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Optimization of  

Asymmetric and Heterogeneous MultiCore 
Amir Morad, Tomer Morad, Leonid Yavits and Ran Ginosar 

Abstract—An analytical optimization model, based on Lagrange multipliers, allocates constrained area and power among the 

cores of either asymmetric or heterogeneous multicore so as to optimize execution time. While in the asymmetric multicore 

each one of the concurrent workload task may execute on any core, concurrent tasks are pre-assigned to cores in the 

heterogeneous case. The performance of each core is modeled as a function of its area and the power allocated to it. In an 

optimal solution, all utilized cores must have the same execution time and the same first area- and power-derivatives of the 

execution time function. The model is applied to balanced and imbalanced asymmetric and heterogeneous multicores, showing 

several non-intuitive outcomes. When more area and power are made available to an asymmetric multicore, the stronger cores 

are allocated larger area, up to eliminating the weakest cores, but the weaker cores are allocated more power. In 

heterogeneous multicores the weaker cores are allocated larger area and more power.  

Index Terms—Chip Multiprocessors, Modeling of computer architecture  

——————————      —————————— 

1 INTRODUCTION

ARGE scale multicore may be composed of several 
asymmetric or heterogeneous cores working in paral-

lel. It is up to the system architect to efficiently allocate 
the resources among the cores, while complying with 
physical constraints of the design, such as area and pow-
er, as well as the specifics of the workload.  

In an asymmetric multicore architecture, all cores share 
the same instruction set architecture (ISA) but may differ 
in performance, clock frequency, cache size and other 
micro-architectural characteristics. Heterogeneous archi-
tecture, on the other hand, allows different functionality 
and different ISA in the cores. In an asymmetric multicore 
architecture, each task can be executed on any one of the 
cores, whereas in a heterogeneous architecture, tasks can 
typically execute only on designated cores. 

Several studies have used analytic models to derive 
optimal resource allocation of multiprocessors. Cassidy et 

al. [2] have optimized processor area, L2 cache area and 
the number of cores for an area-constrained symmetric 

multicore using Lagrange multipliers [16]. Elyada et al. [3] 
have considered a multiprocessor with unknown work-
load and attempted to dynamically set frequency-voltage  
work-points for each core, with a goal to minimize a de-

fined energy-performance criterion. Yavits et al. [12] mod-
eled the serial-to-parallel synchronization impact on mul-

ticore performance. Zidenberg et al. [20] presented the 
MultiAmdahl model that considered the implications of 

accelerating portions of the workload on the overall exe-

cution. Wentzlaff et al. [5] introduced an analytic model to 
study the tradeoffs of utilizing increased chip area for 

larger caches versus more cores. Khan et al. [10] presented 
a method for performance maximization of a 3D cache-
stacked multicore system keeping the temperature under 
a given limit while by assigning the clock frequencies and 

number of cache banks to each core. Yavits et al. [12] pre-
sented a closed form analytical solution for optimizing 
the CMP cache hierarchy and optimally allocating area 
among hierarchy levels under constrained resources. 
Blem et al. [18] modeled a multicore with cache and 

memory bandwidth constraints. Morad et al. [4] have pre-
sented the Generalized MultiAmdahl model (Figure 1) 
that minimized sequential execution time of a heteroge-
neous set of accelerators by optimally selecting which 
accelerators to allocate and what area to assign to the al-
located accelerators.  
 

 
Figure 1. Generalized MultiAmdahl [4]: Optimizing SoC resource alloca-

tion executing sequential series of heterogeneous workload segments 

 
While the Generalized MultiAmdahl addresses a series 

of heterogeneous workload segments that are not concur-
rent (only one core operates at a time), in this paper we 
address the following complementary question: Given a 
multicore and a workload consisting of concurrent tasks 
and resource constraints (Figure 2), what is the optimal 
selection of a subset of the available cores and what is the 
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optimal resource allocation among them. 
 

 
Figure 2. Optimizing multicore resource allocation executing concurrent 

series of workload segments 

 
At the optimal resource allocation point, all cores reach 

an equilibrium state in which if some area is taken from 
one core and given to another, the overall runtime in-
creases. While searching for such optimal point, one must 
take into account all core’ characteristics, total area con-
straints and workload specifics. Thus, any selection crite-
ria based on performance threshold or otherwise electing 
a subset of the cores may yield only sub-optimal results. 
Hence, the key contribution of this paper is to enable the 
multicore architect to select an optimal subset of the cores 
and allocate resources among them, avoiding having to 
explore the design space in an iterative ad-hoc fashion, 
and thus leading to a comprehensive understanding of 
the design space. 

The rest of this paper is organized as follows. Section 2 
proposes and investigates an analytical model of the area 
constrained asymmetric and heterogeneous multi-core 
processors. Power-law acceleration functions are utilized 
to optimize a dual core processor based on the proposed 
analytical model. The insights derived from the dual core 
analytical model are extended to a multi-core implemen-
tation. The model is demonstrated by an example optimi-
zation of an asymmetric and a heterogeneous quad-core 
processors. Section 3 proposes and investigates an analyt-
ical model of area and power constrained asymmetric 
multi-core processors, and offers an area/power con-
strained optimization example of a quad-core processor 
and a comparison of the results versus an only-area con-
strained optimization. Section 4 summarizes and con-
cludes the paper. 

2 AREA OPTIMIZATION 

In this section we propose and investigate an analytical 

model of area-constrained asymmetric and heterogeneous 

multi-core processors. 

2.1 Area constrained multicore model 

Consider a workload consisting of M concurrent tasks. 
Each task i of the workload requires time 𝑡𝑖 to execute on 
a reference processor of 1 Instruction Per Second. Further, 
consider a multicore architecture consisting of N available 
cores. Each task i can be accelerated by any one of N 
available cores. The performance of core j as a function of 

its area 𝑎𝑗  is 𝑃𝑒𝑟𝑓𝑗(𝑎𝑗), relative to the performance on the 

reference processor. The acceleration function 𝑓𝑗(𝑎𝑗) rep-

resents the inverted performance of core j : 

𝑓𝑗(𝑎𝑗) =
1

𝑃𝑒𝑟𝑓𝑗(𝑎𝑗)
 (1) 

The runtime of the ith task running on core j having area 𝑎𝑗 is 

thus 𝑓𝑗(𝑎𝑗) ∙ 𝑡𝑖. The performance of a core increases when 

additional area resources are assigned to it. Therefore, the 

acceleration functions 𝑓𝑗(𝑎𝑗) are strictly decreasing. We 

assume that the acceleration functions 𝑓𝑗(𝑎𝑗) are convex and 

are continuously differentiable. 

Given the core areas 𝐴 = {𝑎1, … , 𝑎𝑁}, core j execution 
time of the tasks assigned to it is thus: 

𝑇𝑗 ≜ ∑ 𝑓𝑗(𝑎𝑗)
𝑖=𝑀

𝑖=1
𝑏𝑖,𝑗𝑡𝑖 = 𝑓𝑗(𝑎𝑗) ∑ 𝑏𝑖,𝑗𝑡𝑖

𝑖=𝑀

𝑖=1
 (2) 

Where, at the optimal point: 

 𝑏𝑖,𝑗 = {1 ∶    𝑖𝑡ℎ 𝑡𝑎𝑠𝑘 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑗𝑡ℎ 𝑐𝑜𝑟𝑒
0 ∶                                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3) 

under the constraint that each task is assigned to one core. 
The area of core j, namely 𝑎𝑗, may be 0 or positive, and 

the area assigned to all cores is bounded by total SoC ar-
ea. Let’s assume we are provided with N cores such that:  

∀𝑗, 𝑘, 1 ≤ 𝑗, 𝑘 ≤ 𝑁   and   𝑗 ≠ 𝑘      𝑓𝑗(𝑎) ≠ 𝑓𝑘(𝑎) (4) 

The assumption implies that even if two different cores 
are assigned the same area, their performance is different. 
Since any task can be executed on any core, the research 
question becomes: which subset of the cores should be inte-
grated to achieve optimal execution time, and what is the opti-
mal task and resource (area) allocation among them? 

In a similar manner to [4], in this paper we choose to 
concentrate on multicore resource assignment while ig-
noring the effects of synchronization and core to core 

communication [11]. Further, while considering asym-
metric architectures, we focus on homogenous tasks and 
exclude task heterogeneity (for example, certain tasks 
may benefit from larger cache sizes, others may benefit 
from larger branch prediction buffer, etc.). Thus, we as-
sume that tasks runtime depends only on the core’s 
speedup function at its designated area. The first step to 
resolve this optimization problem is to define the function 
we wish to minimize. In our case it is the total execution 
time of the multicore, T, determined by the last core to 
finish executing its allocated tasks: 

𝑇 ≜ 𝑚𝑎𝑥 (𝑇1, 𝑇2, … , 𝑇𝑁)
= 𝑚𝑎𝑥 (𝑇𝑁, 𝑚𝑎𝑥(𝑇𝑁−1, … , 𝑚𝑎𝑥(𝑇2, 𝑇1))) 

(5) 

Next, we define the optimization constraints, as follows: 

A. Total area constraint 

The combined area of all cores is less than or equal to 
𝐴𝑇𝑜𝑡𝑎𝑙 : 

∑ 𝑎𝑗 ≤ 𝐴𝑇𝑜𝑡𝑎𝑙

𝑗=𝑁

𝑗=1
 (6) 

where 𝐴𝑇𝑜𝑡𝑎𝑙 is the total area assigned to the chip. 
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B. Task per core constraint 

Each task is assigned to a single core, thus the follow-
ing M constraints (collectively implying that the sum 
of all assigned tasks equals M): 

