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By scheduling each workload according to its most 

advantageous core and managing voltage and frequency, 

the heterogeneous energy-aware race to halt (H-EARtH) 

algorithm optimizes CPU platform energy.

Modern computers’ energy consumption is a 
major concern, given growing datacenter 
and client computer deployment. Mech-
anisms such as dynamic voltage and fre-

quency scaling (DVFS) are commonly used to achieve 
energy-efficient computing while maintaining perfor-
mance by controlling the CPU’s voltage and frequency. 
Multicore heterogeneous processors have been intro-
duced for use in computer platforms to further improve 
performance and energy efficiency.1 Wide out-of-order 
cores, potentially at high voltage and frequency, are used 
when high performance is needed, while slow and lower 
power cores at lower voltage and frequency achieve bet-
ter energy efficiency2–4 when less performance is suffi-
cient. Furthermore, because a “simple” core can be imple-
mented using much less area than a “complex” core, it 

is possible to fit and activate many small cores within 
the same area as the complex one, resulting in supe-
rior multi threaded workload performance. Combining 
a hetero geneous processor with DVFS capability offers 
multi dimensional energy and performance control. 

The heterogeneous energy-aware race to halt 
(H-EARtH) algorithm offers a runtime scheduling policy 
for selecting the best core for a given application, and a 
power-management algorithm for selecting the voltage 
and frequency point on the selected core that achieves 
optimal platform energy.

PLATFORM ENERGY 
Controlling CPU power and energy has a limited effect 
on a computer platform’s overall energy efficiency 
because of the energy consumption of other platform 
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components. Although lowering the core’s voltage and 
frequency decreases processor energy by ~(freq1/freq2)2, 
computation time is lengthened by ~freq2/freq1, resulting 
in other platform components consuming more energy.5,6 
Using a small core also lengthens the execution runtime, 
resulting in higher platform energy.

Figure 1 shows a platform’s total energy consumption as 
a function of CPU voltage and frequency. When CPU power 
dominates total power, the energy follows the red dotted 
curve in Figure 1, and minimum energy consumption is 
achieved when the CPU operates at its lowest voltage and fre-
quency. Multicore processors further increase performance 
at the cost of higher power, making the processor power 
more dominant than the rest of the platform. This behavior 
is often observed in big-core client systems. In server com-
puters and small-core CPUs, however, the platform power 
is high, making race to halt (RtH) the most energy-efficient 
policy (dashed blue line in Figure 1). Recent improvements 
in platform power management have significantly reduced 
platform idle power, balancing platform and CPU energy 
(solid green line in Figure 1).5 Furthermore, single-threaded 
workloads activate a small number of cores and therefore 
consume a smaller portion of the system power than highly 
threaded applications.

RUNTIME EFFECT ON OPTIMAL 
FREQUENCY AND CORE TYPE
Finding each core’s optimal execution point in a hetero-
geneous system requires runtime evaluation because it 
depends on both hardware and application characteriza-
tions;7 for example, memory-bound workloads, running at a 
higher core frequency or a high-performance core, consume 

more CPU energy but gain very little perfor-
mance and platform energy and therefore ben-
efit from a lower performance state. Thus, using 
a fixed-core scheduling and frequency policy 
does not deliver platform energy efficiency. 

In this article, we introduce the H-EARtH 
algorithm for scheduling and managing a 
heterogeneous processor’s optimal energy- 
efficiency point. It implements a simplified 
runtime platform model using a small num-
ber of static and runtime parameters to select 
the core and frequency that achieve minimum 
platform energy. We also address other com-
monly used formal optimization matrices in 
the form of E⋅Dαwhere E = energy and D = delay 

(application runtime).
We instrumented platforms with two types of Intel Core 

i7 processors, manufactured on 45-, 32-, 22-, and 14-nm pro-
cesses; a standard voltage CPU used as a high-performance 
core; and an ultralow voltage (ULV) CPU for a more power- 
efficient core. We tested the algorithm using 37 different 
benchmarks at different temperatures. We also simulated 
a heterogeneous multicore constructed of Intel Atom cores 
and Intel Core processors, sharing the interconnect and 
memory hierarchy. Our results show that the H-EARtH 
algorithm achieves the actual minimum platform energy 
on a real system with an energy accuracy of 2.2 percent. 
We also demonstrate that the heterogeneous CPU, which 
operates at this optimal H-EARtH point, achieves an aver-
age of 21 percent energy savings, with up to 33 percent sav-
ings compared to a homogeneous CPU. The H-EARtH algo-
rithm can save energy up to 44 percent compared to the 
commonly used fixed-frequency policies: RtH and low fre-
quency mode (LFM). 

