
Adaptive Synchronization

Ran Ginosar and Rakefet Kol

VLSI Systems Research Center, Technion--Israel Institute of Technology, Haifa 32000, Israel

ran@ee.technion.ac.il

Abstract

Delay variations are typically accounted for by increasing cycle time margins. Adaptive

Synchronization eliminates this on inter-modular interfaces in very large, high performance

chips. The chip is divided into multiple smaller synchronous modules or clock domains. Multi-

synchronous hierarchical clocking provides the same frequency to all modules, but does not

maintain any particular phase. Adaptive synchronizers compensate for the time-varying inter-

modular clock and data phases, and out-perform conventional synchronizers. A novel

modeling approach to delay variations is introduced to support Adaptive Synchronization.

Introduction

On-chip clocks in high performance processors are typically distributed over a balanced tree

network, where the delay from the root to each and every leaf is the same [1], [2], [3]. This

provides for reliable synchronization of on-chip interconnects. However, achieving balanced

clock trees in future high performance chips integrating large systems (of four billion

transistors and operating at close to 20 GHz [4]) is becoming more difficult and less effective

as delay variations grow in proportion to the clock cycle. This motivates a search for

architectures that do not rely on a single, zero skew clock available for the entire chip. A fully

synchronous clock can be maintained within smaller modules, but inter-module timing may be

controlled less tightly.

To accommodate faster clocks and larger dies, contemporary synchronous chips are divided

into multiple clock domains, where each domain maintains its own single synchronous clock.

How many clock domains are needed? As clocks become faster, the distance traveled by a

data signal during a single clock cycle becomes progressively shorter. We define effective

wavelength as the distance propagated by the electric signal on metal interconnect during one

clock cycle, where by 'propagated' we mean the ability to drive a gate rather than the mere

electromagnetic wavefront propagation. At typical such driving-capability propagation of c/40

(c=speed of light) and with a 10 GHz clock, the effective wavelength is only 0.75mm.

Assuming a clock domain no larger than 0.5x0.5 effective wavelength, a 36x36 mm
2
 die

would need about 10,000 clock domains to maintain proper synchronous operation. This is

obviously a difficult challenge (a similar analysis is given in [5]).

Treating on-chip data interconnects between separate modules or clock domains as either

asynchronous or source-synchronous inputs and synchronizing them at the receivers has been

proposed for such systems. Methods similar to inter-chip serial link synchronizers [6], [7], [8]

could be used but the related latency overhead may be too high for on-chip interconnects.

Synchronization is statistically subject to failures and metastability; when the data and clock

switch approximately at the same time, synchronization typically takes longer to resolve and,

in rare cases, fails completely [6]. To reduce failure probability, multiple synchronizer stages

are employed in series, incurring an added latency of at least one and often more than one

clock cycles (Fig. 1). Typically, synchronization resolution requires a certain number of gate

delays [7]; while clock frequencies increase with the advent of technology, gate switching

speeds do not scale as fast, and the number of gate delays per clock cycle diminishes. Thus, as

technology progresses, more clock cycles are needed to obtain the same level of

synchronization. In addition, when successive delays are correlated (as explained below),

normal synchronization schemes are subject to repeated failure patterns: Once data and clock

coincide, they are highly likely to conflict again in the following cycle.

R
E

G

Rdy

R
E

G

En

LOCAL

CLOCK

Fig. 1: Bundled data synchronization. The Ready signal is assumed

stable no later than one clock cycle after it is first latched. It is used to

enable the second data latch. If this is too short, additional synchronizer

stages would be required.

Pipeline synchronizers [9], [10], a proposed alternative to regular synchronizers, incur

substantial latency. In such a scheme, the multiple stages of synchronization are distributed

over a number of pipeline stages. However, pipeline synchronization is not a practical method

for large chips: Mixing computational pipelines and synchronization is incompatible with

structured design methodologies and with IP core-based SOC (System on Chip) designs.

