
C O M P U T E R 0 0 1 8 - 9 1 6 2 / 1 6 / $ 3 3 . 0 0 © 2 0 1 6 I E E E O C T O B E R 2 0 1 6 33

COVER FEATURE ENERGY-EFFICIENT COMPUTING

Efraim Rotem, Intel and Technion—Israel Institute of Technology

Uri C. Weiser, Avi Mendelson, and Ran Ginosar, Technion—Israel Institute of Technology

Eliezer Weissmann and Yoni Aizik, Intel

By scheduling each workload according to its most

advantageous core and managing voltage and frequency,

the heterogeneous energy-aware race to halt (H-EARtH)

algorithm optimizes CPU platform energy.

Modern computers’ energy consumption is a
major concern, given growing datacenter
and client computer deployment. Mech-
anisms such as dynamic voltage and fre-

quency scaling (DVFS) are commonly used to achieve
energy-efficient computing while maintaining perfor-
mance by controlling the CPU’s voltage and frequency.
Multicore heterogeneous processors have been intro-
duced for use in computer platforms to further improve
performance and energy efficiency.1 Wide out-of-order
cores, potentially at high voltage and frequency, are used
when high performance is needed, while slow and lower
power cores at lower voltage and frequency achieve bet-
ter energy efficiency2–4 when less performance is suffi-
cient. Furthermore, because a “simple” core can be imple-
mented using much less area than a “complex” core, it

is possible to fit and activate many small cores within
the same area as the complex one, resulting in supe-
rior multi threaded workload performance. Combining
a hetero geneous processor with DVFS capability offers
multi dimensional energy and performance control.

The heterogeneous energy-aware race to halt
(H-EARtH) algorithm offers a runtime scheduling policy
for selecting the best core for a given application, and a
power-management algorithm for selecting the voltage
and frequency point on the selected core that achieves
optimal platform energy.

PLATFORM ENERGY
Controlling CPU power and energy has a limited effect
on a computer platform’s overall energy efficiency
because of the energy consumption of other platform

H-EARtH: Heterogeneous
Multicore Platform
Energy Management

34 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

ENERGY-EFFICIENT COMPUTING

components. Although lowering the core’s voltage and
frequency decreases processor energy by ~(freq1/freq2)2,
computation time is lengthened by ~freq2/freq1, resulting
in other platform components consuming more energy.5,6
Using a small core also lengthens the execution runtime,
resulting in higher platform energy.

Figure 1 shows a platform’s total energy consumption as
a function of CPU voltage and frequency. When CPU power
dominates total power, the energy follows the red dotted
curve in Figure 1, and minimum energy consumption is
achieved when the CPU operates at its lowest voltage and fre-
quency. Multicore processors further increase performance
at the cost of higher power, making the processor power
more dominant than the rest of the platform. This behavior
is often observed in big-core client systems. In server com-
puters and small-core CPUs, however, the platform power
is high, making race to halt (RtH) the most energy-efficient
policy (dashed blue line in Figure 1). Recent improvements
in platform power management have significantly reduced
platform idle power, balancing platform and CPU energy
(solid green line in Figure 1).5 Furthermore, single-threaded
workloads activate a small number of cores and therefore
consume a smaller portion of the system power than highly
threaded applications.

RUNTIME EFFECT ON OPTIMAL
FREQUENCY AND CORE TYPE
Finding each core’s optimal execution point in a hetero-
geneous system requires runtime evaluation because it
depends on both hardware and application characteriza-
tions;7 for example, memory-bound workloads, running at a
higher core frequency or a high-performance core, consume

more CPU energy but gain very little perfor-
mance and platform energy and therefore ben-
efit from a lower performance state. Thus, using
a fixed-core scheduling and frequency policy
does not deliver platform energy efficiency.

