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Abstract— we propose a hybrid management model to address 

heterogeneous data center energy efficiency with highly dynamic 

workload. A central dispatch and control algorithm with 

distributed system energy management was implemented and 

validated on real processor and system. We demonstrate up to 

20% energy savings (11% average) without compromising quality 

of service. Additional 5% average energy savings was achieved by 

exploiting system heterogeneity.  
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I.  INTRODUCTION 

Energy efficiency is a fundamental consideration in building 
and managing of a data center. Energy consumption and 
energy efficiency are not independent parameters, and are 
subject to optimization only in the context of Quality of 
Service (QoS). Cloud computers such as Microsoft Azure 
and Amazon Elastic Compute Cloud guarantee their 
customers a given Service Level Agreement (SLA). Failing 
to meet the guaranteed SLA bares business and financial 
implications. Custom solutions such as Google web search 
or financial services are also required to meet QoS in order 
to maintain customer satisfaction and avoid revenue lose. 
Lowering system performance and saving energy is 
acceptable as long as the expected user QoS is achieved.   
Workload characteristics also impact the energy 
management opportunities. Throughput workloads are less 
sensitive to latency and can employ energy management 
actions with longer latency while Web search or on line 
trading are highly sensitive to latency and require fast 
responding energy saving states. Furthermore, completion of 
distributed latency sensitive workloads often pending for 
“the long tail” [5][6] and slowing down a single thread may 
compromise QoS of the entire task. The focus of this study 
is throughput class of workloads. The methods that are 
presented in this study will be extended to latency sensitive 
workloads in a future work.  

Data center workloads experience high dynamic range of 
activity [8]. The capacity of the data center is determined by 
the worst case demand. Non utilized systems can be put into 
various idle states e.g. platform S-states. Deeper idle states 
conserve more energy but require a longer time to bring 
online at a cost of higher activation energy. Systems are 
therefore put in deep power saving states only if they are 

expected to remain in this state for a long time. Online 
systems can be either active or in a shallow sleep state that 
can start executing computational tasks within micro to few 
milliseconds.  This study aims at minimizing energy of these 
online systems while meeting QoS.     

Heterogeneity exists in the data center as a result of natural 
evolution. Servers are deployed at different times and from 
different manufacturers, older systems replaced by new, 
more energy efficient systems etc. [3][4]. Recently 
Heterogeneity has been embraced as a means for energy 
conservation and heterogeneous CPUs have been proposed 
in order to address energy efficiency of highly dynamic QoS 
demand. Our proposed energy management techniques 
further address data center heterogeneity to minimize energy 
consumption.  

II. OVERVIEW OF THE STUDY  

We propose a hierarchical approach for managing the data 
center.   Modern CPUs and compute platforms are equipped 
with highly optimized power management mechanisms. 
These mechanisms are tightly optimized to the individual 
CPU, platform and workload micro-architectural behavior. 
Obviously each platform model is different and managed 
differently. The knowledge about the required QoS however 
is usually applied either externally by user preference, 
service agreement or by management agents that track 
incoming requests for example. On big data applications e.g. 
MapReduce the QoS is often not a single platform metric but 
the accumulation of multiple platforms. We study a 
hierarchical approach with a central agent that performs job 
dispatching, tracks the overall QoS and closes a formal 
control loop by notifies the underlying systems weather to 
accelerate or decelerate and the target system (leafs) perform 
a local power management algorithm.  

The proposed system power management algorithm is an 
extension to the EARtH algorithm [2]. We evaluated the 
system power management algorithm on a set of 101 
workloads consisting of SPEC2000, SPEC2006, HPC and 
big data workloads (e.g. DGEMM, k-means, Google 
PageRank, Pattern Matching) and Apache Hadoop 
implementation of MapReduce. We implemented the system 
power management in a driver on a 35nm and 22nm Intel® 
Core™ processor. We also coded the algorithm into the 
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power management firmware of the 14nm processor soon to 
be shipped and collected energy and performance 
measurements of these workloads. We have constructed a 
Monte-Carlo simulator to randomly accept sets of workloads 
and perform the central dispatching and control module.    

The main contribution of this study are:  

• A novel hierarchal data center management that 
combines DVFS and job dispatching to optimizes energy 
consumption while maintaining throughput QoS.  