∀𝑖, ∑ 𝑏𝑖,𝑗

𝑁

𝑗=1

= 1    →     ∑ ∑ 𝑏𝑖,𝑗

𝑁

𝑗=1

𝑀

𝑖=1

= 𝑀 (7) 

C. General task assignment constraint 

This constraint assures that, at the optimal point, 𝑏𝑖,𝑗 is 

either 1 (assigned) or 0 (unassigned): 

∀𝑖, 𝑗:      𝑏𝑖,𝑗(𝑏𝑖,𝑗 − 1) = 0 (8) 

 
The Lagrange optimization of the cost function (5) sub-

ject to constraint (6), is provided in Appendix A. The con-
clusion is as follows. For all utilized cores, ∀𝑗, 𝑘 the fol-
lowing conditions hold at the optimal point: 
A. First Optimality Condition: All utilized cores must 

have the same runtime: 

𝑓𝑗(𝑎𝑗) ∑ 𝑡𝑖𝑏𝑖,𝑗

𝑖=𝑀

𝑖=1

= 𝑓𝑘(𝑎𝑘) ∑ 𝑡𝑖𝑏𝑖,𝑘

𝑖=𝑀

𝑖=1

 (9) 

B. Second Optimality Condition: The first derivative of 
the execution time function across all utilized cores must 
be equal: 

𝑓𝑗
′(𝑎𝑗) ∑ 𝑡𝑖𝑏𝑖,𝑗

𝑖=𝑀

𝑖=1

= 𝑓𝑘
′(𝑎𝑘) ∑ 𝑡𝑖𝑏𝑖,𝑘

𝑖=𝑀

𝑖=1

 (10) 

Actual solutions that satisfy (9) and (10) may be found, 
e.g., by numerical Lagrange solvers [1]. 

2.2 Power-law acceleration function 

In this subsection, we show that when the acceleration 
functions are expressed as power laws, the above opti-
mality conditions hold, and consequently there exists an 
area allocation that results in optimal execution time.  

Following Pollack's rule [8], [19] we express the accel-
eration function of a processing core as a power law:  

𝑓𝐶𝑜𝑟𝑒(𝑎𝐶𝑜𝑟𝑒) =
1

𝑎𝐶𝑜𝑟𝑒
𝛽

 (11) 

where 𝛽 typically varies from 0.3 to 0.7 [18]. We also as-
sume that coefficients translating from area to perfor-
mance units have been scaled to unity. 

We now prove that a resource allocation of power-law 
based multicore as provided by (11), is also the solution 
of  (10). To that end, consider a workload comprising 
multiple tasks, each incurring an execution time 𝑡𝑖 on a 
reference processor. For simplicity, the target architecture 
may use up to two cores. The generic case power-law ac-
celeration functions are: 

𝑓1(𝑎1) = 𝑎1
−𝛽1 , 𝑓2(𝑎2) = 𝑎2

−𝛽2 (12) 

where the exponents 𝛽𝑖’s are constants. Following the first 
rule of optimality: 

𝑎1
−𝛽1 ∑ 𝑡𝑖𝑏𝑖,1

𝑖=𝑀

𝑖=1

= 𝑎2
−𝛽2 ∑ 𝑡𝑖𝑏𝑖,2

𝑖=𝑀

𝑖=1

 (13) 

Extracting 𝑎2: 

𝑎2 = 𝑎1

𝛽1
𝛽2 (

∑ 𝑡𝑖𝑏𝑖,2
𝑖=𝑀
𝑖=1

∑ 𝑡𝑖𝑏𝑖,1
𝑖=𝑀
𝑖=1

)

1
𝛽2

 (14) 

Testing the equality of the second rule of optimality 
(developing equation (55) assuming 𝑎2 = 𝐴𝑇𝑜𝑡𝑎𝑙 − 𝑎1): 

𝜕[𝑚𝑎𝑥(𝑇1, … , 𝑇𝑁)]

𝜕𝑎𝑗
+ 𝜆

𝜕[𝑎1 + (𝐴𝑇𝑜𝑡𝑎𝑙 − 𝑎1)]

𝜕𝑎𝑗
= 

𝜕[𝑚𝑎𝑥(𝑇1, 𝑇2, … , 𝑇𝑁)]

𝜕𝑎𝑗

= 0 

(15) 

Following (67) at 𝑇1 = 𝑇2: 

𝜕[𝑇1]

𝜕𝑎1
= −

𝜕[𝑇2]

𝜕𝑎1
=

𝜕[𝑇2]

𝜕𝑎2

𝜕𝑎2

𝜕𝑎1
 (16) 

Equation (15) proves that for a dual-core proces-
sors where each core is described by a power law acceler-
ation function, there exist an optimal area allocation, and 
at the optimum, equations (9) and (10) hold. 

2.3 Optimizing a dual-core processor 

We proceed to derive the optimal resource allocation 
for a dual core processor, employing power law accelera-
tion functions. For convenience, we express 𝑎2 as function 
of 𝑎1: 

𝑎2 = 𝑣𝑎1   →   𝑓2(𝑎2) = (𝑣𝑎1)−𝛽2 (17) 

where following (14), at the optimal point, the coefficient 
𝑣 can be written as: 

𝑣 = (
∑ 𝑡𝑖𝑏𝑖,2

𝑖=𝑀
𝑖=1

∑ 𝑡𝑖𝑏𝑖,1
𝑖=𝑀
𝑖=1

∙
𝑎1

𝛽1

𝑎1
𝛽2

)

1
𝛽2

 (18) 

Finally, following (6): 

𝑎1 + 𝑎2 = 𝑎1 + 𝑣𝑎1 = 𝐴𝑇𝑜𝑡𝑎𝑙 (19) 

Thus: 

𝑎1 =
𝐴𝑇𝑜𝑡𝑎𝑙

𝑣 + 1
,      𝑎2 = 𝑣𝑎1 (20) 

Note that in particular, for a balanced exponent (𝛽1 =
𝛽2), 𝑣 is a constant and the optimization process yields an 
explicit solution of area allocation, without the need for 
numerical solvers. We now consider the following scenar-
ios of balanced and imbalanced exponents: 

2.3.1 Asymmetric dual core with imbalanced 𝛽 

In this scenario, the acceleration functions have differ-
ent exponents (𝛽1 ≠ 𝛽2). From this point onward, the core 
with the larger exponent shall be referred to as the 
“stronger” core, and the other one shall be referred to as 
the “weaker” core. Consider a design process where we 
progressively increase the total multicore area 𝐴𝑇𝑜𝑡𝑎𝑙, and 
re-compute optimal area allocation in each step. Initially, 
both cores are utilized and satisfy (9). As the total multi-
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core area is increased, e.g. from 𝐴𝑇𝑜𝑡𝑎𝑙 to 𝐴𝑇𝑜𝑡𝑎𝑙 + 𝜀 , one of 
two possibilities takes place: 

 The set of tasks previously assigned to each core re-
mains unchanged, and the area increment is allocated 
mostly to the weaker core and, to a lesser degree, to 
the stronger core, so as to maintain equal run times.  

 One or more of the tasks previously assigned to the 
weaker core are shifted to the stronger core, the entire 
area increment is allocated to the stronger core, and 
in addition some area is taken away from the weaker 
core and is also added to the stronger core. 

Eventually the stronger core is allocated the entire area 
and the entire workload, and the weaker core is eliminat-
ed. To emphasize this point, consider the following ine-
quality. The left hand side represents the execution time 
of a dual core processor where each core executes a single 
task. The right hand side shows the execution time of a 
single core executing the entire workload:  

𝑎1
−𝛽1𝑡1 = 𝑎2

−𝛽2𝑡2, 𝑎2 = 𝐴𝑇𝑜𝑡𝑎𝑙 − 𝑎1 

𝑎1
−𝛽1𝑡1 = (𝐴𝑇𝑜𝑡𝑎𝑙 − 𝑎1)−𝛽2𝑡2  ≥  𝐴𝑇𝑜𝑡𝑎𝑙

−𝛽2(𝑡1 + 𝑡2) 
(21) 

We assume that core 2 is the stronger one (𝛽1 < 𝛽2), and 
seek the equality point beyond which allocating the entire 
area (and both tasks) to the stronger core provides better 
performance than keeping both cores, each executing its 
respective task. Solving the inequality yields: 

𝑎1  ≥? 𝐴𝑇𝑜𝑡𝑎𝑙

𝐶 − 1

𝐶
 (22) 

where 

𝐶 = √
𝑡1 + 𝑡2

𝑡2

𝛽2

 (23) 

If inequality (22) holds, namely for values of 𝑎1 larger 
than (22), allocating the entire area (and the entire work-
load) to the (stronger) core 2 produces the optimal execu-
tion time, as exemplified in Figure 3. 

 
Figure 3. Execution time: Stronger core vs. weaker core 

 
In Figure 3 we compare the execution time of a dual 

core, each core running a single task, to a single core run-
ning both tasks one after the other. The first core is mod-

eled using a power law with exponent 𝛽1 = 0.3, and the 
second core with an exponent 𝛽2 = 0.7. Core 1 is assigned 
with a task 𝑡1 = 1 seconds on a reference processor, and 
core 2 is assigned with a task 𝑡2 = 3 seconds on a refer-
ence processor. In the example of Figure 3, a single core is 
preferred once 𝐴𝑇𝑜𝑡𝑎𝑙 ≥ 2.1𝑠𝑞𝑚𝑚.  

Note that our optimization framework allows eliminat-
ing a core (that is, not assigning any area to it) by setting  
∑ 𝑏𝑖,𝑗

𝑀
𝑖=1 = 0 for core j. This notation is implied in (21). 

