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Abstract— Chip area, power consumption, execution time, off-chip memory bandwidth, overall cache miss rate and Network on 

Chip (NoC) capacity are limiting the scalability of Chip Multiprocessors (CMP). Consider a workload comprising a sequential and 

multiple concurrent tasks and asymmetric or heterogeneous multicore architecture. A convex optimization framework is proposed, 

for selecting the optimal set of processing cores and allocating area and power resources among them, the NoC and the last level 

cache, under constrained total area, total average power, total execution time and off-chip bandwidth. The framework relies on 

analytical performance and power models of the processing cores, NoC and last level cache as a function of their allocated 

resources. Due to practical implementation of the cores, the optimal architecture under constraints may exclude several of the 

cores. Several asymmetric and heterogeneous multi-core configurations are explored. Convex optimization of multicores is shown 

to extend optimizations that are based on Lagrange multipliers. We find that our framework obtains the optimal chip resources 

allocation over a wide spectrum of parameters and constraints, and thus can automate complex architectural design, analysis 

and verification. 

Index Terms—Chip Multiprocessors, Modeling of computer architecture  

——————————      —————————— 

1 INTRODUCTION

ith the growth of the number of transistors that can 
be integrated into a single silicon die, coupled with 

the growth of the available number heterogeneous multi-
core building blocks available to the chip architect, finding 
the optimal architecture of a large scale multicore proces-
sor under rigid physical constraints such as area, power 
and available off-chip bandwidth, is extremely complex 
and time consuming. The chip architect must select, for ex-
ample, the optimal number of processing cores to inte-
grate, the task allocation among the cores, the cache hier-
archy configuration, the Network on a Chip (NoC) topol-
ogy, and the resource allocation (e.g., area, power) among 
the hardware building blocks. In doing so, the chip archi-
tect must take into account the performance of each of the 
building blocks, as a function of the resources it consumes.  

While a workload characterized by high task-level par-
allelism may lead the architect to select a symmetric multi-
core architecture, a high data-parallelism workload may 
tip the balance towards SIMD machines. The closer we ap-
proach the maximal power density the chip package may 
disperse, the likelihood of finding multiple smaller sized 
heterogeneous cores [28] (for example, DCT engine, 
graphics accelerator etc.) increases. To that end, analytical 
models for most building blocks of modern ICs (e.g., 

caches, NoC, processing units) have been researched, ena-
bling the exploration of the chip design space in a reason-
able timeframe. 

This work focuses on optimization of a comprehensive 
multiprocessor architecture containing several heteroge-
neous building blocks, using convex optimization method-
ology [34], for a given workload, under constrained re-
sources. The contributions of this work are:  
(a) Formulation and solution of three convex optimization 
problems, for finding the optimal: 

 Execution time under total area, total average power 
and off-chip bandwidth constraints; or, 

 Average power under total area, execution time and 
off-chip bandwidth constraints; or, 

 Chip area under execution time, total average power 
and off-chip bandwidth constraints. 

(b) Extending the framework defined by [40], [7]  dna [6] by: 

 Considering several multicore building blocks, not 
just the processing elements; and,  

 Considering a workload containing both sequential 
and concurrent sections, as opposed to a series of ei-
ther sequential or concurrent tasks; and, 

 Detailing the exact optimal resource allocation, rather 
than merely providing the necessary condition for op-
timality. 

The rest of this paper is organized as follows: Section 2 
presents and discusses relevant related work. Section 3 
proposes and investigates analytical models for common 
multicore building blocks. Section 4 describes a convex op-
timization framework, and exemplifies it by deriving the 
optimal execution time, total average power, and total area 
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of a resource constrained asymmetric and heterogeneous 
multicore processors. Section 6 summarizes and concludes 
the paper. 

2 RELATED WORK 

Analytical models of common building blocks of mod-
ern ICs have been thoroughly studied. Polack [14] mod-
eled the performance of modern CPUs as a square root 
function of the resource assigned to them. Liwei et al.  [41] 
presented an analytical access time model for on-chip 
cache memories that shows the dependence of cache access 
time on cache parameters. Wilton et al. [36] described an 
analytical model for the access and cycle times of direct-
mapped and set-associative caches. Tsai et al. [43] explored 
the architectural design of cache memories using 3D cir-
cuits. Muralimanohar et al. [29], [30] modeled different 
types of wires, such as RC-modeled wires with different 
power/delay characteristics and differential low-swing 
buses and Non-uniform Cache Access (NUCA). Krishna et 
al. [5] researched the effects of data sharing in multi-
threaded applications on optimal area allocation between 
cores and cache. Yavits et al. [19] developed an analytical 
model for cache hierarchy levels and described the optimal 
allocation of constrained resources among them.  

A substantial body of literature explores NoC topolo-
gies and optimization. W. Liwei et al. proposed a buffer al-
location algorithm for wormhole routing networks-on-
chip. Ben-Itzhak et al. [42] modeled the delay of a worm-
hole routing based NoC with variable link capacities and a 
variable number of virtual channels per link. Z. Guz et 
al. [45] introduce Nahalal, a non-uniform cache (NUCA) 
topology that enables fast access to shared data for all pro-
cessors, while preserving the vicinity of private data to 
each processor. 

Optimization framework consolidating common multi-
core building blocks have been extensively studied as well: 
Cassidy et al. [3] have optimized processor area, L2 cache 
area and the number of cores for an area-constrained sym-
metric multicore using Lagrange multipliers [31]. Oh at 
el. [37] presented an analytical model to study the trade-off 
of the core count and the cache capacity in a CMP under a 
finite die area constraint, suggesting optimization of L1 / 
L2 cache sizes by varying the division of a constrained 
cache area among them, and evaluating each division’s ef-
fect on the resulting performance of the CMP. Alameldeen 
at el. [2] used analytical modeling to study the trade-off be-
tween the number of CMP cores and cache size. Wentzlaff 
at el. [13] introduced an analytic model to study the 
tradeoffs of utilizing increased chip area for larger caches 
versus more cores, focusing on manycore architectures. 
Huh at el. [17] compared the area and performance trade-
offs for CMP implementations to determine how many 
processing cores future server CMPs should have, whether 
the cores should have in-order or out-of-order issues, and 
how big the per-processor on-chip caches should be. Zhao 
et al. [21] developed a constraint-aware analysis methodol-
ogy considering total chip area and bandwidth limitations. 
Morad et al [39] and Hill et al [22] augmented Amdahl’s law 

with a corollary to multicore architecture by constructing 
a model for multicore performance and speedup. These 
models assumed that the parallelizable portion of the 
workload could be equally scaled by any number of cores 
(implying that tasks can break up indefinitely, which is sel-
dom the case), and the optimal resource allocation among 
the cores was not explored. To that end, S. Natarajan et 
al [35] created an elaborated model that evaluates the exe-
cution time of both the serial part and the parallel part of 
the application, taking into account the scaling of both 
these execution times with the input problem size and the 
number of processors. Concluding that symmetric many 
cores using very simple cores will only be able to achieve 
very high performance on a very specialized class of appli-
cations.  

Analytical models for power/energy optimization is a 
well-studied subject: Elyada et al. [4] have considered a 
multiprocessor with unknown workload and attempted to 
dynamically set frequency-voltage work-points for each 
core, with a goal to minimize a defined energy-perfor-
mance criterion. Rotem et al. [4] studied the optimal volt-
age and frequency operational point of the processor in or-
der to achieve minimum energy of the computing plat-
form.  