In this article, we introduce the H-EARtH
algorithm for scheduling and managing a
heterogeneous processor’s optimal energy-
efficiency point. It implements a simplified
runtime platform model using a small num-
ber of static and runtime parameters to select
the core and frequency that achieve minimum
platform energy. We also address other com-
monly used formal optimization matrices in
the form of E⋅Dαwhere E = energy and D = delay

(application runtime).
We instrumented platforms with two types of Intel Core

i7 processors, manufactured on 45-, 32-, 22-, and 14-nm pro-
cesses; a standard voltage CPU used as a high-performance
core; and an ultralow voltage (ULV) CPU for a more power-
efficient core. We tested the algorithm using 37 different
benchmarks at different temperatures. We also simulated
a heterogeneous multicore constructed of Intel Atom cores
and Intel Core processors, sharing the interconnect and
memory hierarchy. Our results show that the H-EARtH
algorithm achieves the actual minimum platform energy
on a real system with an energy accuracy of 2.2 percent.
We also demonstrate that the heterogeneous CPU, which
operates at this optimal H-EARtH point, achieves an aver-
age of 21 percent energy savings, with up to 33 percent sav-
ings compared to a homogeneous CPU. The H-EARtH algo-
rithm can save energy up to 44 percent compared to the
commonly used fixed-frequency policies: RtH and low fre-
quency mode (LFM).

The algorithm’s homogeneous version6 has been imple-
mented as Intel Speed Shift Technology on the sixth-
generation Intel Core processor’s power-management firm-
ware with an α value set by the OS power policy.8

THEORETICAL MODEL
We first review the platform energy model of the single
active core (homogeneous core6) and then extend it to the
heterogeneous core.

Homogeneous core
Our workload model, shown in Figure 2, is characterized
as two interleaved phases, active and idle. The active phase

f 1

Required
performance

CPU frequency

EARTH

Pl
at

fo
rm

 e
ne

rg
y

LFM

RtH

Platform-dominated

CPU-dominated

Balanced CPU/platform

FIGURE 1. Conceptual total energy in three different scenarios. The minimum
energy point depends on which portion of the platform dominates power con-
sumption: low frequency mode (LFM) for CPU dominance, race to halt (RtH) for
when the rest of the platform dominates, and energy-aware race to halt (EARtH)
point for when power is balanced.

 O C T O B E R 2 0 1 6 35

is further split into interleaved memory-
bound intervals (tm) and CPU-bound inter-
vals (tc).9–11 CPU runtime is inversely pro-
portional to the frequency; CPU frequency
does not affect off-chip memory–bound
intervals. Rather than measuring the time
intervals directly, we used the method
described subsequently. Big and small
cores have different tm and tc ratios.

We address a full compute platform consisting of a pro-
cessor system on chip (SoC), memory, power supplies, com-
munication, disk drives, and so on. We reduce this complex
platform to a simple model in which the platform’s power
dissipation can be categorized as follows:

 › CPU power (orange bar in Figure 2), which is the sum
of all active core power consumed at runtime, com-
prising both dynamic and leakage parts with non-
linear dependency on frequency and voltage. Leakage
of nonactive cores is turned off by power gates.

 › Platform power, which is dissipated by the platform
and further divided into two subcategories:

 › Fixed energy (not shown in Figure 2): During work-
load execution, a fixed amount of data is trans-
ferred to and from memory, disk drives, and so
on. This activity is a function of the application
footprint and the devices’ physical characteristics;
it does not depend on CPU frequency and there-
fore translates to fixed energy. If these memory
accesses are spread over a longer time, the power is
lower but the energy is equal.

 › Runtime power (green bar in Figure 2): This device
power can be turned off during platform idle times.
The energy impact of this power is proportional to
the runtime of the workload and inversely pro-
portional to CPU frequency (for example, system
memory idle power and I/O links).

 › Platform constant power (blue bar in Figure 2), which
is dissipated by the platform regardless of workload
activity (such as display and DDR self-refresh). Unlike
runtime power, it is not turned off and therefore not
subject to runtime optimization. Note that the dis-
tinction between runtime power and constant power
depends on the idle state in use (that is, C/S-state).

