

 1

Abstract
Networks on a Chip (NoC) commonly employ an

irregular mesh topology because of variations in module
sizes and shapes. Consequently, low cost routing
techniques such as XY routing are inadequate, raising the
need for low cost alternatives. In this paper we first
define a hardware resource based cost model for
comparing different routing mechanisms. Next, we
propose three hardware efficient routing methods for
irregular mesh topology NoCs. Our methods combine a
fixed routing function (such as XY or “don’t turn”) and
reduced size routing tables based on the known
distributed and source routing techniques. For each
method, we develop path selection algorithms that
minimize the overall cost. Finally, we demonstrate by
simulations a significant cost saving compared to
standard solutions and examine the scaling of cost
savings with the growing NoC size.

1. INTRODUCTION
Modern VLSI systems on Chip (SoCs) comprise many

system modules. According to technology projections
[1,2] the number of modules will grow to several
hundreds in the near future. NoCs were shown to be
effective for solving the global interconnect problem
among modules [3-10]. NoC power and area saving along
with QoS considerations have led to the common use of
mesh topology along with static, destination based
shortest path (SP) routing, using minimal amount of
router logic [4-7]. In a regular mesh it is easy to
accomplish shortest path routing, by employing a simple
variation of a deadlock free dimension order routing [11]
such as X-Y [4-7]. XY is also a “table-less” routing
discipline whereby each packet is routed first in an “X”
direction and then along the perpendicular dimension.

Practical NoC topologies become irregular meshes
(Figure 1) because of modules shape and size variability
in VLSI layouts and the need to physically separate
between the modules internals and the NoC
infrastructure. Nevertheless, to the best of our knowledge
no previous studies addressed the problem of efficient
static routing in irregular mesh NoCs.

Figure 1. SOC modules interconnected by irregular mesh NoC

Our definition of an irregular mesh topology is that it is
identical to the full mesh including the addresses used to
identify the various modules, except that that some
routers and links are missing (Figure 1). Packet routing in
such NoCs resembles routing in a labyrinth, since some

links are missing and may lead to a dead-end. Therefore,
a simple X-Y scheme cannot be employed and different
routing techniques need to be applied. In other networks,
routing in irregular topologies is typically accomplished
using routing tables (RT). The RTs can be located in
routers (distributed routing) or in sources (source
routing). RT size and the corresponding power and area
costs grow with the network size. Moreover, the time
required to access each table, which affects NoC
performance, depends on its size and thus on the network
size.

We introduce a simple metric for the estimation of
VLSI cost (area and power) of NoC routing based on the
total size of the routing tables. Then, we develop novel,
hardware-efficient routing techniques that reduce the
VLSI cost of routing in irregular–mesh topology NoCs.
The techniques are based on a combination of a fixed
routing function (such as “route XY” or “don’t turn”) and
reduced routing tables for both distributed and source
routing approaches. The entries in the reduced routing
tables are created only for destinations whose routing
decisions differ from the output of the routing function.
This way, we significantly reduce the area and power
costs of full routing tables in most cases. Our routing
algorithms perform routing path extraction for all source-
destination pairs, together with minimization of the VLSI
cost of the packet routing logic. We do not treat the
deadlock problem, since there are standard ways to solve
it after all static routes are selected [11]. Random
simulations of different topologies and communication
scenarios are used for comparing and estimating the VLSI
cost savings obtained by different algorithms. We also
check the scaling of the VLSI cost savings in NoCs with
growing numbers of modules and compare the scalability
of distributed and source routing techniques in NoC with
growing number of destinations.

2. TRADITIONAL STATIC ROUTING
TECHNIQUES

Traditional static routing techniques can be classified
according to where routing information is held and where
routing decisions are made.