The interactions between multiple parallel processors 
incur performance overheads. These overheads are a result 
of synchronization, communication and coherence costs. 
Analytical models for these overheads have been studied 
as well. Morad et al. [39] modeled the synchronization, 
communication and coherence as a time penalty on 
Amdahl law, concluding that asymmetric multiprocessors 
can reduce power consumption by more than two thirds 
with similar performance compared to symmetric multi-
processors. Yavits et al. [20] studied the overheads and con-
cluded that in applications with high inter-core communi-
cation requirements, the workload should be executed on 
a small number of cores, and applications of high sequen-
tial-to-parallel synchronization requirements may better 
be executed by the sequential core. Lau et al. [15] intro-
duced an extension to Hill and Marty’s multi-core 
cost/performance model to account for the uncore compo-
nents, concluding that to sustain the scalability of future 
many-core systems, the uncore components must be de-
signed to scale sub-linearly with respect to the overall core 
count.  

Zaidenberg et al. [40] introduced MultiAmdahl, a re-
source constrained optimization framework for optimal re-
source allocation in CMP. Morad et al. [7] have presented 
the Generalized MultiAmdahl model (Figure 1) that mini-
mized sequential execution time of a heterogeneous set of 
accelerators by optimally selecting which accelerators to 
allocate and what area to assign to the allocated accelera-
tors.  

While the Generalized MultiAmdahl addresses a series 
of heterogeneous workload segments that are not concur-
rent (only one core operates at a time), Morad et al. [6] pre-
sented a framework that, given a multicore and a workload 
consisting of concurrent tasks and resource constraints 
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(Figure 2), finds the optimal selection of a subset of the 
available cores and the optimal resource allocation among 
them. 
 
 

 
Figure 1. Generalized MultiAmdahl: Optimizing multicore resource alloca-

tion executing sequential series of heterogeneous workload segments 

 

 
Figure 2. Optimizing multicore resource allocation executing concurrent se-

ries of workload segments 

 
The limitations of the frameworks presented in [40], [7] 

dna [6] is: (a) modeling the processing cores, but not ad-
dressing common building blocks such as NoC and LLC; 
(a) modeling workloads containing either a sequence of  se-

quential heterogeneous tasks ([40], [7]), or modeling work-
loads containing a sequence of  concurrent sections ([5]), 
but not both together; (c) utilizing Lagrange multipliers 
thus identifying the necessary condition for optimality, but 
not the optimal point; and (d) modeling constrained area 

([40], [7]), or constrained area/power designs ([5]), but not 
addressing off-chip bandwidth; and (e) solving for optimal 
execution time under area/power constraints, but not ad-
dressing optimizing power or area under constraints.  

When optimizing a modern multicore, the chip architect 
may need to optimize workloads containing both sequen-
tial and concurrent sections, and take into account addi-
tional building blocks such as caches and NoC while ad-
hering to off-chip bandwidth limitations.  

In this paper we address the following research ques-
tion: given (a) a multicore architecture consisting of last 
level cache (LLC), processing cores and a NoC intercon-
necting the cores and the LLC (see Figure 3); (b) workloads 
consisting of sequential and concurrent tasks (see Figure 
4); and (c) physical resource constraints (area, power, exe-
cution time, off-chip bandwidth), what is the optimal se-
lection of a subset of the available processing cores and 
what is the optimal resource allocation among all blocks. 
 

 
Figure 3. Typical multicore architecture containing several processing cores, 
LLC, NoC and Memory I/F. 

 
At the optimal resource allocation point, all blocks reach 

an equilibrium state in which if some area is taken from 
one block and given to another, the overall optimization 
target (e.g., area, power, execution time) increases. While 
searching for such optimal point, one must take into ac-
count all block’ characteristics, total area, power, execution 
time and off-chip bandwidth constraints and workload 
specifics. Thus, any a-priori, ad-hoc selection criteria based 
on performance threshold or otherwise (let alone universal 
criteria) electing a subset of the cores may yield only sub-
optimal results. Hence, the key contribution of this paper 
is to enable the multicore architect to select an optimal sub-
set of the cores and allocate resources among the cores, the 
LLC and the NoC, without having to explore the design 
space in an iterative ad-hoc fashion. 

3 ANALYTICAL MODELS 

In this section, we propose and investigate an analytical 
model for common building blocks of modern multi-pro-
cessors. For each block, we model the delay (e.g., execution 
time, access time) and power, as a function of the resources 
it uses (e.g., area). 

3.1 Workload 

Consider a typical workload consisting of sequential as 
well as M concurrent tasks, as depicted in Figure 3. Fur-
ther, consider a multicore processor comprising N cores, 
each capable of executing the following: 

 Sequential (un-parallelizable) section: The sequential por-
tion of the workload cannot break into a finer granu-
larity concurrent sub-tasks, and thus it is executed on 
a single core. The sequential section of the workload 
requires 𝑡0 seconds to execute on a reference processor of 
IPS=1 (Instructions Per Second). The sequential sec-
tion can be accelerated by any one of N available cores. 

The performance of core j is 𝑃𝑒𝑟𝑓𝑗(𝑎𝑗), relative to the 

performance on the reference processor, and is a func-
tion of its area 𝑎𝑗. The acceleration function 𝑓𝑗(𝑎𝑗) rep-

resents the inverted performance of core j : 

𝑓𝑗(𝑎𝑗) =
1

𝑃𝑒𝑟𝑓𝑗(𝑎𝑗)
 (1) 
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The runtime of the sequential task running on core j 

having area 𝑎𝑗 is thus 𝑓𝑗(𝑎𝑗) ∙ 𝑡0.  

 Concurrent section: We assume that the concurrent por-
tion of the workload is composed of M tasks, and each 
task may run on any core. In a similar manner to se-
quential processing, each concurrent task i of the 
workload requires time 𝑡𝑖 to execute on a reference pro-
cessor of IPS=1. The runtime of the ith task running on 

core j having area 𝑎𝑗 is thus 𝑓𝑗(𝑎𝑗) ∙ 𝑡𝑖 .  

 Sequential - parallel synchronization: Concurrency incurs 
data exchange between the sequential (first) core and 
the other cores at the beginning and the end of each 
concurrent section of the workload for subsequent 
processing. The data exchange entails transferring 
data from the LLC through the NoC into the private 
caches of the cores. 

 
The performance of a core increases when additional 

area resources are assigned to it. Therefore, the accelera-
tion functions 𝑓𝑗(𝑎𝑗) are strictly decreasing. We assume 

that the acceleration functions 𝑓𝑗(𝑎𝑗) are convex and are 

continuously differentiable. 
 

 
Figure 4. Typical workload consisting of sequential and concurrent tasks 

 

3.2 Processing Core 

The following analysis and definitions is based on [6]. 
Following Pollack's rule [14] and according to [39], the pro-
cessing core’s inverted performance may be written as fol-
lows (coefficients translating from area to performance 
units are scaled to unity): 

𝑓𝐶𝑜𝑟𝑒(𝑎𝐶𝑜𝑟𝑒) =
1

𝑎𝐶𝑜𝑟𝑒
𝛽

 (2) 

The exponent 𝛽 typically varies from 0.3 to 0.7 [33]. The 
higher the 𝛽, the stronger the core is. For the purpose of 
our optimization framework, following [6], we modify the 
acceleration function (1) of core j to depend on both its area 
𝑎𝑗 and its dynamic power 𝑝𝑗, as follows: 

𝑓𝑗(𝑎𝑗 , 𝑝𝑗) =
1

𝑃𝑒𝑟𝑓𝑗(𝑎𝑗 , 𝑝𝑗)
 (3) 

Note that 𝑝𝑗 represents actual power dissipated in core 

j rather than the maximum power that can be consumed 
by that core, as determined by its area, maximum voltage, 
maximum frequency and other physical constraints; for in-
stance, it is possible that at some optimum point for the en-
tire chip, a particular core is operated at 𝑝𝑗 < 𝑃max 𝑗.  

