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1. INTRODUCTION

The continuation of Moore’s law allows the integration of increasing number of tran-
sistors onto a single die and is expected to deliver higher transistor density for the
foreseeable future. This increase in transistor count alongside the increase in pro-
cessor frequency introduces demanding power delivery and energy challenges. Power
delivery is becoming a first-order constraint for high-performance and energy-efficient
systems [Yahalom et al. 2008].

Modern out-of-order processors contain complex structures to exploit instruction-
level parallelism (ILP). Processors such as the 2nd Generation Intel

R©
Core

TM
[Wechsler

2006)] further add vector instructions that allow 256-bit wide data operations. These
result in high-performance processors but introduce very high power demands. The
dynamic range of power—from the lowest activity levels of the processor, such as while
waiting for data return from memory, to the highest power required for simultaneous
execution accessing all data ports with full width data—can be very wide. This wide
dynamic range is further extended by modern power management techniques such as
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Turbo [Charles et al. 2009]. Furthermore, these power transients can occur within a
few core clock cycles, faster than the ability of existing control techniques to respond,
which in turn cause instantaneous high power excursions. Consequently, the power
delivery network (PDN) needs to be able to handle these power excursions by design.

Designing a system for power excursions at the worst-case workload and the highest
possible frequency is impractical. It drives high system cost and is often infeasible.
Such a design would require unacceptable performance compromises and would inflict
power and performance penalties upon all workload periods that consume less than
the worst-case power excursion.

In this study, we present a novel compiler-assisted power management method to
overcome power excursions. We have modified the LLVM compiler [Lattner and Adve
2004] and have extended it with a power model to detect high-power code regions
at compile time. The compiler identifies high- and low power phases in the source
code, and encapsulates them with a short instrumentation code. This code emulates
a new instruction—voltage emergency level (VEL). This instruction should be inter-
preted as NOP on older processors. We have emulated the new instruction using a
short sequence of instructions (five instructions and debug configuration) that trigger
an internal power management event in the Intel Core processor’s power management
unit (PMU). This instrumentation code hints the hardware about potential high power.
The hardware take actions to protect against potential power excursions either by in-
creasing the voltage guardband or lowering the frequency. The default state of the
processor is the high power phase. Applications that have not been compiled with our
compiler are still able to run at a higher power state without causing a malfunction.
The compiled code unleashes the additional power headroom only to code regions that
have been marked as low power. We evaluate the method on a high-end processor us-
ing the SPEC CPU2006 benchmark suite. We have used an offline simulator over trace
data generated by the compiled benchmark runs on the target systems (both power-
constrained and nonconstrained systems). Using the simulator, we have measured up
to 16% performance speedup on a power-constrained system and up to 11.4% energy
savings on a nonconstrained system. Compile-time techniques have inherent limita-
tions in predicting runtime behavior because the actual power consumption varies due
to runtime dependencies such as input data, control flow, and microarchitectural pro-
file. We have demonstrated on our system that these inherent limitations do not leave
much unrealized gain. We have also validated the safety of the implementation and
have identified no escapees that might compromise the execution.

This work makes the following contributions:

—We develop and implement a novel compiler-assisted hardware method to mitigate
voltage emergencies.

—The proposed method requires minimal incremental changes, does not require
widespread design methodologies or architecture changes, and is backward com-
patible.

—We validate the proposed method on the most recent Intel Core processor [Jain
and Agrawal 2013; Hammarlund et al. 2013] and measure promising performance
speedup and energy savings using an offline simulator on the power trace data.

—We make the compiler power profiling tools available for the research community
[Haj-Yihia 2014].

2. POWER DELIVERY CONSTRAINTS

High-performance processors may consume tens to hundreds of amperes at sub-1V.
This demand makes the PDN a highly constrained hardware resource both thermally
and electrically.
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Fig. 1. Simplified RLC model for interconnections between the power supply and the load (processor).

2.1. Maximum Current Delivery

Voltage regulators (VRs) suffer conversion losses primarily because of parasitic re-
sistance on the power field effect transistor (FET) drivers and inductors, as well as
from gate capacitance of the FET switches. These losses translate into heat that might
damage the VR components [Yahalom et al. 2008]. Heat develops relatively slow and
allows control circuits to manage the power consumption [Brooks and Martonosi 2001;
Skadron 2004; Heo et al. 2003] and are not the focus of this study. The maximum in-
stantaneous current that can be delivered by a VR is limited as well. The FET drivers
may be damaged by high current and inductors may reach magnetic saturation, caus-
ing the VR to malfunction. Overcurrent protection circuitry may turn off the VR when
the maximum current is exceeded. These electrical limits occur much faster and are the
focus of this study. The instantaneous high-power events can be handled by building
the PDN for the worst case, even if it is rare [Intel 2011]. If the VR cannot sustain the
highest instantaneous power of the CPU (“power delivery constrained system” in this
article), the CPU need to run at a lower voltage and frequency. In this work, we lower
the frequency only for high power intervals, hence gaining back this lost performance.

2.2. Voltage Droops

A simplified model of power delivery is described in Figure 1. Power distribution sys-
tems are essentially resistive (R) and inductive (L) [Popovich et al. 2008]. These para-
sitic components can cause AC and DC voltage droop that compromise processor’s min-
imum or maximum supply voltage level [Larsson 1998; Popovich et al. 2008]. Voltage
droops may be separated into static IR-drop (resistive noise) and dynamic L·∂I/∂t-drop
(inductive noise). The former is the static voltage drop due to the resistance of the
PDN interconnects and is proportional to the DC impedance of the PDN. The latter is
caused by the inductance and the capacitance in the PDN and represents the transients
of voltage noise when load current changes.

