
Kin’: A High Performance
Asynchronous Processor Architecture

Rakefet Kol Ran Ginosar
VLSI Systems Research Center, Electrical Engineering Department

Technion - Israel Institute of Technology, Haifa 32000, Israel

ABSTRACT

rakefet@tx.technion.ac.il

Kin is an asynchronous processor architecture designed for future
technologies enabling one or more billion transistors per chip and
extremely fast processing (e.g., as predicted for 2012). This huge
resource is exploited for aggressive avid execution, where a large
number of instructions (hundreds per cycle) are prefetched and
executed speculatively, in order to reduce the penalty of stalls due to
branch mispredictions and dependencies, and to yield a very aggressive
rate of successfully completed instructions (tens of instructions every
cycle). Unneeded instructions are removed efficiently and non-
preemptively, under control of apruning mechanism. A multi-ported,
wide bandwidth decoded instruction cache, wherein each line is a
program basic block, is employed to feed this voracious machine, and
a multi-path prcfetch unit generates multiple cache accesses each cycle.
Instructions are fully identified with Dynamic Instance Tags and move
about the processor as independent entities. Kin supports multi-
execution, where multiple paths, threads and processes are all executed
simultaneously out of order. The processor has been designed using
statecharts, and has been simulated running the SpecInt95 benchmark.
We conclude that such complexity, which seems necessary for very
high performance computing, is best achieved with an asynchronous
architecture.

Keywords

Asynchronous architecture, avid execution, pruning, dynamic instance
tag, multi-execution

1. INTRODUCTION
Microprocessor performance has risen over the past 20 years from 500
KIF’S to 300 MIPS. The industry plans to achieve 100 BE’S by the year
2012, through the integration of almost one billion transistors on a chip
operating at close to 10 GHz [24, 301. This explosive growth in
performance has been made possible thanks to the rapid development
ofsemiconductor technology [33], and improvements in architecture.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the fill citation on the first page. To copy
otbetwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICS 98 Melbourne Australia
Copyright ACM 1998 0-89791-998-x/98/ 7...$5.00

Technological progress has contributed both to higher clocking
frequencies and to growing levels of integration. As more transistors
were integrated, more architectural features (pipeline, superscalar
processing, out-of-order execution, caches, etc.) were introduced into
microprocessors, contributing to their growing utility.

This impressive growth is expected to continue in the future [24], but
designing a synchronous, single clock microprocessor will no longer be
feasible: The basic axioms of synchronous design are intended for
limited equipotcntial domains (where signal propagation times over all
wires are negligible). In future large chips it will take any signal (clock
or data) many clock cycles to propagate from one part of the chip to
another. While the electromagnetic field travels in vacuum at the speed
of light (c = 30 mm / 100 pSec, in VLSI terms), the electric signals
inside chips progress about lo-100 times slower, depending on drive
strength and on the capacitive load of the bus. Let’s assume c/20 signal
propagation speeds (clock and data); given a chip size of 30mm in
2012 technology [24], typical signals will require 3 nSec to cross the
chip end-to-end. Ifthe chip is clocked at 2 GHz, about 5-7 clock cycles
may be required for signal propagation alone. As a result, it will no
longer be feasible to separate the logical and physical design of the
pipelines, as is done today; rather, today’s wire buses will be
transformed into explicit pipeline stages, whose only task is to move
data around, and the number of stages per bus will depend strongly on
where the various modules are placed on the VLSI chip. To make the
situation even worse, the signal may arrive at the various receivers on
multi-drop buses at different cycles. Other effects of technological
progress on processor speed relate to clock distribution. Several cycles
may be required to propagate a single clock transition over the entire
chip, compared to less than a cycle today. A worse aspect of this is that
many transitions will be present simultaneously on the clock
distribution wires. While this wavefront superpipelining is not
impossible, it is highly undesirable. Optical clock distribution
employing pulse lasers and optical detectors/amplifiers distributed over
the chip may provide a solution. Clock jitter and skew are also expected
to present great difficulties. Skew is the result of in-die variations in
physical parameters and jitter is caused by temporal variations in
temperature and voltage and by crosstalk. Both types of variations may
hamper correct operation and typically they are contained at the
expense ofpower dissipation. Thus, the power dissipated for clock and
data distribution alone in complex VLSI chips increases faster than the
increase in clock frequency and integration levels [lo, 11,281. In one
reported case [I] over 40% of the power budget in an Alpha chip is
dissipated by the clock distribution network in order to limit clock skew
and jitter. This ratio is expected to grow even higher, when processors
are predicted to dissipate more than IOOW [24].

‘Kin was the God of Time of the Maya.