Area is a static resource, i.e., it does not change during 

execution. Power, however, has both static and dynamic 
components, and the distribution of these resources among 
the cores is not identical. Static power depends on temper-
ature [18], and temperature, in turn, depends on power 
density (related to dynamic power). We shall separate the 
static power consumption of the core into two compo-
nents, idle static power, and temperature induced static 
power.  

Assume that the multicore employs Dynamic Voltage 
and Frequency Scaling (DVFS). The idle static power is an-
notated as a manufacturing technology related constant 𝑠1 
multiplied by the core’s allocated area 𝑎𝑗 representing the 

static power when: (a) gate temperature is at the low end 
of the operating conditions range; (b) core voltage is at the 
low end of the DVFS voltage range; and, (c) core frequency 
is at the low end of the DVFS frequency range. Within the 
normal operating temperature range (say, 55°C–85°C), 
leakage power consumption may be estimated using a lin-
ear function of temperature [44]. Thus in normal operating 
conditions, we can express the temperature induced static 
power as a manufacturing technology related constant 𝑠2 
times its dynamic power 𝑝𝑗. 

𝑃𝑃𝑟𝑜𝑐−𝑆𝑡𝑎𝑡𝑖𝑐 = ∑ 𝑠1𝑎𝑗 + 𝑠2𝑝𝑗

𝑗=𝑁

𝑗=1
 (4) 

Note that in our analysis we choose to ignore floorplan-
induced leakage power, that is, temperature increase due 
to the heat generated by adjacent cores. Given that the 
cores have large enough radial shape, floorplan induced 
leakage is limited to the boundary and hence is a second 
order effect on total leakage. Note however that this as-
sumption may not always hold. 

Given that the multicore employs DVFS. Each core’s fre-
quency corresponds to its power budget, 𝑝𝑗, enabling 

clocking at a range of frequencies, from zero (when the 
core is idle) to 𝐹𝑚𝑎𝑥 (maximal frequency possible by the op-
erating conditions and the physical constraints of the de-
sign). The maximal dynamic power of core j can be written 
as follows: 

𝑃𝑚𝑎𝑥 𝑗 = 𝛼1𝐶𝑗𝐹max 𝑗𝑉𝑚𝑎𝑥
2  (5) 

where 𝛼1 is the activity factor. Voltage is inversely propor-
tional to gate delay, and thus it is proportional to frequency 
𝑉max 𝑗 = 𝛼2𝐹max 𝑗, where 𝛼2 is a constant translating Hz to 

Volts. Capacitance 𝐶𝑗  is proportional to area 𝑎𝑗, 𝐶𝑗 = 𝛼3𝑎j. 

Assume that all cores are subject to the same activity factor 
𝛼1. Assume further that all cores are driven by the same 
voltage range (∀𝑗, 𝑉𝑚𝑖𝑛 ≤ 𝑉𝑗 ≤ 𝑉𝑚𝑎𝑥). We can write (5) as: 

𝑃𝑚𝑎𝑥 𝑗 = 𝛼1𝐶𝑗𝐹max 𝑗(𝛼2𝐹max 𝑗)
2

= 𝛼𝑎𝑗𝐹max 𝑗
3  (6) 

where 𝛼 is a constant absorbing 𝛼1, 𝛼2 and 𝛼3. We can also 
model 𝑃𝑚𝑎𝑥 𝑗 = 𝑐𝑗𝑎𝑗, where 𝑐𝑗 = 𝛼𝐹max 𝑗

3  is a constant trans-

lating units of area to power, in agreement with [1] 
and [26]. Next, assume that each core is driven at some op-
erating frequency, 𝐹oper 𝑗, dissipating dynamic power 𝑝𝑗. 

Following (6): 

𝑝𝑗 = 𝛼𝑎𝑗𝐹oper 𝑗
3  (7) 
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Equation (7) complements [32] who noted through an 
empirical study that a typical CPU power is a polynomial 
function of frequency 𝑝𝑐𝑜𝑟𝑒 ∝ 𝑓𝜂 where 𝜂 typically ranges 
from 1.5 (in a low power manufacturing technology) to 2.4 
(in a high performance manufacturing technology). The 
present theoretical analysis leads to 𝜂 = 3 instead, but any 
other number will do and will not significantly change our 
results. We annotate  the normalized frequency of the core 
as 𝐹𝑛𝑜𝑟𝑚 𝑗, ranging from 0 (when the core is idle) to 1 (when 

the core is driven at maximal frequency corresponding to 
the operating conditions and the physical constraints of the 
design). Thus: 

𝐹𝑛𝑜𝑟𝑚 𝑗 =
𝐹𝑜𝑝𝑒𝑟 𝑗

𝐹𝑚𝑎𝑥 𝑗

= (
𝑝𝑗

𝑃𝑚𝑎𝑥 𝑗

)

1
3

= (
𝑝𝑗

𝑐𝑗𝑎𝑗

)

1
3

 (8) 

Even when assigned with infinite power budget, the 
core’s operating frequency cannot exceed its maximum fre-
quency determined by the physical constraints of the de-

sign, thus (8) is revised as follows: 

𝐹𝑛𝑜𝑟𝑚 𝑗 = min ((
𝑝𝑗

𝑐𝑗𝑎𝑗

)

1
3

, 1) (9) 

Since the core’s inverted performance is modeled as a 
power law with respect to its allocated area, we can write 
the acceleration function of a core as follows: 

𝑓𝑗(𝑎𝑗 , 𝑝𝑗) =
1

𝑎𝑗
𝛽𝑗

1

𝐹𝑛𝑜𝑟𝑚 𝑗

=
1

𝑎𝑗
𝛽𝑗

𝑚𝑎𝑥 ((
𝑐𝑗𝑎𝑗

𝑝𝑗

)

1
3

, 1) 

(10) 

Note that if core j is assigned with null power (𝑝𝑗 = 0), 

𝑓𝑗 → ∞. Conversely, if core j is assigned with infinite power 

(𝑝𝑗 → ∞), 𝑓𝑗 → 𝑎𝑗
−𝛽𝑗 . 

While considering asymmetric architectures, we focus 
on homogenous tasks and exclude task heterogeneity (for 
example, certain tasks may benefit from larger cache sizes, 
others may benefit from larger branch prediction buffer, 
etc.). Thus, we assume that tasks runtime depends only on 
the core’s speedup function at its designated area. 

Given the core areas 𝐴𝐶𝑜𝑟𝑒 = {𝑎1, … , 𝑎𝑁}, and power al-
location 𝑃𝐶𝑜𝑟𝑒 = {𝑝1, … , 𝑝𝑁}, the execution time 𝑡0 of the se-
quential portion of the workload is determined by the fast-
est available core, thus: 

𝑇𝑆𝑒𝑞 ≜ ∑ 𝑓𝑗(𝑎𝑗 , 𝑃𝑆𝑒𝑞)

𝑁

𝑗=1

𝑏0,𝑗𝑡0 (11) 

where, at the optimal point: 

 𝑏𝑖,𝑗 = {1 ∶    𝑖𝑡ℎ 𝑡𝑎𝑠𝑘 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑗𝑡ℎ  𝑐𝑜𝑟𝑒
0 ∶                                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (12) 

Note that when the sequential portion of the workload is 
executed on some core, the dynamic power that is assigned 
to all other cores becomes available to it (up to its maxi-

mum possible power 𝑐𝑗𝑎𝑗), thus: 

𝑃𝑆𝑒𝑞 = 𝑃𝑃𝑟𝑜𝑐−𝐷𝑦𝑛𝑎𝑚𝑖𝑐 = ∑ 𝑝𝑖

𝑁

𝑖=1

 

