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Novel topological measures for static multiprocessor interconnection networks, 
disconnectivity, looseness', and cost-effectiveness, are developed. These and other 
measures are employed for a comparative analysis of such networks. The goal 
of this analysis is to predict network effectiveness, without resorting to execution 
benchmark techniques. In particular, we compare the hypereube and perfect- 
shuffle-nearest-neighbor networks, and show that they are the best candidates 
for multiprocessor interconnections. We specifically find that the hypercube is 
capable of somewhat better performance than perfect-shuffle-nearest-neighbor, 
but the latter is significantly more cost-effective. 

KEY WORDS:  Multiprocessors; interconnection networks; hypercube; 
perfect shuffle; performance prediction. 

1. INTRODUCTION 

The great progress in parallel processing is originated by the needs and 
demands for increasing computing power on-one-hand, and the technologi- 
cal capabilities to achieve this goal on the other. Many approaches to 
parallel processing have been proposed and experimented with, such as 
vector processors and multiprocessors/1'2) 

In this paper, we concentrate on MIMD multiprocessors intercon- 
nected through a statically configured communication network, where 
nodes are identical to each other. Such a computer was named an Ensemble 
Machine by Seitz. (3/ One such machine is the Ultracomputer, as proposed 
by Schwartz, ~4~ which employs the Perfect Shuffle Exchange network. (5) 
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Another is the Cosmic cube, based on the Hypercube interconnection 
network, proposed and implemented by Seitz. (6) Ensemble machines in the 
context of VLSI are surveyed in Ref. 7. We analyze the influence of the 
interconnection network on the performance of the ensemble machine. 
Among many different interconnection networks for ensemble machines, 
we concentrate on the Perfect Shuffle Nearest Neighbor (PSNN) and the 
Hypercube (HC) networks. 

We utilize two complementing approaches for comparative evaluation 
of static multiprocessor interconnection networks. A collection of "typical" 
algorithms are analyzed on candidate machines, in an attempt to find out 
on which machine those algorithms perform better. This study is documen- 
ted in another paper (Ref. 8). The approach presented here examines the 
topological characteristics of each interconnection network and tries to 
predict performance out of these features. While the former approach is 
operational, the latter analysis focuses on inherent qualities of the 
networks. Hence, the algorithmic analysis is in essence limited to those 
algorithms which are employed for the study, while the topological analysis 
is intended as a more powerful and more general performance prediction 
tool. It is important to note that the results presented in this paper and the 
results of the algorithmic analysis (8) agree with each other. 

From the algorithmic analysis (8) we have realized that there are two 
important communication primitive operations, out of which all other 
communications may be constructed. One is the forwarding of a single 
message, either to a single receiver or broadcast to all nodes. The second 
is permutation, that is, the simultaneous forwarding of N different messages 
from N different senders to N different receivers. In this paper, we address 
these two capabilities as well as the network cost, within a unified 
framework. 

In Section 2, we define the scope of machines analyzed, and in 
Section 3 the communication model is presented. The analyzed networks 
are described in Section 4, and the topological measures are discussed in 
Section 5. The networks are compared in Section 6, and special attention to 
hypercubes and perfect shuffles is paid in Section 7. Detailed application of 
the topological measures to the networks comprises the Appendix. 

2. E N S E M B L E  M A C H I N E S  

The focus of this work is on MIMD, loosely coupled multiprocessors. 
Each processor of a loosely coupled system may access directly only its 
own local memory, and together they form a node in the network. The 
node may contain additional elements, such as various coprocessors. 
Communications with other nodes are achieved by exchanging messages 
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between the nodes. Each node may also contain a special processor, called 
a communication controller, designed to assume the task of handling 
message exchange with other nodes. (6'9'1~ 

Examples of loosely coupled multiprocessors are Cm*,(11) 
Ultracomputer, (4~ X-Tree, ~12'13~ the Cosmic Cube (6) and Intel iPSC. (14) 
Other machines, such as the BBN Butterfly, (is) the IBM RP3, (16) TRAC, (iv) 
Cedar, (18) MP/C, (19) SM3 (2~ possess characteristics of both tightly and 
loosely coupled organizations. However, they all employ some dynamic 
switching mechanism in order to achieve this duality. 

All the processors of a homogeneous multiprocessor are functionally 
and computationally identical to each other. A loosely coupled system 
which is also homogeneous is named an Ensemble Machine (EM). (3) Most 
of the architectures mentioned here are ensembles, and therefore we choose 
to concentrate on EMs in this paper. 

3. THE C O M M U N I C A T I O N  M O D E L  OF THE ENSEMBLE 

In order to compare different static interconnection networks for 
ensemble machines, a general model is required which emphasizes the 
communication aspects and is insensitive to irrelevant differences. We 
adopt an abstract model of communications, which is instrumental in both 
the present topological analysis, and the algorithmic analysis presented in 
Ref. 8. The model satisfies the following assumptions: 

A) The multiprocessor interconnection network consists of point-to- 
point links between the computational nodes. The basic operation 
in a link is a communication step, during which some unit of 
information is transferred between two nodes. The network is 
homogeneous, in the sense that a communication step takes exactly 
c time units everywhere on the nerwork. During the communication 
step all nonconflicting information transfers, which occur over 
mutually exclusive links, may take place simultaneously. 

