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Abstract

DLAP, an asynchronous pipeline with master-
slave (dual) registers, offers improved
performance. It is most suitable for converting
synchronous circuits into asynchronous ones.
DLAP is capable of truly decoupled operation: All
pipeline stages can shift data simultaneously, and
execution is faster than previous designs when
variable delays are encountered. Implementations
based on both edge triggered registers and
transparent latches are shown. STG and verified
controllers are presented and simulated.

1. Introduction

Asynchronous logic does not use a clock. Logic elements
are self=timed. they detect and announce when the
computation is complete and the outputs are ready [6, 11].
They also wait for inputs to be announced before starting the
computation. Registers load their inputs under local control,
rather than on a global clock edge. Asynchronous logic
trades time for discrete events. Actual delays are hidden
(abstracted), and only sequences of events (as depicted by
transitions) matter. Thus, the correctness of computation is
made independent of delays. Another advantage is that
events can be treated hierarchically and local details can be
abstracted, similar to hierarchical logic design, whereas the
design of continuous timing is global and 'flat'. Instead of
(metric) timing waveforms, discrete event precedence
graphs, such as STG [1], are employed to describe circuit
operation.

Asynchronous circuits are expected to achieve lower
power consumption and/or higher performance, by
eliminating the driving clock. In addition, computational
delays can be data dependent. While synchronous pipelines
are timed according to the worst case delay over all stages,
asynchronous logic can be designed to determine and signal
its own completion time, typically saving time and power.
On average, self-timed operation with completion detection
results in about 2x speedup of the individual units; power
savings depend on the particular application, but can reach

as high as 80% [14].

We have developed algorithms for converting
synchronous circuits into asynchronous ones, thus exploiting
some advantages of asynchronous circuits while retaining
investments in synchronous designs and tools [7]. We
consider synchronous logic specified in VHDL. The VHDL
code is synthesized into netlists according to the common
architecture of ‘register-and-cloud’ pipelines [10], where
‘clouds’ of combinational logic are separated by clocked
registers. We would like to take advantage of the general
pipeline structure and of the combinational logic clouds, but
we need to get rid of the clocked registers, thus converting
a synchronous circuit into an asynchronous one. To that end,
we must identify the best target asynchronous pipeline.

Asynchronous micropipelines were first introduced in
[13]. They were based on a 2-phase communication
protocol. Four-phase handshake protocol pipelines are
presented in [8, 9], where edge triggered registers are
employed. Various similar control structures were proposed
in order to enhance the performance of the asynchronous
pipeline [3, 4, 5, 15], based on either edge triggered
registers or level sensitive latches. However, all those
asynchronous pipeline designs suffer from one of the
following drawbacks: They either achieve only 50%
utilization of the pipeline stages (i.e., only every other stage
is active at any one time), or (in some cases) incur a long
backwards propagation of the acknowledge signals. The
backwards latching scheme cannot be avoided when only a
single register is used in each stage, since a storage element
cannot release its value until the following stage has
signaled that it is ready for another value. This might result
in a major performance problem for deeply pipelined
circuits, e.g., rings or linear pipes with data dependent stage
delays. In [12] it was shown that pipeline performance
depends on the number of bubbles, namely registers ready
to accept new values. When only a single bubble exists in
the above mentioned designs, their performance is limited
by the lack of bubbles. Synchronous pipelines, on the other
hand, are not limited: If each register is master-slave, then a
bubble is always available, and all values can propagate
simultaneously.

In this paper we

present the Doubly-Latched



Asynchronous Pipeline (DLAP), which operates similarly to
synchronous pipelines. We show that not only is it most
suitable for synchronous-to-asynchronous conversion, but in
certain important cases it outperforms previous designs.
Section 2 describes the Doubly Latched Asynchronous
Pipeline. Edge triggered and latched DLAP are discussed in
Sections 3 and 4, respectively. A comparative analysis is
presented is Section 5, and Section 6 discusses non-linear
DLAPs.