433

,-_______________________________________
Out-Of-Order zone

Figure 1: Kin asynchronous processor architecture.

In simple electrical engineering terms, the processors of the future will
transcend from lumped systems into distributed ones. Modem
processors have introduced some elements of distributed computing,
such as decoupling modules with FIFO buffers and executing out-of-
order. This trend is expected to continue towards more distribution of
the various processor components. We have found that asynchronous
architectures are a natural fit for such distributed systems.

This paper explains how an asynchronous processor architecture is
most suitable for meeting the technological and architectural
constraints offirture technology, such as forecast for the year 2012 and
beyond, when CMOS feature size is around O.O7u, close to one billion
transistors are integrated on a single chip, and the clock (if used)
operates at close to 10 GHz. The paper describes a processor
architecture for the asynchronous future, including a novel aggressive

speculative execution method (necessary for high speed and suitable for
asynchronous processors).

A large number of asynchronous processors have been previously
designed [20,7,22,2,23,4,21,27,5,31,6,19]. Most of them have
rather simple and straightforward architectures. None of them supports
out-of-order execution, nor considers performance enhancement by an
advanced branch prediction. All are targeted at current technology, and
are not scalable to take advantage of the growing amount of resources
promised by future technology.

Kin architecture comprises multiple fast self-timed units,
interconnected over asynchronous channels, using handshake
communication protocols. The asynchronous microarchitecture is
described at a high level and allows flexible and robust implementation.
Although Kin is designed as an asynchronous machine at the top level,

its individual modules may be implemented according to various timing
disciplines (synchronous, asynchronous, or anything in between).

The novel architecture of Kin is described in Section 2. Avid execution
is presented in Section 3, and Section 4 explains instruction pruning.
Multi-execution is discussed in Section 5. Modeling Kin and its
performance simulation (using the SpecInt95 benchmark) are described
in Section 6. In Section 7 we argue that the complexity of Kin, as well

as the technological constraints, call for an asynchronous architecture.

2. KIN ARCHITECTURE
2.1 General Description
Kin is a general purpose high performance microprocessor that
supports out-of-order and deep speculative (Avid) execution. It exploits
massive parallelism and redundancy in order to execute hundreds or
thousands of instructions simultaneously. The instruction set combines
both RISC and CISC instructions; each one is decomposed by the
decoder into (one or several) internal simple micro-operations (uOps).

Kin comprises a distributed network of asynchronously interconnected
modules, without any central control. Each module operates at its own
speed, and communicates with other modules over asynchronous
channels. FIFO buffers over those channels decouple the processor. On
average all modules are balanced, but asynchronous interconnects
permit flexible work loads.

While in contemporary (synchronous) processors the collective

knowledge about an executed instruction is distributed among the
pipeline stages, the controller, the buses and the registers, this location-
dependent distribution ofdata and control information is unmanageable

434

in large distributed systems like Kin. Rather, instructions flow through
the system as self-sustained packets carrying their own identity tags and
all needed information. They may leave some traces around such as
instruction entries in the reorder buffer, but these eventually reunite
with the instructions. Each module receives instruction packets,
executes them at its own local rate, and forwards them to their next
stops. This model resembles the dataflow architectural concept.

The Kin architecture is described in Fig. I. It combines many known
features, like multiple execution units, out-of-order execution, and
register renaming, and some novel ones (Avid Execution, Dynamic
Instance Tagging, unified Multi-Execution, and Pruning). Multiple
instructions are executed concurrently and out-of-order over multiple
execution units. To preserve the serial nature of the code, instructions
are committed (completed) in their original serial order, typically many
of them at each time. Deep speculative execution is employed to avoid
processor stalls; branches are predicted and code is prefetched from the
more likely paths of the program.

2.2 Kin Architecture and Operation
Once fetched, instructions are decoded and stored in the Decoded
Instruction Cache (DIG, Fig. I) where each cache line includes a single
basic block (a sequence of instructions ending with a branch). The
Prefetch Unit (PU) fetches multiple basic blocks from the DIC
simultaneously, and tags each instruction with a unique Dynamic
Instruction Tag @T, Fig. 2). The registers are renamed in the Register
Renaming Unit (RRU), and the instructions are recorded in the
ReOrder Unit (ROU), after which they are executed in the out-of-order
zone. They enter one of the Reservation Stations (RSs) to wait for their
operands, are processed in one of the Branch, Execute, or Load/Store
Units (BU, EU, LSU), send results back to the RSs and return to the
ROU for in-order commitment. Most instructions, however, never
complete this cycle. Rather, they arepruned and discarded.