The research platform model is thus reduced to a hetero-
geneous processor capable of performing core selection and

DVFS with nonlinear power to frequency dependency (for
example, by f3). Platform components consume fixed run-
time power with energy proportional to runtime (1/f). All
other components are ignored. The two opposite energy
trends might have a global minimum (see Figure 1). We
define the following variables:

 › f0: reference lowest frequency of the CPU;
 › fc: frequency ratio, relative to f0. fc = factual/f0;
 › tc: CPU-bound runtime at fc. tc0 is tc at f0;
 › tm: memory-bound runtime, fixed for all fc;
 › P0: lowest CPU power consumed at f0;
 › Pc: CPU power at fc. Power scales as a function of fre-
quency Pc = P0⋅F(fc), accounting for leakage, tempera-
ture dependency, and so on; and

 › Pl: platform runtime power at fc.

Given these notations, the frequency-dependent part Ef of
platform energy is

E f = (tc + t m) ⋅ (Pc + P
1
) =

tc 0

fc

+ t m

⎛

⎝
⎜

⎞

⎠
⎟ ⋅ (P

0
⋅ F (fc) + P

1
) . (1)

For optimization, it is more convenient to consider
energy relative to the platform energy Ef0 at the reference
point f0. Dividing Equation 1 by the same equation with tc
= tc0 yields

E f

E f 0

=

tc 0

fc

+ t m

⎛

⎝
⎜

⎞

⎠
⎟ ⋅ Pc 0

⋅ F (fc) + P
1()

(t c 0
+t m) ∗ (Pc 0

+ P
1
)

=
tc 0

(tc 0
+ t m)

⋅ 1
fc

+
t m

(tc 0
+ t m)

⎛

⎝
⎜

⎞

⎠
⎟

⋅
Pc 0

(Pc 0
+ P

1
)
⋅ F (fc) +

P
1

(Pc 0
+ P

1
)

⎛

⎝
⎜

⎞

⎠
⎟ . (2)

We define two platform and workload terms. One is the
CPU to platform power ratio (CPR)—the ratio between CPU
power at f0 and total platform power:

Platform runtime power

CPU
idle

Time

Platform constant power

CPU active power

Power

t
c tm

FIGURE 2. Conceptual platform power over time with CPU in active and idle states.
Platform power is divided into continuous power and power that can be turned off
when CPU execution ends.

36 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

ENERGY-EFFICIENT COMPUTING

CPR =
Pc 0

(Pc 0
+ P

1
)
, and clearly 1 − CPR =

P
1

(Pc 0
+ P

1
)

.

CPR→1 implies that the platform power is dominated by
CPU power, while CPR→0 implies that the rest of the plat-
form dominates the total platform power; in real platforms,
CPR falls between these two extremes.

The second parameter we define is scalability, the ratio of
CPU bound time to total execution time, computed at f0. We
define workload scalability (SCA) as

SCA =
tc 0

(tc 0
+ t m)

, and clearly 1 − SCA =
t m

(tc 0
+ t m)

.

SCA is a workload characteristic that represents the per-
formance dependency on CPU frequency. High scalabil-
ity (SCA→1) indicates that performance is CPU bound and
tightly related to frequency, while low scalability (SCA→0)
indicates that the performance is memory bound and not
affected by frequency. It is not possible to measure workload
time intervals tc and tm directly because they are tightly
interleaved. However, we can extract SCA at runtime by col-
lecting execution parameters.

The platform energy can now be expressed as

E f

E f 0

= (SCA ⋅ 1
fc

+ 1 − SCA) ⋅ (CPR ⋅ F (fc) + 1 − CPR). (3)

This equation implies that the relative platform energy
is a function of frequency, CPU power, and SCA and CPR,
characteristics of the platform and the workload.

To minimize energy, we must find the frequency that
minimizes Equation 3. Note that using the term Dα+1 = (tc0
+ tm)α+1 in Equation 2 yields Equation 3.1:

E ⋅ Dα
f

E ⋅ Dα
f 0

= (SCA ⋅ 1
fc

+ 1 − SCA)α +1 ⋅ (CPR ⋅ F (fc) + 1 − CPR). (3.1)

Equation 3.1 is an analytical model that can be calculated
at runtime and allows minimization of E⋅Dα of a particular
workload’s total platform.