The power delivery system of a microprocessor ideally strives to maintain a low
constant impedance across all frequencies. In practice, this necessitates several stages
of decoupling to optimally flatten the supply impedance across a broad range of fre-
quencies, as shown in the simplified circuit diagram in Figure 1. Decoupling capacitors
in each stage serve as local storage to supply charge to the next stage when needed
quickly. For the core supply, it is generally impractical (in area and in cost) to place
sufficient die capacitance to achieve near-perfect filtering [Yahalom et al. 2008; Reddi
and Gupta 2013]. A practical solution leads to several distinct resonances of the power
supply impedance. When the processor transitions from a low power state to a high
power state in a few clock cycles, the increase in rate of current change (∂I/∂t) results
in voltage droops due to resistive and inductive effects of the power distribution net-
work. As shown later in Figure 4 [Kim 2013], these voltage droops can be categorized
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Fig. 2. Power distribution impedance versus frequency [Intel 2009].

Fig. 3. (a) Simplified PDN model with load line. (b) Load line with different maximum current levels.
(c) Low- and high voltage guardbands based on threshold.

into three distinct droops. These droops correspond to each stage of the decoupling ca-
pacitor present in the network. The first droop is influenced by the on-die capacitance
and package inductance and typically occurs in a time period of a few nanoseconds.
The second droop is influenced by the package capacitance and the socket inductance
and usually occurs in a few tens of nanoseconds. The third droop typically occurs at
hundreds of nanoseconds to a few microseconds time and is influenced by the moth-
erboard capacitors, VR bandwidth, and the resistance of the PDN. The design goal is
to minimize these voltage droops and to maintain low PDN impedance across a wide
frequency range to achieve maximum operating frequency.

The processor’s manufacturer builds the package and die PDN and publishes specifi-
cations and design guidelines [Intel 2009] for the external PDN to keep the impedance
at target load line impedance (ZLL in Figure 2). This study primarily addresses this ex-
ternal portion of the PDN while assuming that the board has been designed according
to manufacturer guidelines [Intel 2009].

Short power (current) conjunctions are handled by the filter capacitor network on
die and package. For a high-power (current) event to be observed by the board and VR,
it needs to last hundreds of nanoseconds to a few microseconds (few hundreds to a few
thousands of core clock cycles), depending on PDN design. With this observation, the
VR and its connection to the processor is shown in the simplified model of Figure 3.
This model describes the load line or adaptive voltage positioning (AVP) [Intel 2009;
Zhang 2001] behavior as it appears to the VR and board. In this model, short current
bursts (at the first and second droop frequencies as shown in Figure 4) are filtered out
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Fig. 4. First, second, and third droops in the time domain [Kim 2013].

by the decoupling capacitors, whereas long current bursts (equal to or below the third
droop frequency) are observed by the board and VR.

AVP keeps the load voltage close to Vmax when the load current is low, whereas the
load voltage will drop to close to Vmin when the load current is at the maximum allowed
level (Imax). In addition to cost reduction of the PDN [Zhang 2001], AVP allows reducing
the power consumption at high loads by reducing the load voltage as shown in Figure 3.
The lowest allowable voltage Vmin is determined by the maximum processor current
(Imax) that can be drawn at a given frequency, as this Imax current determines the initial
voltage guardband that compensates for voltage droop once this high current occurs. If
we can limit or reduce Imax, then we will be able to reduce the voltage guardband to a
lower voltage level for the same current. As shown in Figure 3, the maximum current is
Imax High. If we can limit the maximum current to Imax Low, then workloads with current
between Ileakage and Imax Low can run with voltage lower by δV than the baseline voltage.
This will save power consumption in proportion to the square of the load voltage, and
in power-constrained modes we will be able to use this “freed” power budget to raise
processor frequency and to gain higher performance relative to the baseline. In this
study, we characterize program code regions based on the maximum current that can
be drawn. This is done using the compiler and power model as shown in Section 4.

We focus on the third voltage droop while assuming that the first and second droops
are handled by the on-die and package decoupling capacitors, and load line–based volt-
age optimizations are done by the processor, in addition to adding voltage guardband
at manufacturing time. Some previous studies have also addressed these effects [Reddi
2010a; Miller 2012; Kanev 2010; Lefurgy 2011; Austin 1999; Mukherjee et al. 2002].

A VR that can functionally support instantaneous high current (referred to as an
unconstrained system in this study) still needs to drive a higher steady-state voltage,
which causes square cost in energy. In the unconstrained system scenario of this study,
the processor runs at the highest frequency. During high power phases, when current
excursions might cause a voltage droop, the voltage needs to be increased; at low power
phases, a lower voltage can be maintained. The increased energy is consumed only in
the high power phases, resulting in energy savings compared to a nonprotected system
that consumes increased energy for the entire runtime.

2.3. Voltage Emergencies Prediction

Several studies have addressed voltage emergencies prediction [Reddi et al. 2009;
Joseph et al. 2003; Toburen 1999] for different types of voltage droops. In the following,
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Fig. 5. Voltage droops relative to load.

we explain our method of detecting voltage emergencies using the compiler and power
model.