In.&uction I Dynamic Instance Tag (DIT)

opcode operands root I paa I context I PC

Figure 2: Dynamic Instance Tag structure.

Avid execution is fully explained in Sect. 3, but for clarity of the
exposition it is described here in brief. The commonly used single path
speculative execution employs branch prediction to decide which path
to take following each branch; occasionally the prediction fails, the
processor is halted and flushed, and execution resumes along the
correct path. In contrast, Avid execufion also fetches and speculatively
executes instructions along the non-predicted paths, so as to minimize
the adverse effect of misprediction. Instructions which are found
useless are pruned and discarded without preempting the processor.

The Prefetch Unit (PU) executes the branch prediction and Avid
algorithms, and issues access requests to the DIC. It also generates
pathmarks, which fully identify the path for each instruction (Sect. 3).
The pathmark is attached to each instruction as it is fetched from the
DIC, as part of a unique Dynamic Instance Tag @IT, Fig. 2). The
same basic block of code (or part thereat) may be fetched
simultaneously multiple times. Consider a simple loop which ends with
a conditional branch. Each time we reach that branch, we should most
likely prefetch the same loop again. Each time, the loop is prefetched
(and tagged) as a new instance, and must be treated separately by the
rest of the machine (e.g., proper register renaming), regardless of the

fact that it is the same original code. The instruction cache is
multiported to provide simultaneous fetching of multiple cache lines,
including multiple separate fetches of the same line. Access
optimization techniques are employed to replace brute force multiple
reads of the same line by a single access and intelligent duplication, but
this is transparent to the PU.

The PU, like other units in Fig. 1, is drawn as a triangle since it handles
complex execution trees rather than just linear paths. Multiple triangles
are drawn to symbolize multiple contexts (Sect. 5).

The Register Renaming Unit (RRU) maintains the renaming tables
for the many possible execution paths avidly prefetched, to enable
speculative out of order execution. The renaming process replaces
architectural register names by virtual ones, to filter out false
dependencies. The condition codes are treated as one of the registers
and are renamed accordingly. A new physical entry in the Reorder
Buffer (ROB) is allocated for each pop destination (architectural)
register. This entry number serves as the virtual name of the destination
register. The uOp source registers are renamed according to the last
name allocated to them on the same path, or their ancestor’s path in the
same execution tree.

The Reorder Unit (ROU) manages out-of-order execution in Kin,
and enforces in-order committing of instructions, whereby results are
written back into architectural (real) registers and into memory. A
Reorder Buffer (ROB) is used in the ROU to keep track of the
instructions from the many possible avid execution paths. The ROU
maintains binary tree of paths rather than just a linear sequence of
instructions. It also maintains the architectural registers, and employs
them whenever possible to provide operands to fresh pops. After
commit, ROB instruction entries and RRU allocations are released.

Instructions wait in the several Reservation Stations (RSs) for their
operands. Operand values may arrive from the various execution units
or from memory. Once ready, instructions are routed by a scheduler to
one of several Execution Units (EUs). Execution results are
distributed to the ROB for committing, and to all RSs, wherein other
instructions might be waiting for them.

The Load/Store Unit (LSU) handles memory access and bypass. It
takes advantage ofthe locality of references of data access. While being
similar to a data cache, it is designed as an independent smart
associative table that tracks load and store operations. Ordering is
enforced only when true dependencies are encountered, to guarantee
correctness: For instance, Store(X) instructions can bypass Load
instructions, but the LSU keeps a record of the previous value ofX
until Store(X) commits, in case it is needed by an earlier Load(4.
Similarly, Load instructions can bypass Store instructions, except for
Store to the same address, in which case the argument is forwarded
from the Store instruction. Thus, the LSU can return values even
before they are physically written to memory or data cache. Giving
higher priority to Loads over Stores can increase the issue rate of
instructions, because Loads generate operands for successive
instructions, while Stores can wait without stalling any other
instructions. Loads can be executed speculatively without affecting
correct operation. However, Stores can only be done at commit, at
which time it is known that the Store is on the actual true path of the
program.

The Branch Unit (BU) resolves branch instructions and returns the

435

results to the ROU, the Prune Management Unit (PMU) and the PU.
Upon receiving branch results, the PU updates the prediction algorithm
and prefetches new instructions.

The Pruning Management Unit (PMU) generates and distributes
prune and behead messages, to be described in Sect. 4 below.