The algorithm’s homogeneous version6 has been imple-
mented as Intel Speed Shift Technology on the sixth- 
generation Intel Core processor’s power-management firm-
ware with an α value set by the OS power policy.8

THEORETICAL MODEL
We first review the platform energy model of the single 
active core (homogeneous core6) and then extend it to the 
heterogeneous core.

Homogeneous core
Our workload model, shown in Figure 2, is characterized 
as two interleaved phases, active and idle. The active phase 
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FIGURE 1. Conceptual total energy in three different scenarios. The minimum 
energy point depends on which portion of the platform dominates power con-
sumption: low frequency mode (LFM) for CPU dominance, race to halt (RtH) for 
when the rest of the platform dominates, and energy-aware race to halt (EARtH) 
point for when power is balanced.
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is further split into interleaved memory- 
bound intervals (tm) and CPU-bound inter-
vals (tc).9–11 CPU runtime is inversely pro-
portional to the frequency; CPU frequency 
does not affect off-chip memory–bound 
intervals. Rather than measuring the time 
intervals directly, we used the method 
described subsequently. Big and small 
cores have different tm and tc ratios.

We address a full compute platform consisting of a pro-
cessor system on chip (SoC), memory, power supplies, com-
munication, disk drives, and so on. We reduce this complex 
platform to a simple model in which the platform’s power 
dissipation can be categorized as follows:

 › CPU power (orange bar in Figure 2), which is the sum 
of all active core power consumed at runtime, com-
prising both dynamic and leakage parts with non-
linear dependency on frequency and voltage. Leakage 
of nonactive cores is turned off by power gates.

 › Platform power, which is dissipated by the platform 
and further divided into two subcategories:

 › Fixed energy (not shown in Figure 2): During work-
load execution, a fixed amount of data is trans-
ferred to and from memory, disk drives, and so 
on. This activity is a function of the application 
footprint and the devices’ physical characteristics; 
it does not depend on CPU frequency and there-
fore translates to fixed energy. If these memory 
accesses are spread over a longer time, the power is 
lower but the energy is equal.

 › Runtime power (green bar in Figure 2): This device 
power can be turned off during platform idle times. 
The energy impact of this power is proportional to 
the runtime of the workload and inversely pro-
portional to CPU frequency (for example, system 
memory idle power and I/O links). 

 › Platform constant power (blue bar in Figure 2), which 
is dissipated by the platform regardless of workload 
activity (such as display and DDR self-refresh). Unlike 
runtime power, it is not turned off and therefore not 
subject to runtime optimization. Note that the dis-
tinction between runtime power and constant power 
depends on the idle state in use (that is, C/S-state). 

The research platform model is thus reduced to a hetero-
geneous processor capable of performing core selection and 

DVFS with nonlinear power to frequency dependency (for 
example, by f3). Platform components consume fixed run-
time power with energy proportional to runtime (1/f). All 
other components are ignored. The two opposite energy 
trends might have a global minimum (see Figure 1). We 
define the following variables:

 › f0: reference lowest frequency of the CPU;
 › fc: frequency ratio, relative to f0. fc = factual/f0; 
 › tc: CPU-bound runtime at fc. tc0 is tc at f0;
 › tm: memory-bound runtime, fixed for all fc;
 › P0: lowest CPU power consumed at f0;
 › Pc: CPU power at fc. Power scales as a function of fre-
quency Pc = P0⋅F(fc), accounting for leakage, tempera-
ture dependency, and so on; and 

 › Pl: platform runtime power at fc.

Given these notations, the frequency-dependent part Ef of 
platform energy is

E f = (tc + t m) ⋅ (Pc + P
1
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We define two platform and workload terms. One is the 
CPU to platform power ratio (CPR)—the ratio between CPU 
power at f0 and total platform power:

Platform runtime power

CPU
idle

Time

Platform constant power

CPU active power

Power

t
c tm

FIGURE 2. Conceptual platform power over time with CPU in active and idle states. 
Platform power is divided into continuous power and power that can be turned off 
when CPU execution ends.



36 C O M P U T E R    W W W . C O M P U T E R . O R G / C O M P U T E R

ENERGY-EFFICIENT COMPUTING

CPR =
Pc 0

(Pc 0
+ P

1
)
, and clearly 1 − CPR =

P
1

(Pc 0
+ P

1
)

.

CPR→1 implies that the platform power is dominated by 
CPU power, while CPR→0 implies that the rest of the plat-
form dominates the total platform power; in real platforms, 
CPR falls between these two extremes.