Note further that a task is assigned to a single core. The 
area and power of core j, namely (𝑎𝑗 , 𝑝𝑗), may be 0 or posi-

tive, respectively. 
Core j execution time of the concurrent tasks assigned 

to it is: 

𝑇𝑗 ≜ ∑ 𝑓𝑗(𝑎𝑗 , 𝑝𝑗)
𝑖=𝑀

𝑖=1
𝑏𝑖,𝑗𝑡𝑖

= 𝑓𝑗(𝑎𝑗 , 𝑝𝑗) ∑ 𝑏𝑖,𝑗𝑡𝑖

𝑖=𝑀

𝑖=1
 

(13) 

The total execution time of the concurrent section of the 
workload 𝑇𝐶𝑜𝑛, is determined by the last core to finish exe-
cuting its allocated tasks, thus 

𝑇𝐶𝑜𝑛 ≜ 𝑚𝑎𝑥 (𝑇1, 𝑇2, … , 𝑇𝑁) (14) 

The total execution time is: 

𝑇𝑃𝑟𝑜𝑐 = 𝑇𝑆𝑒𝑞 + 𝑇𝐶𝑜𝑛 (15) 

The total average power dissipated by the processing cores 
is thus: 

𝑃𝑃𝑟𝑜𝑐 = 𝑃𝑃𝑟𝑜𝑐−𝑆𝑡𝑎𝑡𝑖𝑐 + 𝑃𝑃𝑟𝑜𝑐−𝐷𝑦𝑛𝑎𝑚𝑖𝑐  (16) 

3.3 Last Level Cache (LLC) 

To model the LLC power as a function of its area re-
sources, we follow the circuit diagrams detailed in [36] 
and [38], and conduct design space exploration using 
CACTI-6 [29], [30]. The LLC static and dynamic power 
simulated for 45nm by CACTI-6 are shown in Figure 5, 
plotted as the red and green graph, respectively. The cache 
size simulated for 45nm is shown in Figure 6, plotted in the 
red graph. 

While varying the cache size, the per-access dynamic 
power dissipation of a cache can be approximated by 
power-law model:    

𝑃𝐿𝐿𝐶−𝐷𝑦𝑛𝑎𝑚𝑖𝑐(𝑆𝐿𝐿𝐶) = 𝑐1 + 𝑐2𝑆𝐿𝐿𝐶
𝛾 (17) 

where 𝑆𝐿𝐿𝐶 is the LLC size and is equal to Block Size × As-
sociativity × Number of Sets. With the aid of numerical ap-

proximation tools such as [27], the constant 𝑐1, 𝑐2, and the 
exponent 𝛾 are found by fitting the power law (17) curve 
to the cache dynamic power data, either received by ex-
ploring circuit level models or generated by CACTI-6 (see 
the blue dotted fitted function in Figure 5). Note that the 
technology node and the selection of the internal cache ar-
chitecture (e.g., block size, associativity, number of sets) af-
fect these constants. Hence, in our analysis, we have fixed 
the technology node and cache architecture, and varied the 
cache size (number of bits allocated), while recording the 
area and static and dynamic power of each configuration.  

Further design space exploration with CACTI-6, yields 
that the cache size can be approximated by power-law 
model: 

𝑆𝐿𝐿𝐶 = 𝑐3 + 𝑐4𝐴𝐿𝐿𝐶
𝜗 (18) 

where 𝐴𝐿𝐿𝐶 is the total area allocated to the cache. Our anal-
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ysis shows that 𝜗 is very close to 1 (see the blue dotted fit-
ted function in Figure 6) thus (17) is re-written as: 

𝑃𝐿𝐿𝐶−𝐷𝑦𝑛𝑎𝑚𝑖𝑐(𝐴𝐿𝐿𝐶) = 𝑐1 + 𝑐2(𝑐3 + 𝑐4𝐴𝐿𝐿𝐶)𝛾 (19) 

The analysis further shows that the static power of the 
cache can be approximated as a linear function of the cache 
size, and hence cache area (see the black dotted fitted func-
tion in Figure 5): 

𝑃𝐿𝐿𝐶−𝑆𝑡𝑎𝑡𝑖𝑐(𝐴𝐿𝐿𝐶) = 𝑐5 + 𝑐6(𝑐3 + 𝑐4𝐴𝐿𝐿𝐶) (20) 

The total power allocated to the LLC is thus: 

𝑃𝐿𝐿𝐶 = 𝑃𝐿𝐿𝐶−𝑆𝑡𝑎𝑡𝑖𝑐 + 𝑃𝐿𝐿𝐶−𝐷𝑦𝑛𝑎𝑚𝑖𝑐  (21) 

Figure 5 and Figure 6 demonstrate that the power-law, 
(17) and (18), approximates CACTI simulations (and their 
underlying circuit level models) over a wide range of cache 
sizes (from 4Kbytes to 16Mbytes) to within 5%. Note that 
equation (17) is approximately in agreement with [3] who 
modeled the cache dynamic power as a square root of its 
assigned size. 
 

 
Figure 5. Cache dynamic read energy/access vs. cache size (CACTI-6). 

 

 
Figure 6. Cache area vs. cache size (CACTI-6). 

 
We assume a typical hierarchical cache configuration, in 

which each processing core contains a single private cache 
level, and all cores share the LLC. This framework can be 

extended to any number of private, shared or hybrid lev-
els. Following [19], we assume that the access time of the 
LLC is approximated by power-law model:  

𝐴𝑐𝑐𝑒𝑠𝑠𝐿𝐿𝐶(𝑆𝐿𝐿𝐶) = 𝜏𝑆𝐿𝐿𝐶
𝜌 (22) 

Both 𝜏 and the exponent 𝜌 are found by fitting the power 
law (22) curve to the cache access time data, either received 
by exploring circuit level models or generated by CACTI. 
For caches having several shared clients, the access time 
can be written as follows: 

𝑡𝐿𝐿𝐶 = 𝑇𝑁𝑜𝐶 + 𝜏 (
𝑆𝐿𝐿𝐶

𝑁𝑃𝑟𝑜𝑐
)

𝜌

 

𝑇𝑁𝑜𝐶 = 𝑡𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 + 𝑡𝑏𝑙𝑜𝑐𝑘𝑖𝑛𝑔 + 𝑡𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 

(23) 

where 𝑁𝑃𝑟𝑜𝑐 is the number of shared cache clients (in our 
framework, the number of processing cores). NoC delay 
𝑇𝑁𝑜𝐶  is a sum of transfer delay, 𝑡𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟, blocking delay, 

𝑡𝑏𝑙𝑜𝑐𝑘𝑖𝑛𝑔 and queuing (congestion) delay, 𝑡𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛. [???]  

We adopt the analytical models for 𝑡𝑏𝑙𝑜𝑐𝑘𝑖𝑛𝑔 and 𝑡𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 

proposed by [41] and [42]. 𝑡𝑏𝑙𝑜𝑐𝑘𝑖𝑛𝑔 and 𝑡𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 depend 

on a variety of parameters including the shared cache ac-
cess rate 𝑅𝐿𝐿𝐶, the network capacity, the number of cores 
etc. Those parameters except for 𝑅𝐿𝐿𝐶 and the number of 
cores, are not part of our optimization framework. There-
fore we model both 𝑡𝑏𝑙𝑜𝑐𝑘𝑖𝑛𝑔 and 𝑡𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 as function of 

𝑅𝐿𝐿𝐶, assuming the rest of parameters are constant. Trans-

fer delay, 𝑡𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟, is 𝑂(√𝑛), assuming 2-D mesh NoC [13]. 