3. AVID EXECUTION
Performance of present processors is limited by a number of factors,
including true and false dependencies, limits to inherent instruction
level parallelism in serial code, and pipeline stalls due to misprediction
of branches. To achieve high performance, processors must run faster
but also execute and successfully complete many instructions in
parallel. Although many parallel execution units may be made
available, data and control dependencies limit the instruction level
parallelism. To exploit instruction-level parallelism in full, the processor
must search over a large window for instructions that can be executed.
That window typically extends beyond multiple branches, since on
average every fifth instruction is a branch. This can be done by using
various branch lookahead strategies. Most of them are based on certain
branch prediction algorithms, and on speculatively executing
instructions beyond the predicted branches. This paper is not concerned
with the branch prediction algorithm itself, but rather with the question
of how it is used and which instructions are speculatively executed.

As explained in Sect. 1, the advent of technology is expected to permit
the integration of huge resources on single chip processors. We propose
to apply those resources, within an asynchronous architecture, to a
dynamically adjustable, speculative Avid Execution in order to reduce
the misprediction penalty. The principles will become clear after we
survey briefly the existing approaches.

Traditionally (before speculative execution), conditional branch
instructions stalled the processor pipeline, since it was unclear which
instruction to fetch until the branch was executed. Early RISC
processors employed delayed branches to avoid the stall, with limited
improvements. Next, branch prediction has been invented, whereby
each branch is predicted as either taken or not-taken, based on its past
history [3,9, 16,321. Instructions are fetched (speculatively) from the
predicted branch target (Single Path Speculative Execution), before
the actual branch has executed. If the prediction is correct, processing
continues normally. On a misprediction, however, the pipeline is
flushed and the correct path is fetched. Msprediction Penalty is the
time required for the pipeline to fill up after a flush, until instructions
start to commit again. This time depends linearly on the pipeline depth,
measured in the number of stages between the fetch and branch
resolution stages,

Out-of-order (000) execution allows the execution of later instructions
if they are independent of former ones. Although not directly related to
speculative execution, the latter helps increase the availability of
instructions for 000 execution. On the down side, if all instructions are
executed at a higher rate, so do branch instructions, and consequently
the misprediction rate is also increased. This adverse effect is
compounded by another setback: The deeper the processor and the
higher the parallelism, the higher the misprediction penalty. Note that
in order to analyze processor performance, both measures
(misprediction rate and penalty) must be observed.

Current branch prediction algorithms arep=85-95% accurate [9]. For
p=90%, every tenth branch is mispredicted. Since the average basic
block length is tive instructions, misprediction can be expected every
50 instructions. Single path speculative execution is highly sensitive to
the quality of branch prediction and to pipeline depth. An execution
tree of depth n contains n edges for single path speculative execution,
so the cost is linear in the overall depth of prediction. However, the
probability ofcorrect prefetch over n levels falls off exponentially asp”.

In Eager Execution all paths are prefetched and (speculatively)
executed. When a branch is encountered, execution proceeds down
both paths of the branch. Multiple resources are required to support the
parallel prefetch and execution of multiple paths. Once a branch is
executed, its ‘losing’ sub-tree may be aborted and disposed of, and the
corresponding resources can be released. The principal benefit of eager
execution is that misprediction stalls may be eliminated. However,
eager execution is exponentially wasteful: Of the T-l edges of a n-
level execution tree, only n edges are on the true path and eventually
commit, while the remaining 2-l-n edges should be discarded. If we
consider an execution tree of depth n=S, then only about 25
instructions out of 155 will be committed, and this ratio grows
exponentially. Due to the enormous amount of resources required to
implement eager execution, and the relative high accuracy of prediction
algorithms available, eager execution is impractical and has not been
implemented in any real processor.

Multiple Path Exploration [17, 181 is an attempt to implement eager
execution with a limited tree depth. Disjoint Eager Execution [29] is
another attempt to combine the benefits of eager execution and single
path speculative execution methods. However, for high prediction
accuracies it practically converges into single path speculative
execution.

AvidEwecution combines the benefits of both single path speculative
and eager execution methods, such that the frequency of
mispredictions is kept very low, while the exponential cost of eager
execution is replaced by an approximately linear cost. Avid execution
is basically an eager execution with limited eagerness, based on branch
prediction. As in single path speculative execution, the predicted path
is prefetched and executed. In addition, for each branch encountered
and predicted, certain parts ofa k levels deep subtree which is predicted
as not-taken are also fetched into the processor, and are speculatively
executed.

The number k of prefetched levels in the non-predicted subtree is
adjustable. Figure 3 shows two examples of Avid execution depths, for
k=2 and k-5. The main predicted path is marked by solid arrows, while
the extra (avid) paths are drawn as dashed arrows. Note that if k-0,
Avid execution is reduced to single path speculative execution. For k= 1,
about 50% of all instructions fetched will be pruned, since for every
predicted basic block another basic block from the non-predicted path
is also fetched. The price of exponential demand for resources in eager
execution is avoided and is replaced by an approximately linear one:
For Avid execution of depth k, the number of edges in an n levels deep
execution tree is O(kn). Avid execution can produce instructions at a
sufficient rate to reduce or even eliminate all stalls on misprediction, as
analyzed in [151. The unneeded instructions are pruned
asynchronously, without preempting continuous operation of the
processor, as described in Sect. 2 above.