Others propose to tune the clocks [11], [12], [13], [14]. According to that scheme, the clock is

locally generated by each module, and an arbiter occasionally defers the clock if the incoming

data switch simultaneously with the clock. There are two problems associated with stoppable

clocks. First, the frequency of a locally generated, non-crystal based clock varies with

temperature and supply voltage, and thus the chip cannot be specified at one dependable

frequency. This drawback may or may not matter, depending on the application.

The other problem is more severe: In large systems, many modules intercommunicate with a

large number of other modules, say 10. When one incoming bus faces a data-clock conflict,

the clock is shifted a bit. This shift may cause a new conflict with another data bus incident

upon the same module, and the clock is shifted yet again. This new shift may now cause yet

another conflict, and so on. Depending on the number of incident buses and the clock shift

resolution, this problem may evolve into a cyclical never-ending dance of the clock.

It turns out that for many on-chip and MCM applications, even when tight clock phase control

over the entire chip becomes impractical, the relative timing of nearby modules or clock

domains is not asynchronous but is highly correlated. We propose that tuning of data

interconnects (rather than the clock) addresses these issues. A hierarchical multi-sync clock

abandons phase control at the high level, and adaptive synchronization provides for efficient

on-chip communications.

Delay Variations and Correlation

We propose to model delay variations as follows. The delay of any specific gate or wire is

sampled repeatedly over time. The resulting function of time is Fourier-transformed, yielding

a frequency characterization of the variation of the delay. Such a presentation is shown, on a

logF scale, in Fig. 2. Typical clock and data delay variations are separated into four distinct

types in Fig. 2:

• Skew comprises all intra- and inter-chip delay non-uniformities that are constant over

time. They result from variations in Vth and geometric dimensions. Due to such

statistical variations, two different gates which are drawn the same in two different

places on the chip may end up manufactured with slightly different dimensions, and

thus may incur different delays. The same fact is true for one specific gate

implemented in two different samples of the same chip. Once fabricated, these delay

differences remain unchanged for the life of the chips. Since the skew never changes,

it is represented by the δ function at DC (the origin of the graph in Fig. 2). Note that

we restrict the meaning of the term 'skew' relative to its common use.

• Jitter relates to fast (cycle-to-cycle) delay variations. Delays vary between cycles

mostly due to power supply coupling: As some gates switch, they draw switching

current from the supply lines, leading to momentary decrease in voltage near the

gates. This voltage reduction, in turn, results in slower switching speeds of nearby

gates which are fed by the same supply lines. Since not all gates switch every cycle,

the exact voltage functions vary from cycle to cycle and from place to place. Another

closely related source of jitter is instantaneous temperature: Excessive switching of

some gates causes a brief increase in substrate temperature around them, and this in

turn may slow down nearby gates. While these phenomena are data-dependent and

could, in principle, be predicted, they are so complicated that it makes much more

sense to treat these variations as random processes, namely jitter. Additionally, some

jitter is attributed to capacitive and inductive cross-talk. To address the jitter

problem, it is first estimated and then a suitable safety margin is added to all

switching times. In other words, although a full clock cycle could theoretically allow

a certain number of gate delays, we usually design synchronous circuits with only a

smaller number of gates in series to allow for the jitter uncertainty. Since it is

impractical to construct circuits with margins beyond, say, 30% of the total clock

cycle, the designer always insures that the jitter is kept well under such limits. This is

ensured by expensive power buffering, by geometric design rules, and by limiting the

clock frequency of the circuit; all measures unfortunately limit circuit performance.

The constrained jitter appears as a constant level over all frequencies in Fig. 2.

• Drift is similar in principle to jitter, but it relates to much slower variations of delay.

