� 1Þ ð18Þ

The average distance between two nodes in the mesh is
DistMesh ¼ 2

3

ffiffiffi
n
p

[38]
Considering the preservation of relative latency, we note that in

the biological NN the spike propagation latency is proportional to
the distance between neurons, lNN(i, j) / D(i, j), and thus if the phys-
ical mapping preserves the initial layout and the latency in the
interconnect architecture is proportional to the distance, then the
relative latency is well preserved. Both conditions are met in a
mesh NoC: A cortical 2D surface is mapped to a 2D mesh, the map-
ping distortion is minimal and the distance is mapped to the num-
ber of hops: D(i, j) / Nhops(i, j). If the network operates below the
congestion threshold, the latency is larch(i, j) ffi Nhops(i, j) � Tcycle, thus
minimizing RLPmesh, and ideally RLPmesh = 0.

3.2.1. Emulating Hopfield NN on a mesh NoC
Consider a Hopfield (fully connected) NN emulated on a unicast

mesh NoC. For simplicity of the analysis, assume that each proces-
sor emulates a single neuron. For each spike, a neuron sends a
packet to all the other neurons (n � 1 packets). The total number
Fig. 3. Mesh NoC.
of hops traversed by one spike is the sum of distances between this
neuron and all other neurons:

TotalDistHopfield
UC;Mesh ¼ ðn� 1Þ � DistMesh ¼

2
3
ðn� 1Þ �

ffiffiffi
n
p

ð19Þ

Substituting (18) and (19) into (3) yields:

BWHopfield
eff ;Mesh;UC ¼

3 �wffiffiffi
n
p
þ 1

fNoCUNoC ð20Þ

and the average frequency of feeding new spikes from a single pro-
cessor is:

f Hopfield
p;out;Mesh;UC ¼

BWHopfield
eff ;Mesh;UC

n
¼ 3 �w

nð
ffiffiffi
n
p
þ 1Þ

fNoCUNoC ð21Þ

Following (10) we conclude:

f UC
spike;max ffi

fNoC

10n
ð22Þ

Comparing the results of (20) and (22) we can derive:

K ¼
f Hopfield
p;out;UC

f UC
spike;max

ffi 30 �wUNoCffiffiffi
n
p ¼ Oð1=

ffiffiffi
n
p
Þ ð23Þ

This result implies that the UC mesh NoC does not offer sufficient
bandwidth to emulate a Hopfield NN at the maximal firing fre-
quency. Only about nK ¼ Oð

ffiffiffi
n
p
Þ neurons may fire close to their

maximal rate and the remaining other neurons will fire at a negligi-
bly low rate. Alternatively, all neurons could fire at a 1=

ffiffiffi
n
p

fraction
of their maximal rate.

Turning now to multicast and broadcast NoCs, they are essen-
tially the same for Hopfield NN, as each spike is transmitted to
n � 1 other neurons. The number of hops traversed per spike is
the number of edges in the mesh spanning tree,

TotalDistHopfield
MC=BC ffi n ð24Þ

Thus:

BWHopfield
eff ;MCjBC ¼ 2 �wfNoCUMCjBC 1� 1ffiffiffi

n
p

� �
¼ Oð1Þ ð25Þ

Intuitively, one packet, sent to all neurons, utilizes the entire net-
work. Thus, the network can handle only one spike at a time. The
average NoC input frequency is:

f Hopfield
p;out;MC=BC

¼
BWHopfield

eff ;MC=BC

n
ffi 2 �wfNoCUNoC

n
ð26Þ

The fact that the source neuron issues one packet per spike enables
a much tighter bound for spiking frequency, following (11):

fspike;max ¼
1

Trefractory
ffi 3f NoC

2
ffiffiffi
n
p ð27Þ

Comparing (27) and (26) yields:

KHopfeild
Mesh;MC=BC ffi

4 �wUNoC

3
ffiffiffi
n
p ¼ Oð1=

ffiffiffi
n
p
Þ ð28Þ

The remaining parameters depend only on the interconnect topol-
ogy, and are the same for all communication methods:
Table 1
Hopfield network emulated on a mesh NoC.

Metric UC MC BC

BW Oð1=
ffiffiffi
n
p
Þ O(1) O(1)

Area O(n)
Power O(n)
Spiking frequency O(1/n) Oð1=

ffiffiffi
n
p
Þ Oð1=

ffiffiffi
n
p
Þ

K Oð1=
ffiffiffi
n
p
Þ



Table 2
RNDC with k ffi

ffiffiffi
n3
p

; C ffi
ffiffiffi
n2
p

on a mesh NoC.