In distributed routing (DR) each packet carries the
destination address, e.g. the X-Y coordinates of the
destination router or a module number. The routing
decision can be implemented in each router either by
looking up the destination address in a routing table
(memory) or by executing a routing function in hardware.
Using this method, each network router contains a
predefined routing table or routing function logic whose
input is the destination address of the packet and its
output is the routing decision. When the packet arrives at
the input port of the router, its output port is looked up in
the table or calculated by the routing logic according to
the destination address carried by the packet. The routing
information regarding each destination is captured in the

Efficient Routing in Irregular Topology NoCs

Evgeny Bolotin, Israel Cidon, Ran Ginosar and Avinoam Kolodny
Electrical Engineering Department,Technion—Israel Institute of Technology,Haifa 32000, Israel

 2

tables (or logic) of each router along the path.
In source routing (SR) the pre-computed routing tables

are stored in the network interface of the system modules.
When a source node transmits a packet, it looks up the
source routing information according to the destination
address at the SR table and includes it in the header of the
packet. Each packet carries in its header the routing
command for each hop along its path. When the packet
arrives at a network router, its routing output port is
extracted from its header routing field. The routing field
is then shifted in order to expose the relevant routing
command for the next router on its path.
2.1. VLSI Implementation and Cost

As shown above, both distributed and source routing
techniques make extensive use of routing tables. DR
tables are located at each router, indexed by packet
destination address and containing output port values. SR
tables are located in each source, indexed by packet
destination address and containing sequences of routing
commands, one for each hop along the routing path.

Simple RTs are implemented as tables having as many
entries as there are nodes in the network. However, this is
inefficient, since an all-to-all communication pattern is
very unlikely and the actual set of destinations used at
each source is a small fraction of the number of modules.

Figure 2. Reduced ROM Implementation of a Static Routing Table

More efficient implementations are the reduced sized
ROM (Figure 2), or simple Boolean logic implementing
an equivalent routing function. Both schemes only
implement the necessary table entries for each node. The
reduced ROM implementation is equivalent to a two-level
implementation of a routing function by a Programmable
Logic Array (PLA).

The total size (in bits) of such a RT for both DR and
SR schemes can be estimated by the total size of the
entries and the look-up logic. The total size of the entries
of table i can be estimated by the sum of the sizes of each
entry (li,j). The size of the look-up logic can be estimated
by the address size, which is ()2log N , where N is the

total number of modules in the network, multiplied by the
number of entries in the table (ni). Thus, the total area
cost can be estimated by summing the costs of all RTs in
the network:
 ()2

{NoC tables} {entriesof table i}
log Narea i i j

i j
Cost n l

∈ ∈

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑ ∑ (1)

The dynamic power dissipated in these tables can be also

estimated by the size of the tables, since the total
capacitance is proportional to the number of entries and
the size of the entry. The same is true regarding static
leakage power, since it is proportional to the number of
leaking devices. Total power of RTs in the network can
thus be estimated by the following formula:

 power areaCost KCost= (2)
where K is a constant.

Several previous works addressed memory complexity
of routing mechanisms. Interval routing [12] was
proposed as a way to reduce RT size in large networks by
grouping the set of destination addresses that use the
same output port into intervals of consecutive addresses.
Gomez et al.[13] extended interval routing for regular
meshes and tori network topologies. Interval routing may
be used in combination with our scheme. A source
routing scheme named “street-sign routing” minimizes
source-routing information [14]. It resembles driving
directions: Only the router name of the next turn and the
direction of the turn are included in the packet header.

3. HARDWARE-EFFICIENT ROUTING METHODS
In this section we present several hardware-efficient

routing techniques for irregular topology NoCs. Our DR
methods are based on the following observations.
Traditional DR techniques are designed to support all
possible source-destination pairs, general topologies and
path diversity. These features, which are not required in
common SoC architectures, incur excessive VLSI costs.
On the other hand, function-based routing (i.e. XY)
constrains network topology and path diversity, but
results in considerable savings in VLSI costs.

