
542 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 2, MARCH 2007

Adaptive Cardiac Resynchronization Therapy Device
Based on Spiking Neurons Architecture

and Reinforcement Learning Scheme
Rami Rom, Jacob Erel, Michael Glikson, Randy A. Lieberman, Kobi Rosenblum, Ofer Binah, Ran Ginosar, and

David L. Hayes

Abstract—Spiking neural network (NN) architecture that
uses Hebbian learning and reinforcement-learning schemes for
adapting the synaptic weights is implemented in silicon and per-
forms dynamic optimization according to hemodynamic sensor for
a cardiac resynchronization therapy (CRT) device. The spiking
NN architecture dynamically changes the atrioventricular (AV)
delay and interventricular (VV) interval parameters according
to the information provided by the intracardiac electrograms
(IEGMs) and hemodynamic sensors. The spiking NN coprocessor
performs the adaptive part and is controlled by a deterministic
algorithm master controller. The simulated cardiac output ob-
tained with the adaptive CRT device is 30% higher than with a
nonadaptive CRT device and is likely to provide improvement
in the quality of life for patients with congestive heart failure.
The spiking NN architecture shows synaptic plasticity acquired
during the learning process. The synaptic plasticity is manifested
by a dynamic learning rate parameter that correlates patterns of
hemodynamic sensor with the system outputs, i.e., the optimal AV
and VV pacing intervals.

Index Terms—Artificial neural network (ANN), cardiac resyn-
chronization therapy (CRT), integrate-and-fire model (I&F), in-
tracardiac electrograms (IEGMs).

I. INTRODUCTION

SPIKING neural networks (NNs) architectures are a unique
form of NNs that are similar to biological nerve system.

Spiking neuron architectures, applications, and learning rules
are reviewed by Maass and Bishop [1]. Natschlager and Ruf
[2] have demonstrated the ability of spiking NN architectures
to perform pattern recognition tasks, self-classification, and
recognition of temporal sequences even in a noisy and disturbed
environment.
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In this paper, we present a spiking NN architecture imple-
mented by a field-programmable gate array (FPGA) chip for
cardiac resynchronization therapy (CRT). The spiking NN ar-
chitecture presented here employs spike-timing learning rule
with both long-term potentiation (LTP) and long-term depres-
sion (LTD) components [3]. A short-term memory is imple-
mented with a spiking NN architecture employing feedback by
a reinforcement learning scheme, and a long-term memory ca-
pability is added by a second spiking NN that performs a pat-
tern-recognition task and accordingly changes the learning rate
parameter of the first spiking NN dynamically as described later.

CRT is an established therapy for patients with congestive
systolic heart failure and intraventricular electrical or mechan-
ical conduction delays. It is based on synchronized pacing of
the two ventricles [4]–[6] according to the sensed natural atrium
signal that determines the heart rhythm. The resynchronization
task demands exact timing of the heart chambers so that the
overall stroke volume is maximized for any given heart rate
(HR). Optimal timing of activation of the two ventricles is one
of the key factors in determining cardiac output. The two major
timing parameters which are programmable in a CRT device
and determine the pacing intervals are the atrioventricular (AV)
delay and interventricular (VV) interval.

CRT device management and, more specifically, the man-
agement of the AV delay and VV intervals pacing parameters,
is especially suitable for NN processing. The reason is the
high variability of these parameters from patient to patient and
with the same patient the variability of these parameters during
regular daily activities. An NN is able to process the signals
produced by hemodynamic sensors by using pattern-recog-
nition techniques and to perform a feedback control scheme
dynamically and online. The main novel feature of the spiking
NN architecture, presented in [7]–[9] and here for the adaptive
CRT device are as follows: 1) spiking NN architecture with
Hebbian spike-timing learning and reinforcement-learning
schemes; 2) additional spiking NN for pattern-recognition task
that together with the first network adds synaptic plasticity
based on dynamic learning rate to the spiking neuron architec-
ture; and 3) the spiking neuron network consumes extremely
low power that is crucial for implanted pacemakers and defib-
rillators devices that usually operate for 5–7 years with only a
battery as a power source.