As explained earlier, this study focuses on the third droops and VR maximum current
violation. To observe third droops, a high-power burst over a relatively long execution
window should be generated. This burst discharges the decoupling capacitor’s network
on die and on package, and the charge stored on board capacitors starts to be used
(the VR is not responding at this stage, as the burst is faster than its bandwidth).
Consequently, we observe a voltage droop at the load voltage, as shown in Figure 5. This
droop is affected mainly by PDN resistance, as high current flows into the processor
load line (from board capacitors to processor), causing high voltage droop (IR-drop).
During system design, an additional voltage guardband is added to nominal voltage
to prevent dropping below minimum operation voltage when such a burst arrives.
The guardband width is relative to the maximum current that can be drawn by the
processor.

Figure 5 provides intuition into the behavior of voltage as seen by the board and VR
while executing high-power instruction over short and long time intervals. We can see
that the short burst of instruction execution causes the voltage to drop slightly. This
burst is sufficiently short so that the network begins to recover before the minimum
operation voltage limit is crossed, due to relatively low current consumption from
the board capacitors. The package capacitor stores sufficient charge to satisfy this
burst, and the low current from the board capacitors is used to recharge the package
capacitors. In the case of a longer burst, voltage drops below the minimum operation
voltage limit, in which case a higher voltage guardband is needed.

To predict a third droop voltage emergency, we predict the maximum current that
can be drawn over a given instruction window. For code regions that consume high
power (current), our framework indicates a higher voltage guardband, whereas for rel-
atively low power (current) code regions, we reduce the voltage guardband, as shown in
Figure 3(b). To determine the high-power code regions, we use a power model (discussed
in Section 4.2). With this power model, we estimate the overall energy consumed by a
fixed length window of instructions and classify code regions power/current levels by
comparing this energy to an energy threshold.

The energy consumed by a fixed window is correlated to current as follows. Energy
is E = P · T. Time T is assumed (the length of the instruction window), and power is
P = V · I. Voltage V is also assumed constant, set by the processor’s PMU for the entire
instruction window. Thus, the total energy E consumed by the fixed instruction window
is correlated to the current I. The length of the instruction window is chosen to be close
to the inverse of the resonant frequency of the third droop of the processor (hundreds
of nanoseconds to a few microseconds). For our system, a window of 500 instructions
has been used.
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Based on this observation, voltage emergency can potentially happen if the total
energy consumed by an instruction window exceeds an energy threshold TH.

3. THE ALGORITHMIC PROBLEM

Following the observation in Section 2.3, the solution for the problem of voltage emer-
gencies can be mapped to solving an algorithmic problem on the control flow graph
(CFG) of the source code. The algorithm objective is to mark safe and unsafe code re-
gions on the CFG. A safe code region is code that does not cause voltage emergencies or
maximum current violations when executed, whereas an unsafe code region is code that
might cause voltage emergencies or maximum current violations. Unsafe code must
run at higher voltage or lower frequency to preserve processor execution correctness
(as discussed in Sections 2.1 and 2.2).

To predict safe code regions, the algorithm ensures that a given instruction window
of K instructions does not consume total energy that exceeds an energy threshold TH.
If that threshold is exceeded by some code region, then that code region is marked with
“+” (must run at higher voltage or reduced frequency). Otherwise, the code is marked
with “–” (can run with nominal voltage and nominal frequency). A CFG with unsafe
code regions marked with “+” and safe code regions marked with “–” is defined as K-TH
legal.

3.1. Problem Formal Definition

Given a directed graph G with cycles (the CFG) such that

—G has a start node s with a path to every other node v, and
—all nodes have weights (energy per instruction),

then a power assignment to G is a labeling of some nodes by “+” (start of high power
phase) and some nodes by “–” (start of low power phase).
We define the following:

—Let Pk = v1 → v2 → · · · → vk be a path of length k, possibly with cycles.
—A node v ∈ G is under the influence of “+” if all paths from s to v contain a node

marked with “+” that is not overridden by a “–” node.
—A node v ∈ G is under the influence of “–” if there is some path from s to v that

contains a node marked with “–” that is not overridden by a “+” node.
—A power assignment to G is K-TH legal if all paths Pk = v1 → · · · → vk of length

k = K with total weights greater than or equal to TH have their first node v1 under
the influence of “+” and the rest of Pk nodes v2, . . , vk are not labeled by “–”.

—The profit of a K-TH legal power assignment is the total length of paths with length
k > K and total weights less than TH that are under the influence of “–”.

Given G as shown, we seek to find the K-TH power assignment with maximal profit
(i.e., maximize the number of instructions that are labeled as low power and hence can
be executed with low voltage or nonreduced frequency).

3.2. K-TH Legal Graph Examples

Consider the graphs in Figure 6 that represent a subgraph of a CFG of some program.
The nodes represent instructions, and the number near a node represents the weight
of the instruction. For K = 3 and TH = 4, these graphs have an optimal assignment
with the labeling (“+” and “–”) shown.

3.3. The Algorithm

We first define the linear solution for the special case that G is a path L of size n > K:
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Fig. 6. Examples of optimal power assignments when K = 3 and TH = 4 for (a) three paths graph (a) and a
loop with three paths (b).