2. The Doubly-Latched Asynchronous
Pipeline

DLAP (Doubly-Latched Asynchronous Pipeline) is
shown in Fig. 1. It is designed for a single rail, 4-phase
communication protocol between the stages. DLAP imitates
the operation of a synchronous master-slave pipeline, by
decoupling the pipeline stages. If the pipeline is balanced,
DLAP operates the same as a synchronous pipeline: since all
pipeline stages finish their computation at the same time,
they can all latch the values concurrently into the master part
of the registers, while the slave parts retain the previous
values. Subsequently, all values latched into the masters are
simultaneously transferred to the slaves. DLAP takes
advantage of wvariable delays, as other asynchronous
pipelines do. However, unlike other implementations, DLAP
is truly decoupled: Thanks to double latching, a stage that
has completed early can start processing the next data even
if the following stage is still occupied.
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Fig- 1 - A Doubly-Latched Asynchronous Pipeline
(DLAP)

A single stage controller for DLAP is shown in Fig. 2.
The controller communicates with neighbor stages by
Ready (Ri, Ro) and Acknowledge (Ai, Ao) lines. The
latching of data into the master and slave registers is
controlled by appropriate signals (Lm, Ls). The Done lines
(Dm, Ds) signal when latching has occurred.
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Fig. 2 - A DLAP stage structure.

An example DLAP test circuit is shown in Fig. 3. The
ReadyOut signal emerging from stage / is delayed before
entering stage /+1. That delay matches the computation
delay of the combinational logic between the two stages. We
employ an asymmetrical delay [11] in order to make the
reset phase as short as possible. If the logic generates a
completion signal (e.g., DCVSL [8] or dynamic logic [5]),
there is no need to add a special matched delay in the
control circuit: ReadyOut feeds the combinational logic
and the completion signal serves as Readyln for the
following controller.
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Fig. 3 - The DLAP test circuit.

DLAP can be implemented with either edge-triggered
registers or transparent latches, as discussed in the following
two sections. In the former case the control is simpler, while
in the latter case simpler registers may be employed.

3. Edge-Triggered DLAP

The behavior of a controller for an edge triggered register
based DLAP stage is defined by the STG [1] of Fig. 4. STG
nodes represent signal transitions (underlined signals are
inputs), directed edges are precedence relations, and the
black dots are tokens, shown at the initial marking. The
graph is 'executed’ by moving tokens around. A transition is
enabled by the presence of tokens on all edges leading to it.
The transition removes those tokens and places new ones on



all edges emanating from it (thus, the number of tokens may
change). As described in Fig. 4, the master register is
activated by the rising edge of Lm when a new value is
ready (R is set), and the previous value has been moved to
the slave (as marked by the internal signal B, for “bubble’).
Similarly, the slave register is activated by the rising edge of
Ls, when a new value is ready at the master, and the
previous value has been consumed by the following pipeline
stage. Petrify [2] has been employed to ensure that the STG
is safe, persistent, and has a complete state coding so it can
be implemented as a speed independent circuit with no
hazards. The control circuit implementation synthesized by
Petrify is depicted in Fig. 5.

Some waveforms obtained from the simulation of a
DLAP test circuit (Fig. 3) based on edge triggered registers
are presented in Fig. 6. We have designed the two types of
DLAP (edge triggered and latched), and have simulated
them with SPICE for a 0.8, 5V, typical CMOS process.
Transistor sizing are optimized for speed and symmetric
transitions. We have loaded the latch control signals
(Lm,Ls) to simulate the drive of 32 bit registers. The
simulated register driving delay time is 0.9nS. Note that this
delay is included in the cycle time (to ensure the correct
operation of the control circuit). The relative timings are
summarized in section 5. Observe that since the pipeline is
balanced, all R/ lines are set simultaneously. Consequently,
all masters are triggered simultaneously (Lm lines). After
completing the handshake on the Ai/Ao lines, all the slaves
are triggered (LS lines), and Ro signals are set. Following
the computational delays, the Ris are set again. The cycle
time (from Ri+ to the following Ri+) is 10.9nS, which
includes a combinational logic delay of 5.03nS, a logic reset
delay of 1nS, and four times 0.9nS for driving the two
registers. In other words, the control overhead is only
1.27nS. The response time (passing the data through the
double registers, i.e.,, Ri+ to Rot) is 2.9nS (which also
includes twice 0.9nS register driving delay).
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Fig. 4 - STG for a Master-Slave Edge Triggered stage
controller.
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Fig. 5 - A Master-Slave Edge Triggered stage controller
circuit implementation.
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Fig. 6 - Waveforms of Master-Slave Edge Triggered
DLAP test circuit.




4. Latched DLAP

Transparent latches are simpler than edge triggered
registers. To save power, the latches are used according to
the “blocking latch” scheme [15], i.e., they are kept closed at
all times except when data must be latched. Power is saved
since hazards are blocked. Note that since the latches are
transparent, master and slave cannot be both open at the
same time. Consequently, the controller is a bit more
complex than for edge triggered DLAP. An extra internal
signal is needed to mark which of the two latches has been
opened last, and to ensure that the STG has a complete state
coding. The proper STG is presented in Fig. 7, and the
implementation (synthesized by Petrify [2]) is presented in
Fig. 8.