B) Each node may either perform one processing (computation) step 
or one communication step at any point in time. A computation 
step is, for instance, one ALU operation on two or less operands. 
The length of a processing step, constant over all operations and 
over all nodes, is p time units. 

C) Each point-to-point link in the network is bidirectional, but at any 
point in time it passes information in only one direction. That is, an 
exchange operation takes two steps. 

D) Two nodes are connected by at most one link. 
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Suppose i, j,  k are three distinct nodes, where j and k are each 
connected by a direct link to i. Node i may send data to node j and 
at the same time receive data from node k. 

The cost of the ensemble consists of two components, one reflecting 
the cost of the processors and the other accounting for the cost of 
the network: 

C o s t ( E M ) =  (number o f  processors) x (cost o f  a processor) 

+ (number o f  links) x (cost o f  a link) 

= N �9 cost(P) + M ~ cost(link) 

where N is the number of processors and M is the number of links. 
In networks where all nodes have the same degree of connectivity C, 
the second term can be expressed by N and C: 

N C  
Cost( E M )  = N �9 cost(P) + - ~ - ~  cost(link) 

= No cost(P) + N ~  cost(network)/node 

where we define 

cost( network )/node = �89176 C = K o C 

Thus C, the connectivity degree of the node, is proportional to the 
cost of the network per node. Therefore we define the network cost 
function as the node connectivity degree C. 

The link bandwidth (capacity, in number of bits per second) is con- 
stant over all links, and is limited by the capability of the processor 
to send and receive data, as explained below. Figure 1 depicts the 
communication model of the single node. The communication con- 
troller (CC) is unable to store data. The bandwidth of each link is 

iI- 
_ N  

I 

I 
I 

I 
I 

I 
I 

I _ _  

_Pr_ _ocessi_ng Node_ _ _ "7 

i:_! 
Fig. 1. Node communication model. 
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constant and equal to the bandwidth of the send and receive ports 
of the processor, and the CC merely switches the total transmitting 
bandwidth offered by the processor to a single link, and the total 
receiving bandwidth offered by the processor to another single link. 
We assume that BWr= BWt= BW, and that receiving and trans- 
mitting can be performed simultaneously on two different links, as 
in point E. The total bandwidth of the processing node is thus twice 
that of each link. 

Commenting on the last point, in this node-limited model, communication 
bandwidth is limited by the bandwidth of the nodes in the network. 
Actually, three other models were also considered and rejected: 

1. Another type of node-limited model imposes the same limit on the 
bandwidth of each node; i.e., twice that of a link, but allows direc- 
tional flexibility. That is, the two ports of each node may be tied 
together into a single, twice as fast, link. This is an interesting 
model with practical implications, but it turns the analysis slightly 
more complex. 

2. Another node-limited model divides the node bandwidth among 
all its incident links. That is, the more links there are, the lower 
each link's bandwidth is going to be. While the model adopted 
here is suitable for CCs which are capable of switching full 
capacity of ports and links, this alternative model takes into con- 
sideration the fact that more links may mean less wires per link. 
When the bandwidth of each wire (e.g., chip I/O pin) is constant 
and limited, less wires per link result in less bandwidth per link. 

3. The last model is link limited: Each link is assigned a fixed 
bandwidth, but the processor's bandwidth is always larger than 
the sum of all bandwidths of all its incident links. This model is 
appropriate for ensembles employing slow links, which we prefer 
to ignore in this paper. 

We prefer the model described above because it reflects most closely real 
implementations (or what we believe they should be...). It is also insensitive 
to irrelevant issues such as the specific charater and computational power 
of the processor, the width of the data links (bit serial, byte serial, etc.), 
and various characteristics of the communication (circuit versus packet 
switching, store-and-forward versus cut-through(21) etc.). 

4. I N T E R C O N N E C T I O N  NETWORKS 

Multiprocessor interconnection networks and their effect on perfor- 
mance are the main issue of this paper. A thorough survey of interconnec- 
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tion networks is presented in Ref. 22. While some multiprocessors employ 
reconfigurable interconnections, we analyze only static networks in this 
work. Static networks require neither expensive switches nor complex switch 
control, and are based on simpler point-to-point links. They are employed 
in ensemble machines such as Schwartz's Ultracomputer (4) and the various 
hypercubes. ~3'6~ We apply a topological taxonomy to classify the following 
static networks which are most commonly proposed for multiprocessors: 
Completely connected network (CCN), one- and two-directional rings, 
nearest neighbor (NN), star, tree, chordal ring, hypercube (HC) and the 
perfect shuffle nearest neighbor (PSNN). Admittedly, additional networks 
have also been proposed and they too deserve analysis within the present 
framework. They include the cube-connected-cycles network, (23~ multitree 
structured graphs, ~24) the Hypertree, (2s) the Lens network, (26) generalized 
chordal rings, (2% and meshes of trees and trees of meshes. (28~ Preliminary 
study shows that none of them surpasses either hypercube or PSNN. 

4.1. Examples of Static Networks 

In the following a brief survey is provided of the completely connected 
network, one- and two-directional rings, nearest neighbor (NN), star, tree, 
chordal ring, hypercube (HC) and the perfect shuffle nearest neighbor 
(PSNN). The topological characteristics of these networks are discussed in 
Section 6. Examples of all these networks are presented in Fig. 2. 