This paper is organized as follows. In Section II, we describe
the spiking neuron architecture. The adaptive CRT device opera-
tional modes is presented in Section III and the Hebbian learning
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Fig. 1. Adaptive CRT device block diagram.

and reinforcement learning schemes with synaptic plasticity and
stability are outlined in Section IV. In Section V, medical appli-
cation and the prototype are discussed. Simulation results per-
formed with the prototype and a commercial heart simulator is
shown in Section VI.

II. ADAPTIVE CRT DEVICE ARCHITECTURE

Fig. 1 is a diagram of the adaptive CRT device. The inputs to
the CRT device are three implanted electrodes that can sense and
pace the right atria, right and left ventricles, and two Hemody-
namic sensors signals from each ventricle that can be ventricle
pressures or ventricle impedances that generate a measure of the
ventricle volumes.

The outputs of the adaptive CRT device are stimulation pulses
of the right and left ventricles combined with specific delays
relative to the natural atrial depolarization wave. The controller
manages the electrical system including the pulse generator de-
livering the stimulation to the heart. In addition, the controller
manages the user interface allowing the programming of dif-
ferent CRT parameters such as AV delay and VV interval. Fi-
nally, the controller supervises the spiking NN learning schemes
as detailed later.

The spiking neuron processor is working as a slave copro-
cessor in a master–slave architecture. This architecture assures
operation within predetermined boundaries that are set by the
master algorithmic processor. The master can either accept or
reject the predictions made by the spiking NN processor [7]–[9].

The spiking neuron processor has three functional layers.
The input stage synchronizer decoder is a predefined pre-
processing stage where different subgroups of synapses are
excited selectively according to the average heart rate and in
each subgroup of synapses each synapse is excited with a fixed
predefined increasing time delay measured from the synchro-
nizing atrial event. The middle layer is composed of dynamic
synapses modules where learning takes place by modifying
the synaptic weights continuously during real-time operation
according to a reinforcement learning scheme combined with
Hebbian learning rule. The middle layer synaptic weights
reach steady-state values that bring optimal performance, i.e.,
optimal AV delay and VV interval for a given heart condition

characterized by the HR. The output layer is composed of
two leaky integrate and fire neurons modules that accumulate
postsynaptic responses from the middle layer synapses and
together with the master controller manage the pacing of the
right and left ventricles beat after beat.

The spiking neuron model is of the leaky integrate-and-fire
(I&F) type [1], where the leaky I&F neurons and the dynamic
synapses of the middle layer are implemented in an FPGA
chip as digital state machines. The spiking neurons architecture
presented here was chosen for the following reasons. 1) The
learning task targets in both adaptive and nonadaptive CRT
modes are time delays that are natural learning tasks for spiking
neurons. 2) The spiking neurons architecture executes the
learning and controls tasks with extremely low clock frequency
of 1 kHz that translates to extremely low power dissipation
from the battery of the implanted device. 3) The leakage char-
acteristic of I&F neuron membrane potential plays an important
role in the learning scheme of the time delays.

III. OPERATIONAL MODES

The adaptive CRT device has two basic operational modes,
adaptive and nonadaptive. With nonadaptive mode, the clini-
cians program the initial AV delay and the VV interval parame-
ters as in the existing CRT devices, allowing the system to learn
the programmed parameters values and to learn the hemody-
namic sensor pattern as will be explained later. The adaptive
CRT device starts operating in the nonadaptive mode, whereby
the two I&F neurons of the output layer learn to fire at the pro-
grammed AV delay and VV intervals by using an error back-
propagation scheme. When the I&F neurons have learned to
fire at the programmed time intervals, the controller switches
to adaptive CRT mode in which the AV delay and VV inter-
vals are changed dynamically according to hemodynamic sen-
sors that generate a measure of the ventricle stroke volumes. The
stroke volumes, which depend on the changing pacing intervals,
are obtained in each cardiac cycle and the synaptic weights of
the spiking neurons network processor adapt accordingly with
a local Hebbian and reinforcement learning schemes in order
to deliver the optimal AV delay and VV intervals that result in
maximal stroke volumes at a given HR.
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IV. HEBBIAN LEARNING, REINFORCEMENT LEARNING,
AND SYNAPTIC PLASTICITY