The second parameter we define is scalability, the ratio of 
CPU bound time to total execution time, computed at f0. We 
define workload scalability (SCA) as

SCA =
tc 0

(tc 0
+ t m)

, and clearly 1 − SCA =
t m

(tc 0
+ t m)

.

SCA is a workload characteristic that represents the per-
formance dependency on CPU frequency. High scalabil-
ity (SCA→1) indicates that performance is CPU bound and 
tightly related to frequency, while low scalability (SCA→0) 
indicates that the performance is memory bound and not 
affected by frequency. It is not possible to measure workload 
time intervals tc and tm directly because they are tightly 
interleaved. However, we can extract SCA at runtime by col-
lecting execution parameters.

The platform energy can now be expressed as

E f

E f 0

= (SCA ⋅ 1
fc

+ 1 − SCA) ⋅ (CPR ⋅ F (fc ) + 1 − CPR). (3)

This equation implies that the relative platform energy 
is a function of frequency, CPU power, and SCA and CPR, 
characteristics of the platform and the workload. 

To minimize energy, we must find the frequency that 
minimizes Equation 3. Note that using the term Dα+1 = (tc0 
+ tm )α+1 in Equation 2 yields Equation 3.1:

E ⋅ Dα
f

E ⋅ Dα
f 0

= (SCA ⋅ 1
fc

+ 1 − SCA)α +1 ⋅ (CPR ⋅ F (fc ) + 1 − CPR). (3.1)

Equation 3.1 is an analytical model that can be calculated 
at runtime and allows minimization of E⋅Dα of a particular 
workload’s total platform.

Heterogeneous core
Our heterogeneous core processor model consists of two core 
types sharing a single interconnect. At any given time, only 

one type of core might be running. Building the full hetero-
geneous core energy model at runtime therefore requires 
us to cross-predict the model parameters from the active 
core to the nonactive core. The interconnect and the mem-
ory architecture of our heterogeneous CPU are shared, so 
tm is the same for both big and small cores. We approximate 
the runtime of the CPU-bounded portion on the big versus 
small core as a fixed ratio: k × tc_big = tc_small. Using a fixed k 
proved to be a good approximation in our architecture. We 
obtained k through offline characterization using a training 
set of workloads out of SPEC2000 (186.crafty, 164.gzip, 181.
mcf, 256.bzip2, 171.swim, 177.mesa, 179.art, and 188.ammp). 

We define scalability as

SCA =
tc 0

(tc 0
+ t m)

,  and clearly 1 − SCA =
t m

(tc 0
+ t m)

.

Dividing the two equations (with indices b for the big 
core and s for the small one):

tcb

t m

=
SCAb

1 − SCAb

,  and 
k ∗ tcb

t m

=
SCAs

1 − SCAs

.

Finally,

SCAs

1 − SCAs

=
k ∗ SCAb

1 − SCAb

. (4)

Equation 4 provides a function to calculate the scalability 
of a nonactive core based on the measured SCA of the active 
core at runtime (with a known k). 

Equation 3 expresses the energy in relative terms. Note 
that the small core’s E0 is lower than the big core’s at the 
same reference frequency. To compare the energy, we need 
to place it on a common scale:

E
0b

E
0s

=
P

0b ∗ runtimeb

P
0s ∗ runtimes

. (5)

The power at the reference point P0 is measured at sys-
tem configuration. To calculate a workload’s runtime, we 
now divide 1 – SCA of the big core by that of the small core: 

tcs + t m

tcb + t m

=
runtimes

runtimeb

=
1 − SCAb

1 − SCAs

. (6)

Using Equations 5 and 6, we can compare the big and 
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small cores’ energy on a common scale and minimize over-
all energy. Equation 3 allows us to calculate the energy 
global minimum work point. The H-EARtH algorithm is 
shown in Figure 3. Initial Pl, P(fc) and k settings are stored 
in nonvolatile memory. At runtime, the H-EARtH algorithm 
activates once every time interval, calculates CPR and SCA, 
and determines the core and frequency that minimize 
Equation 3.1, with n as a user-defined parameter.

MEASUREMENTS AND SIMULATIONS
We evaluated a homogeneous core processor and two single- 
instruction-set architecture heterogeneous multicores:

 › Homogeneous processor: We evaluated SkyLake, a 
sixth-generation Intel Core processor code. The 
H-EARtH algorithm is implemented in the proces-
sor’s power-management firmware. We measured 
the power, energy, and performance of various 
benchmarks of a single unit and platform at the DC- 
balanced setting.