436

k-2 k=m (m=5)

Figure 3: Examples ofAvid Execution depth (k). m is the number of processor pipeline stages between prefetch (PF) and branch resolution
(EiI) stages.

Selecting the Avid depth can be done either statically (e.g., all
conditional branches have the same alternative path depth), or
dynamically. Dynamic adjusting of Avid depth can be done per each
branch instruction, and can be based on statistics collected at run time.
If confidence is applied to prediction [12,261, the Avid depth can be
adapted accordingly. When the prediction confidence level is low, a
deeper Avid depth should be used, and for high confidence prediction
a small Avid depth (or non at all) might be better. Obviously, k=O for
unconditional branches.

Observe that the first edge of each alternative path described in Fig. 3,
originating from each branch instruction (a tree vertex), is the branch
direction predicted as not being followed. The following edges of the
alternative paths are selected by branch prediction. Other options are
discussed in [15]. As more alternative paths are fetched by Avid
execution, more resources are required. Our simulations verify that the
single path alternatives is quite adequate when prediction accuracies are
very high. Spanning more alternative paths results in diminishing
returns.

0 1 2 3 4 5

k - Avid depth

Figure 4: Average performance improvement achieved by various
Avid depths (k), for m=5,p=0.95, and high bandwidth (execution
limited by ILP).

Consider the following example of performance improvement
achievable by Avid execution. The pipeline depth (measured in the

number of stages, each stage handling a basic block, that tit between
instruction fetch and the branch unit) is m=5, the accuracy of branch
prediction isp=O.95, and sufficient hardware resources are available to
execute all fetched execution paths, so that execution is limited only by
ILP and mispredictions. Analytical studies [151 show that performance
can be improved by as much as 50% under these conditions, as can be
seen in Fig. 4.

4. INSTRUCTION PRUNING
Avid execution prefetches and executes both directions of each branch.
Eventually, one ofthe two commits and the other must be pruned. As
explained in Sect. 2, Kin performs the pruning clean-up tasks on the
fly, without preempting execution, without stalling the processor, and
without flushing the pipes. The pruning algorithm employspathnuzrks
to identify the doomed instructions.
Pathmarks am part of the DIT (Fig. 2) and distinguish alternative paths.
Each edge of the execution tree is assigned a unique pathmark, based
on prefix notation of binary trees. If an edge (a basic block, terminated
by a branch instruction) is marked by m, then the sequentially
following edge and the branch target edge are marked mO and ml,
respectively (Fig. 5). The root is marked by the empty string. An
instruction’s pathmark is generated by accumulating these bits as a
road map to follow from the root until the edge the instruction is on.
Note that the marks of all edges in the (dashed) subtree of node n are
prefixed by n. Pathmarks are generated dynamically during program
execution and are affixed to each instruction at prefetch by the PU
(Sect. 2).

Pruning removes entire subtrees per each resolved branch. Since the
pathmarks of all the instruction of the subtree share the same prefix, a
single pruneO message suffices for the job. If a branch m was taken
(not taken), the prune(m0) message @rune(ml), respectively) is
broadcast to the entire processor. Out-of-order pruning is possible and
permitted. For instance, a branch with pathmark mOk may execute
before branch m; the prune(mOkl) message may precede the
prune(mO) message; the latter will override the former. Pruning
messages are generated and distributed by the PW (Fig. 1).

437

m

m0 ml

kn=ml

mO0
I\,

m01 mlO,f' '\, ml1
,' \ \ x x 4 37

mOO0 m100: ‘?lllOl /' 'I, ml 11

Figure 5: Pathmarks based on prefix notation

The pathmark length grows very fast, as one more bit is attached on
every branch. On the other hand, much of the information of the
pathmark becomes irrelevant when processing progresses down the
tree. Consider a mark m, L-bits long. Once a branch instruction marked
m commits, the pathmarks of all useful subsequent instructions in the
processor will be prefixed by m. Since the m prefix is now redundant,
it is beheaded. A distributed beheading algorithm is employed to
contain pathmarks growth.