Heterogeneous core
Our heterogeneous core processor model consists of two core
types sharing a single interconnect. At any given time, only

one type of core might be running. Building the full hetero-
geneous core energy model at runtime therefore requires
us to cross-predict the model parameters from the active
core to the nonactive core. The interconnect and the mem-
ory architecture of our heterogeneous CPU are shared, so
tm is the same for both big and small cores. We approximate
the runtime of the CPU-bounded portion on the big versus
small core as a fixed ratio: k × tc_big = tc_small. Using a fixed k
proved to be a good approximation in our architecture. We
obtained k through offline characterization using a training
set of workloads out of SPEC2000 (186.crafty, 164.gzip, 181.
mcf, 256.bzip2, 171.swim, 177.mesa, 179.art, and 188.ammp).

We define scalability as

SCA =
tc 0

(tc 0
+ t m)

, and clearly 1 − SCA =
t m

(tc 0
+ t m)

.

Dividing the two equations (with indices b for the big
core and s for the small one):

tcb

t m

=
SCAb

1 − SCAb

, and
k ∗ tcb

t m

=
SCAs

1 − SCAs

.

Finally,

SCAs

1 − SCAs

=
k ∗ SCAb

1 − SCAb

. (4)

Equation 4 provides a function to calculate the scalability
of a nonactive core based on the measured SCA of the active
core at runtime (with a known k).

Equation 3 expresses the energy in relative terms. Note
that the small core’s E0 is lower than the big core’s at the
same reference frequency. To compare the energy, we need
to place it on a common scale:

E
0b

E
0s

=
P

0b ∗ runtimeb

P
0s ∗ runtimes

. (5)

The power at the reference point P0 is measured at sys-
tem configuration. To calculate a workload’s runtime, we
now divide 1 – SCA of the big core by that of the small core:

tcs + t m

tcb + t m

=
runtimes

runtimeb

=
1 − SCAb

1 − SCAs

. (6)

Using Equations 5 and 6, we can compare the big and

 O C T O B E R 2 0 1 6 37

small cores’ energy on a common scale and minimize over-
all energy. Equation 3 allows us to calculate the energy
global minimum work point. The H-EARtH algorithm is
shown in Figure 3. Initial Pl, P(fc) and k settings are stored
in nonvolatile memory. At runtime, the H-EARtH algorithm
activates once every time interval, calculates CPR and SCA,
and determines the core and frequency that minimize
Equation 3.1, with n as a user-defined parameter.

MEASUREMENTS AND SIMULATIONS
We evaluated a homogeneous core processor and two single-
instruction-set architecture heterogeneous multicores:

 › Homogeneous processor: We evaluated SkyLake, a
sixth-generation Intel Core processor code. The
H-EARtH algorithm is implemented in the proces-
sor’s power-management firmware. We measured
the power, energy, and performance of various
benchmarks of a single unit and platform at the DC-
balanced setting.

 › Single-ISA same microarchitecture: This model con-
tains four high-power high-frequency cores and four

low-power slow cores. All cores share the Intel Core
processor’s single architecture and logic design at
two different design targets. This topology is often
referred to as asymmetric multicore.

 › Single-ISA different microarchitecture: This model con-
tains a combination of four big Intel Core processors
(two-thread simultaneous multithreading each) and
eight Intel ATOM cores.

Sixth-generation Intel Core
processor measurements
We instrumented a mobile system with an Intel m7-6Y75
processor for power measurements and tested a set of com-
mon mobile benchmarks, capturing power performance as
measured by the benchmark score. We calculated energy
as the power integral over the entire benchmark runtime.
Results are listed in Table 1. The baseline reference is Win-10
frequency control, as compared to the H-EARtH algorithm
(homogeneous-core version). Frequency was dynamically
controlled by the algorithm during workload runtime.
As Table 1 shows, we saw performance gains due to the
higher frequency, and overall energy savings due to both

// Parameter initialization. Offline characterization at

// system design. Parameters stored in, or loaded by BIOS at power up

Get Pl // Get Platform Run Time Power

Get α // Characterize F(fc); Function can be

 // polynomial, table or other.