As computations vary, e.g. when a processor starts to execute a floating point

computation that exercises the floating point unit intensively, the average

temperature around that unit may rise a bit and the average supply voltage may drop

a bit. These changes could, in turn, affect the delay of other nearby units. Once the

processor changes its computing pattern, e.g. completes the floating point subroutine,

local temperature and voltage may resume their previous values, resulting in another

delay shift. Such slow variations tend to be cumulative over a large number of cycles,

because the voltage and temperature factors affect unidirectional changes. This is in

contrast to jitter, which is not correlated from cycle to cycle. Thus, over a large

number of cycles, the drift may accumulate into significant changes of delay. This

fact is reflected in the triangular shape of the drift in Fig. 2.

• Another source of delay variation consists of very fast switching and clock

harmonics. These variations are typically much harder to characterize and are beyond

the scope of this treatment. They appear as the dashed line beyond the clock

frequency in Fig. 2.

While jitter is constrained to much less than a clock cycle, skew and drift may present delay

variations of dangerous dimensions, and their relative threat increases as the clock cycle

decreases. Adaptive Synchronization is designed to counter those two sources of delay

variation on intra-chip communication links. Since skew is fixed in time and drift is band-

limited to FD (Fig. 2), it is sufficient to apply adaptation at a rate that is slightly higher than

FD. In applications in which drift is insignificant, one-time power-up adaptation may be all

that is required to account for skew.

Multi-Synchronous Clocking

In the proposed method, the system is decomposed into modules which are sufficiently small

(say, one million transistors) so that they may comprise individual clock domains (Fig. 3). A

global network distributes a single multi-synchronous global clock to all modules. While the

exact same frequency is provided to every module, the relative phase is undetermined. Since

the global clock network needs not guarantee the phase, it may be designed to conserve power

and area. Each module regenerates its local clock, by reshaping and (if necessary) frequency-

multiplying the global multi-sync clock. While the frequency of the local clock is the same as

in other modules, its relative phase is a-priori unknown, and may change over time. The

relative phases are affected by delay variations, as discussed above. Since the skew is constant

and the drift changes very slowly, we say that (up to jitter) the relative phases are stationary.

In other words, we can identify relatively long periods of time over which the relative phases

may be considered fixed. We take advantage of this fact with Adaptive Synchronization.

Log F

Delay Variation

(Log clock cycles)

0.1

10

1

FC

Skew

Drift

Jitter

FCFD

Fig. 2: Frequency-domain representation of characteristic delay

variations, measured in units of the clock cycle. Skew is constant over

time, jitter is amplitude-limited to a small portion of the clock cycle, and

drift represents band-limited cumulative variations.

Adaptive Synchronization

Modules communicate over data channels, which provide Data Ready (Rdy) signals. The

clock delays DA , DB and the data delay DAB in Fig. 3 are all stationary, and all clocks are of

the same frequency. Thus, the arrival time of the Rdy signal at module B is typically correlated

with the receiver's clock, CB.

CLOCK

CB

MODULE

A

MODULE

B

DA
DB

RDY

DELAY = D
AB

CA

Fig. 3: Multi-sync clocking

The shaded interface of Module B is detailed in Fig. 4. Each data input bus Di is equipped

with an Adaptive Synchronization (A/S) circuit that detects the particular phase difference

between Rdyi and the local clock. A number of phase detection and locking circuits may be

used ([6], [15]), and they typically employ low pass filtering over multiple cycles to smooth

out metastability. A simple A/S circuit is shown in Fig. 5a. Data / clock collisions are

detected by the four ME elements in Fig. 5b. Given that the delay lines are d sec. long, the

circuit detects when | t(Data) - t(Clock) | ≤ d for both rising and falling data edges. The ME

elements are shown in Fig. 5c. The circuit also contains a digital delay line (Fig. 5d)

controlled by the counter. To start an adaptation cycle, the controller resets the counter. As

long as there is a collision, the counter increases the programmable data delay. If we design

the conflict threshold d to be close to, but slightly less than, half a clock cycle, we can

guarantee that all data transitions are positioned as far away from clock transitions as possible,

and typically at the center of the clock cycle, so as to minimize jitter sensitivity.