The average memory delay can be written as follows:    

𝑇𝐿𝐿𝐶 = (1 − 𝑀𝑅LLC)𝑡LLC + 𝑀𝑅𝐿𝐿𝐶(𝑑𝐴𝑐𝑐𝑒𝑠𝑠 + 𝑑𝑄𝑢𝑒𝑢𝑒) (24) 

where 𝑑𝐴𝑐𝑐𝑒𝑠𝑠 is the DRAM access penalty and 𝑑𝑄𝑢𝑒𝑢𝑒 is the 

interconnect queuing delay. The LLC miss-rate, 𝑀𝑅𝐿𝐿𝐶, can 
be written as follows: 

𝑀𝑅𝐿𝐿𝐶 =  𝑚𝐶𝑜𝑚𝑝 + (1 − 𝑚𝐶𝑜𝑚𝑝)𝐶𝑆ℎ𝑎𝑟𝑖𝑛𝑔 √
𝑆𝐿𝐿𝐶

𝑁𝑃𝑟𝑜𝑐
⁄  (25) 

where 𝐶𝑆ℎ𝑎𝑟𝑖𝑛𝑔 is the data sharing factor [3], and 𝑚𝐶𝑜𝑚𝑝 is 

the compulsory miss component reflecting access to data 
originated in remote (rather than in local) core [17]. Note 
that 𝑚𝐶𝑜𝑚𝑝 does not depend on the size of the processing 

cores’ local cache.  
DRAM interconnect queuing delay 𝑑𝑄𝑢𝑒𝑢𝑒 can be pre-

sented as a function of the rate of access to off-chip 𝑀𝑅𝐿𝐿𝐶, 
the off-chip memory bandwidth, the number of processing 
cores etc. [5]. Those parameters except for 𝑀𝑅𝐿𝐿𝐶 and the 
number of processing cores are not part of our optimiza-
tion framework. Hence we model 𝑑𝑄𝑢𝑒𝑢𝑒 as a function of 

𝑀𝑅𝐿𝐿𝐶, assuming the rest of the parameters are constant. 
The off-chip bandwidth can be written as: 

𝐵𝑊𝐿𝐿𝐶 = 𝑅𝐿𝐿𝐶𝑀𝑅𝐿𝐿𝐶 (26) 

In real life, cache performance is affected by a combina-
tion of constrained chip resources. When LLC area budget 
is limited, the elevated miss rate causes the off-chip 
memory traffic to intensify, thus enlarging the total chip 
power. As a result, the average memory delay is affected 
by longer DRAM queuing delays. When LLC area budget 



MORAD ET AL.:  CONVEX OPTIMIZATION OF RESOURCE ALLOCATION IN ASYMMETRIC AND HETEROGENEOUS MULTICORES 7 

 

is substantial, LLC power consumption becomes the pri-
mary constraint as it becomes too large to power, while on 
the other hand, the decreased bandwidth reduces the total 
chip power. To that end, the optimal cache size should be 
obtained only within the framework of the entire chip. We 
thus include the DRAM pinout power dissipation into the 
optimization framework as follows: 

𝑃𝐷𝐷𝑅 = 𝑐𝐷𝐷𝑅𝐵𝑊𝐿𝐿𝐶 (27) 

where 𝑐𝐷𝐷𝑅 is a constant translating bandwidth (bit/sec-
ond) to average power dissipated on the multicore pinout. 

3.4 Network on a Chip (NoC) 

In this work, we assume a 2-D mesh NoC [13], with a 

transfer delay 𝑂(√𝑛). We assume that the NoC hub blocks 

are identical and consume a fixed area, 𝑎𝑁𝑜𝐶 . Thus, the to-
tal area of the NoC is: 

𝐴𝑁𝑜𝐶 = (𝑁𝑃𝑟𝑜𝑐 + 1𝐿𝐿𝐶)𝑎𝑁𝑜𝐶  (28) 

where 𝑁𝑃𝑟𝑜𝑐 is the number of integrated processing 
cores (that is, the sum of processing cores which have been 
allocated area larger than 0).  

The optimization framework can utilize other NoC to-
pology. For example, Nahalal [45] (see Figure 7), a non-
uniform cache (NUCA) that enables fast access to shared 
data for all processors, while preserving the vicinity of pri-
vate data to each processor may decreases the shared  
cache access latency by up to 54% compared to traditional  
CMP designs. 

 

 
Figure 7. NoC based on 2D Mesh, following Nahalal [45]. 

 
We further assume that the NoC blocks are constantly 

active and thus consume a fixed power, relative to the area: 

𝑃𝑁𝑜𝐶 = 𝐶𝐴𝑃𝐴𝑁𝑜𝐶  (29) 

where 𝐶𝐴𝑃 is a is a constant translating units of area to 
power [12], [26]. 

3.5 Total Resources 

The combined area, power (static and dynamic) and ex-
ecution time is a summary of all resources allocated to the 
processing cores, NoC and the LLC, respectively: 

𝐴𝑇𝑜𝑡𝑎𝑙 = 𝐴𝐿𝐿𝐶 + 𝐴𝑁𝑜𝐶 + 𝐴𝑃𝑟𝑜𝑐 ≤ 𝐴𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡  (30) 

𝑃𝑇𝑜𝑡𝑎𝑙 = 𝑃𝐿𝐿𝐶 + 𝑃𝐷𝐷𝑅 + 𝑃𝑁𝑜𝐶 + 𝑃𝑃𝑟𝑜𝑐

≤ 𝑃𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 

𝑇𝑇𝑜𝑡𝑎𝑙 = 𝑇𝐿𝐿𝐶 + 𝑇𝑁𝑜𝐶 + 𝑇𝑃𝑟𝑜𝑐 ≤ 𝑇𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 

𝐵𝑊𝑇𝑜𝑡𝑎𝑙 = 𝐵𝑊𝐿𝐿𝐶 ≤ 𝐵𝑊𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 

In this work, the network delay, 𝑇𝑁𝑜𝐶 , is modeled as a 
part of the LLC’s delay. 

4 CONVEX OPTIMIZATION 

In this section we propose and investigate an optimiza-
tion framework based on [34] of constrained area, average 
power and execution time, asymmetric and heterogeneous 
multi-core processors.  

A convex function satisfies the inequality 𝑓(𝛼𝑥 + 𝛽𝑦) ≤
𝛼𝑓(𝑥) + 𝛽𝑓(𝑦) [34]. An optimization problem of finding 
some 𝑥∗ ∈ 𝑋 such that 𝑓(𝑥∗) = 𝑚𝑖𝑛{𝑓(𝑥): 𝑥 ∈ 𝑋} where 𝑋 ⊂
ℝ𝑛 is the feasible set and 𝑓(𝑥): ℝ𝑛 → ℝ is the objective, is 
called convex if 𝑋 is a closed convex set and 𝑓(𝑥) is convex 
on ℝ𝑛 [16] and [9]. A convex minimization problem con-
sists of the following three parts: 

 Objective function: A convex function 𝑓(𝑥): ℝ𝑛 → ℝ to 
be minimized over the variable x. 

 Inequality constraints of the form 𝑔𝑖(𝑥) ≤ 0, where the 
functions 𝑔𝑖  are convex. 

 Equality constraints of the form ℎ𝑖(𝑥) = 0, where the 
functions ℎ𝑖(𝑥) are affine (linear).  

 
In an asymmetric multicore architecture, all cores share 

the same instruction set architecture (ISA) but may differ 
in performance, clock frequency, cache size and other mi-
cro-architectural characteristics. Heterogeneous architec-
ture, on the other hand, allows different functionality and 
different ISA in the cores. In an asymmetric multicore ar-
chitecture, each task can be executed on any one of the 
cores, whereas in a heterogeneous architecture, tasks can 
typically execute only on designated cores. We extend the 
analysis of [6] by considering: (a) comprehensive multicore 
architecture having NoC and LLC; and (b) workload con-
taining sequential and concurrent tasks, in four types of 
multicore architectures: 

 Asymmetric, unbalanced beta (cf. (2)): the workload 
may be distributed across up to two distinct cores, 
having unbalanced exponent β = {0.6, 0.4}, respec-
tively.  