• The local system algorithm was implemented in the 
firmware of a production high volume 14nm Intel® 
core™ processor and validated on multiple real systems 

• An average of 11% energy with up to 20% energy 
savings have been demonstrated. 

• Introduced a dispatch mechanism that utilizes data center 
heterogeneity. The use of a single meta-data parameter 
conserved an average of 16% energy with up to 21.7% 
energy.  

 

III. RELATED WORK 

 Kansal et al. [7] have proposed a hybrid energy management 
algorithm for the data center. They propose a mechanism to 
collect the actual QoS and control the individual systems QoS. 
In their work, energy control is done by modifying the 
application and compromising QoS (e.g. lower frame rate in 
video processing). We propose hybrid approach to conserve 
energy by changing the voltage and frequency of the processor 
without compromising QoS. Meisner et al. [10] propose 
PowerNap algorithm, running the processor of all the systems at 
the highest frequency, and then put the entire system in idles 
state (often named Race to Halt – RtH). We have shown in 
previous work [2] that the highest frequency is not the most 
optimal frequency. In this work we make use of this observation 
and set the processor of each system at its most energy efficient 
frequency. Meisner et al. [5] and Jeffrey et al. [6] also distinguish 
the throughput vs. responsiveness workload characteristics. 
Meisner et al. [5] introduce the online data intensive workload 
characteristics (e.g web search) and describe the energy 
management challenges of such workloads. One of these 
challenges is the need to keep enough systems active in order to 
meet the latency requirements, limiting the use of PowerNap 
[10]. Our work address this challenge and provide energy 
management algorithm that keeps enough systems active and 
offers energy savings for these active systems. Our work is 
however does not fully address the Long Tail challenge [6] and 
the extension of the proposed algorithm is a subject of future 
work.  Mars et al. [3][4] surveyed existing data centers and 
demonstrated the existence of heterogeneity in data centers. 
They proposed dispatch algorithm to exploit this heterogeneity 
for the purpose of energy management by selecting the right 
system for the right workload. Our study further extends this 
idea by utilize the powerful energy savings capability of 
Dynamic Voltage and Frequency Scaling (DVFS). We show that 
proper use of DVFS more than doubles the energy savings 
(Figure 5 and Table 1). Fan et al. [8] profiled the verifying load 
over time and system utilization in the data center. Barroso et al. 

[9] evaluate the energy cost and performance in the data center. 
We base our online system requirements and energy 
optimizations on this observation.  

 

IV. THE STUDY DETAILS 

We address a data center model described in Figure 1.  Most 
of the energy in the data center is consumed by the leaf systems 
[5] and this is the focus of the proposed method. The number of 
on line leaf systems is pre-defined by the peak required QoS and 
the usage profiles of the data center [5] and may vary from time 
to time. Changing the number of on-line systems occurs at long 
time intervals and is not the scope of this study. The non-utilized 
on line systems are put in a shallow sleep state such as S0ix, S1/2 
[1] and participate in the power management algorithm. 

  

 

Figure 1: The data center model of this study 
 

We propose a hierarchical energy management algorithm. 
The central management algorithm tracks the overall application 
QoS of all participating leaf systems and applies a formal control 
algorithm to maintain the desired QoS. The control is performed 
by sending notifications to the leaf systems over the interconnect 
fabric of the data center (Figure 1). The individual leaf systems 
respond to these notifications by increasing or decreasing their 
performance and energy.  We have shown that EARtH [2] offers 
energy management within QoS constraints and therefore we 
choose it for the leaf side algorithm. The performance to energy 
profile is described by Equation 1 where SCA is the workload 
scalability with frequency due to memory access patterns and 
CPR is the workload power relative to the rest of the platform 
power. The rest of the platform power in this implementation is 
measured at the shallow idle state of the system.  The average 
CPR and SCA of the workload are saved as metadata about each 
workload. The metadata represents the average values over the 
entire workload run while the local optimization is done at 
intervals of 1mSec. More detailed can be found in [2].     
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We instrumented 35nm, 22nm and 14nm Intel® Core™ 
systems for power measurements at 5mSec rate. These 
processors incorporate internal performance monitors to report 
SCA and power consumption used for CPR calculation. We 
collected power performance measurements on the above 101 
workloads at 8 different frequencies. We used Intel® Xeon® 
E5-2697 V2 with Apache Hadoop implementation of 
MapReduce for Big-Data Analytics runs.  We implemented the 
algorithm in Figure 2 in an offline simulator that uses the power 
performance runs as an input. A computational task, consisting 
of multiple processes or threads is required to deliver some 
guaranteed known quality of service (SLA). SLA is defined in 

this study as sum of all components (��� � ∑ ��������  ). All the 
benchmarks that we tested are measured by either time to 
complete or 1/time. In order to sum scores of different 
benchmarks and have equal weigh for each one, we normalize 
each benchmark to its score at fixed reference frequency and 
same polarity (i.e. higher value is better).   