(1) Let sumk (v) be the total sum of the weights of v and the next K-1 nodes following v.
(2) Scan path L in topological order. For each v along the scan:
(3) If sumk (v) = T, then
(4) If v is not labeled with red, then label v with “+”.
(5) Label K-1 successors of v with red and remove any “–”.
(6) Label the Kth successor of v with “–”.

The proposed (nonoptimized) algorithm works as follows:

(1) Start with the CFG of a function.
(2) Label all nodes with blue.
(3) Unroll each loop enough many times until all possible paths inside the loop body

are exposed and the shortest path is of length 2 · K. Let G be the outcome of this
unrolling with a unique start node s and an end node t.

(4) Let cover(G) be the set of all paths from s to t that do not pass through the same
edge more than once.

(5) For each path R ∈ cover(G), we apply the linear solution labeling some of G nodes
with “+” or “–”.

(6) Replace CFG with the labeled graph G.
(7) Before an instruction labeled with “+”, insert an instruction that hints to the

hardware of an entry to the high-power code region (see Section 4.1 for a description
of the VEL instruction).

(8) Before an instruction labeled with “–”, insert an instruction that hints to the hard-
ware of an entry to the low-power code region.

3.4. Algorithm Description and Example

The algorithm objective is to classify code regions into two groups—high power (current)
and low power (current) regions—based on a threshold. For a high power (current) burst
to be observed by the board or VR, it needs to last a few hundreds of nanoseconds to a
few microseconds at least; a short burst is handled by the die and package decoupling
capacitors (as described in Section 2.2).

Consider a sequence of K instructions, where K is chosen as the number of cycles
needed for a high current burst to draw a third droop. We calculate the energy consump-
tion of each instruction (see Section 4.2). For example, a scalar move (mov) instruction
consumes less energy than a vector move (vmovups) instruction. We then estimate
the total energy consumed by the instruction sequence. If the total energy exceeds a
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Fig. 7. Code snippet from the 433.milc benchmark of SPEC06.

threshold TH, then we mark the sequence as high power. This is achieved by inserting
a VEL 1 instruction (described in Section 4.1) at the beginning of the sequence and
a VEL 0 at the end. In the case of an instruction path longer than K, this process is
applied to each subsequence of length K of the path (this is defined as a linear solution
in the algorithm of Section 3.3). VEL is a per-thread indication that reveals the VEL
of the subsequent code arriving at the processor’s PMU.

One of the algorithm’s challenges is to figure out all high-power code sequences (code
sequences of length K whose total energy exceeds the threshold TH). This can be done
by traversing the code CFG and searching for high-power paths of length K. We also
need to consider paths that iterate over the loop body (assuming that the loop body
is less than K); to expose such paths, we use a nonoptimal solution by unrolling loops
enough many times to discover all possible paths of length K that can start at any point
in the loop.

Once loop unrolling is done, the algorithm traverses all paths of each function, start-
ing from the entry basic block and proceeding until the exit basic block. The linear
solution is applied to each such unique path.

The algorithm is exemplified on a code snippet taken from the 433.milc benchmark
of the SPEC CPU2006 benchmark suite [SPEC 2006]. The code snippet is shown in
Figure 7. The benchmark has been compiled with the LLVM compiler using the –O3 flag
(auto-vectorization enabled by default) tuned for “corei7-avx” (for the AVX2 instruction
set [Firasta et al. 2008]).

For every instruction, Figure 7 shows the normalized maximum energy per instruc-
tion (normalized MEPI). It represents the weight of the instruction and estimates
the maximum energy that can be consumed by executing the instruction. Calculating
normalized MEPI is described in Section 4.2.
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Fig. 8. (a) CFG of the code snippet. (b) CFG with the loop unrolled.

Figure 8 shows the CFG of the code snippet before and after loop unrolling. The
upper right-hand side of each basic block indicates the total energy (BB Energy) of the
basic block and the number of instructions at the basic block. We can see that basic
block LBB44_67 (the loop body) consumes much higher energy relative to the other
two basic blocks.

For K = 500 (instructions window) and TH = 9000 (energy threshold), after unrolling
the loop body (LBB44_67) 36 times, we observe that the unrolled loop body has 14 ×
36 = 504 instruction and its energy is 253.4 × 36 = 9,122, which is higher than the
threshold TH. Consequently, VEL 1 is inserted at the loop entry to indicate a high-
power (current) loop, and VEL 0 is inserted at the end (beginning of LBB44_68).

From this example, we observe that the high-power event within the window of
500 instructions is caused mainly by the 128-bit vector instructions (e.g., vmovups). If
we replace each such instruction with a 64-bit instruction (e.g., replacing the 128-bit
“mov” by two 64-bit “mov”), we will at least double the number of instructions at the loop
body while each instruction consumes approximately half the power; this replacement
eliminates the high-power event, but performance is reduced (taking more cycles to
perform the same task).

4. FRAMEWORK

To mitigate voltage emergencies and maximum current violation problem in our pro-
cessor, we have created a framework comprising the following parts:

—VEL instruction emulation
—Power model
—LLVM compiler
—Voltage emergencies detection algorithm.
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Fig. 9. Framework: compiler, power model, and VEL.

The high-level flow of the framework is shown in Figure 9. The program is compiled
with our modified compiler, using a power model to calculate the regions in the gener-
ated code that should be protected against voltage emergencies. The compiler inserts
(“instruments”) the new VEL instruction at the beginning and the end of the region
with appropriate parameters.