 Asymmetric, balanced beta: the workload may be dis-
tributed across up to two distinct cores, having bal-
anced exponent β = {0.5, 0.5}, respectively.  

 Heterogeneous, unbalanced beta: the workload may 
be distributed across exactly two distinct cores, having 
unbalanced exponent β = {0.6, 0.4}, respectively.  

 Heterogeneous, balanced beta: the workload may be 
distributed across exactly two distinct cores, having 
balanced exponent β = {0.5, 0.5}, respectively.  

In this work, we assume that each processing core con-
tains a private L1 cache. Each workload task is character-
ized by miss rates defined in [5] using PARSEC [10] and 
NAS [11], corresponding to the sequential-parallel syn-
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chronization data exchange. Further, we have applied as-
sumptions similar to those used in [5], [20] and [37] for the 
constants described in (23) - (25).  

Our framework finds the optimal resource allocation in 
a broad spectrum of constraints. In the following subsec-
tions, we exemplify some of these scenarios. 

4.1 Optimizing Execution Time under Constraints 

Consider a synthetic workload consisting of a sequen-
tial task incurring execution time 𝑡0 = 40, and two concur-
rent tasks, incurring execution times 𝑡𝑐 = {50,10} on a ref-
erence processor, respectively. We wish to minimize the 
total execution time of a multicore consisting of processing 
cores, NoC and LLC, under total area, total average power 
and off-chip bandwidth constraints. We thus write our op-
timization problem as follows: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑇𝑇𝑜𝑡𝑎𝑙 
{𝐴𝐿𝐿𝐶, 𝐴𝑁𝑜𝐶,𝑎1, … , 𝑎𝑁 , 𝑝1, … , 𝑝𝑁} 

 
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝐴𝑇𝑜𝑡𝑎𝑙 ≤ 𝐴𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 
                       𝑃𝑇𝑜𝑡𝑎𝑙 ≤ 𝑃𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 

                       𝐵𝑊𝑇𝑜𝑡𝑎𝑙 ≤ 𝐵𝑊𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 

(31) 

To solve problem (31) we used CVX, a package for spec-
ifying and solving convex programs [23], [24], replacing 
the objective functions and the constraints with their con-
vex counterparts.  

We optimize the four multicore architectures, as de-
tailed in Figure 8-Figure 10. Each part of the sub-figures 
depicts three sets of bars corresponding to increasing total 
areas, 𝐴𝑇𝑜𝑡𝑎𝑙−𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 = {5mm2, 40mm2, 320mm2}, respec-
tively. Within each set, there are two levels of power 
budget, high power for the first bar and lower power for 
the second bar, as follows:  

 The optimal area allocation under higher power con-
straint is depicted in the first bar of each set of Figure 
8’s sub-figures.  

 The optimal area allocation under low average power 
constraint is depicted in the second bar of each set of 
Figure 8’s sub-figures. Some of the multicore compo-
nents are power-limited and hence the optimal area al-
location is different from areas in the first bar of each 
set. 

 The optimal average power allocation under higher 
power constraint is depicted in the first bar of each set 
of Figure 9’s sub-figures.  

 The optimal average power allocation under low av-
erage power constraint is depicted in the second bar of 
each set of Figure 9’s sub-figures. Some of the multi-
core components are power-limited and hence the op-
timal power allocation is different from the first bar of 
each set. 

 The red stars in Figure 10’s sub-figures depict the op-
timal execution time corresponding to the 
higher/lower constrained power scenarios. 

The optimal (actually utilized) total area 𝐴𝑇𝑜𝑡𝑎𝑙, total 
power 𝑃𝑇𝑜𝑡𝑎𝑙, total execution time 𝑇𝑇𝑜𝑡𝑎𝑙, and total band-
width 𝐵𝑊𝑇𝑜𝑡𝑎𝑙 are specified at the bottom of each subfig-

ure. Note that for some configurations, the optimal (actu-
ally utilized) value may be smaller than its corresponding 
constraint. 

TABLE 1 Summarizes the constraints used for execution 
time optimization, where SxBy corresponds to set x, bar y 
in Figure 8-Figure 10. 
 

TABLE 1 
EXECUTION TIME OPTIMIZATION CONSTRAINTS 

Constraint S1B1 S1B2 S2B1 S2B2 S3B1 S3B2 

𝐴𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 5.0 5.0 40.0 40.0 320.0 320.0 

𝑃𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 1.35 1.08 10.8 8.64 86.40 69.12 

𝐵𝑊𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 1.9 1.9 1.6 1.6 1.1 1.1 

Power constraints are specified in Watt, Execution time constraints in sec-

onds, and Bandwidth constraints in MB/sec. 

 

 
Figure 8. Multicore area partitioning following optimization of execution 

time, subject to three scenarios of constrained resources. 

 

 
Figure 9. Multicore power partitioning following optimization of execution 

time, subject to three scenarios of constrained resources. 
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Figure 10. Multicore optimization of execution time, subject to three scenar-

ios of constrained resources. 

 
As shown in Figure 8(a)-Figure 10(a), we consider an 

asymmetric dual-core architecture where each core has a 
distinct exponent, 𝛽𝑗 = {0.6, 0.4}. Initially, due to con-

strained area, only a single core is allocated. As the total 
multicore area increases, the weaker core is assigned with 
the shorter task, and provided with growing portion of the 
total average area and power. When power is constrained 
the weaker core is provided with smaller area portion. On 
the other hand, the weaker core is provided with larger 
portion of the total average power at the expense of the 
stronger cores. We thus find that in a power limited archi-
tecture, the optimum is found when area is transferred 
from the weaker cores to the stronger ones, while power is 
transferred in the opposite direction, from the stronger 
cores to the weaker one. 

Next, in Figure 8(b)-Figure 10(b) we consider an asym-
metric dual-core architecture where all core share the same 
exponent, 𝛽𝑗 = 0.5. In contrast with the previous set, Fig-

ure 8(b)-Figure 10(b) shows that when sufficient area is 
provided to the multicore such that both cores are allo-
cated, tasks, area and average power allocation do not shift 
from one core to another even if the area resources in-
creases indefinitely; rather, partitioning among the cores 
remains constant. Note that although both cores are of the 
same strength (same 𝛽), resources (e.g., area and power) 
allocation is not equal due to the serial and two concurrent 
tasks having different execution times. 

Next, in Figure 8(c)-Figure 10(c) we consider a hetero-
geneous dual-core having unbalanced exponents 𝛽𝑗 =

{0.6, 0.4}, respectively. As the total multicore area gets 
larger, area resources shift from the stronger core to the 
weaker core having lower 𝛽. Note that in the heterogene-
ous case all cores must be retained while in the asymmetric 
multicore some cores may be eliminated. When power is 
constrained, the stronger core is provided with even larger 
portion of the total area, at the expense of the weaker core. 
On the other hand, the weaker core is provided with even 
larger portion of the total average power. We thus find that 
in a power-limited architecture, the optimum is found 
when area is transferred from the weaker cores to the 

stronger ones, while power is transferred in the opposite 
direction.  

Lastly, in Figure 8(d)-Figure 10(d) we consider a heter-
ogeneous dual-core architecture where all core share the 
same exponent, 𝛽𝑗 = 0.5. In contrast with the unbalanced 

heterogeneous multicore, Figure 8(d)-Figure 10(d) show 
that when sufficient area is provided to the multicore, 
tasks, area and power allocations do not shift even if the 
area resources increases indefinitely, similarly to the bal-
anced asymmetric multicore of Figure 8(b)-Figure 10(b). 