We propose a combination of a low cost fixed routing
function and reduced size DR routing tables. Entries are
created in the routing table only for destinations whose
routing decisions differ from the output of the routing
function. That way, table cost is significantly reduced in
most cases. To that end, we propose two routing
techniques, Turns Table (TT) and XY-Deviation Table
(XYDT). The third method uses an approach similar to
SR. In general SR, the message header carries a routing
tag for every node along the traversed path. This requires
large storage at the sources. Our Source Routing for
Deviation Points (SRDP) combines a fixed function (like
"don’t turn", or "XY") with a reduced list of tags that are
used only at specific deviation points (DP).
3.1. Turns-Table (TT) Routing

In TT routing, an entry in the routing table (turn-table)
exists if there is a turn in at least one path passing through
this router towards the destination (Figure 3).

Figure 3. Routing paths toward destination D: (a) no path to D makes

a turn (b) an entry in Turns-Table is required because some paths to
D must make a turn in this router

 3

When a packet arrives at the router, its destination is
looked up in the table. If an entry exists, the routing is
performed accordingly; otherwise, the packet proceeds
without a turn. This eliminates many entries and reduces
the area and power compared to a full routing table.

TT problem definition:

Among all SPs between all sources and destination D,
choose a covering set of paths that minimize the total
number of entries in the network turns-tables.

Figure 4. Routing paths towards D: For a path from S1 it is better to

prefer a path with more turns via X than over a path via Y

We develop a routing algorithm that finds shortest
routing paths (preferred from power considerations [4])
while taking into consideration the “don’t turn” routing
function in the routers in order to minimize the overall
number of routing table entries in the network. Since an
entry is created only if there is a turn at a router along
some path to the destination, the most intuitive solution
would be to find shortest routing paths that make the least
number of turns on their way from source to destination.
Additional minimization of the number of TT entries can
be achieved by exploiting the already existing routing
entries in other routing paths to the same destination.
 Figure 4 shows example where a routing path which
makes more turns results in a smaller number of turns-
table entries in the network. There are two traffic sources
S0 and S1 and destination D. There is only one possibility
for a minimum turns SP from S0 to S1 resulting in a path
that passes through node X (Figure 4 a) and creates turns-
table entries (dashed circles) in three intermediate routers
on its way to D. On the other hand, there are two possible
SPs from S1 to D (Figure 4 b). One passes through Y,
makes two turns and creates two additional routing
entries on its way. Another possible routing path, which is
preferable, passes via X. It is also SP and makes more
turns than its alternative. However, it creates no
additional routing entries in the network, since it utilizes
the already existing entries that were created by the
previously established path from S0 to D.

TT Routing Algorithm

The algorithm uses the idea of aggregating routing
paths from different sources whenever possible. Using
this heuristic, the algorithm utilizes the already created
paths (and entries) and does not add additional entries
over parallel extra routing. First, we define a Turns-graph
(TG), an auxiliary graph to be used by the TT algorithm.

Figure 5. TG example: (a) Original network; (b) Resulting TG

Definition of Turns-Graph(TG):
The vertices of the TG are the ports of the original

network nodes and its edges are the original network
links in four possible directions (+x, -x, +y, -y) and all
possible interconnections (turns) among the ports of each
network node (Figure 5). The weight of the edge that is
an original network link is a large number K (larger than
the maximum number of turns in any SP in the original
network). The weights of the interconnection edges
among the ports inside each router are set as follows: if
the edge in TG consists a turn via the router, it is set to ‘1’
(dashed lines), otherwise, it is set to ‘0’ (dotted line).