// Run time optimization control

Every time interval {

 For each core {

 Pc = CPU power // Sample CPU power meter; internal power meter or calculated

 CPR = Pc/(Pc+Pl)

 Get SCA // Read CPU monitor or use collected statistics.

 Fopt=min((SCA ⋅ 1/fc + 1−SCA) ⋅ (CPR ⋅ f
α
c + 1 – CPR)) // over valid frequencies

 Freq = Get Operating System frequency request

F(resolved) = max(Fopt, Freq)

 }

Scale energy Ef/Ef0 to a common reference using Equations 5 and 6.

Select the core with minimum energy

}

FIGURE 3. H-EARtH algorithm.

38 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

ENERGY-EFFICIENT COMPUTING

the shortened runtime and the system energy savings. We
achieved up to 29 percent performance gain by running at a
higher frequency, with up to 24 percent SoC energy savings.
Two benchmarks lost 2–4 percent energy.

The sixth-generation Intel Core power-management
algorithm also implemented the H-EARtH algorithm with
energy optimization with E⋅Dα as described in Equation 3.1.
Higher α provides better performance at a cost of increased
power and energy. We measured power and performance of
SPEC 2006 of a high-end desktop part (Intel Core i7 6700K)
with α = 2 and α = 3 (see Figure 4).

Asymmetric CPU: real-system implementation
We implemented the H-EARtH algorithm on platforms
employing state-of-the-art 45-nm (Intel Core 2 Duo T9900),
32-nm (2860QM), and 22-nm (3840QM) processors. We mea-
sured two types of processors: a standard voltage Intel Core
2 Duo 2860QM and a ULV Intel Core 2 Duo 2677M intended
for Ultrabook computers. We used these two processors to

construct an asymmetric processor model. The platforms
were instrumented to measure CPU and total platform
power. We used Spec CPU 2000 and 2006 and SYSmark
benchmarks at case temperatures of 45°C and 60°C on the
two CPUs at eight frequencies. We evaluated both single and
multithreaded workloads. We implemented the H-EARtH
algorithm in the power-management firmware of the pro-
cessor. The following algorithm parameters were set:

 › CPR: We characterized the platform power Pl offline
once and stored it in nonvolatile memory. We
used the built-in power meter12 to calculate CPR at
runtime.

 › Power function P(fc): We characterized this once at
setup by measuring power at eight frequencies. We
identified a polynomial dependency, Pc ∝ fc

α, with
each core type having a different α value.

 › SCA: This was calculated using the internal architec-
tural memory stall counters.12

TABLE 1. Heterogenous energy-aware race to halt (H-EARtH) algorithm’s energy savings
and performance gains (higher percentages reflect better savings and gains).

Workload Energy savings (%) Performance gain (%)

Average frequency (GHz)

Baseline H-EARtH

WebXPRT 2015 Chrome—sales graphs 24 29 1.38 1.41

WebXPRT 2015 Chrome—local notes 13 20 0.91 1.11

PCMark Vantage—communications 5 11 2.13 2.33

WebXPRT 2015 Chrome—stock-option pricing 5 9 1.18 1.21

WebXPRT 2015 Chrome—organize album 3 8 1.12 1.15

WebXPRT 2015 Chrome—photo enhancement 5 8 0.91 0.93

TouchXPRT 2014—create slideshow from photos 3 3 0.99 1.16

TouchXPRT 2014—blend photos –1 3 1.25 1.45

PCMark Vantage—memories 0 2 2.21 2.30

TouchXPRT 2014—beautify photos 2 2 1.43 1.67

PCMark Vantage—HDD 2 2 2.45 2.54

PCMark Vantage—productivity –1 2 2.13 2.20

TouchXPRT 2014—create music podcast 1 2 1.04 1.21

PCMark Vantage—gaming 1 0 2.36 2.42

Media Playback—4k.mp4 2 0 0.81 0.94

Media Playback—HD.mp4 2 0 0.74 0.87

WebXPRT 2015— explore DNA sequencing –2 0 1.26 1.28

PCMark Vantage—music –4 –1 1.94 2.20

 O C T O B E R 2 0 1 6 39

 › Sampling rate: The H-EARtH algo-
rithm used a 1-ms sampling rate,
performing frequency decisions
every 10 ms.