The question as to whether information in the brain is coded
in terms of the precise timing of individual spikes or in terms of
mean spike rate is a central issue in neuroscience. The discovery
of spike-timing learning rules in the brain provides a strong ar-
gument for the importance of coding in terms of spike timing
[10]. Hebbian plasticity following pairing of individual spikes
was first seen in recordings of cell pairs in layer V/VI of the
mammalian neocortex by Markram et al. [11].

The spiking NN architecture learning rules presented here
combines local Hebbian learning with a reinforcement learning
scheme. The local Hebbian learning is performed at each
synapse module concurrently according to the relative timings
of the pre- and postsynaptic pulse inputs. The aim of synapse
weight adaptation is to generate a coherent excitation of a group
of three to five synapses that will excite the leaky I&F neuron,
causing it to cross the internal membrane potential threshold
and to emit a pulse at the target time.

The reinforcement learning scheme is implemented ac-
cording to a global function calculated by the controller and
extracted from the hemodynamic sensor signals (for example,
the ventricle stroke volume affected by the varying pacing
intervals).

The Hebbian learning rule is similar to Klopf’s drive-rein-
forcement model [12] with several differences that are mainly
due to the leaky I&F neuron model used here. The leaky I&F
neuron model includes a membrane potential that is grounded
after a spike is emitted for a preprogrammed refractory period
that is not part of Klopf’s model. In addition, the reinforcement
calculation and the learning rate parameter are used here differ-
ently as will be described later.

A. Nonadaptive CRT Mode Learning Scheme

The nonadaptive learning is an error backpropagation scheme
with no feedback from the hemodynamic sensors that is used in
the adaptive mode only. The Hebbian learning rule is as follows:

(1)

where

I&F neuron index for the right and left
ventricle neuron;
synapse index for each spiking neuron; is
the learning rate coefficient;
firing time of the spiking neuron relative to
the atrial depolarization wave;
programmed pacing interval which is also
the supervised learning target time that is
used with the error backpropagation scheme;
according to the nonadaptive CRT mode, the
pacing interval can be changed only by the
user and not by the device learning schemes;
function of the relative timing of the firing of
the I&F neuron and the target time , a hit
or miss, which is determined by the absolute
time difference, ms is a hit and,
otherwise, a miss and a local Hebbian state.

When the firing time of the I&F neuron occurs within a pre-
defined interval after the synapse was excited the synapse
state is stored as a Hebb state. When the firing time of the I&F
neuron occurs between and after the synapse was excited,
the synapse state is stored as a post-Hebb state. When the firing
time of the I&F neuron occurs within an interval before the
synapse was excited, the synapse state is stored as a pre-Hebb
state. With these definitions of local synaptic states, in (1)
is shown in

if miss post-Hebb
if hit Hebb or post-Hebb
if hit Hebb
if miss pre-Hebb
if miss Hebb or pre-Hebb
if hit pre-Hebb
if miss Hebb or post-Hebb

(2)

is typically 20 ms and the Hebbian states defined previ-
ously are stored locally at each synapse state machine at each
heart cycle. Note that according to (2), the relative timings of
the firing time , the target time , and the local synaptic
Hebbian states determine if the synaptic weight is incremented
(LTP) or decremented (LTD). When the time difference between
the firing time and the target time is larger than , there is no
synaptic adaptation as was also shown to occur in biological
system by Markram et al. [11].

The learning scheme described previously is understood
better if we recall that the input stage synchronizer decoder
excites the dynamic synapse every heart beat after the atrial
IEGM is sensed (the synchronizing event) with a predefined
delay sequence measured from the synchronizing event , such
that each synapse is activated at a different fixed delay time

ms. The learning task
hence is to train the appropriate subgroup of synapses (about
5–7 synapses at a time) to have a dominant synaptic weights at
the steady state at the optimal timing (the optimal AV delay and
VV interval), to drive the I&F neuron membrane potential that
accumulates postsynaptic responses from all the middle layer
synapses beyond the threshold potential, and to fire at the right
time at each HR.