4.2 Optimizing Power under Constraints 

Consider a synthetic workload consisting of a sequen-
tial task incurring execution time 𝑡0 = 40, and two concur-
rent tasks, incurring execution times 𝑡𝑐 = {50,10} on a ref-
erence processor, respectively. We wish to minimize the 
total average power of a multicore consisting of processing 
cores, NoC and LLC, under total area, total execution time 
and off-chip bandwidth constraints. We thus write our op-
timization problem as follows: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑃𝑇𝑜𝑡𝑎𝑙 
{𝐴𝐿𝐿𝐶, 𝐴𝑁𝑜𝐶,𝑎1, … , 𝑎𝑁 , 𝑝1, … , 𝑝𝑁} 

 
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝐴𝑇𝑜𝑡𝑎𝑙 ≤ 𝐴𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 
                       𝑇𝑇𝑜𝑡𝑎𝑙 ≤ 𝑇𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 

     𝐵𝑊𝑇𝑜𝑡𝑎𝑙 ≤ 𝐵𝑊𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 

(32) 

We solve (32) in a similar manner to (31). We optimize 
the four multicore architectures, as detailed in Figure 11-
Figure 13. Each part of the sub-figure depicts three sets of 
bars corresponding to increasing total areas, 𝐴𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑛𝑠𝑡 =

{8mm2, 9mm2, 10mm2}, respectively. Within each set, there 
are two levels of execution time budget, short execution 
time for the first bar (40s), and long execution time for the 
second bar (50s), as follows:  

 The optimal area allocation under short execution time 
constraint is depicted in the first bar of each set of Fig-
ure 11’s sub-figures.  

 The optimal area allocation under long execution time 
constraint is depicted in the second bar of each set of 
Figure 11’s sub-figures.  

 The optimal average power allocation under short ex-
ecution time constraint is depicted in the first bar of 
each set of Figure 12’s sub-figures.  

 The optimal average power allocation under long exe-
cution time constraint is depicted in the second bar of 
each set of Figure 12’s sub-figures.  

 The red stars in Figure 13’s sub-figures depict the op-
timal consumed average power. 

The optimal (actually utilized) total area 𝐴𝑇𝑜𝑡𝑎𝑙, total 
power 𝑃𝑇𝑜𝑡𝑎𝑙, total execution time 𝑇𝑇𝑜𝑡𝑎𝑙, and total band-
width 𝐵𝑊𝑇𝑜𝑡𝑎𝑙 are specified at the bottom of each subfig-
ure. Note that for some configurations, the optimal (actu-
ally utilized) value may be smaller than its corresponding 
constraint. 

TABLE 2 Summarizes the constraints used for Power 
optimization, where SxBy corresponds to set x, bar y in Fig-
ure 11(a)-Figure 13. 
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TABLE 2 

POWER OPTIMIZATION CONSTRAINTS 

Constraint S1B1 S1B2 S2B1 S2B2 S3B1 S3B2 

𝐴𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 8.00 8.00 9.00 9.00 10.00 10.00 

𝑇𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 40.00 50.00 40.00 50.00 40.00 50.00 

𝐵𝑊𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 2.0 2.0 1.9 1.9 1.9 1.9 

Power constraints are specified in Watt, Execution time constraints in sec-

onds, and Bandwidth constraints in MB/sec. 

 
As shown in Figure 11(a)-Figure 13(a), we consider an 

asymmetric dual-core architecture where each core has a 
distinct exponent, 𝛽𝑗 = {0.6, 0.4}. The optimal power is 

achieved when the stronger core having the larger expo-
nent, is solely deployed. With a long execution time con-
strain, the LLC is provided with even larger area and aver-
age power portion, at the expense of the stronger core. As 
the total multicore area increases, with short execution 
time constraint, the LLC’s and the stronger core’s area and 
power portions remains somewhat constant, while the to-
tal power decreases. With long execution time constraint, 
the optimal architecture consumed less than the budgeted 
total chip area (budget was 9mm2 and 10mm2 respectively, 
and actual consumed area was 8.3mm2). 

Next, in Figure 11(b)-Figure 13(b) we consider an asym-
metric dual-core architecture where all core share the same 
exponent, 𝛽𝑗 = 0.5. In contrast with the previous set, Fig-

ure 11(b)-Figure 13(b) shows that with a short execution 
time, dual processing cores are deployed, while with a 
long execution time constraint only a single core is de-
ployed. Note further that in the second and third sets, 
when a long execution time constraint is used, the optimal 
architecture consumed less than the allowed total chip area 
(budget was 9mm2 and 10mm2 respectively, and actual 
consumed area was 8.7mm2). 
 

 
Figure 11. Multicore area partitioning following optimization of total average 
power, subject to three scenarios of constrained resources. 

 

 
Figure 12. Multicore power partitioning following optimization of total av-

erage power, subject to three scenarios of constrained resources. 

 

 
Figure 13. Multicore optimization of total average power, subject to three 

scenarios of constrained resources. 

 

Next, in Figure 11(c)-Figure 13(c), we consider a hetero-
geneous dual-core having unbalanced exponents 𝛽𝑗 =

{0.6, 0.4}, respectively. The optimal average power is 
achieved when both cores are deployed. With long execu-
tion time constrain, the LLC is provided with even larger 
area and average power portion, at the expense of the pro-
cessing cores. As the total multicore area increases when 
short execution time constraint is used, the LLC’s and the 
processing cores’ allocated area and power portions re-
mains somewhat constant, while the optimal power de-
creases. With long execution time constraint, the optimal 
architecture consumed less than the allowed total chip area 
(budget was 9mm2 and 10mm2 respectively, and actual 
consumed area was 7.7mm2). Since in the heterogeneous 
multicore all processing cores must be retained, the LLC’s 
area almost doubled to compensate for the reduced per 
core miss rate when compared with the single core imple-
mentation in Figure 11(a)-Figure 13(a). 

Lastly, in Figure 11(d)-Figure 13(d) we consider a hetero-

geneous dual-core architecture where all core share the same 

exponent, 𝛽𝑗 = 0.5. In contrast with the unbalanced hetero-

geneous multicore, Figure 11(c)-Figure 13(c) shows that area 
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and average power allocations do not change, but remain the 

same as in the first set. With a long execution time constraint 

the optimal architecture consumed less than the allowed total 

chip area (budget was 8mm2, 9mm2 and 10mm2 respec-

tively, and actual consumed area was 8mm2). 

4.3 Optimizing Area under Constraints 

Consider a synthesized workload consisting of a se-
quential task incurring execution time 𝑡0 = 40, and two 
concurrent tasks, incurring execution times 𝑡𝑐 = {50,10} on 
a reference processor, respectively. We wish to minimize 
the total area of a multicore consisting of processing cores, 
NoC and LLC, under total average power, total execution 
time and off-chip bandwidth constraints. We thus write 
our optimization problem as follows: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐴𝑇𝑜𝑡𝑎𝑙 

{𝐴𝐿𝐿𝐶, 𝐴𝑁𝑜𝐶,𝑎1, … , 𝑎𝑁 , 𝑝1, … , 𝑝𝑁} 

 
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑇𝑇𝑜𝑡𝑎𝑙 ≤ 𝑇𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 
                       𝑃𝑇𝑜𝑡𝑎𝑙 ≤ 𝑃𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 

    𝐵𝑊𝑇𝑜𝑡𝑎𝑙 ≤ 𝐵𝑊𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 

(33) 

We solve (33) in a similar manner to (31) and (32). We 
optimize the four multicore architectures, as detailed in 
Figure 14-Figure 16. Each sub-figure depicts three sets of 
bars, each set corresponding to three multicore increasing 
total average power constraint, 𝑃𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑛𝑠𝑡 = {2.4W, 2.5W,

2.6W}, respectively. Within each set, we varied the execu-
tion time budget from short (40s) for the first bar, to long 
(50s) for the second bar, as follows:  

 The optimal area allocation under short execution time 
constraint is depicted in the first bar of each set of Fig-
ure 14’s sub-figures.  