The TT routing algorithm is formally described in
 Figure 6. The algorithm is performed for each destination
node. It uses a greedy approach, iteratively selecting a
source node (for paving a path from it to a destination)
that adds the minimal number of turns-table entries
(heuristic) to the network along its shortest path to the
destination or to an already created (paved) path. The
algorithm starts by constructing a TG and initializing
node attributes. For each node v, the following attributes
are maintained: a pointer to the predecessor node, the
distance of that node from the destination in TG, a
Boolean variable which retains information about
whether the node has already created (paved) a path to
destination D. All network nodes except D are initialized
as not-reached (lines 2-3). Then the algorithm repeatedly
paves routing paths from all sources to the destination
(lines 4-12). The process of paving the path starts from
relaxing the distances of all non-paved nodes in the
graph. The process of relaxing (line 5) improves the
distance of each non-paved node to the destination and
updates the predecessor information in each node, until
no distance in the network can be improved. At that point,
the distance of each non-paved node consists of the
distance in hops to the destination multiplied by N, plus
the number of turn-entries that should be inserted into the
network tables for this path. Then the non-paved source
with the shortest distance among all non-paved sources is
selected, and the path is paved from that source to the
destination. The process of paving the path includes
marking the nodes on the path as paved (line 9) and
resetting its distance from the destination to only the
distance in hops multiplied by N (line 10). The distances
of the paved nodes do not include the number of turns to
the destination, since any future path (and related

 4

distances) that will pass through these nodes will not
create any additional routing entries to destination D. The
algorithm terminates when all sources have a paved path
to D.

Figure 6. TT Routing Algorithm- for one destination D

Theorem 3.1:
In each iteration, the TT algorithm selects a non-paved

source S and paves a shortest path from it to D (or to an
already paved path to D) which makes the minimal
number of turns among all other shortest paths from all
other non-paved sources to D (or to an already paved
path to D)1.

Then, for each destination D the routing paths from all
source nodes towards D in the original network are
extracted by backtracking using the predecessor
information in each node. The turns along the paths are
found and the TT entries for each turn are inserted in the
network nodes along the routing paths. In addition, there
is a need to store the direction of the first routing hop for
each destination in the source nodes. We use a source
default direction technique for minimizing the amount of
routing entries in the sources, whereby a default routing
direction (output port number) is stored in the source
router for all packets originating from it. A routing entry
is inserted into the source router table only for
destinations that the first routing step towards them
deviates from the default routing direction in the source.
3.2. XY-Deviation Table (XYDT) Routing

In the XYDT method, an entry in the routing table
towards destination D exists only if the next hop from this
router deviates from the next hop calculated by the X-Y
routing function. We assume that packets carry the X-Y
coordinates of the destination. When a packet enters a
router its next hop is looked up in the table. If it is found
it is routed according to the table. Else, the hardware
function calculates the exit port for that packet.

Clearly, the path that makes the minimum number of
routing steps that deviate from XY would result in a
minimal total number of table entries in the network. In
addition, as already mentioned, we consider only shortest
routing paths. Therefore the XYDT path extraction
algorithm solves the following problem.

1 All proofs are omitted due to space limitations

XYDT Problem definition:
Among all SPs between each S-D pair, select a path

that makes a minimal possible number of routing steps
which deviate from XY routing policy.
XYDT Routing Algorithm:

The algorithm performs a topological sort of the
network nodes by their distance from the destination. For
all nodes at same distance from the destination (h+1) the
algorithm assigns an XY-correlated SP routing step
towards a destination if possible, otherwise it assigns any
other SP routing step. The algorithm is formally described
in Figure 7.

All nodes except the destination are initialized as not-
reached. The destination node is initialized as reached.
The algorithm starts from D and runs iteratively over the
increasing number of hops h. In each iteration, the
algorithm sets the predecessors to the nodes that were
reached in the previous iteration (in h hops from
destination) for later routing path extraction. Then
iteratively, the non-reached nodes that can be reached in
h+1 hops from destination are marked as reached in h+1
hops and their predecessors would be set in the next
iteration. The function set_xy_Predecessor (line 6) is
applied to a newly reached node, setting its XY-correlated
predecessor on SP to destination if it exists; otherwise it
sets any other existing SP predecessor. The algorithm
terminates when all nodes are reached.

Figure 7. XYDT routing algorithm – for one destination D

Theorem 3.2:
Among all SPs between each S-D pair, the XYDT

algorithm selects a path which makes a minimal possible
number of routing steps that deviate from XY routing
policy.