4.1.1. Completely Connected Networks 

In a completely connected network (CCN) every node is directly con- 
nected to every other node. N(N-  1)/2 links are required for an N node 
CCN. The number of links grows quadratically with N, and linearly per 
each node, while the complexity of routing and control remains minimal. 

4.1,2. Rings 

Rings may employ either uni- or bi-directional links. In the latter case, 
the ring is also called one-dimensional nearest neighbor (NN1) network, and 
the connectivity degree of each node is 2. 

4.1.3. k-Coordinate n-Dimensional Nearest Neighbor Networks 

Each node in NN,, is connected to two neighbors in each one of the 
n dimensions. In other words, each node participates in n different NN1 
sub-networks, one per dimension, and each NN1 sub-network consists of k 
nodes. Consequently, the degree of each node grows as 2n. 
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Fig. 2a. Completely connected network (CCN). 

Fig. 2b. One-directional cyclic shift 
network-., ring. 

Fig. 2e. The star network. 

2Z 
Fig. 2f. The tree network. 

Fig. 2c. Two-dimensional nearest neighbor. 

Fig. 2d. The hypercube network. 

Fig. 2g, Chordal ring, single chord. 

Fig. 2h. Chordal ring, dual chords. 

Fig. 2i. The PSNN network. 
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NN, networks are also called Hypertorus networks in Ref. 7. When the 
k nodes are connected by only k -  1 links, such that instead of NNI rings 
the single dimensional subnetworks are only linear arrays, we call it a 
Hypermesh. 

4.1.4. Hypercube 

The Hyprecube (HC) is a special case of NN n (or, rather, the hyper- 
mesh), where the number of nodes in each dimension is k = 2. Hence it is 
also called binary N-cube, or Boolean N-cube. For n dimensions, the 
number of nodes is N =  2 n. Note that node i is directly connected to each 
node j where the numbers i, j differ in exactly one digit of their binary 
representation. Each such connection is a single point-to-point link, unlike 
a general NNn, where each 1-dimensional subnetwork is a NN 1 ring. In 
other words, the number of links per node grows as n = log2N. 

4.1.5. Star 

The central node of the star network is connected to each of the other 
nodes with a single link. A shared bus system is the dynamic parallel of the 
star network. The connectivity is N - 1  at the central node, and 1 for all 
other ones, or C ~ 2 on the average. 

4.1.6. Tree 

Trees as multiprocessor interconnection networks were investigated by 
Browning. (29) The tree network is planar (similar to the star and the ring), 
routing is simple, the degree of each node is bounded, and there are no 
loops in the network, which helps eliminate routing deadlocks. 

4.1.7. Chordal Rings 

Chordal rings (3~ have either one chord per node (see Feng(22)), or two 
(see Lang(31)). On a single-chord ring, node i is linked to node i+a and 
node i + 1 is linked to node (i + 1 ) -  a, in addition to the ring connections. 
The chord distance a is fixed over the network. In a dual chord ring 
network, every node i is linked to nodes i + a and i -  a, as well as to its two 
ring neighbors i_+ 1. Optimally, the distance bridged by the chord is x/N. 

4.1.8. Perfect Shuffle Nearest Neighbor 

The perfect shuffle nearest neighbor (PSNN) network combines NN 1 
and perfect shuffle interconnections. ~5) The perfect shuffle permutation a is 
defined as follows: 
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f N 

2i 0~<i<~-  

a(i) = N 
2i+  1 - - N  -~<~i<N 

{~  i even 

O" 1(i)= i + N - - 1  i odd 

Node Pi is linked to P~(o and to Po-l(o. Considering the binary representa- 
tion of i, i = ( b , _ l , b , _ ;  ..... b0), then a( i )=(b ,_2 ,  b ,_  3 ..... bo, b, 1) and 
a - 1 (i) = ( b o, b, _ 1 ..... b 1 ). Hence, r~ ~ = (~ - 1 ) n = I ( identity permutation ). 

The a interconnection graph induces a partition of the network into 
unconnected components, e.g., {0}, {1, 2, 4}, {3, 5, 6}, {7} for N =  8. Each 
such component is a ring of nodes whose numbers are cyclic shifts of each 
other, and are called necklaces. (z8) For that reason, NN1 interconnections 
are added in the PSNN network. A known variation is the Perfect Shuffle 
Exchange (PSE) network, where the e interconnection replaces N N  1, 

e(bn- l ,bn 2, . . . ,bo)=(b,-1,  bn-2 ..... bo) 

Other variations of PSNN are shuffle-shift-reverse and shuffle-shift- 
transpose, as defined in Ref. 28. All these networks are very similar in their 
characteristics, and we prefer to represent them all by PSNN. 

5. T O P O L O G I C A L  M E A S U R E S  

For the purpose of comparative network evaluation, we define 
topological measures of performance, cost, and cost effectiveness. The 
measures are independent of applications and algorithms. Rather, they 
reflect only the network topology. Hockney and Jesshope (1) define maximal 
distance d, fan out time _iv, and the degree of connectivity C. The remaining 
parameters, disconnectivity D, looseness L, and cost-effectiveness LC, 
constitute the original contribution of this work. 