 

 

V. DISPATCHING ALGORITHM AND RESULTS 

There are several possible policies to dispatch M jobs/second 
to N systems having P power/performance states in order to 
achieve a given SLA. We described above that enough systems 
are set on-line to meet the required SLA. One existing policy 
[10] is to set each system in the highest possible frequency (P0 
[1]), dispatch the jobs to as many systems as needed to meet 
SLA. This policy is referred to race to halt (RtH) in this study. If 
the system power is dominating the overall power consumption, 
this policy is the most efficient. If the CPU dominates the system 
power, a better policy would be to set all the systems at the 

lowest possible voltage and frequency (LFM) and to activate as 
many systems as needed. In this section we evaluate the case that 
SLA can be satisfied with the existing systems at LFM. We refer 
to this scenario as Light Load.  If not, Algorithm 1 need to 
increase the frequency of the individual systems until SLA is 
satisfied. This scenario is referred to as High load workload and 
is evaluated in Section VI. 

It is possible to build a local system algorithm to find the 
optimal frequency that performs a computational task with 
minimum energy [2]. We extend it to multiple systems in the 
data center. Jobs are dispatched to the individual systems. Each 
system picks the optimal frequency for the specific workload on 
this specific system and dispatching continues until SLA is 
honored. This policy is referred to as optimal (Fopt). 

 

 

Figure 3: System utilization of LFM and Fopt policies 

compared to RtH in a light load scenario 
 

 

Figure 4: Energy savings of LFM and Fopt policies 

compared to RtH in a light load scenario  
 

We assume unbounded number of systems. Each run, the 
Monte Carlo algorithm picked a random set of 10 types of 
workloads out of the 101 with infinite number of jobs of each 
type. The above tree dispatching policies where applied. The 
number of systems was used to control the SLA i.e. the fewest 
systems where used at RtH, more systems where used for LFM 
and some intermediate value at Fopt yielding the same 

Central Management side Algorithm  

 

// Implementer in a central manager that communicates  

// to the leaf systems, reading throughput and sending respond  

 

Every time interval { 

Read and calculate ������_��� � ∑ ������!1 ; 

if Actual_SLA < Target_SLA { 

If systems available 

Dispatch workload to the free leaf; 

else 

Send leafs x = F(Target_SLA- Actual_SLA;  // inc. frequency 

} 

else 

Send leafs x = F(Target_SLA- Actual_SLA;  // dec. frequency 

} 

 

Leaf side algorithm 

Every time interval{ 

Update SLA(i) 

Get x 

If X>0 increment frequency by X*gain; 

If X<0 decrement frequency by -X*gain; 

} 

Figure 2: Central management algorithm 
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throughput. Each point in Figure 3 and 4 represents one set of 
workloads. The baseline number of systems and energy is RtH. 
We can see (Figure 3) that LFM policy requires an average of 
85% more systems with up to 113% more systems on the worst 
case scenario. Fopt yielded 45% more systems with up to 80% 
compared to RtH. In our system, LFM policy is 12% (33% max) 
more energy efficient then RtH.  Fopt yielded 16.4% lower 
energy average (33% max).  

 

VI. HIGH LOAD WORKLOADS  

Section IV evaluated lightly loaded data center that could 
meet SLA requirements while running at low voltage and 
frequency. While running at higher load, the systems need to run 
at higher frequencies in order to meet SLA. We implement the 
algorithm in Figure 2 in the simulator. In this study we assumed 
0.75% load out of full capacity data center running at the 
maximum frequency. We used the same random workload 
selection procedure described in Section IV. In this section, the 
dispatched distributes the workloads randomly among systems. 
It than applies a control loop tracing the delivered SLA and 
notifies the individual systems weather to increase or decrease 
frequency until desired SLA is maintained. We implemented 
three different leaf side policies. All the policies start with the 
Fopt point calculated by the EARtH algorithm. Running at a 
lower frequency is not energy efficient. Each system may have 
a different frequency as a function of the system type and the 
workload characteristics. The leaf side policies differ in gain 
(figure 2). The policies evaluated are: 

• EARtH: Gain = 1. Base algorithm, increment or decrement 
frequency without applying any additional information 

• EARtH + SCA: Gain = SCA. If higher frequency is needed, 
this policy favors the more scalable workloads. Increasing 
frequency comes at a cost of increased power and energy. 
The scalable workloads are expected to achieve a shorter 
run time for the same frequency change. This both 
contributes to SLA and cost less energy due to the shorter 
run time. 