The algorithm in Figure 7 is performed for each
destination. Then, for each destination D the routing paths
from all source nodes to D in the original network are
extracted by backtracking using the predecessor
information in each node. The XY deviations along the
paths are found and the XYDT entries for each deviation
are inserted in the network nodes along the routing paths.
The algorithm does not insert entries in case of deviation
when the following two conditions coexist: (i) the XY-
correlated output port is missing and (ii) the routing path
continues according to the YX regime. Consider the
examples in Figure 8. Applying XYDT in network (a)

1) : () , ()v V Dist v P v nil∀ ∈ = ∞ = ; () 0Dist D =

2) 1{ }, {}, 0;h hR D R h+= = =

3) while (!(: ()v V Dist v∀ ∈ < ∞))

4) foreach node h hv R∈ :

5) set_xy_Predecessor(hv)

6) foreach v’ in 1 hop from hv :

7) if (')Dist v = ∞ : 1 { '}hR v+ ← , (') 1Dist v h= +
8) end if
9) end foreach
10) end foreach
11) 1 1, {}, 1h h hR R R h h+ += = = +
12)end while

1) construct a Turns-Graph TG
2) : () , () , ()v V Dist v Paved v False P v nil∀ ∈ = ∞ = =

3) () ; Dist() 0Paved D True D= =

4) while (!(: ()s Sources Paved s true∀ ∈ =))
5) Relax_not_paved(D,TG)
6) Pick Smin (min',s s Sources∀ ∈):/*Heuristic*/

 () () () ()min min' 'Dist s Dist s Paved s Paved s false< ∩ = =

7) Pave_Path(Smin,D)
8) foreach node v’ on Path:
9) Paved(v’) = True;
10) Distance(v’) = hop_num*N;
11) end foreach
12)end while

 5

results in zero routing entries because proceeding
upwards from node Z is the only choice that also matches
the Y-X regime (doesn’t require an entry). On the other
hand, applying XYDT in (b) results in one entry in the
RT of node Z, since the path contradicts XY.

Figure 8. XYDT Examples: (a) No routing table entries (b)One routing

table entry in node Z towards destination D

3.3. Source Routing for Turning-Points (SRDP)
SRDP is an SR method intended to reduce the size of

the full SR headers that are stored in the sources. It
combines a fixed routing function (we show XY
example) with a partial list of SRDP tags which are only
used at specific nodes, termed deviation points (DP).

SRDP tag is a list of routing commands for each DP
node on the traversed path. The size of the SRDP tag is
two bits for a DP node that implements all ports and less
in cases when some port are missing. DP nodes are
network nodes such that a direction of at least one routing
path through them deviates from the decision of the fixed
routing function (i.e. XY). SRDP algorithm marks these
nodes as DPs and any packet (for each destination) that
traverses them would have to carry an SRDP routing tag
for these nodes. Usually, nodes that become DPs are
routers that do not implement all ports (Z in Figure 8 a) or
routers that lead to a dead-end when using a fixed routing
function, because of a mesh irregularity on the reminder
of the path (Z in Figure 8b).

For example, let us apply the SRDP method on the
example illustrated in Figure 8b. The example shows a
network with two sources S0 and S1 and a destination D.
Applying a traditional SR scheme would result in six
routing tags because S0 and S1 are both three hops from
the destination. Applying the SRDP scheme would reduce
the amount of SR information to only one tag, since the
path from S0 to D can utilize XY function at each hop
and the path from S1 to D deviates from XY in only one
hop (node Z). Therefore node Z is defined as a DP and
requires one SR tag.

Similar to the XYDT, when the SRDP routing method
is used, the path that makes minimum route deviations
from XY results in the minimal total number of DPs and
consequently minimizes the total amount of SRDP
routing headers. Therefore, the problem of SRDP is
equivalent to the problem of XYDT (see Section 3.2).
SRDP Routing Algorithm:

The algorithm is formally described in Figure 9. First
SRDP applies the XYDT algorithm to all destinations in
order to create XY-correlated routing paths between all S-
D pairs (lines 1-6). Then, all routing paths are analyzed,
and nodes that at least one routing step through them
deviates from the predefined routing function are marked
as DPs (line 7). When all DPs are found, SRDP headers
are calculated for all routing paths (lines 8-10).