To behead prefixes, a root markR is added to the DIT (Fig. 2). Once
every L committed branches, a behead&m) message (R=path root,
m=path prefix of L bits) is generated and distributed by the PMU.
Following the receipt of such a message, each unit modifies each
instruction it encounters as follows: If the instruction’s DIT contains
root mark R and pathmark prefix M, then the root mark is updated to
R+I and the pathmark is left-shifled by L bits. In effect, linear
pathmark growth is thus replaced by logarithmic growth of the root
mark.

FIFOs can be used for storing prune and behead messages. New
messages push older ones out, so that old and redundant messages are
automatically discarded. Other issues regarding prune and behead
messages, such as races, overflow, and resource allocation, are treated
in [15].

5. MULTI-EXECUTION ON KIN
The mechanisms built into Kin to support concurrent superscalar
execution of multiple paths (such as the DIT and ooo) are also directly
applicable to concurrent execution of multiple threads and multiple
processes. All four paradigms are unified under a single multi-
execution model.

The DIT fully identifies, for each instruction, to which path, thread,
and process it belongs. The various units of the ooo zone treat all
instructions equally, regardless of their context. The only exception is
the RS, which matches instructions to operands based on the DIT. The
units outside the ooo zone, on the other hand, must treat each context
separately. Consequently, Kin contains multiple copies of the PU,
RRU, and the ROU (the DIC may or may not be divided by context).
Each copy is dedicated to one context (thread and process), and the

several contexts intermingle only upon entering the ooo zone. Each
unit does handle all paths of the same context (execution tree), and
hence they are drawn as triangles in Fig. 1. They employ associative
memories to efficiently handle many instructions in parallel.

6. KIN MODEL AND PERFORMANCE
SIMULATIONS
We have developed a software model of Kin and Avid execution, and
simulated that model executing the SpecInt95 benchmark. A standard
branch prediction algorithm [32] was implemented. Various prediction
accuracies were obtained by changing the size of the branch target
buffer (implemented as a l-way set associative). The pathmarks were
limited to 32 bits, and 16 bits were allocated for the root mark (of
which at most 5 were used during the simulations). Beheading was
issued every two branch commits.

The Kin model was specified at the high level using statecharts [8].
The internals of each module were specified as functions in C. At the
higher level, statecharts control the Kin model and activate the C
functions as needed. This formal and operational specification of Kin
has enabled us to execute event driven simulations, which are suitable
for asynchronous design. Modules react to messages arriving at their
inputs, process the data and generate proper outputs. Handshake
protocols and mutual exclusions are controlled and executed by
statecharts. The interface between the statechart model and the C
functions is based on handshaking protocols and regards the programs
as self-timed modules. Each program may be assigned a (variable)
delay at real-time [14].

Kin’s model has a (partly) synthesizable specification: The parts
defined by statecharts can be synthesized automatically into VHDL
programs, and may be converted to asynchronous implementation
afterwards [13,14].

We have made extensive use of Kin’s model for debugging and
performance evaluations of the architecture, and specitically for
simulating the avid execution concept with various depths. Animation
of the model helped us identify deadlocks, races and bottlenecks in
earlier versions of the architecture. We used SpecInt95 traces for the
simulations, and gathered information on average and worst case FIFO
and table sizes, committing and pruning rates, and program execution
times.

Avid execution was simulated for three possible (fixed) Avid depths:
k=O, 1, and 2. The processor hardware width (the number of
instructions that can be handled concurrently in each processor unit)
was simulated at 20,40 and 80 instructions. Avid execution spanning
an ‘eager’ subtree for k=2 was also simulated, and demonstrated
diminishing returns, as expected. The results were at best the same as
those obtained by Avid execution spanning a ‘single path’ for k-2, and
some times even worse, due to high prediction accuracies and
contention for resources. Some of the results [15,251 are shown in
Fig. 6.

It can be seen in Fig. 6 that R improves with k, although the
improvement diminishes at very high values of p. Note that R is limited
in these simulations by the limited ILP inherent in the SpecInt95
benchmark. All simulated results agree with our analytical analysis. A
first glance at Fig. 6 reveals that, over all benchmarks, the incremental
improvement of k-1 over k=O is more significant than the additional

438

80 80 TO 80

(4 Go
80 80 80 70 80

i

80 100 P 0-4 beg

2

80 80 70 80 80 100 P 80 80 70 80 80 100 P

(c) Li (d) Vortex
Fire 6: SpecInt95 simulation results (for ~~40). The graphs describe the average execution rate (R) as a function of prediction accuracy @), with
Avid execution depth (k) as the parameter.

incremental improvement provided by k-2. The simulation of Go
program (Fig. 6(a)), k==2 shows better performance than either k-1, or
k=O, up top=85%. Simulation of Ijpeg (Fig. 6(b)) resulted in highest
performance for k==2 up top=77%, then k=l gives better performance
up to p=97%. They are always better than k=O. Although we could
expect Avid execution to be more beneficial for programs having lower
prediction accuracy, it did prove useful even for Ijpeg, which shows the
highest prediction accuracy in that benchmark. A similar behavior was
seen for the Li program (Fig. 6(c)), where k=2 performs better than
k-1, up top=92%. Atp=93% they switch, but are still both better than
k-4. Vortex (Fig. 6(d)) always resulted in best performance for k=2 (up
top=95%), while even k=l was better than k=O.