Parameter UC MC BC

BW O n
1
6

� �
Oð

ffiffiffi
n
p
Þ O(1)

Area O(n)
Power O(n)
Spiking frequency Oð1=

ffiffiffi
n
p
Þ Oð1=

ffiffiffi
n3
p
Þ Oð1=

ffiffiffi
n
p
Þ

K Oð1=
ffiffiffi
n3
p
Þ O n�

1
6

� �
Oð1=

ffiffiffi
n
p
Þ
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Amesh ¼ 2Wpl �w
ffiffiffi
n
p
ð
ffiffiffi
n
p
� 1Þ

Cmesh ¼ C02l �w
ffiffiffi
n
p
ð
ffiffiffi
n
p
� 1Þ

fmesh ¼
1

R0C0l2 ð29Þ

Pmesh ¼ P02 �wUNoC
ffiffiffi
n
p
ð
ffiffiffi
n
p
� 1Þ

P0,V2
dd=R0l

The asymptotic metrics for Hopfield NN emulated on a mesh NoC
are summarized in Table 1

3.2.2. Emulating RNDC NN on a mesh NoC
For RNDC model, the probability of having a connection from

neuron a to neuron b is defined similarly to [1]:

pða; bÞ ¼ C

2pk2 e�Dða;bÞ=k ð30Þ

where D(a,b) is the Euclidean distance between a and b, k is a spa-
tial connectivity constant, and C = Nlinks = kp(�)k is the average num-
ber of connections per neuron. The mean distance between two
connected neurons is:

Dist ¼ 1
2pk2

Z Z
x;y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
e�

ffiffiffiffiffiffiffiffiffi
x2þy2
p

=k dxdy ¼ 2k ð31Þ

When emulating RNDC neural network on a unicast mesh NoC, a
neuron sends individual packets to all of its C destinations. The
average total number of hops for each spike packet is:

TotalDist ¼ Dist � Nlinks ¼ 2kC ð32Þ

Thus, the bandwidth (3) of RNDC emulated on unicast mesh NoC
is:

BWRNDC
eff ;UC ¼

�w
ffiffiffi
n
p
ð
ffiffiffi
n
p
� 1Þ

kC
fNoCUNoC ð33Þ

Simulations in [1] provide an example of small neural microcircuits
(�1000 neurons) that reach optimal performance with:

k ffi
ffiffiffi
n3
p

C ffi
ffiffiffi
n2
p

ð34Þ

Substituting these values for unicast mesh:

BWRNDC
eff ;UC ffi �w �

ffiffiffi
n6
p
� fNoCUNoC ð35Þ

Using (31) and (34) in (10) we obtain:

f UC
spike;max ¼

1
10C � Tcycle

¼ fNoC

10
ffiffiffi
n
p ð36Þ

Also,

f UC
p;out ¼

BWRNDC
eff ;UC

n
¼ 1� 1ffiffiffi

n
p

� �
�w
kC

fNoCUNoC ¼ O n�
5
6

� �
ð37Þ

Similarly, the K ratio is:

KUC ¼
f UC
p;out

f UC
spike;max

¼ �wUNoC 1� 1ffiffiffi
n
p

� �
10C
kC
¼ O

1
k

� �
¼ O

1ffiffiffi
n3
p
� �

ð38Þ

For RNDC NN emulated on a multicast NoC, the total number of
hops is approximated by the length of the linear path, traversing
a distance of 2k to the first destination and then adding one hop
per destination:

TotalDistRNN
Mesh;MC ¼ C þ 2k ð39Þ

Thus, the bandwidth (3) of RNDC implemented on a multicast mesh
NoC is:
BWRNDC
eff ;mesh;MC ffi

2 �w
ffiffiffi
n
p
ð
ffiffiffi
n
p
� 1Þ

ðC þ 2kÞ fNoCUNoC

¼ 2 �w
ffiffiffi
n
p
ð
ffiffiffi
n
p
� 1Þ

ð
ffiffiffi
n
p
þ 2

ffiffiffi
n3
p
Þ

fNoCUNoC ¼ Oð
ffiffiffi
n
p
Þ ð40Þ

Using (31) and (34) in (11) we obtain:

f MC
spike;min ¼

fNoC

2k
¼ fNoC

2
ffiffiffi
n3
p ð41Þ

Following (40):

f MC
p;out ¼

2 �wð
ffiffiffi
n
p
� 1Þffiffiffi

n
p
ðC þ 2kÞ

fNoCUNoC ¼ O
1ffiffiffi
n
p
� �

ð42Þ

Finally the K ratio is:

KMC ¼
f MC
p;out

f MC
spike;max

¼ 2 �wð
ffiffiffi
n
p
� 1Þ2kffiffiffi

n
p
ðC þ 2kÞ

UNoC ¼ O
k

C þ k

� �
¼ O

1ffiffiffi
n6
p
� �

ð43Þ

Another practical case of random connectivity is the Locally Con-
nected NN (LCNN) where:

LCNN ¼ fRNDCjk ffi C � ng ð44Þ

Thus, since the connectivity is practically bounded,

BWLCNN
eff ;mesh;MC ¼ O

n
C

� �
!

C;k�n
OðnÞ ð45Þ

f MC
p;out ¼

2 �wð
ffiffiffi
n
p
� 1Þffiffiffi

n
p
ðC þ 2kÞ

fNoCUNoC !
C;k�n

Oð1Þ ð46Þ

KMC ¼
�wð

ffiffiffi
n
p
� 1Þ4kffiffiffi

n
p
ðC þ 2kÞ

UNoC ffi
4
3

�wUNoC ¼ Oð1Þ ð47Þ

Thus, the multicast mesh NoC offers sufficient bandwidth for emu-
lating any size of locally connected NN. Both maximal firing fre-
quency and the average NoC input frequency do not decrease
when the network size grows. For instance, a NoC with one logical
neuron in each processor is only 75% utilized even if all neurons fire
constantly at their highest frequency.