4.1. VEL Instruction

The VEL instruction is designed to generate a hint from the software to the hardware.
The instruction takes a floating point operand that hints at the level of voltage emer-
gency that might be drawn by subsequent code. We define the VEL parameter as a
fraction: 0 means that no voltage emergencies are expected (low-power code), whereas
1 means that a voltage emergency is expected to happen after executing the code fol-
lowing the VEL instruction (high-power code). A value between 0 and 1 determines the
code power level relative to high-power code that causes a voltage emergency. In this
study, we only use the values 0 and 1.

The hardware checks if the emergency level reaches 1. When this level is detected,
the hardware can trigger the following actions to prevent voltage emergency:

(1) If possible, raise the voltage to a safe level corresponding to the VEL.
(2) If the voltage cannot be raised (e.g., due to exceeding maximum operation voltage),

the lower the CPU frequency to a safe level.
(3) Throttle the CPU frontend until the voltage or frequency reach the safe level.

If the hint is 0, then the hardware can reduce voltage and increase frequency back to
nominal levels.

The VEL instruction is stored per thread, allowing the hardware to predict volt-
age emergencies across a multithreaded system. With simultaneous multithreading
(SMT) or multicore, each software thread sets its own VEL values. The hardware sums
VEL values of all running threads and determines if a voltage emergency is expected.
Although the proposed method takes multithreading into account, we focus on single-
thread workloads in this study and leave multithreading for future work. Multicore is
discussed further in Section 6.

Implementing VEL as processor hardware is infeasible in this study. Instead, we em-
ulate the VEL instruction by employing instrumentation code and debug knobs of the
processor. Once the instrumentation code is executed under the debug configuration,
the CPU core sends a special internal event to the PMU and reports this event at the
trace port (debug port) as shown in Figure 10. The PMU raises the voltage if the VEL
code is 1 and reduces voltage back to a nominal level when the VEL code is 0. The trace
data is used later by the simulator that reports power and performance gain based on
VEL indications to the PMU.

4.2. Power Model

To determine if a given code segment can produce a voltage emergency, we should be
able to estimate the maximum power of this code. For this purpose, our model indicates
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Fig. 10. VEL emulation flow description.

Fig. 11. Pseudocode for measuring MEPI.

the MEPI. The energy absolute values depend on the frequency, voltage level, temper-
ature, and fabrication process. For our purposes, we maintain normalized MEPI such
that the instruction with minimal MEPI takes a value of 1 and all other instructions
are ranked relative to it. To measure MEPI, we have used a technique similar to that of
Shao and Brooks [2013]. The idea is to develop a microbenchmark that consists of a loop
that iterates the same instruction numerous times. For power measurement, we have
used a CPU energy counter [Hähnel et al. 2012]. This measurement is repeated many
times while randomizing the instruction’s address and data operands. A pseudocode
for measuring MEPI is shown in Figure 11.

We have applied this method to our target processor and have measured MEPI for
each instruction. We then normalized the MEPI values relative to the instruction with
the minimal MEPI as shown in Table I. In our target processor, the memory subsystem
and caches are not sharing the same power supply with the cores; thus, the MEPI
values represent only the energy consumed from the core power supply.

4.3. LLVM Compiler

We used the open source LLVM compiler [Lattner and Adve 2004] version 3.4. Figure 12
shows the LLVM block diagram. Compiler changes were made to the backend.

For our study, two main changes were made to the compiler, which will be discussed
next.
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Table I. Part of Haswell CPU Instructions’ Normalized MEPI

Instruction Type Description Normalized MEPI
FMA256 fused multiply–add 256bit 98.2
Store256 Vector store of 256bit 87.8
Load256 Vector load of 256bit 70.8
Store128 Vector store of 128bit 59.1
Load128 Vector load of 128bit 50.8
FMA128 fused multiply–add 128bit 48.8
FMUL128 Floating-point multiply 128bit 38.0
FADD128 Floating-point Add of 128bit 33.9
IMUL64 Integer multiply of 64bit 10.8
IMUL32 Integer multiply of 32bit 5.7
IADD32 Integer add of 32bit 2.1
MOV32 Registers Move of 32bit 1

Fig. 12. LLVM block diagram.

4.3.1. Power Model Insertion to the LLVM. The LLVM code generator uses the target de-
scription files (.td files) that contain a detailed description of the target architecture.
We added a new field for MEPI. Each type of instruction was mapped to its relevant
MEPI. We have inserted the normalized MEPI values for the X86 target as measured
in Section 4.2.

4.3.2. Code Generator Pass. We have implemented a new machine function: LLVM Pass.
The pass was inserted to the Late Machine Code Opts stage as shown in Figure 12.
The pass implements an algorithm for detecting code regions with potential voltage
emergencies. The pass works on the machine code CFG and uses the power model. The
algorithm is described in Section 4.4.