 A/S

D
1

CLOCK

SYNC

MODULE

RDY
1

...

RDY
M

 A/S

D
M

Fig. 4: Adaptive Synchronization

Adaptation is achieved by means of a training session as follows. Normal operation of the

chip is suspended. The sender side of each data bus generates a sequence of dummy

transmissions on the RDY lines. The receiver side performs adaptation until the receiving

delay is adjusted as above. Normal operation resumes after a predefined period of time,

assuming all adaptations are complete.

Adaptation can be performed according to one of the following five modes.

• One time adaptation at test / burn-in right after manufacture of each chip. This mode

requires some form of permanent setting of the delays. It provides adjustments of

skew only.

• Power-up adaptation is performed once power is applied. Only skew is accounted

for, and no permanent setting is required.

DIGITAL DELAY LINE

UP

COUNTER

CONFLICT

DETECTOR

UP

LOCAL

CLOCK

CNTL

RST

DATA

RDY

DELAYED

DATA

(a)

ME

ME

ME

ME

data

clock

data

clock

data

clock

data

clock

conflict

R1

R2

R1

R2

R1

R2

R1

R2

G1

G2

G1

G2

G1

G2

G1

G2

(b)

R1

R2

G2

G1

(c)

S0 S1 S2 S3

IN

OUT

S0 S1 S2

(d)

Fig. 5: Adaptive Sensitivity implementation (a), the Conflict Detector

(b), a Mutual Exclusion element (c), and the Digital Delay Line (d).

• Periodic training sessions. In this mode, the normal operation of the chip is

suspended and an adaptation session is called for at a rate slightly higher than FD (the

drift cut-off frequency, Fig. 2). This mode compensates for both skew and drift

variations.

• Triggered training sessions. Once adjusted, the various phase detectors can also serve

to detect and flag suspected variations as they develop. Since drift is cumulative, the

phase detectors show a growing phase difference. A threshold can be employed to

trigger a training session once any one of the phase detectors has detected a phase

variation beyond the preset threshold. This scheme optimizes the use of Adaptive

Synchronization in an adaptive manner.

• Continuous tracking -- the A/S mechanism may be allowed to continually adjust the

delays, avoiding accumulation of any drift, simultaneously with normal chip

operation. An up/down counter is used in Fig. 5a instead of the up-counter. In this

mode, no training sessions are needed, but it may require higher power dissipation

than the other ones.

Stochastic analysis shows that failure probability of A/S is substantially lower than standard

synchronizers [16]. An asynchronous signal has non-zero probability of coinciding with the

clock, leading to non-zero failure probability. Adaptive Synchronization accounts for skew

and drift variations, but is still subject to jitter. Since A/S tunes the data transition to the

middle of the clock cycle (about one half of a clock cycle from each sampling clock

transition), and since jitter is restricted to well below one half a clock cycle, the probability of

clock / data conflict is substantially lower than in the asynchronous case.

Discussion

A/S adapts the circuit to the delay variations, rather than accounting for them as margins

added to the clock cycle. On average, it incurs lower latency than standard synchronizers (one

half cycle, as opposed to one or more cycles), thus resulting in faster chips. It increases the

yield with less compromise of performance. A/S helps contain the clocking problem: Most

parts of the chip are designed with a simple clocking scheme (constrained into clock

domains), and only limited portions (at module / domain interfaces) need to be more complex.

A/S is expected to scale towards high frequencies. It is applicable to both single chips and

some MCM systems. The phase detection circuits may also serve as temperature and voltage

shift alarms.

A/S implies globally asynchronous, locally synchronous architecture (GALS [14], [16], [17]):

An input cannot be expected on any particular cycle. Rather, the cycle of any particular arrival

may change between chips and over time. The architecture must provide for this by tagging

the data [16], [18].