2.3.2 Asymmetric dual core with balanced 𝛽 

In this scenario, the two acceleration functions share 
the exact same exponent (𝛽1 = 𝛽2). Following (18) and 
(20), any area increment is assigned proportionately to 
both cores, and thus their relative sizes remain the same. 
Furthermore, if the sums of 𝑡𝑖 allocated to each core are 
equal to each other, implying 𝑣=1, these two cores are 

symmetric (each core having an area of 
𝐴𝑇𝑜𝑡𝑎𝑙

2
). 

2.4 Optimizing a multi-core processor   

Our findings are extended from dual to a multi-core 
scenario. Consider a multicore architecture containing N 
distinct cores, where each core’s acceleration function is 
expressed as a power law. Following (17): 

𝑓𝑗(𝑎𝑗) = (𝑣𝑗𝑎1)
−𝛽𝑗

 (24) 

where: 

𝑣𝑗 = (
∑ 𝑡𝑖𝑏𝑖,𝑗

𝑖=𝑀
𝑖=1

∑ 𝑡𝑖𝑏𝑖,1
𝑖=𝑀
𝑖=1

𝑎1
𝛽1

𝑎1

𝛽𝑗
)

1
𝛽𝑗

 (25) 

Following (6): 

𝑣1𝑎1 + 𝑣2𝑎1 + ⋯ + 𝑣𝑁𝑎1 = 𝐴𝑇𝑜𝑡𝑎𝑙 (26) 

Note that per (25), 𝑣1 = 1. The resource allocation is: 

𝑎1 =
𝐴𝑇𝑜𝑡𝑎𝑙

∑ 𝑣𝑗
𝑗=𝑁
𝑗=1

,      𝑎𝑗 = 𝑣𝑗𝑎1 (27) 

As shown above, for balanced exponents (∀𝑙, 𝑘, 1 ≤ 𝑙, 𝑘 ≤
𝑁, 𝛽𝑙 = 𝛽𝑘, ), 𝑣𝑗 is constant. The implications discussed in 

the previous section on dual-core processors apply also to 
multi-cores: the strongest core (or cores having the same 
and highest 𝛽) dominates the area when total multicore 
area is sufficiently large. If all cores share the same 𝛽, the 
area is divided among them proportionately, as per (25). 

2.5 Optimizing a heterogeneous multicore 

In contrast to asymmetric architecture, in heterogene-
ous architecture tasks can execute only on their designat-
ed cores. Consider a baseline heterogeneous architecture, 
where each task is assigned to a distinct core (M=N, and 
task i is assigned to core j=i, and hence 𝑏𝑖,𝑗 is the identity 

matrix). Further, the acceleration functions are character-
ized by power law (11). Equation (25) reduces to: 

𝑣𝐻𝑒𝑡𝑒−𝑀𝐶𝑗
= (

𝑡𝑗

𝑡1

𝑎1
𝛽1

𝑎1

𝛽𝑗
)

1
𝛽𝑗

 (28) 
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where the optimal resource allocation follows (27). We 
now consider the following scenarios of imbalanced and 
balanced exponents. 

2.5.1 Heterogeneous multicore with imbalanced 𝛽 

In this scenario, the acceleration functions have differ-
ent exponents (∀𝑙, 𝑘, 1 ≤ 𝑙, 𝑘 ≤ 𝑁, 𝛽𝑘 ≠ 𝛽𝑙). Since all cores 
are utilized, the area of the weaker cores (i.e., the ones 
with the smaller exponent) grows faster than the area of 
the stronger cores as the total area budget grows, so as to 
uphold the first optimality condition (9). To emphasize 
this point, consider a dual core architecture in which the 
first processor’s exponent is larger than the second: 

𝑎1
−𝛽1𝑡1 = 𝑎2

−𝛽2𝑡2 (29) 

Assume that 𝐴𝑇𝑜𝑡𝑎𝑙 grows by small area 𝜀 = 𝜀1 + 𝜀2, and 
area is initially distributed such that the first core is allo-
cated with 𝜀1 while the second core is allocated with 𝜀2. 
Since 𝛽1 > 𝛽2, in order to keep the equality, 𝜀2 > 𝜀1. 

This is in contrast to the asymmetric architecture dis-
cussed above, in which the stronger cores are allocated 
larger area at the expense of the weaker cores. This tran-
spires because it is impossible to port tasks from a weak 
core to a stronger one due to heterogeneity. In the ex-
treme case of the heterogeneous multicore, the weaker 
core consumes nearly the entire multicore resources. 

2.5.2 Heterogeneous multicore with balanced 𝛽 

In this scenario, the two acceleration functions share 
the exact same exponent (𝛽𝑙 = 𝛽𝑘, ∀𝑙, 𝑘 1 ≤ 𝑙, 𝑘 ≤ 𝑁). Fol-
lowing (28), any area increment is assigned proportion-
ately to each core, and thus their relative sizes remain 
unchanged. Furthermore, if the sum of the reference exe-
cution time of all tasks allocated to each core is equal, 
implying 𝑣𝑗=1, it implies symmetric cores, each core hav-

ing an area of 
𝐴𝑇𝑜𝑡𝑎𝑙

𝑁
. 

2.6 Maximum Speedup of area constrained 
multicore 

In this section we derive the maximal speedup at the 
optimal area allocation point. Let the acceleration func-
tions obey the power-law. Let the first core having the 
largest exponent have an index of 1, that is: ∀𝑗, 1 ≤ 𝑗 ≤ 𝑁,
𝛽1 ≥ 𝛽𝑗. Further, if two or more cores share the same ex-

ponent, let the core having the smaller index execute the 
smaller portion of the workload. The total speedup is de-
fined as the ratio between the serial execution time of the 
tasks on the reference processor to the multicore execu-
tion time. According to the first optimality condition (9), 
all processors must have the same total execution time, 
and we can write the asymmetric speedup as: 

𝑆𝑝𝑒𝑒𝑑𝑢𝑝𝐴𝑠𝑦−𝑀𝐶 =
∑ 𝑡𝑖

𝑖=𝑀
𝑖=1

1
𝑁

∑ (𝑓𝑗(𝑎𝑗) ∑ 𝑡𝑖𝑏𝑖,𝑗
𝑖=𝑀
𝑖=1 )

𝑗=𝑁
𝑗=1

=
∑ 𝑡𝑖

𝑖=𝑀
𝑖=1

𝑎1
−𝛽1

𝑁
∑ (∑ 𝑡𝑖𝑏𝑖,1

𝑖=𝑀
𝑖=1 )

𝑗=𝑁
𝑗=1

= 𝑁𝑎1
𝛽1 

(30) 

Note that (30) assumes that all processors are utilized; 

if this is not the case, the result 𝑁𝑎1
𝛽1 is replaced by 𝑅𝑎1

𝛽1 
where R is the number of utilized processors. In a similar 
manner, the speedup of the heterogeneous architecture is: 

𝑆𝑝𝑒𝑒𝑑𝑢𝑝𝐻𝑒𝑡𝑒−𝑀𝐶 = 𝑁𝑎1
𝛽1 (31) 

Since the first core has the largest exponent and exe-
cutes the smallest portion of the workload out of the cores 
sharing the same largest exponent, to uphold (9), 𝑎1 is 
thus assigned with the smallest portion of the multicore 
total area: ∀𝑗, 1 ≤ 𝑗 ≤ 𝑁, 𝑎1 ≤ 𝑎𝑗. Thus, following (6), 𝑎1 ≤

1/𝑁. The larger the asymmetry of the core’s allocated ar-
ea, the smaller 𝑎1 is. Further, 𝑎1 peaks when all cores are 
symmetric, at which point 𝑎1 = 1/𝑁. 

Now that we have derived an expression for the 
speedup of both asymmetric and heterogeneous architec-
tures, let us proceed with maximizing them. According to 
(27), 𝑎1 is a function of 𝐴𝑇𝑜𝑡𝑎𝑙, of the task assignment of 
each core and of the exponents 𝛽𝑗. Assuming that the ar-

chitect may select the acceleration function of each core, 
what criteria should he utilize in order to achieve maxi-
mum speedup? To find the answer, we maximize (30): 

𝑚𝑎𝑥 𝑁𝑎1
𝛽1 = 𝑚𝑎𝑥 𝑁 (

𝐴𝑇𝑜𝑡𝑎𝑙

∑ 𝑣𝑗
𝑗=𝑁
𝑗=1

)

𝛽1

 (32) 

This maximum speedup point may also be obtained by 
finding the minimum of the inverse of (32), as follows. 
Substituting (25): 

𝑚𝑖𝑛
1

𝑁𝐴𝑇𝑜𝑡𝑎𝑙
𝛽1

∑ (
∑ 𝑡𝑖𝑏𝑖,𝑗

𝑖=𝑀
𝑖=1

∑ 𝑡𝑖𝑏𝑖,1
𝑖=𝑀
𝑖=1

𝑎1
𝛽1

𝑎1

𝛽𝑗
)

1
𝛽𝑗

𝑗=𝑁

𝑗=1

 (33) 

To reach the minimum, several factors are considered: 

 N (the number of utilized cores) should be maxim-
ized. Note that the maximal concurrency is attained 
when all available cores are employed, such that each 
core is assigned a single task. 

 Minimize 
∑ 𝑡𝑖𝑏𝑖,𝑗

𝑖=𝑀
𝑖=1

∑ 𝑡𝑖𝑏𝑖,1
𝑖=𝑀
𝑖=1

. Since ∀𝑗, 1 ≤ 𝑗 ≤ 𝑁, 𝛽1 ≥ 𝛽𝑗, the 

sum of the reference run times of tasks assigned to 
core 1 is the largest (stronger cores are assigned the 
larger portion of the workload). 