4.4. Detection Algorithm

We apply a simplified variant of the algorithm described in Section 3. The simplified
algorithm does not find the optimal profit but keeps code size similar to the original
code. The simplified algorithm works as follows:

(1) Start with the CFG of a function.
(2) Duplicate CFG into G. Unroll each loop several times until all possible paths inside

the loop body are exposed and the shortest path is of length 2 · K.
(3) Let cover(G) be the set of all paths from s to t that do not pass through the same

edge more than once.
(4) For each path R ∈ cover(G), apply the linear solution and label some of the G nodes

with “+” or “−”.
(5) For each loop LP in G, if LP contains a node marked with “+”, then go to the original

graph CFG and mark the preheader of LP with “+” and the exit nodes with “−”.
(6) For all paths outside loops, apply the linear solution.
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The algorithm outputs all instructions that were labeled by “+” or “−”. Apply the
following to labeled instructions:

—Before an instruction labeled with “+”, insert the VEL 1 instruction.
—Before an instruction labeled with “−”, insert the VEL 0 instruction.

5. RESULTS

5.1. System under Evaluation

The experiment for this method takes place on a platform that contains two systems—
the Target system and Host system (Figure 10). The Target system is the computer that
runs the benchmark, containing a 4th Generation Intel Core processor i7 code name
Haswell 4900MQ. The Host system is a computer used to collect the measurement data.
The Target system has been equipped with a National Instruments data acquisition
(PCI-6284) connected to the Host system for data collection. A debug port (trace port) is
connected from Target to Host. Through this port, the Host collects the VEL instruction
events, system-on-chip components power, and workload performance scalability with
frequency (a value between 0 and 1, which is defined as the percentage of performance
increase over the percentage of frequency increase). Sampling of voltage, current, and
trace port data is carried out at a rate of once per 1ms. A subset of the SPEC CPU2006
benchmarks [SPEC 2006] has been used for power and performance measurements.
Benchmark scores are the metric of performance.

The SPEC benchmarks have been compiled with the modified LLVM compiler with
–O3 flag (auto-vectorization enabled by default) tuned for “corei7-avx” (for the AVX2
instruction set [Firasta 2008]).

The parameters for the detection algorithm, K and TH, have been determined using
a search method. We have divided the instructions into two groups based on their
MEPI. We search for the voltage level that allows 70% lower-power instructions to
pass without voltage emergencies, assuming the execution of each instruction in an
infinite sequence. Once this voltage level is determined, we check the upper 30% group
of the instructions. We run the instruction with the lowest MEPI (that causes voltage
emergency) in a sequence. The length of shortest sequence that still causes a voltage
emergency is K, and TH is the energy consumed by that sequence.

The modified LLVM compiler generates the code, including instrumented code, for
VEL instruction emulation. Compilation time is increased by 8% on average relative
to baseline due to the long time for the detection algorithm. The instrumentation code
is five instructions long and has no impact on actual benchmark performance. We have
run all benchmarks with a core frequency of 2,500MHz. A plot of the maximum power
of each phase together with the VEL marker state (Figure 13, where the smaller graph
is a zoom-in) demonstrates how high power phases are marked by our compiler.

We have created an offline simulator that scans through the captured traces and
applies power management policy (i.e., frequency and voltage change) to each phase.
Increased voltage and frequency result in increased power and shorter runtime of the
interval. We have used Haswell power performance characteristics for power calcu-
lations, frequency transition cost, and the actual benchmark performance scalability
with frequency.

5.2. Scenarios Evaluation

Two scenarios have been evaluated:

5.2.1. Power Delivery Constrained System. The workload is limited by instantaneous cur-
rent. As a result, it needs to run at a lower frequency that guarantees safe operation.
The compiler marks safe intervals where the processor can run at higher frequency
and performance (Table II, Performance Gain column).
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Fig. 13. Power trace and VEL marker for the 464.h264ref run.

Table II. Benchmarks Runs Results

Name Time Protected Performance Gain Energy Savings
464.h264ref 99.6% 0.8% 0.3%
403.gcc 39.0% 9.1% 6.7%
447.dealII 24.8% 10.7% 8.3%
470.lbm 0.0% 12.0% 11.4%
433.milc 0.0% 13.7% 11.1%
429.mcf 0.0% 14.0% 11.0%
444.namd 0.0% 14.0% 10.9%
483.xalancbmk 8.3% 14.4% 10.3%
471.omnetpp 0.0% 14.7% 11.0%
450.soplex 0.0% 15.1% 11.3%
458.sjeng 0.0% 15.2% 11.0%
462.libquantum 0.0% 15.6% 11.4%
445.gobmk 0.0% 15.8% 10.9%
473.astar 0.0% 16.0% 11.0%
456.hmmer 0.0% 16.0% 11.1%
Total 18.0% 12.5% 9.7%

We observe that 75% of the benchmarks do not experience high power excursion risk
and can run at a higher frequency for the entire runtime. The most gaining bench-
marks have frequency-sensitive bottlenecks as classified by top-down analysis [Yasin
2014]. For instance, 456.hmmer and 462.libquantum are “core bound,” meaning that
they are limited by the throughput of the core execution units; 445.gobmk, 458.sjeng,
and 473.astar suffer much due to recovery from mispredicted branches (how fast the
frontend can fetch a corrected path is frequency sensitive when the instruction set is
cache resident). The rest of the workloads gain performance only during safe intervals.
The weighted average performance gain is 12.5%.

5.2.2. Nonconstrained System. The PDN can supply high current excursions, but the
voltage has to be increased to compensate for voltage droops over the serial resistance.
This contributes to increased energy consumption (Table II, Energy Savings column).
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A weighted average of 9.7% with up to 11.4% energy saving is achieved by lowering
voltage during the safe intervals.