With broadcasting NoC the spike is sent to all destinations
regardless of connectivity pattern and the performance is indepen-
dent of the neural network topology. Thus, all BC performance
parameters are similar to those calculated for the Hopfield NN
model (Eqs. (25)–(28)). The remaining cost factors depend on nei-
ther the NN topology nor the communication method. They are the
same as in (29).

Setting UNoC constant for all communication methods (UC, MC,
BC) we achieve same operating frequency and power consumption
but different levels of throughput: MC provides the highest
throughput using the same power. Table 2 summarizes asymptotic
results for the RNDC model implemented on a mesh NoC using dif-
ferent communication methods (UC, MC, BC).

3.3. Tree NoC

Consider NoC with a binary tree topology, having n physical
neurons at the leaves and n � 1 routers as in Fig. 4. The results



Fig. 4. Regular binary tree with eight leaves.

Fig. 5. Fat tree topology example.
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can also be generalized to trees of higher degrees. The diameter of
the binary tree is 2log2n. The total number of links is:

TLtree;NOC ¼ 2ðn� 1Þ �w ð48Þ

In a Hopfield (full connectivity) neural network with unicast com-
munications, half of all traffic passes through the root, resulting in
a serious congestion. This issue has been addressed by fat-trees
(FT) [2], in which link bandwidth increases when going upward to
the root, maintaining more uniform traffic. We employ the approx-
imation of FT of [3] (Fig. 5), enabling nodes with small constant de-
gree at the cost of more routers (n log(n)/2) and more complex
connectivity (n log(n) links). Such a FT introduces multiple alterna-
tive paths, providing additional bandwidth for short messages.

Based on the mesh NoC analysis of Section 3.2, we conclude that
Hopfield NN is better emulated using either broadcast or multicast
rather than unicast communications. Broadcast and multicast per-
form identically emulating Hopfield NN, and result in uniform traf-
fic on the regular tree. For RNDC NN topology, recalling the
exponential connection probability of (30), we investigate the
question whether a FT is needed. The spikes sent from a neuron
which is connected to other neurons at distance D traverse only
a sub-tree of k = log(D) levels, or k + 1 levels when connected to
other neurons at distance 2D (a less likely case). The ratio of band-
width required in levels k + 1 and k is reflected by the ratio of the
probabilities:

BWðkþ 1Þ
BWðkÞ ¼ pð2DÞ

pðDÞ ¼¼
e�2D=k

e�D=k
¼ e�D=k ¼ e�2K =k ð49Þ

In a regular binary tree, the link capacity reduces by half at every
level, e�2k=k ¼ 0:5, leading to:

k ¼ log2ðkÞ � 0:52 ð50Þ
Thus, for connectivity with average distance 2k, a sub-fat tree of
height k � log2(k) provides the required communications, and the
bandwidth of a normal binary tree suffices at the higher levels of
the tree. In conclusion, the desired architecture combines a fat-tree
at the bottom with a normal binary tree at the higher levels,
depending on k. To satisfy any value of k, a full fat tree is required.
Next we compare FT NoC performance to mesh NoC. The number of
links in the FT:

TLFT;NOC ¼ nlog2ðnÞ ð51Þ

The average link length of the FT is computed as follows. Assuming
layout as in Fig. 5 and counting link length as the sum of horizontal
and vertical distances, the total distances in the FT is:

Xn log n

1

li ¼ l n logðnÞ � 1
2

� �
þ n2

4

� �
¼ Oðn2Þ ð52Þ

And the average length �lFT NoC is:

�lFT NoC ¼
1

n log n

Xn log n

1

li ffi l
n

4 logðnÞ þ 1
� �

ð53Þ

Recall that the average switching frequency is farch ffi 1
R0C0

�l2
. For FT

NoC this yields

fFT;NoC ffi
16ðlog nÞ2

R0C0l2n2
ð54Þ

Fat Tree maximal switching frequency decreases quadratically with
network size and it is �n2 times smaller than the mesh switching
frequency

fFT;NoC �
16ðlog nÞ2

n2 fMesh;NoC ð55Þ

The ratio of FT to mesh total distances (in hops) traversed by one
spike is expressed by the ratio of diameters:

TotalDistFT;NoC ffi
logðnÞffiffiffi

n
p TotalDistMesh;NoC ð56Þ

The total length (in number of hops) of the FT is:

TLFT;NoC ¼ nlog2ðnÞ ¼ log2ðnÞ � TLMesh;NoC ð57Þ

Thus, the FT NoC bandwidth is:

BWeff ;FT;NoC ¼
TLFT;NOCfFT;NoC

TotalDistNN
FT;NoC

UNoC

ffi
16 logn

2

	 
3 ffiffiffiffiffi
n�
p

TLMesh;NOCfMesh;NoC

n2log2ðnÞTotalDistNN
Mesh;NoC

UNoC

¼ 16ðlog nÞ2

n
ffiffiffi
n
p BWeff ;Mesh NoC

BWeff ;FT;NoC

BWeff ;Mesh;NoC

¼ O
ðlog nÞ2

n
ffiffiffi
n
p

 !
ð58Þ

The area of FT is given by

AFT NoC ¼ TLFT;NoC ��lFT;NoC � �w �Wp ¼ �w �Wp � l
n2

4
þ n log n

� �
ð59Þ

And the power dissipation (using P0 as in (29)):