 We seek the relationship among the exponents 𝛽 that 
leads to the minimum value. 

To that end, let us differentiate the expression with re-
spect to 𝑎1, and equate the derivative to zero, as follows: 

𝜕

𝜕𝑎1
[

1

𝑁𝐴𝑇𝑜𝑡𝑎𝑙
𝛽1

∑ (
∑ 𝑡𝑖𝑏𝑖,𝑗

𝑖=𝑀
𝑖=1

∑ 𝑡𝑖𝑏𝑖,1
𝑖=𝑀
𝑖=1

𝑎1
𝛽1

𝑎1

𝛽𝑗
)

1
𝛽𝑗

𝑗=𝑁

𝑗=1

] = 

1

𝑁𝐴𝑇𝑜𝑡𝑎𝑙
𝛽1

∑ (
∑ 𝑡𝑖𝑏𝑖,𝑗

𝑖=𝑀
𝑖=1

∑ 𝑡𝑖𝑏𝑖,1
𝑖=𝑀
𝑖=1

)

1
𝛽𝑗

(
𝛽1 − 𝛽𝑗

𝛽𝑗
) 𝑎1

𝛽1−𝛽𝑗

𝛽𝑗
−1

𝑗=𝑁

𝑗=1

= 0 

(34) 

The only solution for the above expression is: 

∀𝑗, 1 ≤ 𝑗 ≤ 𝑁,       𝛽1 = 𝛽𝑗 (35) 

Equation (35) implies that cores should have the same 
and highest exponent. The rationale is that weaker cores 
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are eventually removed (in the asymmetric architecture), 
or strengthened at the expense of the stronger cores (in 
the heterogeneous architecture). In particular, if all tasks 
have the same reference runtime, the optimal architecture 
is symmetric. This conclusion is consistent with the con-
clusions of [19] and [12], that is, when the entire workload 
is parallelizable and there is no serial fraction, the best 
multicore is the symmetric one. However, if the tasks 
have different lengths, the optimal architecture is asym-
metric despite the fact that the workload could be fully 
parallelizable (all tasks are done in parallel). This conclu-
sion complements [19] and [12] that assumed that the 
parallelizable portion of the workload could be equally 
scaled by any number of cores.  

2.7 Example: Optimal quad-core area allocation  

Consider a workload consisting of four concurrent 
tasks, incurring execution times 𝑡𝑖 = {100, 90, 80, 70} on a 
reference processor. The multicore architect wishes to 
optimize the execution time under an area constraint, and 
may utilize up to four distinct cores. Consider Figure 4–
Figure 6, where the horizontal axis depicts four multicore 
area scenarios, characterized by multiples of total area, 
1×, 2×, 4× and 8× respectively, and the vertical axis shows 
the distribution of that total area among the four cores. 
Note that in a sufficiently large multicore chip, stronger 
cores are allocated larger area in asymmetric multi-cores, 
while in heterogeneous architectures the weaker cores are 
allocated a larger area. 

2.7.1 Asymmetric architecture with imbalanced 𝛽 

In this scenario, we consider an asymmetric quad-core 
having imbalanced exponents 𝛽𝑗 = {0.7, 0.6, 0.5, 0.4}, re-

spectively. In Figure 4, as the total multicore area increas-
es, tasks shift from the weaker cores (core #2, #3 and #4 
having lower 𝛽) to the stronger core, and the weaker 

cores are progressively eliminated. See analysis in 2.3.1. 
 

 
Figure 4. Optimal resource allocation of asymmetric imbalanced 𝛽 quad-

core multi-processor, as a function of multicore area 

2.7.2 Asymmetric architecture with balanced β 

In this scenario, we consider an asymmetric quad-core 
architecture where all cores share the same exponent, 
𝛽𝑗 = 0.5. In contrast with the first scenario, Figure 5 

shows that as the total multicore area increases, tasks and 

areas do not shift. Rather, partitioning among the cores 

remains constant. See analysis in section 2.3.1. 
 

 
Figure 5. Optimal resource allocation of asymmetric balanced 𝛽 quad-core 

multi-processor, as a function of multicore area 

2.7.3 Heterogeneous architecture with imbalanced β 

As in the first scenario, the cores have different expo-
nents, 𝛽𝑗 = {0.7, 0.6, 0.5, 0.4}, respectively. Consider Figure 

6. As the total multicore area gets larger, area resources 
shift from the stronger core to the weaker ones (core #2, 

#3 and #4 having lower 𝛽). See analysis in section 2.5.1. 
 

 
Figure 6. Optimal resource allocation of heterogeneous imbalanced 𝛽 quad-

core multi-processor, as a function of multicore area 

 

 
Figure 7. Optimal resource allocation of heterogeneous balanced 𝛽 quad-

core multi-processor, as a function of multicore area 
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2.7.4 Heterogeneous architecture with balanced β 

In this scenario, we consider a heterogeneous quad-
core architecture where all cores share the same exponent, 
𝛽𝑗 = 0.5. In contrast with the third scenario, Figure 7 

shows that as the total multicore area increases, tasks and 
areas do not shift from one core to another. Rather, parti-
tioning among the cores remains constant. See analysis in 

section 2.3.12.5.2. 

3 COMBINED AREA AND POWER OPTIMIZATION 

In the previous section, we have established and ana-
lyzed the analytic optimization framework that distrib-
utes area resources in an area constrained multicore. It 

has been suggested (e.g., [15]) that power consumption is 
a more severe constraint than chip area, making the per-
core power allocation a key design constraint. In this sec-

tion, we extend the framework discussed in section 2 to 
handle both area and power constraints. 

3.1 Area and power constrained multicore model 

We modify the acceleration function (1) of core j to de-
pend on both its area 𝑎𝑗 and its dynamic power 𝑝𝑗, as fol-

lows: 

𝑓𝑗(𝑎𝑗 , 𝑝𝑗) =
1

𝑃𝑒𝑟𝑓𝑗(𝑎𝑗, 𝑝𝑗)
 (36) 

Note that 𝑝𝑗 represents actual power dissipated in core 

j rather than the maximum power that can be consumed 
by that core, as determined by its area, maximum voltage, 
maximum frequency and other physical constraints; for 
instance, it is possible that at some optimum point for the 
entire chip, a particular core is operated at 𝑝𝑗 < 𝑃max 𝑗.  

We wish to minimize the execution time, defined by T: 

𝑇𝑗 ≜ ∑ 𝑓𝑗(𝑎𝑗 , 𝑝𝑗)
𝑖=𝑀

𝑖=1
𝑏𝑖,𝑗𝑡𝑖 = 𝑓𝑗(𝑎𝑗 , 𝑝𝑗) ∑ 𝑏𝑖,𝑗𝑡𝑖

𝑖=𝑀

𝑖=1
 

𝑇 ≜ 𝑚𝑎𝑥 (𝑇1, 𝑇2, … , 𝑇𝑁) 

(37) 

under the constraints detailed in (6)-(8), as well as a pow-
er constraint. Area is a static resource, i.e., it does not 
change during execution. Power, however, has both static 
and dynamic components, and the distribution of these 
resources among the cores is not identical. Static power 
depends on temperature [9], and temperature, in turn, 
depends on power density (related to dynamic power). 
We shall separate the static power consumption of the 
core into two components, idle static power, and temper-
ature induced static power. Assume that the multicore 
employs Dynamic Voltage and Frequency Scaling 
(DVFS). The idle static power is annotated as a manufac-
turing technology related constant 𝑠1 multiplied by the 
core’s allocated area 𝑎𝑗 representing the static power 

when: (a) gate temperature is at the low end of the operat-
ing conditions range; (b) core voltage is at the low end of 
the DVFS voltage range; and, (c) core frequency is at the 
low end of the DVFS frequency range. Within the normal 
operating temperature range (say, 55°C–85°C), leakage 
power consumption may be estimated using a linear 

function of temperature [21]. Thus in normal operating 
conditions, we can express the temperature induced static 
power as a manufacturing technology related constant 𝑠2 
times its dynamic power 𝑝𝑗. 

𝑃𝑆𝑡𝑎𝑡𝑖𝑐 = ∑ 𝑠1𝑎𝑗 + 𝑠2𝑝𝑗

𝑗=𝑁

𝑗=1
 (38) 

Note that in our analysis we choose to ignore floor-
plan-induced leakage power, that is, temperature increase 
due to the heat generated by adjacent cores. Given that 
the cores have large enough radial shape, floorplan in-
duced leakage is limited to the boundary and hence is a 
second order effect on total leakage. Note however that 
this assumption may not always hold. 

Power constraints are often set by heat dissipation, 
which manifests itself over long period. Accordingly, we 
focus on average power. The average dynamic power 
consumption is calculated by dividing overall energy by 
overall execution time:  

𝑃𝐷𝑦𝑛𝑎𝑚𝑖𝑐 =
𝐸𝐷𝑦𝑛𝑎𝑚𝑖𝑐

𝑇
= ∑

∑ 𝑇𝑗
𝑗=𝑁
𝑗=1 𝑝𝑗

𝑚𝑎𝑥 (𝑇1, 𝑇2, … , 𝑇𝑁)

𝑖=𝑁

𝑖=1
 (39) 

Since in the optimum ∀𝑗, 𝑇𝑗 = 𝑇 (as shown in section 2), 

the power constraint becomes: 

𝑃𝑆𝑡𝑎𝑡𝑖𝑐 + 𝑃𝐷𝑦𝑛𝑎𝑚𝑖𝑐 = 

∑ (𝑠1𝑎𝑗 + 𝑠2𝑝𝑗 + 𝑝𝑗)
𝑗=𝑁

𝑗=1
≤ 𝑃𝑇𝑜𝑡𝑎𝑙 

(40) 

where 𝑃𝑇𝑜𝑡𝑎𝑙  is the maximum allowed average power con-
sumption. Optimal power allocation is achieved when 
minimizing the cost function T (37) under this constraint. 
This problem is solved in a manner similar to the area-

bound problem of section 2. The Lagrange optimization 
of cost function (37) subject to constraints detailed in (6)-
(8) and (40) is provided in Appendix B. The conclusion is 
that for all utilized cores, ∀𝑗, 𝑘 the following conditions 
hold at the optimal point: 

A. First Optimality Condition: All utilized cores must have 

the same runtime. 