The convergence of the I&F neurons to fire at the initially
programmed value using error backpropagation supervised
learning scheme is shown in Fig. 2(a) and (b).

Fig. 2(a) shows a histogram of the firing times of I&F
neuron measured in milliseconds in nonadaptive CRT mode.
The learning task target time in this example is 110 ms and,
after 192 s, a distribution peak is already seen at the target
time (in pink color) and, as the simulation proceeds to 258,
320, and 512 s, the histogram peak is enhanced showing that
the supervised learning task in the nonadaptive CRT mode is
achieved.

The function that is shown in Fig. 2(b) is the number of hits
at the target time with 15-ms accuracy in a time frame of 32
heart cycles. After 3–5 min of operation, the I&F neuron learns
to fire at the expected programmed time and the number of hits
at the target time converges to the maximal value in a time frame
of 32.
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Fig. 2. (a) I&F neuron histogram. (b) I&F neuron hit count.

B. Adaptive CRT Mode Learning Scheme

Manual optimization of a CRT device using hemodynamic
sensor was reported by Braunschweig et al. [13]. With the adap-
tive CRT mode presented here and in [7]–[9], a step further is
taken relative to [13], where optimization is performed online
via pacing intervals that are changing dynamically. The hypoth-
esis of the dynamic optimization scheme relies on the fact that
the AV delay and VV interval are physiologic parameters that
have an optimal value, a bell-shape curve exists as a function of
the pacing interval, where the maximum of the bell shape corre-
sponds to the optimal pacing interval. The expected bell-shape
curve should be the result of two opposite physiological phe-
nomena that occur during a heart cycle, i.e., filling time and mi-
tral regurgitation. If the filling time of the ventricle during dias-
tole is too short, the ventricle volume will not be maximal. On
the other hand, if contraction occurs too late, a blood backflow
from the ventricle to the atria (namely, mitral regurgitation) will
occur.

The bell-shape curves described previously are shown, for ex-
ample, in [14, Figs. 5(b) and 6(b)], in an acute animal experi-
ment. Hence, the task with the adaptive CRT mode is to con-
verge to the optimal pacing intervals at the center of the bell
shape. The optimal pacing intervals are expected to vary with
HR and heart condition in general, thus the bell-shape curve is
not expected to be static. With the present architecture, a dedi-
cated registers, the registers, store the dynamically changing

AV delay and VV pacing interval. These parameters play an im-
portant part in the adaptive CRT device dynamic optimization
scheme.

1) Pacing Register Management: The pacing register adap-
tation rule is as follows. When the I&F neuron firing time
is shorter than the stored pacing interval , the value is decre-
mented. When the I&F neuron firing time is longer than the
stored pacing interval , the value is incremented [see (3)]. The
increment/decrement parameter value is typically 10 ms,
and the pacing interval physiologic range forced by the master
controller is 50–200 ms

Sign (3)

2) I&F Neuron Firing Distribution: The firing times of the
I&F neurons, measured from the sensed atrial event at each car-
diac cycle, are distributed equally below and above the stored
values in the pacing register. However, it is not a priori known
whether at the next cardiac cycle the firing time will be below
or above the stored value. Hence, the firing events are used as
a random parameter that dictates the dynamics and the explo-
ration characteristics of the spiking NN architecture.

3) Reinforcement Learning According to State Selection:
The ventricle stroke volume (SV), which is the volume ejected
by the ventricle at each heartbeat, is calculated in every heart-
beat. The last beat stroke volume and the pacing intervals are
stored and compared with the current stroke volume and pacing
interval. Accordingly, one condition out of four possible states
is selected as shown in a flow diagram in Fig. 3. When the cur-
rent stroke volume SV( ) is bigger than the last heartbeat
stroke volume SV( ) and the spike timing is longer then the
value stored at the pacing register , the state selected is state
1, as shown in Fig. 3 as an example for the state selection.