The measures are computed for each of the networks, as summarized 
in Table I. The detailed computation is included in the Appendix. The 
analysis shows that the HC and PSNN networks perform better than most 
others. The exception is the completely connected network, which is not a 
practical solution for large systems due to its quadratically growing cost, 
and is brought here merely as an upper bound on performance. Conse- 
quently, PSNN and HC make the focal point of this work. 

828/18/1-4 
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5.1. Max imal  Distance d 

The maximal distance (also called diameter) d is the maximal number 
of links d(i, j) that have to be traversed from any source node i in order 
to reach any object node j, i r  along the shortest path: 

d - m a x  {d(i, j )} 
i, j 

The shorter the distance, the less number of communication steps required 
for any message in the network. Therefore, we choose to call d a figure of 
nonmerit of the network. 

5.2. Fan-out Time F 

The fan-out time F is the number of steps required to broadcast a 
message from any node i to all other nodes. The message is spread over the 
links of some spanning tree of the network, whose root is i. Each inter- 
mediate node on the fanout tree duplicates the incoming message onto each 
one of the outgoing links. If b(i) is the minimal number of steps required 
to broadcast from node i, then: 

F -  max {b(i) 
i 

Note that F accounts for communication steps, although the time to 
perform message duplication may be included as well. Note further that 
according to the communication model presented in Section 3, a node 
which needs to send out the message over multiple links does so serially, 
one link after another. It is self evident that F is also a figure of "nonmerit." 
Furthermore, since b(i) >~maxj {d(i, j )},  F~> d. 

The inverse operation is data concentration, where some node i 
receives the result Of an associative operator applied to data elements from 
all other nodes (e.g. sum). The data elements are collected along the links 
of a spanning tree whose root is i. Each intermediate node on the tree 
applies the associative operation to all incoming data elements and to its 
own element, and then forwards the interim result towards the root. Short 
of the computation time, the time of concentration is equal to F. 

The general case of contention is not modeled by fanout. For  instance, 
contention may occur when n - 1  (or less) messages, generated by n - 1  
nodes, are all directed at the nth node. When two such messages, say M1 
and M2, meet at some node j along their passage towards their destination, 
they contend for the services of node j. This is due to the model of 
Section 3, which allows a node to receive and process only one message at 
a time. Node j eventually receives both M1 and M2, in contrast with the 
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data concentration case where only one result is transmitted. Thus, general 
contention resolution may take longer time than F. This also applies to 
implementation of shared variables on Ensemble Machine, where a 
concurrent write into a shared variable may result in contending messages. 

On the other hand, fanout does apply to contention resolution on 
combining networks. In a combining network, the two contending 
messages are replaced by a single, "combined" message, which is similar to 
data concentration, and hence can be modeled by fan out. Eventhough 
combining networks were originally proposed for Shared Memory 
Multiprocessors, ~32) they may also be applicable to Ensemble Machines, or 
the mixed-mode machines such as RP3. ~16) 

In some CRCW (concurrent reads, concurrent writes) PRAM 
models, ~33) multiple concurrent write attempts to the same variable result 
in exactly one of them succeeding, and all the others disposed of. With such 
a model we can assume that the time to resolve a contention of two 
messages at some node is equal to the time it takes to forward just one 
message, as if the other one did not exist. With this modification, the 
fanout time in this case is the same as the maximum distance, d. 

Of course, there are other cases where multiple messages exist in the 
network, each going to its own destination. These cases are modeled by 
permutations, rather than fanout, as described later. 

5.3. D i s c o n n e c t i v i t y  D 

The parameters d and F defined earlier predict the complexity of 
sending a single message, by a single node, to either a single receiver or 
to all. Our experience ~8) shows that the two most important patterns of 
communications, as required by common algorithms, are the exchange of 
single messages and the simultaneous permutation of N messages, one from 
each node. The following definition of disconnectivity has been initiated by 
the need to predict the capability of the network to perform permutations. 

The definition of disconnectivity is based on the minimum bisection 
width e of the network, as defined by ThompsonJ 34) Let e be the size of the 
minimal edge cut set which, when removed from the network G, divides it 
into two approximately equal disconnected components G1 with [N/2] 
nodes, and G 2 with [-N/2-] nodes. Then 

N 
D_=-- 

e 

D measures the worst-case number of communication steps required for 
permutations. Suppose a permutation n exchanges all N/2 elements of G1 
with all N/2 elements of G2. Then N elements must be transferred over e 
links, requiring at least N/e communication steps. 
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The computation of the minimum bisection width e is not always a 
straightforward step. In the Appendix we combine direct analysis with 
methods developed by Thompson, ~34) Leiserson, t35) and Leighton. ~28) 
Specifically, we use Thompson's theorem which states that the VLSI  layout 
area of  a graph with bisection width B is at least I2(B2). We use the inverse 
result, 

The bisection width o f  a graph with VLSI  layout area A is at most 

o( t 
Since some of the networks we analyze have known optimal layouts 

O(A), we can at least asymptotically estimate their bisection width and, 
consequently, disconnectivity D. 

Since it is clear that performance deteriorates with growing D, discon- 
nectivity is also a "nonmerit" figure. 

5.4. Looseness L 

Thus far we have defined three different measures of performance, d, 
F, and D. No one of them reflects all aspects of communications; while d 
and F relate to the time required to forward a single message, D refers to 
permutations. The definition of looseness combines both aspects into a 
unified measure of communicational performance. 