𝑓𝑗(𝑎𝑗 , 𝑝𝑗) ∑ 𝑡𝑖𝑏𝑖,𝑗

𝑖=𝑀

𝑖=1

= 𝑓𝑘(𝑎𝑘, 𝑝𝑘) ∑ 𝑡𝑖𝑏𝑖,𝑘

𝑖=𝑀

𝑖=1

 (41) 

B. Second Optimality Condition: The first derivatives of the 

execution time functions across all utilized cores with re-

spect to area and power must be equal. 

𝜕𝑓𝑗(𝑎𝑗 , 𝑝𝑗)

𝜕𝑎𝑗
∑ 𝑡𝑖𝑏𝑖,𝑗

𝑖=𝑀

𝑖=1

=
𝜕𝑓𝑘(𝑎𝑘, 𝑝𝑘)

𝜕𝑎𝑘
∑ 𝑡𝑖𝑏𝑖,𝑘

𝑖=𝑀

𝑖=1

 (42) 

and 

𝜕𝑓𝑗(𝑎𝑗 , 𝑝𝑗)

𝜕𝑝𝑗
∑ 𝑡𝑖𝑏𝑖,𝑗

𝑖=𝑀

𝑖=1

=
𝜕𝑓𝑘(𝑎𝑘, 𝑝𝑘)

𝜕𝑝𝑘
∑ 𝑡𝑖𝑏𝑖,𝑘

𝑖=𝑀

𝑖=1

 (43) 

Note that dividing (42) by (43) yields the following: 
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𝜕𝑓𝑗(𝑎𝑗 , 𝑝𝑗)
𝜕𝑎𝑗

𝜕𝑓𝑗(𝑎𝑗 , 𝑝𝑗)
𝜕𝑝𝑗

=

𝜕𝑓𝑘(𝑎𝑘, 𝑝𝑘)
𝜕𝑎𝑘

𝜕𝑓𝑘(𝑎𝑘, 𝑝𝑘)
𝜕𝑝𝑘

 (44) 

Equation (44) shows that at the optimal area and pow-

er allocation, the area gradient 
𝜕𝑓𝑗(𝑎𝑗,𝑝𝑗)

𝜕𝑎𝑗
 is proportional to 

the power gradient 
𝜕𝑓𝑗(𝑎𝑗,𝑝𝑗)

𝜕𝑝𝑗
.   

3.2 Power-law acceleration functions 

Consider a workload comprising multiple tasks, each 
incurring execution time 𝑡𝑖 on a reference processor. The 
target architecture may utilize up to N cores. Following 

Pollack's rule [8] and [19], each task i can be accelerated 
by any one of N available cores, where each core’s per-

formance 𝑃𝑒𝑟𝑓𝑗(𝑎𝑗), relative to performance on the refer-

ence processor, follows a power-law function of its area 𝑎𝑗 

(see (11) in section 2). 
Assume further that the multicore employs DVFS. 

Each core’s frequency corresponds to its power budget, 
𝑝𝑗, enabling clocking at a range of frequencies, from zero 

(when the core is idle) to 𝐹𝑚𝑎𝑥 (maximal frequency possi-
ble by the operating conditions and the physical con-
straints of the design). The maximal dynamic power of 
core j can be written as follows: 

𝑃𝑚𝑎𝑥 𝑗 = 𝛼1𝐶𝑗𝐹max 𝑗𝑉𝑚𝑎𝑥
2  (45) 

where 𝛼1 is the activity factor. Voltage is inversely pro-
portional to gate delay, and thus it is proportional to fre-
quency 𝑉max 𝑗 = 𝛼2𝐹max 𝑗, where 𝛼2 is a constant translat-

ing Hz to Volts. Capacitance 𝐶𝑗 is proportional to area 𝑎𝑗, 

𝐶𝑗 = 𝛼3𝑎j. Assume that all cores are subject to the same 

activity factor 𝛼1. Assume further that all cores are driven 
by the same voltage range (∀𝑗, 𝑉𝑚𝑖𝑛 ≤ 𝑉𝑗 ≤ 𝑉𝑚𝑎𝑥). We can 

write (45) as: 

𝑃𝑚𝑎𝑥 𝑗 = 𝛼1𝐶𝑗𝐹max 𝑗(𝛼2𝐹max 𝑗)
2

= 𝛼𝑎𝑗𝐹max 𝑗
3  (46) 

where 𝛼 is a constant absorbing 𝛼1, 𝛼2 and 𝛼3. We can also 
model 𝑃𝑚𝑎𝑥 𝑗 = 𝑐𝑗𝑎𝑗, where 𝑐𝑗 = 𝛼𝐹max 𝑗

3  is a constant trans-

lating units of area to power, in agreement with [5] 
and [14]. Next, assume that each core is driven at some 
operating frequency, 𝐹oper 𝑗, dissipating dynamic power 

𝑝𝑗. Following (46): 

𝑝𝑗 = 𝛼𝑎𝑗𝐹oper 𝑗
3  (47) 

Equation (47) complements [17] who noted through an 
empirical study that a typical CPU power is a polynomial 
function of frequency 𝑝𝑐𝑜𝑟𝑒 ∝ 𝑓𝜂 where 𝜂 typically ranges 
from 1.5 (in a low power manufacturing technology) to 
2.4 (in a high performance manufacturing technology). 
The present theoretical analysis leads to 𝜂 = 3 instead, but 
any other number will do and will not significantly 
change our results. We annotate  the normalized frequen-
cy of the core as 𝐹𝑛𝑜𝑟𝑚 𝑗, ranging from 0 (when the core is 

idle) to 1 (when the core is driven at maximal frequency 
corresponding to the operating conditions and the physi-

cal constraints of the design). Thus: 

𝐹𝑛𝑜𝑟𝑚 𝑗 =
𝐹𝑜𝑝𝑒𝑟 𝑗

𝐹𝑚𝑎𝑥 𝑗
= (

𝑝𝑗

𝑃𝑚𝑎𝑥 𝑗
)

1
3

= (
𝑝𝑗

𝑐𝑗𝑎𝑗
)

1
3

 (48) 

Even when assigned with infinite power budget, the 
core’s operating frequency cannot exceed its maximum 
frequency determined by the physical constraints of the 
design, thus (48) is revised as follows: 

𝐹𝑛𝑜𝑟𝑚 𝑗 = min ((
𝑝𝑗

𝑐𝑗𝑎𝑗
)

1
3

, 1) (49) 

Since the core’s inverted performance is modeled as 
power law with respect to its allocated area, we can write 
the acceleration function of a core as follows: 

𝑓𝑗(𝑎𝑗 , 𝑝𝑗) =
1

𝑎𝑗
𝛽𝑗

1

𝐹𝑛𝑜𝑟𝑚 𝑗
=

1

𝑎𝑗
𝛽𝑗

𝑚𝑎𝑥 ((
𝑐𝑗𝑎𝑗

𝑝𝑗
)

1
3

, 1) (50) 

Note that if core j is assigned with null power (𝑝𝑗 = 0), 

𝑓𝑗 → ∞. Conversely, if core j is assigned with infinite pow-

er (𝑝𝑗 → ∞), 𝑓𝑗 → 𝑎𝑗
−𝛽𝑗. 

We can further break (50) into its analytic representa-
tion (eliminating the max function)  as follows: 

𝑓𝑗(𝑎𝑗, 𝑝𝑗) =
1

𝑎𝑗
𝛽

[𝐻 (1 − (
𝑐𝑗𝑎𝑗

𝑝𝑗
)

1
3

)

+ (
𝑐𝑗𝑎𝑗

𝑝𝑗
)

1
3

𝐻 ((
𝑐𝑗𝑎𝑗

𝑝𝑗
)

1
3

− 1)] 

(51) 

Figure 8 plots the acceleration function (51) vs. area 
budget, at a fixed power budget 𝑝𝑗 = 1𝑊. The red, green 

and blue graphs represent exponents 𝛽𝑗 of 0.2, 1/3 and 0.5 

respectively. Note that for the purpose of generating Fig-
ure 8 and Figure 9, the parameter 𝑐𝑗 is assumed 𝑐𝑗 =

0.2𝑊/𝑚𝑚2 for all cores. As shown in the figure, at area 
below 5𝑚𝑚2, where 𝑝𝑗 > 𝑐𝑗𝑎𝑗, for all charts, the frequency 

maxes out and the acceleration follows 𝑎𝑗
−𝛽𝑗. However 

once the area surpasses 5𝑚𝑚2, that is (𝑝𝑗 < 𝑐𝑗𝑎𝑗), the ac-

celeration either (a) decreases in case 𝛽𝑗 < 1/3 (red chart); 

(b) flattens out in case 𝛽𝑗 = 1/3 (green chart); or (c) in-

creases, but at a lower rate than when 𝛽𝑗 > 1/3 (blue 

chart). The rationale is that although further area alloca-
tion has a positive impact on acceleration, the core’s fre-
quency scales back such that the power budget is main-
tained. Scaling back power has negative impact on per-
formance. In particular, for cores having 𝛽𝑗 < 1/3, the 

negative impact from power-scaling outpaces the positive 
impact provided by the increased area and thus the accel-
eration decreases. The reason that 𝛽𝑗 = 1/3 constitues the 

crossover point in this case lies in the 3rd power in 
(46),(47). 
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Figure 8. Acceleration function with various exponents, fixed power budget 

(1W) and fixed c (0.2𝑊/𝑚𝑚2). 