The asymmetric processor model
consisted of four big and four small
cores. Not having a real CPU with both
core types, we ran the H-EARtH algo-
rithm independently on each core
type, selecting the lowest-energy core
(or “optimal point”) offline. Because
this study was limited to a single core
for the entire run, we missed out on
the potential benefits of migrating the
workload on the fly from small to big
core and vice versa, as well as on the
cost of migration. Figure 5 plots the
energy savings of the optimal point
versus fixed policies of LFM and RtH
on each core type. The energy savings
of the workloads is sorted individu-
ally for each policy from low to high.

Table 2 summarizes the best policy
occurrences, that is, the ratio of workloads that achieved
minimum platform energy at each policy. H-EARtH indi-
cates an intermediate frequency other than RtH or LFM.

Running the small core at its maximum frequency
usually delivers the lowest energy (63 percent of work-
loads). This fixed policy, however, results in more than
one-third of workloads running at suboptimal fre-
quency, losing up to 16 percent energy (S-RtH in Figure
5). Furthermore, the H-EARtH algorithm can save up to
44 percent of platform energy (F-RtH in Figure 5). A slow
core is usually more energy efficient; however, in our
platform, the fast core is more energy efficient in 9 per-
cent of the workloads.

Heterogeneous CPU
In this part of the study, we used a tested and validated cycle
accurate simulator, with two third-generation Intel Core
processors as the big cores and four Intel Atom processors
as the small cores sharing the Intel Core processor intercon-
nect. We extracted the power and performance of multi-
threaded SPEC components at the eight frequencies using
our simulator. We used the H-EARtH algorithm offline to
find the frequency that optimally minimized the entire
platform’s energy consumption for each workload and for
each core type independently. We again chose a fixed core
type for the entire workload. CPU power (used for CPR cal-
culation) and SCA were obtained from the simulator, while

40
0.

pe
rlb

en
ch

40
3.

gc
c

41
6.

ga
m

es
s

43
3.

m
ilc

43
5.

gr
om

ac
s

43
7.

le
sl

ie
3d

44
5.

go
bm

k

45
0.

so
pl

ex

45
4.

ca
lc

ul
ix

45
8.

sj
en

g

46
2.

lib
qu

an
tu

m

46
5.

to
nt

o

47
1.

om
ne

tp
p

40
0.

pe
rlb

en
ch

40
3.

gc
c

41
6.

ga
m

es
s

43
3.

m
ilc

43
5.

gr
om

ac
s

43
7.

le
sl

ie
3d

44
5.

go
bm

k

45
0.

so
pl

ex

45
4.

ca
lc

ul
ix

45
8.

sj
en

g

46
2.

lib
qu

an
tu

m

46
5.

to
nt

o

47
1.

om
ne

tp
p

M
ul

tiT
hr

ea
de

d

Si
ng

le
Th

re
ad

ed

–20

0

20

40

60

–10

10

30

50 Performance loss (ED2) SoC energy gain (ED2)

Performance loss (ED3) SoC energy gain (ED3)

Benchmark

En
er

gy
 s

av
in

gs
 (%

)

FIGURE 4. Energy performance tradeoff for α = 2 and α = 3. An α value of 2 achieves higher energy savings at the cost of higher per-
formance loss. Performance loss is better than 1:2 for α = 2. SoC: system on chip.

Workload (sorted)

En
er

gy
 s

av
in

gs
 (%

)

50

45

40

35

30

25

20

15

10

5

0

S-LFM
S-RtH
F-LFM

FIGURE 5. Energy savings of the optimal point versus fixed policies LFM and RtH on each
core type. F: fast-core; S: slow-core.

40 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

ENERGY-EFFICIENT COMPUTING

P1 for the rest of the platform was adopted from the real-
system study described earlier. The cross-prediction k ratio
was extracted from a 100 percent scalable application (SPEC
CPU 2000 gzip).