7. WHY ASYNCHRONOUS KIN ?
The lessons of our study provide two principal reasons why Kin should
be an asynchronous processor, one regarding the architecture and the
other concerning technology constraints.

On the architectural side, Kin is a very complex and distributed
processor, where the different parts perform very different tasks and
their workloads vary significantly from one moment to another. Kin
behaves more like a network than a well synchronized machine. Thus,
although the individual modules may be implemented as synchronous
circuits, at the high level the modules should be decoupled. As long as
they are decoupled, they should be treated as components in an
asynchronous system.

Avid execution is based on the premise that different components can
efficiently process varying workloads. The dynamic instruction fetch
process produces varying numbers of instructions each cycle. IJnlike
conventional ROUs, Kin’s must handle sparse lists of committing
instructions, since the many instructions that are pruned leave ‘holes’

in the ROB. Self-timed modules tend to vary their speed depending on
the data, and this flexibility must be accommodated for by other
modules. Prune and behead algorithms are inherently distributed and
operate with large variances, and do not need to be synchronized with
normal processing. Variations are the results of varying program
conditions such as changing branch prediction accuracies and
switching contexts. A distributed asynchronous processor is clearly
simpler to design and operate under such conditions.

On the technological side, Kin architecture is designed with very large
chips in mind. The large size and the very high speed dictate that, if we
were to employ a global clock, its wavelength would have been a
fraction of the chip size. This is analogous to the operating conditions
of any distributed computer network, Kin simply applies at the chip
level the same solutions that are used for computer networks. This
aspect has been further elaborated in the introduction.

8. CONCLUSION
We have described a very aggressive computer architecture and have
explained that it should be designed as an asynchronous processor. The
architecture is planned for future technologies enabling one billion
transistors per chip and, if a clock were used, up to 10 GHz clocks (as
projected by the SIA for the year 2012). A novel method of speculative
Avid execution was introduced, which exploits massive parallelism to
speed processing and bypass control and data dependencies.
Asynchronous processing has led to smooth and efficient disposal of
redundant computations (through pruning). Instructions are
dynamically tagged and traverse the processor as independent entities
in a data flow manner, leading to unification of several multi-context
methods. High performance requirements were described for cache
memory to support such architectures. A software model was
constructed, and used for performance evaluation using the SpecInt95

439

benchmark.

ACKNOWLEDGMENT
This research has been funded in part by a research grant from Intel
Corporation.

REFERENCES
VI

PI

131

141

151

WI

t71

PI

191

[lOI

1111
WI

u31

[I41

WI

1161

W. J. Bowhill, et. al., “Circuit Implementation of a 300~MHz
64-bit Second-generation CMOS Alpha CPU,” Digital
TechnicalJournal, 7(l), pp.lOO-115,1995.
E. Brunvand, “The NSR Processor,” Proc. ofthe 26th Annual
Hawaii Int. Con/ on System Sciences, Vol. 1, pp. 428435,
1993.
H. G. Cragon, Branch Strategy Taxonomy and Performance
Models, IEEE Computer Society Press, 1992
I. David, R. Ginosar, and M. Yoeli, “Self-Timed Architecture of
a Reduced Instruction Set Computer,” in Asynchronous Design
Methodologies, S. Furber and M. Edwards editors, lFIP Trans.
Vol. A-28, Elsevier Science Publishers, pp. 29-43, 1993.
M. E. Dean, STRiP: A Self-Timed RlSC Processor, PhD thesis,
Stanford Univ., 1992.
P. B. Endecott, SCALP: A Superscalar Asynchronous Low-
Power Processor, PhD thesis, Dept. of Computer Science,
Univ. of Manchester, 1995.
S. B. Furber, P. Day, J. D. Garside, N. C. Paver, and J. V.
Woods, “‘A micropipelined ARM,” IZSZ’93, 1993.
D. Harel, “Statecharts: A Visual Formalism for Complex
Systems,” Science of Computer Programming, g(3),
pp. 231-274, 1987.
J. L. Hennessy and D. A. Patterson, Computer Architecture: A
Quantitative Approach, 2nd edition, Morgan Kaufmann, 1996.
M. Horten, “The Hot New Star of Microchips (Pentium
Microprocessor),” New Scientist, 138(1871), pp. 3 l-34, May
1993.
Intel Corporation, “Pentium Family User’s Manual,” 1994.
E. Jacobsen, E. Rotenberg, and J. E. Smith, “Assigning
Confidence to Conditional Branch Prediction,” Proc. of the
29thZnt. Sjmp. onMicroarchitecture, pp. 142-152, Dec. 1996.
R. Kol and R. Ginosar, “A Doubly-Latched Asynchronous
Pipeline,” ICCD’97.
R. Kol, R. Ginosar, and G. Samuel, “Statecharts Methodology
for the Design, Validation, and Synthesis of Large Scale
Asynchronous Systems,” IEICE Trans. on Information and
Systems, E80-D(3), pp. 308-314, Mar. 1997.
R. Kol, Self-Timed Asynchronous Architecture of an Advanced
General Purpose Microprocessor, PhD thesis, Dept. of
Electrical Engineering, Technion, Israel, 1997.
J. K. F. Lee and A. J. Smith, “Branch Prediction Strategies and
Branch Target Buffer Design,” IEEE Computer, 17(l),
pp. 6-22, Jan. 1984.