The waveforms obtained from the simulation of a DLAP
test circuit (Fig. 3) based on transparent latches are
presented in Fig. 9, and the relative timings are summarized
in section 5 below. Comparing this to the waveforms of the
edge triggered DLAP, one can see that the pipeline is
balanced and all the masters are enabled at the same time
(Lm signals), followed by a simultaneous transfer of the data
through the slaves (by activating the Ls signals). Note also
that the Lm and Ls signals are mutually exclusive. The cycle
time (from Ri+ to the following Ri+) is 12.06nS (including
the combinational logic delay of 5.03nS, the logic reset
delay of InS, and 3.6nS for driving the two registers; thus,
the control overhead is only 2.43nS). The response time
(Ri+ to Rot) is 6.9n8, including four times the 0.9nS for
driving the registers.
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Fig. 7 - STG for a Master-Slave Latch stage controller.
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Fig. 8 - A Master-Slave Latch stage controller circuit
implementation.
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Fig. 9 - Waveforms of Master-Slave Latch DLAP test
circuit.

5. Comparative Analysis

We employ a scheduling notation (Fig. 10) to compare
the latency incurred by four kinds of two stage pipelines,
namely a synchronous pipe, a ‘semi-decoupled” (‘half
handshake”) asynchronous pipeline, a “fully-decoupled’
(“full handshake’) asynchronous pipeline, and DLAP. Three
tasks (/, j k) are to be processed, and the computational
delays of each task per each pipeline stage are listed in
Table 1. A synchronous design requires the clock cycle time
to accommodate the worst case of all calculations over all
stages, namely 2 time units, thus requiring eight time units
to complete the computation (Fig. 10(a)). The semi-
decoupled (or half handshake) pipeline [3, 4, 8] achieves
only 50% utilization. Since the pipeline contains only two
stages, and they must operate alternatively, the computation
takes eight time units (Fig. 10(b)). In a fully decoupled (“full
handshake’) asynchronous pipeline [4, 8] task kK cannot start
execution at stage A, since task j is stalled there until task /



frees stage B. Thus the computation requires six time units
to complete (Fig. 10(c)). The DLAP completes the
computation in only five time units (Fig. 10(d)), since stages
A and B are decoupled by the double latches between them,
and task K is not stalled.

| Task i | Task j | Task «
Stage A " 1 1 2
stageB [ 2 1 1

Table 1 - Processing times (in relative time units).
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Fig. 10 - Scheduling comparison of alternative pipelines:
(a) synchronous, (b) semi-decoupled asynchronous, (¢)
fully-decoupled asynchronous, and (d) DLAP.

As explained above, we have designed the two types of
DLAP (edge triggered and latched), and have simulated
them with SPICE. The basic test circuit with several stages
and the resulting waveforms are presented in Figs. 3, 6, and
9, respectively. The measured times are summarized in
Table 2. Note that the registers driving delays are included
in the cycle time.

Relative to synchronous pipelines, DLAP requires about
twice as many registers and a small control circuit per stage.
However, when replacing each edge-triggered FF with
double latches, the area overhead is kept to a minimum. The
timing overhead required (for edge-triggered DLAP) is one
more register loading delay. The return to zero path of the
handshake protocol is kept to a minimum. These times are
typically negligible compared to the logic computational
time.

Edge Latch
Triggered DLAP
DLAP [nS] [nS]
1 Ri+ — Ai+ 1.10 2.06
2 Ait+ —Ri- @ 2.24 1.62
3 Ri- — Ai- 1.13 0.60
4 Ai- = Ri+® 6.43 7.78
5 Cycle time © 10.9 12.06
(Ri+ — Ri+)
6 | Responge Time 2.9 6.9
(Ri+ — Ro+)

(a

(b

' Including logic reset delay of 1nS

' Including computational delay of 5.03nS
)

)

[

«

Sum of lines 1-4 (include the delay set and reset times)
Measured on a single empty pipe stage (i.e., the time
to pass data through the master and slave)

Table 2 - SPICE simulation results

The latched DLAP (relative to the edge triggered DLAP)
incurs slightly (about 1nS) longer cycle time, due to the need
to precisely sequence more transitions. The total overhead
is still negligible compared to typical computational logic
delays.