5.3. Technique Accuracy

Our method identifies potential power excursions at compile time. The actual power
consumption is a function of runtime behavior, particularly data dependencies, control
flow, and stalls due to memory access patterns. This means that the code region marked
by the compiler as high power may not draw high power due to actual parameters at
runtime. For example, when one of the arguments of the multiply instruction (mul)
is zero at runtime, it consumes much less power than expected by the compiler. The
compiler uses the worst-case power model on instructions (MEPI).

Two types of incorrect predictions can occur. A false positive happens when we mark
the high power phase while the actual runtime power is low. A false negative happens
when a high-power event is missed. A false negative is critical because it can allow
power excursions while the voltage is not configured for high power, possibly leading
to runtime errors. We scanned the power traces and did not identify any such error in
our test suite. It seems that false-negative accuracy of our technique is 100%.

A false positive is a noncritical event and translates into a less than perfect gain.
Scanning through the power traces, we have verified that all phases with high power
marking contain at least one high-power sample. Within these marked high power
phases, we identified 5.9% samples (1.1% of the total runtime) that consume low power.
Hence, the accuracy of our technique is 94.1%.

6. RELATED WORK

Hardware techniques. Researchers have focused on hardware mechanisms to charac-
terize, detect, and eliminate voltage droops [Choi et al. 2005; Grochowski et al. 2002;
Intel 2011]. Although these solutions have been effective at reducing ∂I/∂t [Choi et al.
2005] to the operating range of the processor, the executing program incurs performance
penalties as a result. The hardware solutions are based on voltage control mechanisms
that detect soft threshold violation by the processor and trigger a fast throttling mech-
anism for the processor to reduce the ∂I/∂t effect. The hardware mechanism makes
sure that voltage will not reach hard emergency voltage violation, and hence there will
be cases of false alarms in the hardware mechanism. Other architectural techniques
utilize some type of detection and recovery mechanism to deal with errors [Austin
1999; Gupta et al. 2008; Mukherjee et al. 2002] and use redundant structures or re-
play mechanisms to detect and correct errors. All of these techniques incur additional
complexity or hardware overhead.

Some researchers have explored detecting and mitigating errors via circuit tech-
niques [Ernst et al. 2003; Ernst et al. 2004]. The research using Razor systems assumes
that errors will occur and inserts redundancy within latches. Although effective, Razor
requires significant new hardware and a completely different design methodology that
fundamentally changes the way in which processors are designed.

Our work uses a relatively simple hardware mechanism, and the tuning process is
relatively shorter than other methods discussed earlier. In addition, for detecting the
third droops, the compiler approach provides a much more visible window relative to
hardware mechanisms for detecting potential voltage droops.

Software and compiler. A software approach to mitigating voltage emergencies was
proposed by Gupta et al. [2007]. They observe that a few loops in SPEC benchmarks are
responsible for most emergencies in superscalar processors. Their solution involves a
set of compiler-based optimizations that reduce or eliminate architectural events likely
to lead to emergencies such as cache or TLB misses and other long-latency stalls. Reddi
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et al. [2010b] proposed a dynamic scheduling workflow based on a checkpoint and re-
covery mechanism to suppress voltage emergencies. Once a code part causes a voltage
margin violation, it is registered as a hotspot, and NOP injection and/or code reschedul-
ing is conducted by the dynamic compiler. This flow is independent of architecture or
workload. However, users should choose the initial voltage margin properly to limit
the rate of voltage emergencies. Reddi et al. [2010a] evaluate voltage droops in an
existing dual-core CPU. They propose designing voltage margins for typical instead
of worst-case behavior, relying on resilience mechanisms to recover from occasional
errors. They also propose co-scheduling threads with complementary noise behavior to
reduce voltage droops.

Some researchers have discussed the impact of compiler optimization on voltage
variations. Kanev et al. [2010] showed that compiler-optimized code experienced a
greater number of voltage droops, and in certain cases, the magnitude of the droops
was noticeably larger as well. In a resilient processor design, this can eventually lead
to performance loss for the more aggressively optimized case. In that work, the authors
used a 45nm chip that contained only 3% of the original package decoupling capacitor
to imitate voltage droops at modern 22nm processors. That work focused on first and
second droops, whereas our work, although we also address the compiler, does not
optimize the code but rather adds hinting instructions and focuses on the third droop.

Toburen [1999] presented compilation techniques to mitigate the voltage fluctuations
on the VLIW architecture. The author proposed a complier scheduling algorithm to
eliminate the current spikes resulting from parallel execution of instruction on high-
energy function units during program execution by limiting the amount of energy that
can be dissipated in the processor during any one core cycle. That method targeted
the high- and mid-frequency voltage droops, whereas our work targets the third droop.
Further, Toburen’s method is suitable for VLIW architecture, whereas for superscalar
out-of-order architecture, the scheduling at compile level affects the execution order at
the processor to a lesser degree.

Multicore. As most of today’s systems have multicore processors, and in most of these
processors the cores share the same PDN, increasingly, one core can either construc-
tively or destructively interfere with activity of the other cores [Miller et al. 2012].
Constructive interference is bad because it amplifies voltage variation, whereas de-
structive interference is good because it dampens voltage variation. Reddi et al. [2011]
measured and analyzed droops on a two-core Intel system and discussed constructive
and destructive interference between processors and the difference in droops between
average and worst-case scenarios. This information was used to design a noise-aware
thread scheduler to mitigate some of the ∂I/∂t stresses in the system.