[I71

[I81

u91

PI

Pll

PA

1231

1241

P51

WI

~271

WI

PI

1301

1311

~321

[331

N. F. Magid, High Speed Computer Systems as a Result of
Cuncuwent Execution of Sequential Instructions, PhD thesis,
Dept. ofElectrical Engineering, Illinois Institute of Technology,
Chicago, Illinois, 1980.
N. Magid, G. Tjaden, and H. Messinger, “Exploitation of
Concurrency by Virtual Elimination of Branch Instructions,”
Int. Conf on Parallel Processing (KPP), pp. 164-165, Aug.
1981.
A. Martin, et al., “The Design of an Asynchronous MIPS
R3000 Microprocessor,” Proc. Advanced Research in VLSI,
Sept. 1997.
A. J. Martin, et al., “The Design of an Asynchronous
Microprocessor,” Caltech-CS-TR-89-02, 1989.
T. Nanya, Y. Ueno, H. Kagotani, M. Kuwako, and A.
Takamura, “TITAC: Design of a Quasi-Delay-Insensitive
Microprocessor,” IEEE Design & Test of Computers, 11(2),
pp. 50-63, Summer 1994.
N. C. Paver, The Design and Implementation of an
AqnchronousMicroprocessor, PhD thesis, Dept. of Computer
Science, Univ. of Manchester, 1994.
W. F. Richardson and E. Brunvand, “Fred: An Architecture for
a Self-Timed Decoupled Computer,” 2nd Int. Symp. on
Advanced Research in Asynchronous Circuits and Systems,
pp. 60-68, Mar. 1996.
Semiconductor Industry Association, The National Technology
Roadmapfor Semiconductors, 1997. http://www.sematech.org
H. Shafi, Avid Execution and Instruction Pruning in the
Asynchronous Processor Kin, MSc thesis, Dept. of Electrical
Engineering, Technion, Israel, 1998, in preparation.
J. E. Smith, “A Study of Branch Prediction Strategies,” Proc.
8thSymp. on Computer Architecture, pp. 135-148, May 1981.
R. F. Sprouli, I. E. Sutherland, and C. E. Molnar, “The
Countertlow Pipeline Processor Architecture,” IEEE Design &
Test of Computers, 11(3), pp. 48-59, Fall 1994.
D. Strassberg, “Cooling Hot Microprocessors,” EDN (European
Edition), 39(2), pp. 40-44,46,48, Jan. 1994.
A. K. Uht and V. Sindagi, “Disjoint Eager Execution: An
Optimal Form of Speculative Execution,” Proc. of the 28th Int.
Symp. on Microarchitecture, pp. 313-325, Nov. 1995.
U. Weiser, “Future Directions in Microprocessor Design,”
Invited lecture, presented at 2nd Znt. Symp. on Advanced
Research in Asynchronous Circuits and Systems, Mar. 1996.
T. L. Wolf, The A3000: An Asynchronous Version of the
R3000, MSc thesis, Dept. of Computer Science, Univ. of Utah,
1992.
T.-Y. Yeh and Y. N. Patt, “Alternative Implementations of
Two-Level Adaptive Branch Prediction,” The 19th Int. Symp.
on ComputerArchitecture, pp. 124-134, May 1992.
A. Yu, “The Future of Microprocessors,” IEEE Micro, 16(6),
pp. 46-53, Dec. 1996.

440