PFT;NoC ¼ CT fFT;NoCV2
ddUNoC ffi 4ðlog nÞ2 � P0UNoC ð60Þ

The relative latency preservation of the tree is higher (worse) than
that of the mesh. Inter-neuronal distances (as well as latencies),
which are Oð

ffiffiffi
n
p
Þ in the biological NN as well as in the mesh, are

converted to O(logn) on the tree. Thus, the average ratio is esti-
mated at
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l lNN

lTree

� �
¼ O

ffiffiffi
n
p

log n

� �
ð61Þ

The distances in the tree are approximated by the average tree dis-
tance log2n and the original inter-neuron distances are approxi-
mated by distances in mesh. According to [38], the second
moment of distances in 2D mesh, is:

E l2NN

h i
¼ 5

9
n� 7

9
þ 2

9n
ð62Þ

Using (62) we derive the variance of latency relations:

Var
lNN

ltree

� �
¼ E

lNN

ltree

� �2
" #

� l lNN

ltree

� �� �2

¼ 1

ðlog2nÞ2
E l2

NN

h i
� ðl½lNN	Þ2

¼ 1

ðlog2nÞ2
5
9

n� 7
9
þ 2

9n

� �
� 4

9
n

� �
¼ O

n

ðlog2nÞ2

 !
ð63Þ

Thus, the relative latency preservation in NoC tree is:

RLPtree ffi O
ffiffiffi
n
p

log2n

� �
ð64Þ

In summary, a fat tree is required for implementing RNDC on a tree
NoC, resulting in longer communication paths and consequently in
lower frequency compared to a mesh NoC. In addition, the latency is
not well preserved in the tree topology. Distances are distorted
when mapped onto the tree, resulting in high variance of the la-
tency transformations.

3.4. AER shared bus

The AER shared bus naturally employs only broadcast commu-
nications. A neuron transmits address events (namely, a packet
containing only its address) on the bus once it gains bus control.
Each receiving neuron compares the source address with the ad-
dresses of the neurons to which it is connected. Following [20]
the total length of a bus is LBUS ¼ lðn�4Þ

2 (Fig. 6).
Each spike occupies the entire bus regardless of the topology of

the emulated NN. Following (3), the bus effective bandwidth is:

BWNN
AER BUS ¼ �w � fBUS � UBUS ð65Þ

The bus operating frequency can be related to the mesh NoC fre-
quency following (6) and (29):

fBUS ¼
1

R0C0L2
BUS

¼ 4

ðn� 4Þ2
fNoC ð66Þ

Likewise, the bus BW can also be expressed in terms of the BW of
the MC mesh NoC (the preferred mesh NoC communication
method):
n

n

l
l

Fig. 6. AER shared bus topology.
BWHopfield
AER BUS ffi BWHopfield

Mesh;MC �
4

ðn� 4Þ2
UBUS

UNoC
ð67Þ

Evidently, AER bus utilization is lower than NoC utilization, and is
decreasing as the network size grows. Even when disregarding this
and assuming UBUS � UNoC, it is evident that NoC effective band-
width is about n2 times higher than the AER bus bandwidth. More-
over, the latter is n2.5 lower than the bandwidth of mesh NoC used
for RNDC emulation (40):

BWRNDC
AER BUS ffi BWRNDC

Mesh;MC �
4ffiffiffi

n
p
ðn� 4Þ2

UBUS

UNoC
ð68Þ

On the other hand, the area consumed by the AER bus is about twice
smaller than the area for NoC Mesh. The power dissipated by AER
bus follows (7):

PBUS ¼ CT fBUSV2
DDUBUS ¼ P0 �

2
ðn� 4ÞUBUS ð69Þ

where P0,V2
dd=R0d. Comparing with (29), observe that both the AER

bus and the mesh NoC dissipate roughly similar power, O(1/n). In
summary, the mesh NoC offers higher performance than the AER
bus at the same cost. Considering latencies, the bus transfers spikes
at a fixed latency lBUS of one cycle time, O(1). In a biological NN, sim-
ilarly to a mesh, the latency is a function of the distance:

l lNN

lBUS

� �
¼

2
3

ffiffiffi
n
p

Tcycle
¼ Oð

ffiffiffi
n
p
Þ ð70Þ

The variance of the latency ratio is:

Var
lNN

lBUS

� �
¼ E

lNN

lBUS

� �2
" #

� l lNN

lBUS

� �� �2

¼ 1
Tcycle

E l2
NN

h i
� ðl½lNN	Þ2

¼ 1
Tcycle

5
9

n� 7
9
þ 2

9n

� �
� 4

9
n

� �
¼ OðnÞ ð71Þ

and the relative latency preservation is higher than that of the mesh
and the tree:

RLPBUS ¼
OðnÞ

Oð
ffiffiffiffiffi
nÞ

p ¼ Oð
ffiffiffiffiffi
nÞ

p
ð72Þ
3.5. Point-to-point architecture

We consider n neurons arranged in a regular mesh and fully
connected with point-to-point (PTP) unidirectional XY routed
links. The total length of all PTP connections can be calculated by
multiplying the total number of links TLp2p = n(n � 1)/2 by the
average length of the link, �lp2p ¼ 2l

ffiffiffi
n
p

=3

LP2P ¼
1
3

l
ffiffiffi
n
p
� nðn� 1Þ ð73Þ

The average frequency for P2P is:

fP2P ¼
1

R0C0
�l2p2p

¼ 9

4R0C0l2n
¼ 9

4n
fNoC ð74Þ

With Hopfield NN (full connectivity) every spike traverses n � 1
links. The effective bandwidth is:

BWHopfield
eff ;P2P ¼

�w � TLP2P � fP2P � UP2P

n� 1
¼

�w � n � fP2P � UP2P

2
ð75Þ

It is intuitively evident that the P2P architecture can carry out n/2
simultaneous transactions with average frequency of fP2P. Similarly
to the AER BUS architecture, P2P bandwidth is compared with the
multicast mesh NoC implementation (25):
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BWHopfield
eff ;P2P ¼

�w � n � 9f NoC � UP2P

4n
¼ 9

4
UP2P

UNoC
BWHopfield

Mesh;NoC ð76Þ

Note that although there are more wires in P2P than in other net-
works, they are longer and hence slower so that the total bandwidth
remains similar to that of the mesh NoC.

Considering RNDC (random local connectivity) implementation
on P2P, every spike traverses on average C links. Applying average
connection length of 2kl to (6) yields the average frequency of

f RNDC
P2P ¼ 1

4R0C0l2k2
¼ 1

4k2 fNoC ð77Þ

The effective bandwidth for RNDC implementation on P2P is

BWRNDC
eff ;P2P ¼

�w � TLP2P � f RNN
P2P � UP2P

C
¼

�w � ðn� 1Þn � f RNN
P2P � UP2P

2C

¼
�w � ðn� 1Þn � fNoC � UP2P

8Ck2 ð78Þ

Comparing this to MC mesh NoC architecture (40):

BWRNDC
eff ;P2P ¼

ffiffiffi
n
p
ð
ffiffiffi
n
p
þ 1ÞðC þ 2kÞ
16Ck2

UP2P

UNoC
BWRNDC

eff ;mesh;MC ð79Þ

Using the assumption in (34),

BWRNDC
eff ;P2P ¼

ð
ffiffiffi
n
p
þ 1Þð

ffiffiffi
n
p
þ 2

ffiffiffi
n3
p
Þ

16n
2
3

� UP2P

UNoC
BWRNDC

eff ;mesh;MC !
n
1

ffiffiffi
n3
p

16

� UP2P

UNoC
BWRNDC

eff ;mesh;MC ð80Þ

Thus, while the effective bandwidth of Hopfield implementation is
about the same for P2P and mesh NoC, RNDC bandwidth of P2P
can be higher than the mesh NoC. The PTP area is:

AP2P ¼ LP2P �w ¼ l �w
3

ffiffiffi
n
p
� nðn� 1Þ ð81Þ

And P2P power dissipation is:

PP2P ffi fP2P � CT � V2
ddUP2P ¼

3
4

P0
ffiffiffi
n
p
ðn� 1ÞUP2P ð82Þ

Comparison P2P and mesh NoC costs:

PP2P

PNoC
ffi Oð

ffiffiffi
n
p
Þ and

AP2P

ANoC
ffi Oðn

ffiffiffi
n
p
Þ ð83Þ

These results imply that although point-to-point architecture can
provide better performance for certain neural network topologies
than mesh NoC, it comes at a price of higher power dissipation
and significantly higher area. The combined cost A�P of P2P is n2

times higher than the mesh NoC.
Table 3
Cost and performance comparison.

NoC mesh MC NoC fat tree AER bus P2P

Hopfield BW O(1) O log2n
n
ffiffi
n
p

� �
O 1

n2

� �
O(1)

RNDC BW O n
ðCþkÞ

� �
O log2 nffiffi

n
p
ðCþkÞ

� �
O 1

n2

� �
O ðn�1Þn

Ck2

� �
Practical RNDC BW Oð

ffiffiffi
n
p
Þ O log2n

n

� �
O(n�2) O n

5
6

� �
RLP O(1) O

ffiffi
n
p

log2n

� �
Oð

ffiffiffi
n
p
Þ –

Area O(n) O(n2) O(n) Oðn2 ffiffiffi
n
p
Þ

Power O(n) O(logn2) O(n�1) Oðn
ffiffiffi
n
p
Þ

perf/cost Hopfield O(n�2) O n�31
2

� �
O(n�2) O(n�4)

perf/cost RNDC O n�11
2

� �
O(n�3) O(n�2) O n�25

6

� �
3.6. Summary of cost and performance

In the previous sections we have analyzed cost and perfor-
mance of various interconnect architectures implementing neural
networks. In Section 2 it is shown that multicast is preferred for
NN emulation on mesh NoC, as summarized in Tables 1 and 2. In
Section 3.5, we have analyzed the cost and performance of NoC
tree, AER shared bus and point-to-point connectivity and com-
pared performance and cost to MC mesh NoC, as summarized in
Tables 1 and 3.

It is evident from Table 3 that mesh NoC with MC communica-
tions is preferred for large-scale configurable VLSI implementation
of neural networks. It offers the highest performance/cost ratio,
provides a high bandwidth which, thanks to high level of parallel-
ism, grows with the size of the network, and demonstrates best
preservation of relative latencies. Only the maximally parallel
P2P provides a higher bandwidth than the mesh NoC, but at an ex-
tremely high cost. The shared bus and fat tree implementations are
less favorable.