Four phase handshake protocol pipelines with edge
triggered registers are also used in [8, 9], where two types of
control circuits are presented: “Half handshake” utilizes only
50% of the pipe, as only every other stage operates at a time.
‘Full handshake’ is more efficient, and acknowledge signals
propagating backwards sequentially, can sometimes overlap
stage operation. Four phase pipelines with transparent
latches are presented in [3, 4, 5] (the latter employs
dynamic logic). However, contrary to DLAP design, the
latches are left open most of the time, resulting in possibly
higher power dissipation due to data hazards. Their “semi-
decoupled’ and ‘fully-decoupled’ schemes are similar to the
‘half-handshake’ and ‘full-handshake’ of [8]. A 2-phase
protocol micropipeline using double edge triggered registers
is presented in [15], as well as a 4-phase protocol
micropipeline using latches and ‘blocking latch® scheme.
The design is reportedly faster than [3], but it is still a semi-
decoupled circuit, limited to 50% pipeline utilization.

The cycle time of a semi-decoupled pipeline include
approximately twice the processing delay of the
combinational logic because of its 50% duty-cycle operation
(ie., a stage must wait for the following stage to clear before
initiating its own next calculation). In a fully decoupled
pipeline, even if all stages finish evaluation at almost the
same time, a stage cannot latch the result in its output



register until the following stage has. When the pipe is full,
operation is limited by a single “bubble’ flowing backwards
and the latency overhead is relative to the length of the pipe.
The master/slave action of the storage in a DLAP serves the
purpose of interleaved bubbles in the pipeline, and relaxes
the coupling between the stages. Thus, DLAP is more
tolerable to changes in the output rate from the pipe than the
other asynchronous pipelines.

We implemented a fully-decoupled pipeline [4] and a
full-handshake pipeline [8,9], and ran SPICE simulations to
compare the performance. Results show that when the
computational load per stage is small (relative to the control
overhead), DLAP cycle time is slightly slower due to the
extra registers, but it is best for data-dependent delays.

Newer versions of Pelfrify and other synthesis tools may
be applied to the STGs presented in this paper, to synthesize
simpler control circuits. The circuits generated can be
implemented with SR-FF instead of C-elements for standard
cell implementation. Faster DLAP controllers might be
implemented based on generalized C-elements, or designed
to operate according to non-blocking scheme, as in [4]. The
control circuits we used were designed to be delay
insensitive. However, simple engineering optimization
techniques can be applied for lower latency overhead, e.g.,
overlap control circuit timing with latch operation.

6. Non-Linear DLAPs

Non-linear DLAP data paths can also be created by using
Fork and Join interconnection circuits. A Fork is basically
a two output pipeline stage. Fig. 11 shows the
implementation of a Fork for the case of edge triggered
DLAP. Note that both following stages share the same Ro
line, while their Ao lines are combined by the C-Element.
Similarly, a Join interconnection is basically a two input
pipeline stage, as presented in Fig. 12. The R/ signals are
combined by the C-Element.

Many synthesized circuits have complex structures that
contain loops (a.k.a. rings). A DLAP ring can be constructed
by employing Join and Fork circuits as shown in Fig. 13.

A ring structure based on fully-decoupled pipeline
scheme must contain an extra register to prevent a deadlock
[9]. The single bubble going backwards around the loop
might limit and slow down the ring operation. DLAP ring is
faster than a fully-decoupled one when stage delay is shorter
than the acknowledge round trip delay. Using semi-
decoupled pipeline to construct a feedback loop yields a ring
with only half stages full, since only alternate blocks can
store valid values [9]. DLAP rings have enough bubbles and
can operate the same way as a synchronous ring.
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Fig. 11 - A Fork stage implementation, two output
pipeline interconnection circuit.
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Fig. 12 - A Join stage implementation, two input
pipeline interconnection circuit.
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7. Conclusion

In our quest for efficient conversion of synchronous
circuits into asynchronous ones, we have examined various
asynchronous pipeline schemes [8, 9, 3, 4, 5, 15, 12], and
have found that none operates as efficiently as a balanced
synchronous pipeline. Consequently, we have developed the
doubly-latched asynchronous pipeline (DLAP) which
employs master-slave registers. DLAP is capable of truly
decoupled operation: In a balanced pipeline all stages can
shift data simultaneously, and when variable (data
dependent) delays are encountered, execution is faster than
previous designs. DLAP architecture is most suitable for
synchronous-like operation, and automatic conversion when
we wish to eliminate the clock (for power saving and easier
interface to other asynchronous units) without redesign. We
have shown implementations based on either edge triggered
registers or transparent latches. Both designs have been
defined with STGs, verified, and fully simulated and
compared with previous architectures.
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