Note that d and F are not mutually exclusive. In particular, F>~ d. 
Hence, we ignore d in the following, and observe that F is a reliable sub- 
stitute for d. F and D, on the other hand, are in a sense "orthogonal," each 
describing the network under different operations. Furthermore, F and D 
are exhaustive, in the sense that all the algorithms we have analyzed ~8) 
require either permutations or handling of single messages, or both, and no 
other types of communications are ever encountered. Consequently we 
conclude that F and D are necessary and sufficient measures of network 
communication performance. 

Both F and D have been characterized as "nonmerit" figures; i.e., the 
lower they are the better. A network with low F and low D may be con- 
sidered "tight," and one with higher F and/or D is more "loose." Therefore 
we define looseness L, 

L - ~ F + ( 1 - ~ ) D  

Note that the addition of F and D is based on the observation that at any 
point in time the network performs either single message transfer or per- 
mutation, but not both; there is no meaning to doing both simultaneously, 
since concurrent handling of multiple messages is tantamount to permuta- 
tion. Thus, F x D is not an acceptable definition of L. This point is specifi- 
cally made here because an attempt to define L = F • D would change the 
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results of this research in a significant way; in particular, our finding that 
PSNN is preferable to hypercube depends on this definition. On the other 
hand, itwill  be shown below that an allowable alternative definition could 
be ~ + ~ 5 .  

As long as 0 < ~ < 1 in this definition, the asymptotic results do not 
change. The exact analysis, on the other hand, does depend on the actual 
value of c~. This parameter can be used to associate greater importance to 
either broadcasts ( c ~  1) or permutations ( ~ 0 ) .  Consequently, we 
investigate all three cases: c~ = 0, c~ = 1 and e = 1/2, 

5.5. Degree of Connectivity C 

The connectivity degree C is defined as the number of links incident 
upon each node. C is used as a cost function for networks with the same 
connectivity over all nodes (e.g., unlike star), as is explained in Section 3. 
C reflects the network cost per node, and is useful for comparing different 
networks with the same number of nodes. 

5.6. Cost-Effectiveness LC 

The product L C  of looseness and cost reflects the cost-effectiveness of 
the network in performing communications. Ordinarily, cost is divided by 
performance to achieve cost-effectiveness; as explained earlier, looseness 
may be considered as inversely proportional to performance, and therefore 
cos t /per formance  is proportional to cost �9 looseness. 

6. A COMPARATIVE TOPOLOGICAL ANALYSIS OF STATIC 
N ETWO R KS 

We now apply all the measures defined here to each of the networks 
described in Section 4. The exact calculations are included in the Appendix, 
and are summarized there in Table A. To simplify the exposition, we 
present only asymptotic results in this section. Table I and Figs. 3 and 4 
demonstrate the results. 

A variety of interesting phenomena may be noted. The d and F 
columns support our suggestion that F reliably represents d. However, the 
star network is an exception, due to its serious bottleneck in the central 
node. 

Considering disconnectivity D, note that CCN demonstrate an inter- 
esting and unique feature of decreasing D with increase in size. Also note 
that D is the first measure to distinguish the hypercube from PSNN. 
Further examination of D versus d and F discovers the disparity between 
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D = 00"0 

D = 0 ( ~  

D = O(log N) 

D = o(i) 

D = 0(~)  
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Tree. 
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,,,CCN 

' ' F  
F=0(tog N) F=0('q~ F=O(N) 

Fig. 3. Qualitative performance of static networks. 

them. Trees, for instance, have low d and F but high D, while chordal rings 
are low in D but high in d and F. This provides empirical justification for 
the introduction of the new measure D. 

When L encompases both aspects of communications (0 < c~ < 1), the 
best performing networks, as measured by L, are CCN, HC and PSNN. 
When we choose c~ = 1 (L = F), the Tree also joins this class. However, 
when network cost is also considered, CCN is of course prohibitively 
expensive, as can be seen from the connectivity column. Another feature of 
the cost measure is that like D it also distinguishes PSNN from the hyper- 
cube. 

The ultimate measure, when cost is not overlooked, is the cost-effec- 
tiveness LC, as seen in the last column. For instance, the best performing 
networks (L-wise), CCN, HC and PSNN, are split into three classes; CCN 
is clearly the least cost-effective network, and HC is found inferior to 
PSNN. 

To emphasize these results, a qualitative graphic representation is 
adopted. Two graphs are shown in Figs. 3 and 4, exhibiting performance 
and cost-effectiveness, respectively. The axes of both graphs are marked 
with asymptotic functional orders of magnitude and are demonstrative 
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Qualitative cost-effectiveness of static networks. 

only. Variations within each asymptotic class reflect possible minor 
changes between networks. 

The performance graph plots D versus F. Note that the distance of 
each network from the origin reflects the looseness L of that network; 
actually, it was this observation that led us to perceive L in the first place, 

and to define it originally as L = x / F S + D  2. We observe that C C N  

promises best performance, and that the predicted performance of HC is 
better than that of PSNN. 

The cost-effectiveness graph shows L versus C. The most cost-effective 
networks must be closest to the origin. We observe again that for 
0 < ~ < 1 PSNN is the only member of the most cost-effective class (since 
Fig. 4 is an symptotic representation, L = F +  D for all 0 < ~ < 1). When 

= 1 (L = F), the Tree joins in with P S N N  in the most cost-effective class. 
This agrees with the fact that the tree is competitive o n  broadcasts but 
inferior on permutations. 
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Fig. 5. Distance versus network size. 