One method of improving bandwidth of the bus and tree topol-
ogies is to use pipeline registers. However, when pipelined, the tree
could be considered a mesh with additional n2 registers, emulating
the connectivity of the fat tree, and the bus would practically be-
come a broadcasting mesh.

4. Performance simulations

The mesh NoC architecture was simulated using UC, MC and BC
in order to validate the analytical model and to gain insight into
network behavior. We employed the NS2 Network Simulator [21]
to investigate our neural networks. The link frequency fNOC = 1 GHz
and the packet header is 10 bit. The network size n (n processors
emulating one neuron each) was varied from 25 to 196 and higher
in some cases. For each n, a MC and a UC mesh NoCs are simulated
with both Hopfield and RNDC connectivity patterns, using Poisson
firing rate. The realistic connectivity parameters of RNDC (34) were
employed. For each simulated network, the firing rate was varied
in search of a ‘‘knee point” (Fig. 7), in which contentions became
significant and the average network delay started to grow expo-
nentially. For lack of analytical identification of that knee point,
we place it at the point where the average delay doubles relative
to its initial value. This metric is selected as the maximal firing fre-
quency. We then examine the dependence of the maximal firing
frequency on network properties, validating our analytical model.

Comparing Hopfield NN (top row of Fig. 7) with RNDC (bottom
row), we observe that the full connectivity of Hopfield networks
comes at the price of higher average delay and lower achievable
firing frequencies. Considering unicast (left-hand side of Fig. 7) ver-
sus multicast (right-hand column), it is evident that multicast en-
ables higher firing rates. Notice, that while above the knee point
the delays are intolerable, below it the delays seem constant. This
validates the model assumption that the network effectively oper-
ates with no congestion. Notice further that if each processor emu-
lates k neurons, then the maximum firing rate would decrease
proportionately by k.

The maximum firing rates of a Hopfield NN achieved for the
simulated values on n is shown in Fig. 8a. The firing rate achieved
using UC is lower than MC and BC, and it decreases faster with n.
The simulations indeed validate that the MC firing rate behaves
approximately as O(1/n) and UC frequency behaves as Oð1=n

ffiffiffi
n
p
Þ.

Similar results for RNDC NN are shown in Fig. 8b. MC achieves
higher spiking rate than both UC and BC, and the rate scales better
with network size. The simulations indicate that MC spiking rate
ranges between O(n�0.5) and O(n�0.8) depending on the specific
connectivity pattern. BC spiking rate is O(1/n), the same as for Hop-
field NN, and UC scales slightly better than BC.
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Fig. 7. Average end-to-end delay vs. firing frequency on a mesh NoC: (a) Hopfield NN, unicast, (b) Hopfield NN, multicast/broadcast, (c) RNDC NN, unicast, and (d) RNDC NN,
multicast/broadcast.
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Fig. 8. Maximal firing frequency vs. network size on a mesh NoC, comparing UC, MC and BC. (a) Hopfield NN. (b) RNDC.
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The delivered vs. maximal offered spike ratio K is derived from
simulations. Supporting the results in Section 3.2 the maximal of-
fered frequency, which indicated biologically inspired maximal fir-
ing rate of the neuron, in most of the cases is higher than maximal
delivered frequency, which indicates NoC capacity. Example of the
phenomenon is shown in Fig. 9: for each NN size, the maximal of-
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fered spike frequency (marked by dashed lines) is higher than the
respective knee point (the maximal delivered spike frequency).
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Fig. 11. Delivered-to-offered rate ratio for
Although the maximal offered spike frequency may be a good
theoretical metric, it does not provide a realistic estimation of
the actual average spiking frequency in a real ANN. In fact, if all
neurons constantly fire in their maximum rate, the network be-
comes saturated and cannot encode any information or perform
any computational task. Thus, the average neuron firing rate never
reaches the maximum, to allow effective information encoding. We
arbitrarily choose a network with average neuron firing rate of one
tenth of the maximal rate and about two decades of rate variance.
The average offered frequency vs. network size is shown in Fig. 10,
and compared with the maximal delivered rate in Fig. 11. For small
network size, the ratio is higher than one, implying that NoC pro-
vides enough capacity to emulate more than one logical neuron in
the neural processor. For example, emulating RNDC NN with 50
neural processors on MC mesh NoC, one can allocate four neurons
to each processor. As the network size grows, the delivered vs. of-
fered ratio decreases for all simulated cases, which agrees with the
analytical model. The best ratio (declining at the slowest rate), is
achieved with RNDC model emulated on MC mesh NoC. This result
also fits the theoretical analysis. The network size yielding a deliv-
ered/offered ratio of unity indicates the point beyond which the of-
fered frequency cannot be reached even with one neuron per
processor. With the broadcasting scheme, the ratio of one is met
with NN size of one hundred. Other curves are extrapolated to find
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this point: 500 for UC Hopfield, 20,000 for UC RNDC and 3000 for
MC RNDC. Note that while the ratio for UC appears better than
for MC, it is misleading because the offered rate of UC is actually
very low (Fig. 10).