Figure 6 sorts the energy savings of the heterogeneous
CPU versus the homogeneous CPU for all 37 workloads at
the two temperatures in ascending order. The left-most 9
percent of the applications achieve the lowest energy by
using the big core (yielding no energy savings on the hetero-
geneous CPU). The remaining 91 percent benefit from the
heterogeneous architecture; 31 percent achieve the maxi-
mum 33 percent energy savings by using the small cores at
RtH frequency. The heterogeneous CPU saves an average 21
percent of energy compared to the big core CPU.

Multicore heterogeneous CPUs can perform com-
putational tasks at lower platform energies than
CPUs with only big cores: we demonstrated average

energy savings of 21 percent on all workloads, with up to 33
percent savings in some cases. Using small cores, however,
is not always energy efficient. Optimal core use depends
on platform and workload characteristics. Operating an
ill-suited core at a fixed frequency can lead to 44 percent

platform energy loss. Our hetero-
geneous H-EARtH algorithm allows
scheduling a workload to the most
advantageous core while managing
that core’s voltage and frequency.
Such a model aligns with existing
OSs but does not fully utilize all
available cores. A practical imple-
mentation will obviously perform
periodic workload adjustments, with
better workload adjustments at a cost
of workload change overhead. Over-
all, H-EARtH offers a runtime sched-
uling and energy management algo-
rithm for multicore hetero geneous
CPUs to optimize the total platform
E⋅Dα metric.

ACKNOWLEDGMENTS
This work was supported by ICRI-CI:
Intel Collaborative Research Institute—
Computational Intelligence.

REFERENCES
1. N. Rajovic et al., “Supercomputing with Commodity CPUs:

Are Mobile SoCs Ready for HPC?,” Proc. Int’l Conf. High Per-
formance Computing, Networking, Storage and Analysis (SC 13),
2013, article no. 40.

2. Variable SMP–A Multi-Core CPU Architecture for Low Power
and High Performance, white paper, NVIDIA, 2011; www
.nvidia.com/content/pdf/tegra_white_papers/tegra
-whitepaper-0911b.pdf.

3. A. Moore, Hybrid-SMP, white paper, Marvell, June 2012;
www.marvell.com/application-processors/armada
/pxa2128/assets/Marvell-Hybrid-SMP-WP.pdf.

4. big.LITTLE Technology: The Future of Mobile, white paper,
ARM, 2013; www.arm.com/files/pdf/big_LITTLE
_Technology_the_Futue_of_Mobile.pdf.

5. D. Meisner, B.T. Gold, and T.F. Wenisch, “PowerNap: Elimi-
nating Server Idle Power,” Proc. 14th Int’l Conf. Architectural
Support for Programming Languages and Operating Systems
(ASPLOS 09), 2009, pp. 205–216.

6. E. Rotem et al., “Energy Aware Race to Halt: A Down to
EARtH Approach for Platform Energy Management,” IEEE
Computer Architecture Letters, vol. 13, no. 1, 2014, pp. 25–28.

7. R. Ge, X. Feng, and K.W. Cameron, “Modeling and Evaluat-
ing Energy-Performance Efficiency of Parallel Processing

TABLE 2. Frequency of achieving minimum
platform energy at each policy.

Policy Occurrence (%)

Slow-core H-EARtH 28

Slow-core race to halt 63

Fast-core low frequency mode 4

Fast-core H-EARtH 5

Energy savings

35

30

25

20

15

10

5

0
Application (sorted)

En
er

gy
 s

av
in

gs
 (%

)

FIGURE 6. Energy savings of heterogeneous CPU versus big core homogeneous CPU run-
ning the H-EARtH algorithm.

 O C T O B E R 2 0 1 6 41

on Multicore Based Power Aware Sys-
tems,” Proc. IEEE Int’l Symp. Parallel
& Distributed Processing (IPDPS 09),
2009; doi:10.1109/IPDPS.2009
.5160979.