 › Single-ISA same microarchitecture: This model con-
tains four high-power high-frequency cores and four 

low-power slow cores. All cores share the Intel Core 
processor’s single architecture and logic design at 
two different design targets. This topology is often 
referred to as asymmetric multicore. 

 › Single-ISA different microarchitecture: This model con-
tains a combination of four big Intel Core processors 
(two-thread simultaneous multithreading each) and 
eight Intel ATOM cores.

Sixth-generation Intel Core 
processor measurements
We instrumented a mobile system with an Intel m7-6Y75 
processor for power measurements and tested a set of com-
mon mobile benchmarks, capturing power performance as 
measured by the benchmark score. We calculated energy 
as the power integral over the entire benchmark runtime. 
Results are listed in Table 1. The baseline reference is Win-10 
frequency control, as compared to the H-EARtH algorithm 
(homogeneous-core version). Frequency was dynamically 
controlled by the algorithm during workload runtime. 
As Table 1 shows, we saw performance gains due to the 
higher frequency, and overall energy savings due to both 

// Parameter initialization. Offline characterization at 

// system design. Parameters stored in, or loaded by BIOS at power up 

Get Pl // Get Platform Run Time Power 

Get α // Characterize F(fc); Function can be 

 // polynomial, table or other. 

// Run time optimization control 

Every time interval { 

 For each core { 

  Pc = CPU power  // Sample CPU power meter; internal power meter or calculated 

  CPR = Pc/(Pc+Pl) 

  Get SCA  // Read CPU monitor or use collected statistics. 

  Fopt=min((SCA ⋅ 1/fc + 1−SCA) ⋅ (CPR ⋅ f
α
c + 1 – CPR)) // over valid frequencies 

  Freq = Get Operating System frequency request 

F(resolved) = max(Fopt, Freq) 

 } 

Scale energy Ef/Ef0 to a common reference using Equations 5 and 6. 

Select the core with minimum energy 

}

FIGURE 3. H-EARtH algorithm.
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the shortened runtime and the system energy savings. We 
achieved up to 29 percent performance gain by running at a 
higher frequency, with up to 24 percent SoC energy savings. 
Two benchmarks lost 2–4 percent energy.

The sixth-generation Intel Core power-management 
algorithm also implemented the H-EARtH algorithm with 
energy optimization with E⋅Dα as described in Equation 3.1. 
Higher α provides better performance at a cost of increased 
power and energy. We measured power and performance of 
SPEC 2006 of a high-end desktop part (Intel Core i7 6700K) 
with α = 2 and α = 3 (see Figure 4).

Asymmetric CPU: real-system implementation
We implemented the H-EARtH algorithm on platforms 
employing state-of-the-art 45-nm (Intel Core 2 Duo T9900), 
32-nm (2860QM), and 22-nm (3840QM) processors. We mea-
sured two types of processors: a standard voltage Intel Core 
2 Duo 2860QM and a ULV Intel Core 2 Duo 2677M intended 
for Ultrabook computers. We used these two processors to 

construct an asymmetric processor model. The platforms 
were instrumented to measure CPU and total platform 
power. We used Spec CPU 2000 and 2006 and SYSmark 
benchmarks at case temperatures of 45°C and 60°C on the 
two CPUs at eight frequencies. We evaluated both single and 
multithreaded workloads. We implemented the H-EARtH 
algorithm in the power-management firmware of the pro-
cessor. The following algorithm parameters were set:

 › CPR: We characterized the platform power Pl offline 
once and stored it in nonvolatile memory. We 
used the built-in power meter12 to calculate CPR at 
runtime. 

 › Power function P(fc): We characterized this once at 
setup by measuring power at eight frequencies. We 
identified a polynomial dependency, Pc ∝ fc

α, with 
each core type having a different α value. 

 › SCA: This was calculated using the internal architec-
tural memory stall counters.12

TABLE 1. Heterogenous energy-aware race to halt (H-EARtH) algorithm’s energy savings 
and performance gains (higher percentages reflect better savings and gains). 