This paper focuses on finding the maximal number of logical
neurons that one physical processor can implement, assuming
the network is maximally utilized. Another interesting problem
is the trade-off in allocating area and power to processors versus
the network when the target number of logical neurons in the
NN is pre-defined. Should we implement only a single neuron in
each processor and a large network with many processors, or
should we implement a very large number of neurons in each pro-
cessor and a small network? The more neurons in a processor, the
less bandwidth is required from the interconnect but at the cost of
reduced parallelism. The optimum point in this trade-off is largely
a function of the processor architecture.
Table 4
Routing table and packet header size (asymptotic O(�)).

Arch RT size Total storage Header size

Source Dest Router

AER bus 0 n 0 n2 logn
P2P n 0 0 n2 1
NoC UC n 0 0 n2 logn
NoC BC 0 n 0 n2 logn
NoC MC SR n 0 0 n2 n
NoC MC DR 0 0 n n2 logn
5. Routing tables for NN architectures

5.1. Routing table and packet header size analysis

Neural network interconnect architecture should accommodate
high element count. To achieve that, it should be scalable, modular
and extendable. Naturally, the size of routing tables and the ensu-
ing power and area grow with the network size. Moreover, the
time required to access each table, which affects performance, de-
pends on its size and, thus, on the network size. For NoC architec-
tures, the cost of the routing tables can influence architectural
decisions such as the routing method (source vs. distributed rout-
ing). Consequently, routing table size is considered an important
metric in comparing interconnect architectures. In this section
we discuss storage requirements of the proposed architectures
and routing methods, comparing them to each other and to theo-
retical bounds [27].

For Hopfield network emulation, routing tables are not needed,
since the network is expected to communicate the spike to all des-
tinations, and it can be achieved with simple routing algorithms.
However, in the general case, for each source neuron Ni there is a
group of Ki destination neurons so that 0 6 Ki 6 n, where n is a total
number of processors. With RNDC model, the probability of any
neuron i being connected to any other neuron j is proportional to
Cexp(�D(i, j)/k), where D is the Euclidian distance between the
two neurons. This connection probability is always non-zero and
any spatial connectivity is possible. Designing for the worst case
(WC) requires the support of arbitrary connectivity. In practice,
however, only a more limited connectivity should be supported.
In the following we first estimate sizes of the routing table and
the packet header, as functions of the routing schemes. We then
analyze possibilities for improving these general estimates.

Routing of the shared bus and P2P architectures is simple. In the
case of bus architecture, each event (spike) is distributed to all des-
tinations, and all processors ‘‘fish out” the events that are ad-
dressed to them. The routing table is located at the destination
side. It stores the information on all the sources connected to that
destination. The routing table size is thus O(n) for each destination,
and O(n2) for the entire system. The packet header size is O(logn).

With P2P architecture, all neurons are connected directly to
each other. The routing table is located at the source and describes
the set of destinations to which the events should be sent. Thus, its
size is O(n) for each source and O(n2) for the entire system. The
packet header is O(1) since there is no need to describe either
the source or the destination address.

For NoC, the routing and addressing methods affect the storage
requirements of the routing tables. In the most general case, a NN
implemented on a UC mesh NoC requires routing table of O(n) at
each source processor and O(n2) entries for the entire system. In
this case one bit per entry is sufficient to encode a connection,
and n2 entries imply n2 bits. The packet header can be O(logn).

Two routing methods are considered for MC mesh NoC, source
and distributed routing. When using source routing, the tables
are located in the source processors and the packet header de-
scribes the routing path. Similarly to UC mesh NoC, in the general
case there are n entries in each source and n2 bits in total. The
packet header is O(n) bits.

When distributed routing is employed with source addressing
[18], the routing tables are located in the routers, and the packet
header contains the source address. In the worst case there are n
entries in each router. Each entry is four bits long when a typical
five-port router is used. As a result, there are O(n2) bits for all rout-
ing tables, while the header is only O(logn) bits long.

Broadcasting on mesh NoC is very similar to shared AER bus. All
destinations receive all packets and need to screen out the relevant
ones. The source neuron sends its address in the packet header and
each destination keeps a table listing all connected sources. In gen-
eral, the required storage is n2 bits and the packet header is log(n)
bits long.

The RT size and packet header size analysis is summarized in
Table 4.

To conclude, regardless of architecture, communication and
addressing, the general case calls for O(n2) memory storage for
all routing tables. When employing MC mesh NoC (as suggested
in previous sections), distributed routing offers a shorter packet
header of only O(logn) bits. The next section discusses routing ta-
ble and packet header sizes in practical implementations.

5.2. Fixed RT size and bounded NN connectivity

The practical meaning of the foregoing analysis is that a choice
of memory depth and packet header size in a specific implementa-
tion predefines the possible connectivity allowed by the imple-
mentation. Scaling the network up may require redesign of the
implementation. Alternatively, the scaled-up network will not be
able to implement arbitrary connectivity. In particular, choosing
a source routing scheme and allocating m entries for the routing ta-
ble in each source allows the implementation of only a sub-group
of neural networks where the maximum number of destinations
per each neuron is bounded by m. Similarly, choosing a broadcast-
ing method with m-size source table in each destination allows
implementing another sub-group of neural networks where the
maximal number of sources for each neuron is also bounded by m.