According to the state selection rule defined previously and
the stored Hebbian states, the adaptation of the synaptic weights
takes place locally according to (1) and with reinforcement
learning factor given in

if in state or pre-Hebb
if in state or Hebb or post-Hebb

if in state or Hebb or post-Hebb
if in state or pre-Hebb

Note that according to (4) the combination of state 1 or 3 and
a pre-Hebb state, or states 2 or 4 and a Hebb or post-Hebb states
leads to the increment of the synaptic weight, i.e., LTP, while the
combination of state 1 or 3 with a Hebb or a post-Hebb states,
or states 2 or 4 with a pre-Hebb state leads to the decreasing of
the synaptic weight, i.e., LTD.

The reinforcement learning synaptic weights adaptation rule
is shown in Fig. 4 schematically. The stroke volume has a bell-
shape curve as a function of the paced AV delay, and the optimal
AV delay corresponds to the maximal stroke volume. Note that
the position of the maximal stroke volume changes from patient
to patient and also changes dynamically in each patient with the
HR and stress conditions and, hence, the control task calls for
dynamic optimization as presented here.
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Fig. 3. State selection in a flow diagram.

Fig. 4. Stroke volume bell-shape curve.

Fig. 5. Responder to CRT curve.

The initial stroke volume depends on the initially pro-
grammed AV delay and VV interval. After switching to
adaptive CRT mode, the adaptive CRT device dynamically
optimizes the AV delay and VV interval pacing parameters
and achieves a higher stroke volume as shown in Fig. 5 with
adaptive CRT mode. The convergence to a higher stroke volume

values is an indication to the positive response to CRT and
can be used to identify responders to CRT in the procedure
room [8].

The three Hebbian states are defined similarly as in the non-
adaptive mode as defined previously. When a postsynaptic pulse
occurs (firing of the I&F neuron), the synapse state machines
locally stores the state as it occurred. Later, when the gradient
of the stroke volume is calculated and a state is selected, the
synaptic weights are updated locally at each synapse according
to (1) and (4), the flow diagram in Fig. 3, and the bell-shape
curve shown in Fig. 4.

4) Learning Rate Parameter: Hebb [15] suggested that long-
term memory is related to structural changes in the nervous
system that was later termed synaptic plasticity. With no struc-
tural changes, he argued that the nervous system could have
had only short-term memory. As for the nature of the structural
changes, he proposed that if one cell repeatedly assisted in firing
another, the knobs of the synapse between the cells could have
grown so as to increase the area of contact. Synaptic plasticity
was shown to occur as part of a learning process in many ex-
periments with two leading examples as follows: a sea slug [16]
and rabbit hippocampus [17].
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Fig. 6. Dependence on the learning rate parameter.

in (1) is the learning rate parameter that defines the synaptic
weights steps size in the learning scheme [(2) and (4)]. In Fig. 6,
the deviation from the exact solution of the pacing AV interval
is shown in a simulation with three different values of learning
rates 0.2, 0.5, and 0.825. The convergence time to the exact
solution (160 ms in this simulation with HR of 60 beats per
minute (BPM) is seen in the figure. With 0.2, the time to
converge is about 225 s, with 0.4, it is 175 s, and with

0.825, it is about 125 s. After convergence is achieved, the
pacing interval oscillates below and above the exact solution and
the solution is stable as shown in Fig. 6.

5) Dynamic Learning Rate Parameter According to Heart
Condition Seen Through Hemodynamic Sensor: We suggest
to modify the learning rate parameter dynamically according
to the heart condition as obtained by temporal input patterns
of a hemodynamic sensor that reflect the heart condition. An
additional spiking NN performs a pattern-recognition task im-
plemented for the sensor temporal input pattern. According to
the firing hit count at a target time [similar to the plot shown
in Fig. 2(b)] the learning rate parameter is modified. When
the hit count is low, the input pattern does not match a learned
pattern, and the learning rate parameter is assigned a higher
value ( 0.825, for example). When the hit count is high
(the input signal matches a learned pattern), the learning rate
parameter is assigned a lower value (e.g., 0.2). Hence, the
dynamic learning rate parameter that is changed according to
a pattern-recognition NN I&F neuron hit count is a result of a
learned correlation between the input temporal patterns of the
hemodynamic sensor that reflect heart condition and the appro-
priate optimal pacing intervals obtained by the reinforcement
learning spiking NN.