Workload Energy savings (%) Performance gain (%)

Average frequency (GHz)

Baseline H-EARtH

WebXPRT 2015 Chrome—sales graphs 24 29 1.38 1.41

WebXPRT 2015 Chrome—local notes 13 20 0.91 1.11

PCMark Vantage—communications 5 11 2.13 2.33

WebXPRT 2015 Chrome—stock-option pricing 5 9 1.18 1.21

WebXPRT 2015 Chrome—organize album 3 8 1.12 1.15

WebXPRT 2015 Chrome—photo enhancement 5 8 0.91 0.93

TouchXPRT 2014—create slideshow from photos 3 3 0.99 1.16

TouchXPRT 2014—blend photos –1 3 1.25 1.45

PCMark Vantage—memories 0 2 2.21 2.30

TouchXPRT 2014—beautify photos 2 2 1.43 1.67

PCMark Vantage—HDD 2 2 2.45 2.54

PCMark Vantage—productivity –1 2 2.13 2.20

TouchXPRT 2014—create music podcast 1 2 1.04 1.21

PCMark Vantage—gaming 1 0 2.36 2.42

Media Playback—4k.mp4 2 0 0.81 0.94

Media Playback—HD.mp4 2 0 0.74 0.87

WebXPRT 2015— explore DNA sequencing –2 0 1.26 1.28

PCMark Vantage—music –4 –1 1.94 2.20
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 › Sampling rate: The H-EARtH algo-
rithm used a 1-ms sampling rate, 
performing frequency decisions 
every 10 ms. 

The asymmetric processor model 
consisted of four big and four small 
cores. Not having a real CPU with both 
core types, we ran the H-EARtH algo-
rithm independently on each core 
type, selecting the lowest-energy core 
(or “optimal point”) offline. Because 
this study was limited to a single core 
for the entire run, we missed out on 
the potential benefits of migrating the 
workload on the fly from small to big 
core and vice versa, as well as on the 
cost of migration. Figure 5 plots the 
energy savings of the optimal point 
versus fixed policies of LFM and RtH 
on each core type. The energy savings 
of the workloads is sorted individu-
ally for each policy from low to high. 

Table 2 summarizes the best policy 
occurrences, that is, the ratio of workloads that achieved 
minimum platform energy at each policy. H-EARtH indi-
cates an intermediate frequency other than RtH or LFM. 

Running the small core at its maximum frequency 
usually delivers the lowest energy (63 percent of work-
loads). This fixed policy, however, results in more than 
one-third of workloads running at suboptimal fre-
quency, losing up to 16 percent energy (S-RtH in Figure 
5). Furthermore, the H-EARtH algorithm can save up to 
44 percent of platform energy (F-RtH in Figure 5). A slow 
core is usually more energy efficient; however, in our 
platform, the fast core is more energy efficient in 9 per-
cent of the workloads.

Heterogeneous CPU
In this part of the study, we used a tested and validated cycle 
accurate simulator, with two third-generation Intel Core 
processors as the big cores and four Intel Atom processors 
as the small cores sharing the Intel Core processor intercon-
nect. We extracted the power and performance of multi-
threaded SPEC components at the eight frequencies using 
our simulator. We used the H-EARtH algorithm offline to 
find the frequency that optimally minimized the entire 
platform’s energy consumption for each workload and for 
each core type independently. We again chose a fixed core 
type for the entire workload. CPU power (used for CPR cal-
culation) and SCA were obtained from the simulator, while 
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P1 for the rest of the platform was adopted from the real- 
system study described earlier. The cross-prediction k ratio 
was extracted from a 100 percent scalable application (SPEC 
CPU 2000 gzip).

Figure 6 sorts the energy savings of the heterogeneous 
CPU versus the homogeneous CPU for all 37 workloads at 
the two temperatures in ascending order. The left-most 9 
percent of the applications achieve the lowest energy by 
using the big core (yielding no energy savings on the hetero-
geneous CPU). The remaining 91 percent benefit from the 
heterogeneous architecture; 31 percent achieve the maxi-
mum 33 percent energy savings by using the small cores at 
RtH frequency. The heterogeneous CPU saves an average 21 
percent of energy compared to the big core CPU.

Multicore heterogeneous CPUs can perform com-
putational tasks at lower platform energies than 
CPUs with only big cores: we demonstrated average 

energy savings of 21 percent on all workloads, with up to 33 
percent savings in some cases. Using small cores, however, 
is not always energy efficient. Optimal core use depends 
on platform and workload characteristics. Operating an 
ill-suited core at a fixed frequency can lead to 44 percent 

platform energy loss. Our hetero-
geneous H-EARtH algorithm allows 
scheduling a workload to the most 
advantageous core while managing 
that core’s voltage and frequency. 
Such a model aligns with existing 
OSs but does not fully utilize all 
available cores. A practical imple-
mentation will obviously perform 
periodic workload adjustments, with 
better workload adjustments at a cost 
of workload change overhead. Over-
all, H-EARtH offers a runtime sched-
uling and energy management algo-
rithm for multicore hetero geneous 
CPUs to optimize the total platform 
E⋅Dα metric. 
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