In order to analyze the implication of limiting the memory size
for a mesh with MC distributed routing, we consider turn-table
routing [30] configured for distributed multicast. The packet is
tagged by the source address and the router directs the packet
straight through (default routing) unless it finds the source address
in its routing table, in which case the packet needs to either sink,
turn or split in that router. Assuming that each source is connected
on average to only m destinations, then on average 2m entries per
router are needed, since each packet per destination typically
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needs one entry to affect a turn and a second entry to mark the
sink, totaling 2m � n storage. Such an implementation constrains
the actual NN topologies that can be implemented to networks
with only up to 2m sources per destination.

In realistic neural networks with probabilistic connectivity rule
that yields uniform traffic, such as the RNDC model, the connectiv-
ity is localized and the probability of connection decreases expo-
nentially with the distance from the source. Targeting only this
subset of topologies, we achieve smaller routing tables by allocat-
ing routing table storage non-uniformly. For example, in Fig. 12 the
routers are divided into groups of nine routers each and within
each group the storage can be allocated as follows: four routers
with m/4 entries, four routers with m entries, and one router with
4m entries, totaling 9m entries. Overall storage size remains m
routing table entries per router, but now one can emulate neural
network topologies where the maximal number of sources for
some neurons can be up to four times higher than m. Routing table
utilization can be further enhanced and maximal connectivity
bound can be further extended by combining a number of individ-
ual tables into a single shared memory, e.g. all nine tables of Fig. 12
combined into one memory of 9m entries.

6. Modular hierarchical NoC architecture

In the previous section it was shown that fixing the memory
size of the routing tables in a mesh NoC improves scalability at
the expense of bounding the connectivity. In this section we limit
the discussion to networks with bounded exponential connectivity
and propose a modular, hierarchical architecture that enables
emulating large scale NNs. The architecture is based on MC mesh
NoC with distributed turn-table routing, one flit packets containing
only the source address, and non-uniform storage for the routing
tables.

Consider a network of up to 1 million neurons, enough to emu-
late a large neural microcircuit (�100 cortical hypercolumns [37]).
The source address, and thus the packet size, is 20 bits. Empirical
data from neurological research suggests that the average number
of connections per neuron in the cortex ranges between 1000 and
3000 [37]. We limit the connectivity of the emulated network by
fixing the routing table size to 1000 connections per neuron on
average. The maximal number of connections, following the exam-
ple in Fig. 12 is 4000.
The one million neurons network can be constructed as follows.
A single SoC of 100 processors is designed. One hundred such chips
can be placed on a single board, and 10 such boards are perceived
in a single rack, totaling 100,000 processors in this modular hierar-
chical system. Technology scaling, while retaining this architec-
ture, may help emulate a growing number of neurons per SoC.
For instance, 10 neurons per processors will facilitate a one million
neurons in the emulation.

The architecture is modular and scalable thanks to pre-design of
routing that enables one million neurons in such a structure, as
demonstrated in Figs. 13–15. Obviously, each SoC implements a
mesh NoC including the necessary routers. To access neurons on
other chips, each SoC also contain a SoC-to-SoC 2nd level router
(at the board level). To access neurons on other boards, each SoC
also contains a Board-to-Board 3rd level router, but only one such
router is activated on each board. Thus, a single SoC architecture
enables interconnect at all three levels.

Uniform traffic implies 10� bandwidth capacity on each 2nd le-
vel link, since each 2nd level link substitutes for ten regular links in
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a flat topology. In addition, the 2nd level router requires 40� rout-
ing storage, since it provides a turn table for traffic from the forty
1st level nodes around the periphery of the chip. The storage and
bandwidth requirements of the 3rd level router are about three
times higher than those of the 2nd level, but a practical implemen-
tation shares the same large storage between the 2nd and the 3rd
level routers. Bandwidth increase in 2nd and 3rd level routers may
constitute a bottleneck. The required increase in throughput is
achieved by special higher speed links. The total storage consumed
by the routing tables in one chip is 100 routers � 1000 entries per
router � (20 address bits + 4 turn bits) = 2.4 Mbit, plus 1 Mbit for
the 2nd and 3rd level routers.
7. Conclusion

This paper presents a theoretical comparative analysis of inter-
connect architectures for general purpose configurable emulation
of spiking neural networks. We show that a mesh NoC is preferred
over the other analyzed architectures (fat tree, point to point and
shared bus). Further, it is shown that multicast communications
outperform unicast and broadcast. Simulations successfully vali-
date the analytical models and the asymptotic behavior of the net-
work as a function of its size. The results may be extended to the
more general case of address event transactions. It is shown that
regardless of the routing method, routing table size grows at
O(n2) and limits network scalability. Bounding the size of the tables
facilitates scalability. We propose a multi-level system with mod-
ular hierarchical NOC architecture for large-scale neural network
emulation.

To conclude, the properties of spiking networks, such as planar-
like structure, fault and drop tolerance and pulse-information
encoding makes simple multicast mesh network-on-chip suitable
for massively parallel communication required by these networks.
Moreover, since NoC is designed to be extendable, the same archi-
tecture can be used to emulate large scale spiking NN.

Future research may address the following questions: the archi-
tecture of the neural processor, its effect on the NoC, the trade-off
in allocating area and power to processors versus network, and the
architecture of multicast NoC routers optimized for emulating
spiking neural networks. In addition, simulations may be extended
to cover networks of many thousands of neurons.
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