6) Synaptic Plasticity–Stability With Spiking Neuron Archi-
tecture: The dynamic learning rate parameter is used to add
synaptic stability by reducing the synaptic plasticity of the
spiking neuron architecture. With a small learning rate param-
eter , the adaptation to a new optimal value of pacing interval
is slower. With a larger learning rate parameter, adaptation is
faster as shown in Fig. 6.

Fig. 7 compares simulations with a fixed learning rate pa-
rameter (titled “off”) and a dynamic learning rate (titled “on”).
The simulated scenario is based on an alternating value of an

Fig. 7. Dynamic versus fixed learning rate.

internal time delay between a paced stimulus and the resulting
ventricle evoked response of the simulated heart. The internal
delay parameter is set to 5 ms initially. After 400 s, it is changed
to 45 ms and, after another 400 s, it is set back to 5 ms. This
cycle is repeated several times. The optimal AV delay depends
on the internal delay parameter. With 5-ms delay the optimal
AV delay is 150 ms and with 45-ms internal delay the optimal
AV delay is 110 ms. Hence, the task of the adaptive CRT device
spiking NN architecture is to learn the two optimal solutions
and to switch between them according to the input pattern from
the simulated hemodynamic sensor. With fixed learning rate pa-
rameter the transition time is shorter and follows immediately
after the change in the scenario takes place and, hence, does not
show a learned stability. With dynamic learning rate parameter
the system has a long-term memory in the form of the dynamic
learning rate that is the result of the learned correlation between
the hemodynamic sensor input patterns that reflect heart condi-
tion and the appropriate learned optimal pacing intervals. The
system learned stability is seen through the rigidity to transients
that occurs with some delay relative to the fixed learning rate
transition and with longer transition time as seen in Fig. 7. With
dynamic learning rate, the system is more stable and rigid to
switching between the two solutions and the optimal pacing in-
tervals are kept stable for longer time before the adaptive CRT
device makes the transition.

To summarize this section, the synaptic stability is imple-
mented by a dynamic learning rate parameter that correlates
the input hemodynamic sensor patterns that reflect heart con-
dition with the system outputs, i.e., the learned steady-state op-
timal pacing interval values. The dynamic learning rate param-
eter mimics, within the architecture presented in this paper, a
structural changes needed for long-term memory, as suggested
by Hebb [15].

7) Classical Conditioning With Spiking Neuron Architecture:
Modeling studies have shown that networks which implement
Hebbian spike-timing-based rules can learn to predict the next
step in a sequence of inputs. Such a learning mechanism could
be responsible for classical conditioning in which neuronal re-
sponses to conditioned stimuli predict the unconditional stimuli
after a learning period in which the two stimuli are presented
repeatedly in the same sequence [10].
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Fig. 8. Simulated cardiac output in exercise.

In this section, we describe the analogy between the adap-
tive CRT device spiking neurons architecture reinforcement
learning task presented here and Klopf’s drive-reinforcement
model [12]. If the sensed atrial signal that is used here as a
synchronization signal at each new heart cycle is counted as a
conditional stimuli (CS), the target time stored at the pacing
register [see (3)] as the unconditional stimuli (US), and the
firing time of the I&F neuron is counted as the conditional re-
sponse (CR), then the time interval between the CS and the CR
is the information that is learned by the adaptive CRT device
spiking NN architecture, i.e., the AV delay and VV interval
(that can be either a preprogrammed value in a nonadaptive
CRT mode or a dynamic value in the adaptive CRT mode), and,
hence, the adaptive CRT learning of the optimal AV delay and
VV interval for each heart condition is analogous to a classical
conditioning and associative learning task, as described in
Klopf’s model for classical conditioning [12].