 

Figure 9 plots the acceleration function (51) vs. power 
budget, at a fixed area budget 𝑎𝑗 = 5𝑚𝑚2. As above, the 

red, green and blue charts represent exponents 𝛽𝑗 of 0.2, 

1/3 and 0.5 respectively. As shown in the figure, for allo-
cated core frequency, corresponding to power below 1W, 

that is 𝑝𝑗 < 𝑐𝑗𝑎𝑗, the acceleration follows 𝑎𝑗
−𝛽𝑗. However 

once the allocated power budget exceeds 1W, that is (𝑝𝑗 >

𝑐𝑗𝑎𝑗), acceleration is clamped. This happens because ex-

cess power allocation beyond 𝑃𝑚𝑎𝑥 𝑗 cannot be utilized.  

 
Figure 9. Acceleration function with various exponents, fixed area budget 

(5𝑚𝑚2) and fixed c (0.2𝑊/𝑚𝑚2) 

3.3 Example: Optimal quad-core architecture area 
and power allocation  

Consider a workload consisting of four concurrent 
tasks, incurring execution times 𝑡𝑖 = {100, 100, 100, 100} 
on a reference processor. The multicore architect wishes 
to optimize execution time under both area and power 
constraints, and may utilize up to four distinct cores. The 
example is organized in four cases, related to imbalanced 
and balanced 𝛽 and to asymmetric and heterogeneous 
quad cores. Figure 10, Figure 12, Figure 14 and Figure 16 
depict two sets of bars, each set corresponding to two 
extreme multicore area scenarios, one being eight times 
larger than the other. Within each set, the first bar corre-

sponds to area optimization, while the second bar corre-
sponds to both area and power optimization. The vertical 
axis shows the distribution of total area among the four 
cores. In a similar manner, Figure 11, Figure 13, Figure 15 
and Figure 17 share the same horizontal axis as the previ-
ous four figures, while the vertical axis depicts the distri-
bution of total average power among the four cores. Con-
sider the following two scenarios. 

 Total chip power budget is larger than the maximal 
power that the multicore may dissipate, 𝑃𝑀𝑎𝑥 ≤
𝑃𝑇𝑜𝑡𝑎𝑙 . None of the cores is power limited, and the op-
timal area allocation among the cores is as depicted 
in the first bar of each set. 

 Total chip power budget is lower than the maximal 
power, 𝑃𝑀𝑎𝑥 > 𝑃𝑇𝑜𝑡𝑎𝑙. Some of the cores are power-
limited and hence the optimal area allocation among 
the cores is different from the first bar of each set. 

To examine the second scenario, we set 𝑃𝑇𝑜𝑡𝑎𝑙  to 80% of 
the maximal power dissipation of the multicore, that is: 

∑ 𝑝𝑗 ≤ 𝑃𝑇𝑜𝑡𝑎𝑙 = 0.8 ∗ 𝑃𝑀𝑎𝑥

𝑗=𝑁

𝑗=1
 (52) 

and extract the optimal core area, as exemplified below. 

3.3.1 Asymmetric architecture with imbalanced 𝛽 

Consider an asymmetric quad-core having imbalanced 
exponents 𝛽𝑗 = {0.7, 0.6, 0.5, 0.4}, respectively. As shown 

in Figure 10, as the total multicore area increases (from 1× 
to 8×), tasks shift from the weaker cores (core #2, #3 and 
#4 having lower 𝛽) to the stronger core, and the weaker 
cores are progressively eliminated. When  power is con-
strained (right hand column in each set), at the same 
𝐴𝑇𝑜𝑡𝑎𝑙 , the stronger cores are provided with even larger 
area portion, at the expense of the weaker cores. In con-
trast, Figure 11 shows that in a power limited asymmetric 
multicore, the weaker cores are provided with even larger 
portion of the total average power. This is because in a 
power limited architecture, to uphold (41) the equilibrium 
is found when area is transferred from the weaker cores 
to the stronger ones, while power is transferred in the 
opposite direction, from the stronger cores to the weaker 
ones. 

 

 
Figure 10. Optimal area allocation of asymmetric imbalanced 𝛽 quad-core 

multi-processor, as a function of multicore area 
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Figure 11. Optimal average power allocation of asymmetric imbalanced 𝛽 

quad-core multi-processor, as a function of multicore area 

3.3.2 Asymmetric architecture with balanced β 

In this scenario, we consider an asymmetric quad-core 
architecture where all core share the same exponent, 𝛽𝑗 =

0.5. In contrast with the previous scenario, Figure 12-
Figure 13 shows that as the total multicore area increases, 
task, area and average power allocation do not shift from 
one core to another; rather, partitioning among the cores 
remains constant. Similarly, power allocations also do not 
shift. 

 

 
Figure 12. Optimal area allocation of asymmetric balanced 𝛽 quad-core 

multi-processor, as a function of multicore area 

 

 
Figure 13. Optimal average power allocation of asymmetric balanced 𝛽 

quad-core multi-processor, as a function of multicore area 

3.3.3 Heterogeneous architecture with imbalanced β 

Next, consider a heterogeneous quad-core having im-
balanced exponents 𝛽𝑗 = {0.7, 0.6, 0.5, 0.4}, respectively. 

As shown in Figure 14, as the total multicore area gets 
larger, area resources shift from the stronger core to the 
weaker cores (core #2, #3 and #4 having lower 𝛽). Note 
that while this trend is similar to Figure 10, in the hetero-
geneous case all cores must be retained while in the 
asymmetric multicore some cores can be eliminated. 

 

 
Figure 14. Optimal area allocation of heterogeneous imbalanced 𝛽 quad-

core multi-processor, as a function of multicore area 

When power is constrained, the stronger cores are 
provided with even larger portion of the total area, at the 
expense of the weaker cores. In contrast, Figure 15 shows 
that in a power limited heterogeneous multicore, the 
weaker cores are provided with even larger portion of the 
total average power. In a power limited architecture, to 
uphold (41) the equilibrium is found when area is trans-
ferred from the weaker cores to the stronger ones, while 
power is transferred in the opposite direction.  Here, too, 
the trend is similar to Figure 11, but in the heterogeneous 
multicore all cores must be retained.  

 

 
Figure 15. Optimal average power allocation of heterogeneous imbalanced 

𝛽 quad-core multi-processor, as a function of multicore area 

3.3.4 Heterogeneous architecture with balanced β 

Last, consider the heterogeneous quad-core architec-
ture where all core share the same exponent, 𝛽𝑗 = 0.5. In 

contrast with the imbalanced heterogeneous multicore, 
Figure 16-Figure 17 show that area and power allocations 
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do not shift, similarly to the balanced asymmetric multi-
core of Figure 12-Figure 13. 
 

 
Figure 16. Optimal area allocation of asymmetric balanced 𝛽 quad-core 

multi-processor, as a function of multicore area 

 

 
Figure 17. Optimal resource allocation of asymmetric balanced 𝛽 quad-core 

multi-processor, as a function of multicore area 

4 CONCLUSIONS 

This paper describes a multi-core optimization frame-
work that, given a concurrent workload and a set of po-
tential cores, selects an optimal subset of the cores and 
allocates area and power resources among them. The al-
gorithm relies on modeling the performance of each core 
as a function of the area and power resources it uses. 

For area-only optimization, only at the optimal re-
source allocation point (a) the execution times of all uti-
lized cores are equal across all utilized cores; and (b) the 
first derivatives with respect to area of the execution time 
function of each core are equal. The first optimality condi-
tion is backed by conventional wisdom: if one of the cores 
runs faster than the others, it has been allocated with too 
much area, and it is beneficial to reduce its resources and 
allocate them elsewhere. The second optimality condition 
means that at the optimal resource allocation, each addi-
tional infinitesimal area would create the same improve-
ment in the total execution time on any of the utilized 
cores. Otherwise, area allocation is imbalanced and some 
area should be removed from one utilized core and be 
allocated to another. 

In an imbalanced asymmetric architecture composed 
of a combination of weak and strong cores, further in-
crease of total multicore area is allocated to the stronger 
cores. In that regard, the stronger cores are assigned a 
larger portion of the workload and consequently are allo-
cated additional area resources at the expense of the 
weaker cores, until the weaker cores have no tasks to run 
and are eliminated. Further, in cases where the remaining 
cores share the same strength, these cores will not get 
eliminated even if the total multicore area increases indef-
initely, but will grow proportionally in area. On the other 
hand, in an imbalanced heterogeneous architecture com-
posed of a combination of weak and strong cores, since 
tasks cannot transition from one core to another due to 
the different ISA and hence all heterogeneous cores must 
be utilized, as the total multicore resources increase, the 
weaker cores are augmented with additional resources at 
the expense of the stronger cores. If all cores share the 
same strength, each core grows proportionally to the 
growth of the multicore total area. 