Figure 9. SRDP routing algorithm for all S-D pairs

4. PERFORMANCE COMPARISON
In this section we compare existing table-based routing

techniques (DR and SR) with the proposed routing
techniques (TT, XYDT and SRDP) in irregular meshes.
We also explore the scalability of the techniques, by
plotting the cost savings versus network size. In addition,
we demonstrate that DR is preferred over SR as the
number of destinations per source grows.
4.1. Evaluation method

A random irregular mesh topology is created by
random insertion of holes into a regular mesh (removing
routers and links). The following assumptions regarding
the traffic pattern (amount of S-D connections) in typical
NoCs are used: Several nodes are hotspots, with a very
high probability to be a destination to other network
nodes, and all others are non-hotspots, with low-
probability of being a destination(not all possible
communication pairs exist).We perform a set of
simulations on several such random networks, while
varying the degree of mesh irregularity (number of holes)
and the probability of a node to communicate to a hot-
spot node. The probability to communicate to a non-
hotspot node is kept low at 0.1. Locations of holes and
hotspots are also randomly generated. The results are
averaged over 40 random systems derived with the same
parameters. The cost of each routing method is derived by
equation(1).
4.2. Algorithm Comparison in Typical NoCs

Routing Cost in 12x12 NoC
(few holes, many hotposts)

69581

90325
99378

26650
33210

2957 3009 2946

43100

75793

107281

21205

40987

61741

18662

0

20,000

40,000

60,000

80,000

100,000

120,000

0.1 0.3 0.5
Communication Probablility for Hotspot

R
ou

tin
g

C
os

t
[b

its
]

DR
TT
XYDT
SR
SRDP

Figure 10. The routing costs as a function of hotspot traffic(few holes,

many hotspots): 34X savings by XYDT; 2X by SRDP

 Figure 10 shows the significant savings obtained by the
proposed hardware-efficient routing methods. It
illustrates a 12x12 mesh with a low number (10) of holes
and many hotspots (50 out of 134 nodes). Among the DR
methods, XYDT cost 34 times less than the original table-
based DR (from 99Kbits to 2.9Kbits, a 97% saving).

1)foreach destination D
2) run XYDT(D)
3)end foreach
4)foreach S and D:
5) Paths <- Extract_Routing_Path(S,D)
6)end foreach
7)Find_and_Set_DPs(Paths)
9)Calc_SRDP_header(Paths)

 6

Among SR methods, SRDP halves the cost of the original
SR (from 43Kbits to 21Kbits). The TT method also
reduces the cost of DR (3.7 times), but it is less efficient
than XYDT. The routing cost of traditional table-based
methods grows considerably with the number of S-D
pairs (connection probability growing), while the cost of
XYDT remains almost constant as it utilizes XY routing
function in most cases, thanks to the regularity of the
network (few holes).

 Figure 11 illustrates a typical NoC with many holes
and few hotspots (50 holes, 10 hotspots). As a result there
are fewer source nodes in the network. The costs of DR
and SR are smaller, since there are less source-destination
pairs. The cost of XYDT grows due to higher irregularity.
The savings obtained by XYDT reach 8 times (87%) of
the original DR. SRDP achieves 2.5 times (60%) savings
of the original SR.

Routing Cost in 12x12 NoC
(many holes, few hotspots)

36806
39720 39996

13497 13874

5070 5151 5662

26258

32194

37393

12735
15944

12083 10738

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

0.1 0.3 0.5
Communication Probablility for Hotspot

R
ou

tin
g

C
os

t
[b

its
]

DR
TT
XYDT
SR
SRDP

Figure 11. The routing costs as a function of hotspot traffic in typical

NoC: 8X savings by XYDT; 2.5X by SRDP

4.3. Scaling of Savings in Routing Cost

Savings vs. network size

23607

166
5464

36595

112960

102
3195

88824

0

20000

40000

60000

80000

100000

120000

0 30 60 90 120 150 180 210 240 270
Network Size [Nodes]