The main cost of A/S lies in the adaptation circuits. About 1000 transistors are required per

Adaptive Synchronizer, resulting in 1% overhead per 1M transistor modules with ten input

busses. Time (for training sessions) and power overheads are negligible: A typical training

session should converge on all interfaces well within 1,000 clock cycles. Assuming FD <

1MHz for a 10 GHz locally-clocked chip, the total time overhead is 0.1%. Upper bound on

power overhead can be estimated by (Transistor count overhead) x (Time overhead)=10
-5

.

Acknowledgement

Discussions with Charles Dike and others at Intel are gratefully acknowledged.

References

[1] D.W. Bailey and B.J. Benschneider, "Clocking Design and Analysis for a 600-MHz

Alpha Microprocessor," IEEE J. Solid-State Circuits, 33(11), pp. 1627-1633, 1998.

[2] E. Friedman, Clock Distribution Networks in VLSI Circuits and Systems, New York:

IEEE Press, 1995.

[3] P.J. Restle and A. Deutsch, "Designing the Best Clock Distribution Network," Proc.

1998 Symp. on VLSI Circuits, pp. 1-5, 1998.

[4] Semiconductor Industry Association. International Technology Roadmap for

Semiconductors: 1999 edition. Austin, TX: International SEMATECH, 1999

(http://www.itrs.net/1999_SIA_Roadmap).

[5] D. Sylvester, K. Keutzer, "A Global Wiring Paradigm for Deep Submicron Design,"

IEEE Trans. CAD IC&S, 19(2), pp. 242-252, 2000.

[6] J. Jex and C. Dike, "A fast resolving BiNMOS synchronizer for parallel processor

interconnect," IEEE JSSC 30(2), pp. 133-139, 1995.

[7] C. Dike and E. Burton, "Miller and Noise Effects in a Synchronizing Flip-Flop," IEEE

Journal of Solid-State Circuits, 34(6), pp. 849-855, 1999.

[8] K. K.-Y. Chang et al., "A 2Gb/s asymmetric serial link for high bandwidth packet

switches," Hot Interconnects, pp. 171-179, August 1997.

[9] J. N. Seizovic, "Pipeline synchronization," Symp. Adv. Res. Asynchronous Circuits and

Systems, pp. 87-96, 1994.

[10] M. R. Greenstreet, "Implementing a STARI chip,", ICCD'95, pp. 38-43, 1995.

[11] T. Kehl, "Hardware self-tuning and circuit performance monitoring," ICCD'93, pp. 188-

192, 1993.

[12] G. A. Pratt and J. Nguyen, "Distributed synchronous clocking," IEEE Trans. Parallel

and Distributed Systems, 6(3), pp. 314-328, 1995.

[13] K. Y. Yun and R. P. Donohue, "Pausible Clocking: A First Step Toward Heterogeneous

Systems," ICCD'96, pp. 118-123, 1996.

[14] J. Muttersbach, T. Villiger, W. Fichtner, "Practical Design of Globally-Asynchronous

Locally-Synchronous Systems," Proc. 6th IEEE Symp. Adv. Res. Asynchronous Circuits

and Systems, Israel, pp. 52-59, Apr. 2000.

[15] S. Sidiropoulos and M. Horowitz, "A semi-digital DLL with unlimited phase shift

capability and 0.8-400MHz operating range," ISSCC'97, pp. 332-3, 1997.

[16] R. Kol, Self-timed asynchronous architecture of an advanced general purpose

microprocessor, PhD thesis, Elect. Eng., Technion, Israel, 1997.

[17] D. M. Chapiro, Globally asynchronous locally synchronous systems, PhD thesis, Comp.

Sci., Stanford Univ., 1984.

[18] Rakefet Kol and Ran Ginosar, "Avid Execution in the Asynchronous Processor Kin,"

3rd Euromicro Conference on Massively Parallel Computing Systems (MPCS'98), Apr.

1998.