7. HYPERCUBES V E R S U S  PERFECT SHUFFLES 

We now analyze the topological parameters of the hypercube and 
PSNN in more detail. In order to be able to make accurate comparison of 
these very similar networks, the topological measures are computed 
exactly, rather than asymptotically, and are presented in Table II. As noted 
in the previous section, if the application at hand is broadcast-intensive (i.e. 
employs a negligible amount of permutations), the tree network is com- 
parable in some aspects to the PSNN, and is consequently also included in 
the table. The complete computation is included in the Appendix. 

With respect to distance, all three networks belong to the class of 
d=0(log N), which is second only to d=0(1). The difference lies in the 
slope of d as a function of N. Similar, and slightly stronger, effect is 
observed on the F versus N graph. See Figs. 5 and 6. 

F J F(Tree) 

30 F(PSNN) 

20 ~(HC) 

10 

5 
. . . . . . - -  

3 4 5 6 7 8 9 10 11 12 13 14 15 16 ~'n 

Fig. 6. Fanout versus network size. 
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Fig. 7. Disconnectivity versus network size. 

The different disconnectivity measures are shown in Fig. 7. As 
mentioned earlier, the tree demonstrates a prohibitive level. 

While HC and PSNN are quite similar performance-wise, the cost 
difference is more significant since they belong to different classes. The cost 
of an HC node grows logarithmically with N, while the cost of a PSNN 
node (as that of a tree) is constant for any network size. As long as the 
number of processors is smaller than 16 the cost of HC is lower than 
PSNN. For N >  16 the cost of HC is higher, and the difference increases 
with N. See Fig. 8. 

Note that this break-even point generates similar break-even points for 
the distance d and fanout F, when considered weighted by cost. On the 
other hand, disconnectivity D induces no such break-even point (for 
n = 3 , 4 D ( P S N N ) = 2 ;  D ( P S N N ) = n / 2  holds only for n>~4). HC is 
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Fig. 8. Network cost per node versus network size. 
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always preferred since it has constant D, whereas the disconnectivity of 
PSNN grows logarithmically with N. 

The combined effect of F (as well as d) and D is reflected in L, the 
looseness of the network, which is asymptotically similar for both PSNN 
and HC. When considered with cost in mind, however, the networks differ. 
See Fig. 9. The L*C graph refers to c~ = 1/2. Fig. 9 also contains the graphs 
for e = 0 (D*C instead of L'C), and alpha = 1 (F*C instead of L'C). It 
also shows the graphs for the tree, which is more cost-effective than both 
PSNN and HC for applications with no permutations. The break-even 
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point of LC for the hypercube and PSNN lies between N =  128 and 256. 
Hence we conclude that for communications which include permutations, 
broadcast (or concentration) and possibly transfers of single messages, 
PSNN is preferable to HC for N >  128. This also applies to broadcast- 
intensive communication (F'C), where the break-even point is N=256. 
For communications consisting mainly of permutations, the two networks 
are comparable in cost-effectiveness: HC permutes in constant time at a 
logarithmic cost per node, while PSNN permutes in logarithmic time at a 
constant cost per node. 

8. C O N C L U S I O N S  

We have applied topological measures to multiprocessor static inter- 
connection networks in order to predict their performance. This research 
complements the study of an algorithmic benchmark experiment, which 
provided similar findingsJ s) 

Novel measures have been developed. They include the disconnectivity 
of the network, which measures the ability to perform permutations; loose- 
ness, which combines measures of different patterns of communications; 
and cost-effectiveness of the network. 

An abstract communication model of the network has been defined. 
That model was instrumental in both the topological and algorithmic 
analyses, and helped to isolate relevant issues. 

The new topological measures, as well as some known ones, were 
applied to a large set of static networks, and provided comprehensive 
evaluation of those networks. Special attention was directed at the two 
most promising networks, namely the hypercube and the perfect-shuffle- 
nearest-neighbor networks. In conclusion we found that while the hyper- 
cube promises slightly superior performance, the costeffectiveness of a large 
(N>~ 256 nodes) perfect-shuffle-nearest-neighbor network is preferred over 
that of the hypercube, and is actually second to none. 

A C K N O W L E D G M E N T  

Comments by Y. Shiloach, M. Rodeh and R. Pinter helped to improve 
the contents of this work. 
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APPENDIX:  C O M P U T I N G  THE T O P O L O G I C A L  P A R A M E T E R S  

A.1 M A X I M A L  D I S T A N C E  d 

1. CCN 

Since every node is connected to every other node, d =  1. 

2. Ring 

In a unidirectional ring the distance between node i and node j is 
]i- j]  modN. For O<~i,j<N the maximal value of ] i - j[  modN is N -  1. 
Hence d = N -  1 = 0(N). 

3. NN1 

In a bidirectional ring there are two paths from node i to node j, i~ j .  
Let us denote these paths li~, l;~j w. Then 

2 N odd 
�9 c w  c o w  - -  d = m a x  {mm(//.j, l/, i ) } -  

~'J Neven 

Or, asymptotically, d =  0(N). 