Sa
vi

ng
s

[b
its

]

DR-XYDT
SR-SRDP

Figure 12. Savings vs. network size (90% of DR and 60% of SR) in

typical NoC

We study scaling of cost savings by simulating typical
NoCs with a growing number of nodes (Figure 12). NoC
size grows from 9 to 256 nodes. About 40% of the routers
are missing in each NoC, and about 10% of the nodes are
hotspots. The probability of each node to communicate
with each hotspot is 0.5 and the probability to
communicate with a non-hotspot node is 0.1. The curve
with triangles shows the saving of XYDT against
traditional DR and the circled curve shows the saving of
SRDP against traditional SR. The graph clearly shows
that savings in routing costs grow rapidly (super-linear)
with the size of the network. In all points, the relative
savings obtained by XYDT and SRDP were around 90%

and 60% respectively.
4.4. Scaling of DR vs. SR

Table-based routing suffers from lack of scalability
when the size of the network grows (Figure 12). When
using source routing, scaling is even worse. In SR, in
addition to the linear growth of the table with the size of
the network, the amount of the routing information that is
stored in each entry grows linearly with the length of the
routing path. Therefore SR is feasible only for
communication patterns with a small number of S-D
pairs. This is shown clearly in Figure 13. When the
number of destinations is low, the cost of SR is on-par
with the cost of DR. As the number of destinations grows,
the cost of SR grows faster than the cost of DR. The same
is true for the more efficient SRDP.

Routing Cost in 12x12 NoC
(many holes, high hotspost probability)

41182
48549

54645

5546 7199 8120

38959

62240

82081

15918

27713

38640

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

10 30 50
Hotspot Number

R
ou

tin
g

C
os

t
[b

its
]

DR
XYDT
SR
SRDP

Figure 13. The routing cost as a function of hotspot number. SR

scales poorly with growing number of destinations

REFERENCES
1. ITRS, 2003 edition. Design Chapter.
2. J. Liu et al., “Interconnect intellectual property for Network-

on-Chip (NoC),” JSA, Feb. 2004.
3. A. Andriahantenaina et al., “SPIN: a Scalable, Packet

Switched, On-Chip Micro-network,” DATE 2003, 70-73.
4. E. Bolotin, et al., “QNoC: QoS Architecture and Design

Process for Networks on Chip”, JSA,Feb2004
5. W. Dally and B. Towles, “Route packets, not wires,”

DAC’01, Jun. 2001, pp. 684-689
6. F.Moraes et al,“HERMES: an Infrastructure for Low Area

Overhead Packet-switching NoC,“ VLSI Journal, 2004.
7. K. Goossens et al. “A design flow for application-specic

networks on chip with guaranteed performance to accelerate
SOC design and verication.” DATE, 2005.

8. M. Dall'Osso et al., “XPIPES: a Latency Insensitive
Parameterized Network-on-Chip Architecture For Multi-
Processor SoCs,” ICCD, 2003.

9. D.S. Tortosa and J. Nurmi, “Proteo: A New Approach to
Network-on-Chip,” IASTED CSN’02, Spain, 2002.

10. M. Millberg et al., “The Nostrum Backbone-A
Communication Protocol Stack for Networks on Chip,”
VLSI Design Conf., Jan 04.

11. W. Dally and C. Seitz, “Deadlock-free message routing in
multiprocessor interconnection networks,” IEEE Trans.
Comp., C-36(5):547-553, 1987.

12. J. Van Leeuwen and R.B. Tan, “Interval routing,” The
Computer Journal, 30(4):298-307, Aug. 1987.

13. M.E. Gómez et al., “A Memory-Effective Routing Strategy
for Regular Interconnection Networks,” IPDPS 2005.

14. S. Borkar et al., “iWarp: An Integrated Solution to High-
Speed Parallel Computing,” Proc. Supercomputing, 1988

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