For optimization that considers both area and power 
constraints, the second optimality condition is augmented 
as follows: only at the optimal resource allocation point 
the first derivatives of the execution time with respect to 
both area and to power, are equal across all utilized cores. 
Thus, at the optimal area and power allocation, each addi-
tional infinitesimal area and power would create the same 
improvement in the total execution time on any of the 
utilized cores. Otherwise, area and power allocation is 
imbalanced and some area or power should be trans-
ferred from one utilized core to another 

The insights in the combined area and power optimi-
zation are also somewhat different from area-only opti-
mization: In an imbalanced asymmetric architecture 
composed of a combination of weak and strong cores, an 
increase of total multicore area is allocated to the stronger 
cores, to a larger extent than a non-power constrained 
multicore, up to eventual elimination of some weak cores. 
On the other hand, the weaker cores will receive a larger 
portion of the available average power, but to a larger 
extent than a non-power constrained multicore. In a het-
erogeneous architecture composed of a combination of 
weak and strong cores, as the total multicore resources 
increase, the stronger cores are augmented with addition-
al area resources at the expense of weaker cores, when 
compared with a non-power constrained multicore (but 
no core may be eliminated). At the same time, the weaker 
cores receive a larger portion of the available average 
power, when compared with a non-power constrained 
multicore. In both asymmetric and heterogeneous multi-
cores where all cores share the same strength, area and 
power allocation of the cores grow proportionally to the 
growth of the multicore total area. 

To conclude, we have presented an analytical tool for 
multicore partitioning leading to optimal execution time, 
given an area, or area and power, constraints. We have 
also described the architectural insights obtained thanks 
to this modeling. Furthermore, our model offers an effi-
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cient alternative to iterative ad-hoc processes for explor-
ing the design space. Our framework can be extended in a 
number of ways, such as bandwidth, energy and other 
constrained resources.  
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APPENDIX A: AREA CONSTRAINT OPTIMIZATION VIA 

LAGRANGE MULTIPLIERS 

In this appendix, we detail the Lagrange optimization 
of the cost function (5) subject to constraint (6). To that 
end, we introduce a new variable (𝜆 ), and the area alloca-
tion �̅� = {𝑎1, 𝑎2, … , 𝑎𝑁}, and study the Lagrange function 
defined by: 

𝛬(�̅�, 𝜆):   max(𝑇1, 𝑇2, … , 𝑇𝑁) + 𝜆 [∑ 𝑎𝑗 − 𝐴𝑇𝑜𝑡𝑎𝑙

𝑗=𝑁

𝑗=1
] (53) 

The optimum is found where all partial derivatives equal 
zero: 

∀𝑗, 1 ≤ 𝑗 ≤ 𝑁  
𝜕Λ

𝜕𝑎𝑗
= 0  𝑎𝑛𝑑  

𝜕Λ

𝜕𝜆
= 0 (54) 

The first derivative with respect to 𝑎𝑗 , ∀𝑗, 1 ≤ 𝑗 ≤ 𝑁 fol-

lows: 

𝜕[𝑚𝑎𝑥(𝑇1, 𝑇2, … , 𝑇𝑁)]

𝜕𝑎𝑗
+ 𝜆

𝜕[∑ 𝑎𝑗 − 𝐴𝑇𝑜𝑡𝑎𝑙
𝑗=𝑁
𝑗=1 ]

𝜕𝑎𝑗
= 0 (55) 

As 𝑎𝑗 are mutually independent variables, and 𝐴𝑇𝑜𝑡𝑎𝑙  is a 

constant, differentiating with respect to 𝑎𝑗 and 𝑎𝑘 where 

∀𝑗, 1 ≤ 𝑗, 𝑘 ≤ 𝑁:  

𝜕[𝑚𝑎𝑥(𝑇1, 𝑇2, … , 𝑇𝑁)]

𝜕𝑎𝑗
+ 𝜆 = 0 

𝜕[𝑚𝑎𝑥(𝑇1, 𝑇2, … , 𝑇𝑁)]

𝜕𝑎𝑘
+ 𝜆 = 0 

(56) 

Consequently, the Lagrange solution for ∀𝑗, 1 ≤ 𝑗, 𝑘 ≤ 𝑁 
satisfies, 

𝜕[𝑚𝑎𝑥(𝑇1, 𝑇2, … , 𝑇𝑁)]

𝜕𝑎𝑗
=

𝜕[𝑚𝑎𝑥(𝑇1, 𝑇2, … , 𝑇𝑁)]

𝜕𝑎𝑘
 (57) 

Due to the recursive nature of the max function, we can 
examine a sample dual core scenario, and expand the re-
sult to a multicore. The reduced cost function is: 

𝐷 = 𝑚𝑎𝑥(𝑇1, 𝑇2) (58) 

Rewriting (57) for a dual core scenario: 

𝜕[𝑚𝑎𝑥(𝑇1, 𝑇2)]

𝜕𝑎1
=

𝜕[𝑚𝑎𝑥(𝑇1, 𝑇2)]

𝜕𝑎2
 (59) 

In a similar manner to [4], the two variable max function 
is written using a step function 𝑄(𝑥): 

 𝑚𝑎𝑥(𝑇1, 𝑇2) = 𝑄(𝑇1 − 𝑇2)𝑇1 + 𝑄(𝑇2 − 𝑇1)𝑇2 (60) 

where: 

𝑄(𝑥) = {
0, (𝑥 < 0)

1, (𝑥 ≥ 0)
 (61) 

We use the sigmoid function as a differentiable approxi-

http://www.intel.com/research/mrl/Library/micro32Keynote.pdf
http://webee.technion.ac.il/publication-link/index/id/611
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mation of the step function: 

𝐻(𝑥) =
1

1 + 𝑒−𝑘𝑥
≅ 𝑄(𝑥) (62) 

The larger the k, the sharper the transition at 𝑥 = 0. The 
sigmoid has the following properties: 

𝐻(𝑥) = 1 − 𝐻(−𝑥) (63) 

𝐻′(𝑥) = 𝑘𝐻(𝑥)(1 − 𝐻(𝑥)) (64) 

𝐻′(𝑥 = 0) = 𝑘/4 

𝐻′(𝑥 ≠ 0) = lim
𝑘→∞

𝑘𝑒−𝑘𝑥

(1 + 𝑒−𝑘𝑥)2
≅ 0,  

(65) 

Thus, the max function in (60) can be expressed in a 
differentiable form as follows: 

𝑚𝑎𝑥(𝑇1, 𝑇2) = 𝐻(𝑇1 − 𝑇2)𝑇1 + 𝐻(𝑇2 − 𝑇1)𝑇2 (66) 

Figure 18 depicts a dual core execution time, the area 
of which is bounded by 𝐴𝑇𝑜𝑡𝑎𝑙 . When area is taken from 
the second core and applied to the first, the performance 
of the first core increases and thus its execution time 𝑇1 
decreases. The sigmoid based implementation of the max 
function is drawn for three k values. The higher the k, the 
sharper the transition at 𝑇1 = 𝑇2. 

 
Figure 18. Sigmoid based max function 

 

 

Resolving 
𝜕[max(𝑇1,𝑇2)]

𝜕𝑎𝑗
: 

𝜕[𝐻(𝑇1 − 𝑇2)𝑇1 + 𝐻(𝑇2 − 𝑇1)𝑇2]

𝜕𝑎𝑗
= 

𝑘𝐻(𝑇1 − 𝑇2)(1 − 𝐻(𝑇1 − 𝑇2))
𝜕[𝑇1 − 𝑇2]

𝜕𝑎𝑗
𝑇1 + 

𝑘𝐻(𝑇2 − 𝑇1)(1 − 𝐻(𝑇2 − 𝑇1))
𝜕[𝑇2 − 𝑇1]

𝜕𝑎𝑗
𝑇2 + 

𝐻(𝑇1 − 𝑇2)
𝜕[𝑇1]

𝜕𝑎𝑗
+ 𝐻(𝑇2 − 𝑇1)

𝜕[𝑇2]

𝜕𝑎𝑗
 

(67) 

Substituting 𝑗 = 1, and since 
𝜕[𝑇2]

𝜕𝑎1
= 0, 

𝜕[max[𝑇1, 𝑇2]]

𝜕𝑎1
= 

𝑘𝐻(𝑇1 − 𝑇2)(1 − 𝐻(𝑇1 − 𝑇2))
𝜕[𝑇1]

𝜕𝑎1
𝑇1

+ 𝐻(𝑇1 − 𝑇2)
𝜕[𝑇1]

𝜕𝑎1
 

−𝑘𝐻(𝑇2 − 𝑇1)(1 − 𝐻(𝑇2 − 𝑇1))
𝜕[𝑇1]

𝜕𝑎1
𝑇2 

(68) 

Following (63), since 𝐻(𝑇2 − 𝑇1) = (1 − 𝐻(𝑇1 − 𝑇2)), and 

(1 − 𝐻(𝑇2 − 𝑇1)) = 𝐻(𝑇1 − 𝑇2), we can conclude: 

𝜕[max[𝑇1, 𝑇2]]

𝜕𝑎1
=  𝑘

𝜕[𝑇1]

𝜕𝑎1
𝐻(𝑇1 − 𝑇2) ∗ 

[(1 − 𝐻(𝑇1 − 𝑇2))(𝑇1 − 𝑇2) +
1

𝑘
] 

(69) 

In a similar manner, 

𝜕[max(𝑇1, 𝑇2)]

𝜕𝑎2
= 𝑘

𝜕[𝑇2]

𝜕𝑎2
𝐻(𝑇2 − 𝑇1) ∗ 

[(1 − 𝐻(𝑇2 − 𝑇1))(𝑇2 − 𝑇1) +
1

𝑘
] 

(70) 

We can now write (59) as: 

𝑘
𝜕[𝑇1]