4. NN n 

In the k-coordinate, n-dimensional case the maximal shortest path 
consists of n path segments in the n dimensions, where in each dimension 
the segment is of maximal distance. NN, contains multiple bidirectional 
rings (NN 1 networks), each having k = N  ~/" nodes. Hence, the maximal 
length of each NNa segment is Lk/2/. There are n such segments, hence 
d= nLk/2_J. Since n = logaN, d =  0(k log N) = O(N ~/n log N). 

5. Star  

In a star network the length of the path from one node to another, 
when neither of them is the central node, is 2. The first step is from the 
source node to the central node, and the second step is from the central 
node to the destination node. The central node is exactly one step away 
from any other node. Hence d =  2 = 0(1). 

6. Tree 

In a fully balanced tree network with branching ratio (number of 
children per node) b and k leaf nodes, the maximal distance is 2 logb k. 
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Proof. The root has b children at the first level down, b 2 at the 
second level down, and k = b m leaves at the last, or mth, level. Hence there 
m = log b k links between the root and each leaf. The longest path starts at 
one leaf, passes the root and ends at another leaf, and is thus 2 logb k. | 

The maximal distance can be also expressed as a function of N and b. 
For m levels, 

N = l + b + b 2 + . . . + b m _ - -  
b m + l  - 1 

b - 1  (1) 

bm+~=N(b-1)+l  

m=logb[N(b- 1)+  1 ] -  1 

d = 2m = 2 logb[N(b - 1 ) + 1 ] - 2 

Asymptotically, d = 0(log N). 

(2) 

(3) 

7. Chordal Ring 

Assume the chords are of optimal length , ~ .  Arden and Lee (3~ show 
that the maximal length of the optimal path between two nodes is 0(x/-N ). 

8. Hypercube 

The distance between two nodes in HC is the number of different bits 
in the binary representation of the two node indices. Hence the maximal 
distance in the network is the number of bits in the index, d =  logzN. We 
also get this result when we substitute k = 2 in the expression for d of NNn. 

9. PSNN 

Hockney and Jesshope (1~ show that for PSNN d=n+[-n/2-]-1, 
because the most distant node from node i is node i + j  where 
j =  {10101 .. .  } and the path from i to j consists of n -  1 o-steps and [-n/2-~ 
nearest-neighbor steps. 

A.2 FANOUT T IME F 

1. CCN 

Each node in a CCN network is connected to all other nodes, so there 
are no communication conflicts. Still, in a single communication step a 
node can transfer information to only one other node, according to the 
model presented in Section 3. Hence, each communication cycle at most 
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doubles the number of nodes which have received the information. There- 
fore the total number of steps required for fanout is F =  logzN. 

2. Ring 

In a unidirectional ring the only way to broadcast is by going from 
node to node in the proper direction. The number of steps required is 
F =  N -  1 = 0(N). 

3. NN1 

On a bidirectional ring, the broadcasting node starts sending the 
message to one direction at step 1, and to the opposite direction at step 2. 
From then on, the message advances in parallel on both sides, until the 
whole ring is exhausted. Clearly this process takes F =  [-N/27 = 0(N). 

4. NN.  

The source node broadcasts the data in a one-dimensional ring as 
explained above for NN1. Subsequently, all nodes of that ring spread the 
data along the rings of the second dimension, and so on. The fanout time 
for a ring with k = N 1In nodes has been found to be [k/27. This is multi- 
plied by n, the number of dimensions, yielding 

F=nlkT=o(Nt/nlogN ) 

5. Star 

The central node needs N -  1 steps to deliver its message to its N -  1 
neighbors. If the source were another node, it would send its message to 
the central node at step 1, and the central node would use N - 2  steps to 
send the data to all other nodes. Thus F =  N -  1 = 0(N). 

6. Tree 

In a balanced tree network with branching ratio b and m levels, the 
longest fanout is incurred by the leaves. The source leaf sends its message 
to the root, taking m steps. The root, and every nonleaf node below the 
root, distribute the message to their b children at b steps. There are m steps 
down to the leaves, so the last leaf receives the message b x m steps after the 
root started the broadcast. However, the root can skip that one subtree 
from which the message originated, so broadcasting from the root to the 
rest of the tree takes b x m - 1. Adding the initial m steps, we get 

F=(b+l)m--1 
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When we substitute the expression for m derived in Section A.1.6, 

F =  (b+ 1){ logb[S(b-  1)+ 1 3 -  1 } -  1 

If we consider b constant, F =  0(log N). 

7. Chordal Ring 

In a small chordal ring where N~< 16 and each node is connected to 
4 other nodes, the number of nodes that receive the data is doubled every 
step. Hence for N~< 16, F =  I-log2 N-]. When N >  16, after the first four steps 
there are nodes which have no more neighbors to send the data to, and the 
fanout process slows down from the initial exponential rate. Therefore, 
F >  log N. Since each chord bridges over ~ nodes in a minimal-distance 
chordal ring, the network contains a cycle of x / ~  chords, and at most 0(N) 
step are required for broadcast. Lacking any better algorithm, we assume 
that F =  0(,~/-N). 

8. Hypereube 

Substituting k = 2 in the expression of F for NNn network, we get 

F= n rk/2 7 = log2 N 

In other words, the number of nodes receiving the message doubles at 
every step. Counting the dimensions i =  1,..., log N, at each step the 
message is sent over the links of the ith dimension. 