Miller et al. [2012] showed that multithreaded programs such as those in the PAR-
SEC suite have synchronization points that could align the threads and produce oppor-
tunities for high ∂I/∂t stress. They used fluctuations in average power estimated (Intel
RAPL interface [Intel 2014]) at intervals of 1ms on hardware as a proxy for expected
∂I/∂t variations. This may have captured third droop excitations. They also observed
that barriers could cause destructive core-to-core interference during the execution of
multithreaded applications. Their work eliminated voltage emergencies by staggering
threads into a barrier and sequentially stepping over it. Our work predicts the voltage
variation based on average energy of assembly instruction over a known interval. We
rely on the PMU to handle the alignment cases by setting the appropriate voltage level
based on the number of cores having a high-power event.

Kim et al. [2012] measured and analyzed ∂I/∂t issues on multicore systems. They
built a tool to develop and automate a ∂I/∂t stress-mark generation framework.
They consider first and second droops that can occur in a multicore and showed that
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alignment occurred relatively often when threads consisted of short execution loops.
Our work focuses on third droop and maximum current violation.

More recently, Lefurgy et al. [2011] addressed active monitoring and managing of
the voltage guardband based on the use of a critical path monitor (CPM). The CPM
monitors the critical pathways in the processor and increases the voltage guardband if
the CPM detects potential emergencies. Although a CPM is a very effective mechanism,
it requires additional hardware, monitoring mechanisms, and tuning of the CPM to
detect and correct possible errors. In addition, that technique involves many false
alarms, as it looks at a narrow window of execution cycles to predict third droop,
whereas third-level droops develop at hundreds to thousands of cycles. Our method, on
the other hand, considers a wider window of instructions, as it is done at the software
level of the compiler.

Voltage emergency prediction. For voltage emergency prediction, Reddi et al. [2009]
proposed a solution for eliminating emergencies in single-core CPUs. They employed
heuristics and a learning mechanism to predict voltage emergencies from architectural
events. Based on the signature of these events, they predicted potential voltage emer-
gencies and showed that with a signature size of 64 entries, they were able to reach
99% accuracy. When an emergency was predicted, the execution rate was throttled,
reducing the slope of current changes. That method is good for predicting first and
second droops, as it looks at a short window of execution cycles (a few nanoseconds to
a few tens of nanoseconds), whereas our approach predicts third voltage droops. As we
work at the compiler level, we are able to look forward at hundreds of cycles ahead.
This yields higher accuracy for predicting third droop relative to hardware solutions
with a narrower window that look at the beginning of a sequence of instructions that
might cause a droop.

Joseph et al. [2003] proposed a control technique to eliminate voltage emergencies.
The technique is based on a sensing mechanism at the circuit level that feeds the
control actuator. The actuator temporarily suspends the processor’s normal operation
and performs some set of tasks to quickly raise or lower the voltage back to a safe level.
This work uses a circuit mechanism to detect voltage emergencies. It may be accurate
for first and second droops but is not accurate for third voltage droop because third
droop frequency is slow (hundreds of nanoseconds to a few microseconds).

7. MULTICORE AND MULTITHREADS HANDLING

Our work predicts the voltage variation based on average energy of assembly instruc-
tion over a fixed interval. This method estimates the maximum current level that can
be drawn at this interval. The estimated level per thread is sent (with the VEL in-
struction) to the PMU as shown in Figure 10, and the PMU handles the alignment
cases by setting the appropriate voltage level based on the number of cores having a
high-power event. The voltage guardband is a function of the number of cores sharing
the same VR that reports high VEL. This is because at a given time interval, the total
current that is consumed from a shared VR between N cores equals the sum of current
consumption by each core. For example, if one core has high VEL, then the PMU adds
an additional 10mV voltage guardband to the nominal voltage, whereas if there are
three cores that reports high VEL, then the PMU adds a 30mV voltage guardband to
the nominal voltage. For the guardband calculation, the PMU needs to know the PDN
topology of the processor, the number of cores in the system, and which cores share the
same VR or have a separate VR.

In SMT, instructions from more than one thread can be executed in any given pipeline
stage at a time. In an SMT case, each software thread will set the VEL (a value
between 0 and 1 based on running code estimated energy), and the PMU sums the
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VEL value from both threads, determining if a voltage emergency is expected based
on the threshold. Although the developed method takes multithreading and multicore
into account, we focus on single-thread workloads in this work and save multithreading
experiments for future work.

8. CONCLUSIONS

Power delivery is a significant constraint for high-performance CPUs. Building the
PDN for the worst-case power excursion is costly and energy inefficient. We devel-
oped a novel compiler-assisted method that identifies code intervals with high power
excursion risk. This method runs on a standard CPU design with minor addition to
existing power management techniques, and it does not require special design tech-
niques or significant architectural changes as proposed by previous works. It is limited
to identifying power excursion risks. These power excursions may or may not materi-
alize at runtime, depending on actual data, control flow, and cache misses. We have
implemented the method through the LLVM compiler and have tested it on a 4th Gen-
eration Intel Core processor. We have demonstrated performance gain of up to 16%
for a power delivery–constrained platform and up to 11.4% energy savings for a power
delivery–capable platform. We have validated the implementation safety and found no
unidentified power excursions. The fundamental limitation of compile-time technique
was insignificant, falsely marking only 1.07% of the low power intervals as having high
power risk.
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