𝜕𝑎1
𝐻(𝑇1 − 𝑇2) ∗ 

[(1 − 𝐻(𝑇1 − 𝑇2))(𝑇1 − 𝑇2) +
1

𝑘
] = 

𝑘
𝜕[𝑇2]

𝜕𝑎2
𝐻(𝑇2 − 𝑇1) ∗ 

[(1 − 𝐻(𝑇2 − 𝑇1))(𝑇2 − 𝑇1) +
1

𝑘
] 

(71) 

The above equation has two possible solutions: 

A. Case 𝑇1 = 𝑇2: 

𝑇1 = 𝑇2  →  𝑓1(𝑎1) ∑ 𝑡𝑖𝑏𝑖,1

𝑖=𝑀

𝑖=1

= 𝑓2(𝑎2) ∑ 𝑡𝑖𝑏𝑖,2

𝑖=𝑀

𝑖=1

 (72) 

Since 𝐻(0) = 0.5, the optimal solution becomes: 

𝜕[𝑇1]

𝜕𝑎1
=

𝜕[𝑇2]

𝜕𝑎2
 (73) 

Thus: 

𝑓1
′(𝑎1) ∑ 𝑡𝑖𝑏𝑖,1

𝑖=𝑀

𝑖=1

= 𝑓2
′(𝑎2) ∑ 𝑡𝑖𝑏𝑖,2

𝑖=𝑀

𝑖=1

 (74) 

Hence, at the optimal resource allocation point, adding an 
infinitesimal area would create the same improvement in 
the total execution time on any one of the utilized cores.  

B. Case 𝑇1 ≠ 𝑇2: 

Assuming a very large k, even for a very small constant 𝜀 
in case 𝑇2 ≥ 𝑇1 + 𝜀, (71) reduces to: 
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𝜕[𝑇2]

𝜕𝑎2
≅ 0 (75) 

As established above, 𝑓2 monotonically decreases with 
area, and thus has a negative derivative. Therefore, since 
𝑡𝑖 is positive and given that 𝑏𝑖,𝑗 ≥ 0, the only solution for 

(75) is:  

∑ 𝑏𝑖,2

𝑀

𝑖=1

= 0   →     ∀𝑖,   𝑏𝑖,2 = 0 (76) 

Thus no task is assigned to core 2 and hence no area 
should be allocated to it. At the optimal point, 𝑎2 = 0. 
Similarly, if 𝑇1 ≥ 𝑇2 + 𝜀, core 1 is discarded.  

 
Due to the recursive nature of the max function (see 

(5)), the ensuing result can be extended to multi-core with 
any number of cores. For all utilized cores, ∀𝑗, 𝑘 the fol-
lowing conditions hold at the optimal point: 
A. First Optimality Condition: All utilized cores must 

have the same runtime: 

𝑓𝑗(𝑎𝑗) ∑ 𝑡𝑖𝑏𝑖,𝑗

𝑖=𝑀

𝑖=1

= 𝑓𝑘(𝑎𝑘) ∑ 𝑡𝑖𝑏𝑖,𝑘

𝑖=𝑀

𝑖=1

 (77) 

B. Second Optimality Condition: The first derivative of 
the execution time function across all utilized cores must 
be equal: 

𝑓𝑗
′(𝑎𝑗) ∑ 𝑡𝑖𝑏𝑖,𝑗

𝑖=𝑀

𝑖=1

= 𝑓𝑘
′(𝑎𝑘) ∑ 𝑡𝑖𝑏𝑖,𝑘

𝑖=𝑀

𝑖=1

 (78) 

APPENDIX B: AREA AND POWER CONSTRAINT 

OPTIMIZATION VIA LAGRANGE MULTIPLIERS 

In this appendix, we detail the Lagrange optimization 
of the cost function (37) subject to constraints detailed in 
(6)-(8) and (40). To that end, we introduce two new varia-
bles (𝜆1 and 𝜆2), area allocation �̅� = {𝑎1, 𝑎2, … , 𝑎𝑁}, and 
power allocation �̅� = {𝑝1, 𝑝2, … , 𝑝𝑁}, and define the La-
grange cost function as follows: 

𝛬(�̅�, �̅�, 𝜆1, 𝜆2):  max(𝑇1, 𝑇2, … , 𝑇𝑁) 

+𝜆1 [∑ 𝑎𝑗 − 𝐴𝑇𝑜𝑡𝑎𝑙

𝑗=𝑁

𝑗=1
] 

+𝜆2 [∑ (𝑠1𝑎𝑗 + 𝑠2𝑝𝑗+𝑝𝑗)
𝑗=𝑁

𝑗=1
− 𝑃𝑇𝑜𝑡𝑎𝑙] 

(79) 

The optimum is found when all partial derivatives 
equal zero: 

∀𝑗, 1 ≤ 𝑗 ≤ 𝑁    
𝜕Λ

𝜕𝑎𝑗
= 0,   

𝜕Λ

𝜕𝑝𝑗
= 0 

𝑎𝑛𝑑     
𝜕Λ

𝜕𝜆1
= 0,    

𝜕Λ

𝜕𝜆2
= 0 

(80) 

The first derivative with respect to 𝑎𝑗 , ∀𝑗, 1 ≤ 𝑗 ≤ 𝑁 fol-

lows: 

𝜕[max(𝑇1, 𝑇2, … , 𝑇𝑁)]

𝜕𝑎𝑗
+ 𝜆1

𝜕[∑ 𝑎𝑗 − 𝐴𝑇𝑜𝑡𝑎𝑙
𝑗=𝑁
𝑗=1 ]

𝜕𝑎𝑗
 

+𝜆2

𝜕[∑ (𝑠1𝑎𝑗 + 𝑠2𝑝𝑗+𝑝𝑗)
𝑗=𝑁
𝑗=1 − 𝑃𝑇𝑜𝑡𝑎𝑙]

𝜕𝑎𝑗
= 0 

(81) 

As 𝑎𝑗, 𝑝𝑗 are independent variables and 𝐴𝑇𝑜𝑡𝑎𝑙 , 𝑃𝑇𝑜𝑡𝑎𝑙  are 

constants, differentiating with respect to 𝑎𝑗 and 𝑎𝑘 where 

∀𝑗, 𝑘, 1 ≤ 𝑗, 𝑘 ≤ 𝑁:  

𝜕[max(𝑇1, 𝑇2, … , 𝑇𝑁)]

𝜕𝑎𝑗
+ 𝜆1 + 𝑠1𝜆2 = 0 

𝜕[max(𝑇1, 𝑇2, … , 𝑇𝑁)]

𝜕𝑎𝑘
+ 𝜆1 + 𝑠1𝜆2 = 0 

(82) 

Consequently, the Lagrange solution for ∀𝑗, 𝑘, 1 ≤ 𝑗, 𝑘 ≤ 𝑁 
satisfies: 

𝜕[𝑚𝑎𝑥(𝑇1, 𝑇2, … , 𝑇𝑁)]

𝜕𝑎𝑗
=

𝜕[𝑚𝑎𝑥(𝑇1, 𝑇2, … , 𝑇𝑁)]

𝜕𝑎𝑘
 (83) 

In a similar manner, when differentiating with respect to 
the power variables, the Lagrange solution for ∀𝑗, 𝑘, 1 ≤
𝑗, 𝑘 ≤ 𝑁 satisfies: 

𝜕[𝑚𝑎𝑥(𝑇1, 𝑇2, … , 𝑇𝑁)]

𝜕𝑝𝑗
+ 𝜆2(𝑠2 + 1) = 0 

𝜕[𝑚𝑎𝑥(𝑇1, 𝑇2, … , 𝑇𝑁)]

𝜕𝑝𝑘
+ 𝜆2(𝑠2 + 1) = 0 

(84) 

Thus, 

𝜕[𝑚𝑎𝑥(𝑇1, 𝑇2, … , 𝑇𝑁)]

𝜕𝑝𝑗
=

𝜕[𝑚𝑎𝑥(𝑇1, 𝑇2, … , 𝑇𝑁)]

𝜕𝑝𝑘
 (85) 

Following the procedure detailed in section 0 (writing 
the max function in analytical manner using sigmoid, tak-
ing the derivative and analyzing the results), the follow-
ing is derived: 

A. First Optimality Condition: All utilized cores must have 

the same runtime. 

𝑓𝑗(𝑎𝑗 , 𝑝𝑗) ∑ 𝑡𝑖𝑏𝑖,𝑗

𝑖=𝑀

𝑖=1

= 𝑓𝑘(𝑎𝑘, 𝑝𝑘) ∑ 𝑡𝑖𝑏𝑖,𝑘

𝑖=𝑀

𝑖=1

 (86) 

B. Second Optimality Condition: The first derivatives of the 

execution time functions across all utilized cores with re-

spect to area and power must be equal. 

𝜕𝑓𝑗(𝑎𝑗 , 𝑝𝑗)

𝜕𝑎𝑗
∑ 𝑡𝑖𝑏𝑖,𝑗

𝑖=𝑀

𝑖=1

=
𝜕𝑓𝑘(𝑎𝑘, 𝑝𝑘)

𝜕𝑎𝑘
∑ 𝑡𝑖𝑏𝑖,𝑘

𝑖=𝑀

𝑖=1

 (87) 

and 

𝜕𝑓𝑗(𝑎𝑗 , 𝑝𝑗)

𝜕𝑝𝑗
∑ 𝑡𝑖𝑏𝑖,𝑗

𝑖=𝑀

𝑖=1

=
𝜕𝑓𝑘(𝑎𝑘, 𝑝𝑘)

𝜕𝑝𝑘
∑ 𝑡𝑖𝑏𝑖,𝑘

𝑖=𝑀

𝑖=1

 (88) 

 