9. PSNN 

The broadcast algorithm on PSNN consists of a loop including two 
steps: 

loop: 

1. if  (fanout not complete) 
Each node i with the message sends it to its exchange- 
neighbor e(i). 

2. if  (fanout not complete) 
Each node i with the message sends it to its perfect 
shuffle-neighbor a(i). 
end loop; 

The number of 1-steps in the algorithm is n, the number of 2-steps is n - 1, 
and therefore the total number of steps is F =  2 n - 1  = 0(log N). (36) Note 
that this is in contrast with Hockney and Jesshope. ~ 

828/18/1~5 
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A.3 D I S C O N N E C T I V I T Y  D 

1. CCN 

In a completely connected network N -  1 links go out of each node to 
the other N - 1  nodes. We bisect the networks into two groups of size 
N1 = N2 = N/2. The number of links in the bisecting cut set separating the 
two groups is therefore 

N 2 
e = N t  • = -  

4 

40( ) 
D N 

2. Ring 

In a unidirectional ring each cut set includes a single directed link 
from the first group to the second, and a single directed link from the 
second group to the first one. 

e = l  

D = N  

3. NN1 

In a bidirectional ring each cut set includes two links. 

e = 2  

D = N/2 

4. N N .  

The k-coordinate, n-dimensional NNn hypertorus may be considered 
as comprising k hyperplanes, each of n - 1 dimensions and N/k nodes. All 
the hyperplanes are connected together by N/k rings (NN~ networks), each 
ring including k nodes, one node per hyperplane. The edges of the rings 
constitute the nth dimension of the hypertorus. The minimal bisecting cut 
set includes the N/k cut sets of the N/k rings, i.e., 2N/k edges altogether: 

2N 
e ~ -  

k 

k 
D = -~ = O(N 1/") 

5. Star  

The star network does not have an edge-separator which produces two 
connected subnetworks of approximately equal sizes. To evaluate the star 
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network in performing permutations, we find it more appealing to examine 
the minimal node cut set instead. Clearly that cut set is the central node, so 
define e = 1. 

e = l  

D=N/1 = N  

6. T ree  

Similar to the star network, we consider the node cut set consisting of 
tile root, and again, 

e = l  

D = N  

7. Chorda l  Ring 

We consider the case of single-chord rings where the arc bridged by 
the chord is of length x/N. Note that FN/27 > ~ for N > 4. Suppose the 
nodes are numbered 0,..., N - 1  around the ring, and that we cut the ring 
between 0 and N -  1 and between N/2 and N / 2 -  1. Then the minimal cut 
set includes links of three types: 

1. The two ring segments, 0 - to -N-  1 and N / 2 -  1-to-N/2. 

2. The chords from 0, 2, 4,..., ~ -  1 to N -  x/-N,..., N -  1, counting 
approximately ~ / 2  chords. 

3. A similar group of x/-N/2 chords around the N/2 cut. 

Altogether there are about , , / N +  2 edges making the cut set: 

e = x ~ +  2 = 0(x/N) 

N - 

The case of doubly-chorded ring is very similar (e=  2 x ~ +  2). 

8. H y p e r c u b e  

The disconnectivity of NNn was shown to be 2N/k. Here, instead of 
rings, there are single links in each dimension, and therefore the factor of 
2 should be removed. Substituting k = 2, 

e = N/2 

D = 2  
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9. P S N N  

It has been shown by Leighton ~28) that the VLSI area of the PSE, as 
well as the PSNN (also called shuffle-shift in Ref. 28), networks is 
O(N2/log 2 N). We have shown in Section 5.3 that this implies a minimum 
bisection width e=O(N/ logN) .  Although this result is sufficient for 
asymptotic estimation of D, we now attempt to arrive at a more accurate 
result, for the sake of Table II. 

When we arrange all the nodes in a-necklaces, we get mostly necklaces 
of size log N except for 0(x/--N ) degenerate necklaces with less nodes. ~28) It 
has been shown in Ref. 28 that it is possible to arrange the PSE network 
on a two-dimensional level-necklace grid such that the necklaces occupy 
two adjacent columns each, and each exchange link can be drawn as a 
horizontal line at some level The two degenerate necklaces of nodes 
0, N -  1 contain one node each and should be counted out. 

An approximate bisection can be achieved by cutting along a horizon- 
tal line between two adjacent levels, such that the two subnetworks are 
as equal to each other as possible. The cut set consists of two edges per 
necklace, except the two degenerate ones 0, N - 1  explained earlier. This 
cut set consists therefore of 2N/log N - 2  links. A more accurate bisection 
will be achieved by a jug which crosses exactly one level, cutting at most 
one additional, exchange link. Thus, for the PSE 

e ~< log----N- 

N N N D = --/> ~> log = ~2(log N) 
e 2N 2 

log N 

As for the PSNN, the exact minimum bisection width is still an open 
problem. It is not clear that the PSNN network can be arranged on a 
necklace-level grid, similar to PSE. For  PSNN, we suspect that e may be 
larger than 0(N/log N), and thus D may turn out to be better (i.e. smaller) 
than ~2(log N), possibly even D = 0(1) as for the hypercube. In any case, 
note that the asymptotic figure for looseness L remains the same. 
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