8. E. Rotem, “ARCS0001—Intel® Archi-
tecture, Code Name Skylake Deep
Dive: A New Architecture to Manage
Power Performance and Energy Effi-
ciency,” Proc. Intel Developer Forum
(IDF 15), 2015; http://myeventagenda
.com/sessions/0B9F4191-1C29-408A
-8B61-65D7520025A8/7/5#session
ID=155.

9. C. Kihwan, R. Soma, and M. Pedram,
“Fine-Grained Dynamic Voltage and
Frequency Scaling for Precise Energy
and Performance Tradeoff Based
on the Ratio of Off-Chip Access to
On-Chip Computation Times,” IEEE
Trans. Com puter-Aided Design of Inte-
grated Circuits and Systems, vol. 24,
no. 1, 2005, pp. 18–28.

10. C.-H. Hsu and W.-C. Feng, “Effective
Dynamic Voltage Scaling through
CPU Boundedness Detection,” Proc.
4th Int’l. Conf. Power-Aware Computer
Systems (PACS 04), 2004, pp. 135–149.

11. C. Isci, G. Contreras, and M. Mar-
tonosi, “Live, Runtime Phase Mon-
itoring and Prediction on Real Sys-
tems with Application to Dynamic
Power Management,” Proc. 39th IEEE/
ACM Int’l Symp. Microarchitecture
(MICRO 39), 2006, pp. 359–370.

12. E. Rotem et al., “Power Management
Architecture of the Intel Microarchi-
tecture Code-Named Sandy Bridge,”
IEEE Micro, vol. 32, no. 2, 2012,
pp. 20–27.

ABOUT THE AUTHORS

EFRAIM ROTEM is a senior principal engineer at Intel and lead power architect

of Intel’s Mobile Computing Group in Haifa. He is responsible for defining and

developing the power and energy management architecture of Intel Core client

products. Rotem received a BSc and a PhD in electrical engineering from Tech-

nion–Israel Institute of Technology (IIT). Contact him at efraim.rotem@intel.com.

URI C. WEISER is a professor (emeritus) of electrical engineering at Technion—

IIT. His research focus is computer system architecture. Weiser previously

worked at Intel, where he was instrumental in defining the Pentium processor

and MMX technology, invented the Trace Cache, co-managed the Intel Micro-

processor Design Center, and researched advanced media applications. He

received a BSc and an MSc in electrical engineering from Technion—IIT, and a

PhD in computer science from the University of Utah. Weiser is an Intel, IEEE,

and ACM Fellow and an IEEE/ACM Eckert-Mauchly award recipient. Contact

him at uri.weiser@ee.technion.ac.il.

AVI MENDELSON is a professor of computer science at Technion—IIT. His

research interests include computer architecture, OSs, power management,

reliability, and high-performance computing. As a senior researcher and prin-

cipal engineer, Mendelson was chief architect of the CMP (multicore-on-chip)

feature of Intel’s first dual-core processors. He received a PhD in computer

engineering from the University of Massachusetts Amherst. Mendelson was

previously an associate editor for IEEE Computer Architecture Letters and is

now an associate editor of IEEE Transactions on Computers. Contact him at avi.

mendelson@tce.technion.ac.il.

RAN GINOSAR is a professor of electrical engineering and head of the VLSI

Systems Research Center at Technion—IIT. His research interests include VLSI

architecture, many-core computers, asynchronous logic and synchronization,

networks on chip, and biologic implant chips. Ginosar received a PhD in electri-

cal and computer engineering from Princeton University. Contact him at ran@

ee.technion.ac.il.

ELIEZER WEISSMANN is a senior principal engineer with Intel’s Software

Solutions Group in Haifa. His work focuses on power management of Intel’s

next-generation client, including Speed Shift technology, enhanced platform

suspend mode, and other deep idle states. Weissmann received a BSc in com-

puter science and an MS in computer databases from Technion—IIT. Contact

him at //email//.

YONI AIZIK is a power management architect at Intel Corporation. His research

interests include //please list a few//. Aizik received a BSc and an MSc in electri-

cal engineering from Technion—IIT. Contact him at //email//.
Selected CS articles and
columns are also available for
free at http://ComputingNow
.computer.org.