V. ADAPTIVE CRT DEVICE PROTOTYPE

The clinical hypothesis of the adaptive CRT device presented
here highlights that changing the AV delay and VV interval dy-
namically according to hemodynamic sensors feedback scheme,
managed by a combined controller and NN processor, may solve
the major drawbacks of CRT devices [7]–[9], and, hence, signif-
icantly improve quality of life for patients with heart failure.

The spiking NN processor and the controller are both imple-
mented with an Altera Stratix 80 FPGA. Additional active com-
ponents such as operational amplifiers, analog-to-digital con-
verters, serial communication chip, and pulse generators are
implemented on a daughter board with additional passive elec-
tronic components (resistors, capacitors, and diodes).

VI. SIMULATION RESULTS

Fig. 8 demonstrates the simulated cardiac output during an
exercise scenario. The simulated cardiac output is calculated as
the stroke volume extracted from the simulated impedance sen-
sors multiplied by the simulated HR.

The HR was changed on the heart simulator from 65 BPM up
to 125 BPM at steps of 20 BPM for several times (six simulation

Fig. 9. Adaptive versus nonadaptive pacing modes.

cycles are shown in Fig. 8 and the last simulation cycle is shown
with a rectangle). The entire simulation lasted more than two
hours. During the simulation, the internal heart simulator pace
delay parameter (i.e., the evoked response time) for the right
ventricle was kept constant (5 ms) and the pace delay parameter
for the left ventricle was programmed to change as a function of
the HR. With HR of 65 BPM, the left ventricle pace delay was
65 ms. With HR of 85 BPM it was 55 ms, at HR of 105 it was
45 ms, and with HR of 125 BPM it was 35 ms. The left ventricle
pace delay was used to mimic a patient with left bundle branch
block (LBBB) where the conductance to the left ventricle is slow
relative to the right ventricle.

Fig. 9 compares cardiac output during a simulation cycle
using dynamic optimization of the AV delay and VV interval
with constant intervals optimized at rest (65 BPM). Dynamic
optimization produces 30% higher simulated cardiac output
on average during a simulation cycle. The benefit of dynamic
optimization is emphasized more at higher HRs where the AV
delay and VV intervals differ mostly from their values at rest,
as shown in Fig. 10.

PRV and PLV are the pacing interval timing relative to the
sensed atrial event. The AV delay and VV interval are related
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Fig. 10. Dynamic AV and VV pacing intervals.

to the pacing interval values PRV and PLV according to the
following:

AV Delay PRV

VV Interval PLV PRV

Fig. 10 shows that the optimal AV delay was 130 ms at
65 BPM, reducing gradually to 50 ms at 125 BPM. The optimal
VV interval was 60 ms at 65 BPM, reduced gradually to 20 ms
at 125 BPM. In summary of Section IV, unlike the adaptive
CRT device presented here, no other CRT device can change the
AV and VV intervals dynamically according to hemodynamic
sensors, resulting in 30% increase in cardiac output. Thus, this
simulation demonstrates the potential benefit expected with
dynamic optimization according to hemodynamic sensors in a
closed-loop system.

VII. CONCLUSION

An adaptive CRT device with a spiking NN coprocessor has
been presented. It performs dynamic optimization of the pacing
intervals according to Hebbian and reinforcement-learning
schemes using a hemodynamic sensors. The spiking NN
processor operates in a master–slave architecture that allows
complete operation of predetermined boundaries set by a
master controller. The spiking NN processor synaptic weights
adapt online according to a local Hebbian spike timing learning
rule combined with a reinforcement learning scheme and with
synaptic stability, acquired by pattern-recognition task, that
adds rigidity to the overall behavior of the adaptive CRT system.
The adaptive CRT prototype shows 30% increase in simulated
cardiac output compared to a nonadaptive CRT device and is
likely to improve the quality of life of patients with congestive
heart failure. Preclinical and clinical experiments are needed to
show similar results in vivo.
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