 The optimal area allocation of under long execution 
time constraint is depicted in the second bar of each 
set of Figure 14’s sub-figures.  

 The optimal average power allocation under short ex-
ecution time constraint is depicted in the first bar of 
each set of Figure 15’s sub-figures.  

 The optimal average power allocation of under long 
execution time constraint is depicted in the second bar 
of each set of Figure 15’s sub-figures.  

 The red stars in Figure 16’s sub-figures depict the op-
timal consumed area. 

The optimal (actually utilized) total area 𝐴𝑇𝑜𝑡𝑎𝑙, total 
power 𝑃𝑇𝑜𝑡𝑎𝑙, total execution time 𝑇𝑇𝑜𝑡𝑎𝑙, and total band-
width 𝐵𝑊𝑇𝑜𝑡𝑎𝑙 are specified at the bottom of each subfig-
ure. Note that for some configurations, the optimal (actu-
ally utilized) value may be smaller than its corresponding 
constraint. 

TABLE 3 summarizes the constraints used for area op-
timization, where SxBy corresponds to set x, bar y in Fig-
ure 14-Figure 16. 
 

TABLE 3 

AREA OPTIMIZATION CONSTRAINTS 

Constraint S1B1 S1B2 S2B1 S2B2 S3B1 S3B2 

𝑃𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 2.40 2.40 2.50 2.50 2.60 2.60 

𝑇𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 40.00 50.00 40.00 50.00 40.00 50.00 

𝐵𝑊𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 4.2 4.2 4.2 4.2 4.2 3.29 

Power constraints are specified in Watt, Execution time constraints in sec-

onds, and Bandwidth constraints in MB/sec. 

 

 
Figure 14. Multicore area partitioning following optimization of total area, 
subject to three scenarios of constrained resources. 

 

 
Figure 15. Multicore power partitioning following optimization of total area, 

subject to three scenarios of constrained resources. 
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Figure 16. Multicore optimization of total area, subject to three scenarios of 

constrained resources. 

 
As shown in Figure 14(a)-Figure 16(a), we consider an 

asymmetric dual-core architecture where each core has a 
distinct exponent, 𝛽𝑗 = {0.6, 0.4}. With a short execution 

time constrain, dual cores are deployed, however, with a 
long execution time constrain, the weaker core is elimi-
nated (processing time is no longer the limiting factor) and 
the LLC is reduced substantially (miss rate is no longer the 
limiting factor). Larger total average power budget does 
not improve the optimal area. Note that in the second and 
third set, when long execution time constraint is used, the 
optimal architecture consumed less than the budgeted to-
tal chip power (budget was 2.5W and 2.6W respectively, 
and actual consumed power was 2.1W). 

Next, in Figure 14(b)-Figure 16(b) we consider an asym-
metric dual-core architecture where all core share the same 
exponent, 𝛽𝑗 = 0.5. In contrast with the previous set, Fig-

ure 14(b)-Figure 16(b) shows that with a long execution 
time constrain, dual processing cores are deployed, and 
the LLC’s area is reduced while its power increases due to 
miss-rate causing escalated off-chip bandwidth. When the 
execution time is shortened, area and power resources are 
taken from the processing units and transferred to the LLC. 
Note that in the second and third sets, when a long execu-
tion time constraint is used, the optimal architecture con-
sumed less than the budgeted total chip total average 
power (budget was 2.5W and 2.6W respectively, and actual 
consumed power was 2.4W). 

Next, in Figure 14(c)-Figure 16(c), we consider a hetero-
geneous dual-core having unbalanced exponents 𝛽𝑗 =

{0.6, 0.4}, respectively. With long execution time, the LLC 
is provided with even larger area and average power por-
tion (when compared with the shorter constraint), at the 
expense of the processing cores. As the total multicore av-
erage power budget increases, the LLC’s and the pro-
cessing cores’ allocated area and power portions remains 
constant since the optimal area of the second set, is also ap-
plicable to the third set. Note that with a long execution 
time constraint, the optimal power consumption was less 
than the budgeted amount (budget was 2.4W, 2.5W and 
2.6W respectively, and actual average power consumption 

was 2.3W). 
Lastly, in Figure 14(d)-Figure 16(d) we consider a heter-

ogeneous dual-core architecture where all core share the 
same exponent, 𝛽𝑗 = 0.5. In contrast with the unbalanced 

heterogeneous multicore, Figure 14(d)-Figure 16(d) show 
that with a short execution time constraint, the optimal 
chip area reduces as the average power budget grows. 
However, with a long execution time constraint, the opti-
mal architecture power consumption similar to the one in 
the first set, and less than the budgeted amount (budget 
was 2.4W, 2.5W and 2.6W respectively, and actual average 
power consumption was 2.4W). 

5 DISCUSSION 

The optimization framework described in Section 7 leads 
to consistent results, in spite of parameter and constraint 
variability. Note the similarities among Figure 8, Figure 11 
and Figure 14, and also the similarities of Figure 9, Figure 
12 and Figure 15. There is no coherent hand-rule conclu-
sion that can guide architects on how to manually partition 
the chip given a workload and a set of constraints. The rea-
son is that the processing cores, the network, last-level 
cache and off-chip bandwidth are so intertwined and de-
pendent on each other, that taking some area (or power) 
from one block and allocating it to the other is likely to im-
pact the allocation of all other blocks. On the other hand, 
we argue that our framework does find the optimal parti-
tioning over a wide spectrum of parameters and con-
straints and thus can automate complex architectural de-
sign, analysis and verification. We thus conclude that in 
the multi-core era, when the number of transistors (and 
thus the number and complexity of functional blocks) 
grows exponentially, chip architects should embrace auto-
mated frameworks for partitioning chip resources, instead 
of conventional manual methods. 

6 CONCLUSIONS 

This paper describes a multi-core optimization frame-
work that, given (a) workload consisting of sequential and 
concurrent parts, (b) multicore building blocks models 
such as processing cores, LLC and NoC, (c) constrained 
area and average power budget, (d) limited off-chip 
memory bandwidth, and (e) limited NoC capacity, utilizes 
convex optimization to find an optimal subset of the pro-
cessing cores and allocates area and power resources 
among all, whether optimizing for, e.g., area, power or ex-
ecution time. The framework relies on modeling the per-
formance of each core as a function of its area and power. 
To that end, models are provided and analyzed for core 
power and performance, NoC power and delay, cache 
miss rate and power and off-chip bandwidth, all as func-
tions of area.  

We show that there is no coherent hand-rule conclusion 
that can guide architects on how to manually partition the 
chip given a workload and a set of constraints. On the other 
hand, we argue that our framework does find the optimal 
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partitioning over a wide spectrum of parameters and con-
straints and thus can automate complex architectural de-
sign, analysis and verification. We conclude that chip ar-
chitects should embrace automated frameworks for parti-
tioning resources among the chip, instead of conventional 
manual methods. 

This paper extends and generalizes previous Lagrange 
based optimization frameworks [40][7] and [6]. One of the 
potential applications of this framework is optimizing the 
average power or energy of a given workload, executing 
on a fabricated semiconductor chip (where area resources 
have been already partitioned). In such a case, for example, 
a real-time workload is given with known execution time 
upper bounds, and the average power budget is optimally 
partitioned so as to minimize total average power or en-
ergy. Our framework offers an efficient alternative to iter-
ative ad-hoc methods for exploring the design space.  
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