• EARtH +  dE/dSLA: Similar rational to the above policy. 
The workload that gains the most performance for the 
lowest energy cost is favored. 

The power management algorithm at the leaf can calculate the 
gain from the EARtH algorithm parameters.  Figure 5 and Tale 
I summarize the energy gain of the above algorithms relative to 
RtH. Baseline EARtH algorithm achieves 9.1% average (19.6% 
max) energy savings compared to RtH at the same SLA. Adding 
SCA knowledge to the leaf algorithm improves average energy 
savings to 10.5% (max 20%) while accounting for dE/dSLA 
slightly improves energy savings by 0.6%.   

 

VII. HETEROGENEOUS DATA CENTER 

In practical data centers not all systems are identical. 
Systems installation evolves over time, replacement systems for 
maintenance etc.  Different systems behave differently with 
DVFS [2]. The knowledge about the system behavior is known 
to the power management algorithms on the leaf (EARtH 

algorithm). In the previous studies (Section IV and V) the central 
management algorithm and the dispatcher randomly picked 
systems without any preference. The leaf side algorithm 
accounted for the system and workload characteristics. 
Heterogeneity among the systems used offers the opportunity to 
assign the workloads to the right systems and further improve 
the data center energy efficiency. Many parameters of both 
workload and system impact the runtime energy efficiency (e.g. 
memory access patterns as well as code and data foot print are 
impacted by cache size, prefacers and memory architecture). 
Performing the best workload to system match at run-time is a 
complex task. We evaluated a single parameter matching using 
SCA. We assumed that a higher scalability workload will benefit 
the most from more capable system and contribute to the overall 
throughput and save energy due to a shorted runtime. In this 
study we evaluated a data center consisting two types of systems. 
High power, high performance system and low power lower 
performance. More details on the systems are available [2]. 
Same Monte Carlo simulator used to pick a set of individual 
workloads at each run. The individual workloads were sorted by 
scalability and dispatched at that order i.e. highest scalability 
workload is dispatched to the high performance system first and 
so on at decreasing order. The average SCA over the entire 
workload run need to be collected and stored as metadata about 
the workloads. Dispatching according to SCA improved average 
energy savings to 16% with max of 21.7% (Figure 5 and Table 
I)   

 

Figure 5: Energy savings of different leaf management 

policy and heterogeneous data center dispatching 

algorithm 
 

 
TABLE 1 

  EARtH 

EARtH + 

SCA 

EARtH + 

dE/dSLA Scheduling 

Average 9.1% 10.5% 11.1% 16.0% 

Max 19.6% 20.0% 20.0% 21.7% 

Min 1.0% 0.5% 2.7% 10.2% 

 

VIII. SUMMARY AND CONCLUSIONS 

We evaluated a hybrid energy management system for 
heterogeneous data center. Highly dynamic workload profile 
force to keep enough systems online to meet required QoS. Most 

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

EARtH

EARtH + SCA

EARtH + dE/dQoS

System aware scheduling
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of the time the workload is lighter and energy management 
techniques such as DVFS can be applied, while meeting QoS 
requirements. A central dispatch and control algorithm 
distributes jobs to the leaf systems and controls the overall QoS. 
Distributed power management on each system optimizes the 
energy consumption of the system. We have shown that the 
proposed partition offers a simple and yet powerful energy 
management tool. Local knowledge of the workload and system 
characterizations is utilized at the leaf systems with minimal 
communication and central management.  

We evaluated the algorithm on real state of the art Intel® 
Core™ processors systems.  An average of 11% energy with up 
to 20% energy savings have been measured. Utilizing minimal 
central knowledge about the leaf systems type and the workload 
conserved an average of 16% energy with up to 21.7% energy.   
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