
Timing–Driven Variation–Aware Nonuniform Clock Mesh
Synthesis

Ameer Abdelhadi, Ran Ginosar, Avinoam Kolodny, and Eby G. Friedman
Dept. of Electrical Engineering

Technion – Israel Institute of Technology
Haifa 32000, Israel

[ameer@tx, ran@ee, kolodny@ee].technion.ac.il, friedman@ece.rochester.edu

ABSTRACT

Clock skew variations adversely affect timing margins, limiting
performance, reducing yield, and may also lead to functional
faults. Non-tree clock distribution networks, such as meshes and
crosslinks, are employed to reduce skew and also to mitigate skew
variations. However, these networks incur an increase in dissipated
power while consuming significant metal resources. Several
methods have been proposed to trade off power and wires to
reduce skew. In this paper, an efficient algorithm is presented to
reduce skew variations rather than skew, and prioritize the
algorithm for critical timing paths, since these paths are more
sensitive to skew variations. The algorithm has been implemented
for a standard 65 nm cell library using standard EDA tools, and
has been tested on several benchmark circuits. As compared to
other methods, experimental results show a 37% average reduction
in metal consumption and 39% average reduction in power
dissipation, while insignificantly increasing the maximum skew.

Categories and Subject Descriptors

B.7.2 [INTEGRATED CIRCUITS]: Design Aids

General Terms

Algorithms, Design, Performance

Keywords

Clock distribution, non-tree clock networks, clock mesh synthesis,
clock skew, process variations, power, VLSI CAD, physical design

1. INTRODUCTION
Non-tree clock distribution topologies (e.g., clock meshes) exhibit
useful characteristics due to multi-path signal propagation created
by routing redundancies [1–11]. These non-tree clock distribution
networks are exploited to distribute the global clock signal over an
integrated circuit, and exhibit high immunity to process, voltage,
and temperature (PVT) variations, while tolerating non-uniform
switching and an unbalanced distribution of the clocked elements.
These networks achieve low and deterministic skew, low skew
variations, and low jitter. Clock meshes also overcome late design
changes while satisfying tight time-to-market deadlines [1]. Clock

meshes constitute an effective alternative for distributing global
clock signals, and are used in high performance microprocessors
[1] such as the Power4 [2], Digital Alpha [3], Intel Pentium 4 [4],
and Xeon [5].

Nevertheless, non-tree clock distribution networks suffer certain
drawbacks. These networks are composed of a large number of
mesh nodes and unbalanced loads, making these networks difficult
to analyze, optimize, and automate [6],[12],[13]. Routing
redundancies require significant resources as compared to
optimized tree-based clock distribution networks where point-to-
point routing is used [7]. Meshes dissipate higher power [12] due
to the large capacitance incurred by the additional metal wires and
drivers. Furthermore, clock gating is impractical in most mesh
structures. Due to delay differences in the drivers, short-circuit
current loops are generated across the redundant mesh paths [12].
Increasing process variations [14],[15] dissipate more power, since
a more tolerant mesh structure dissipates higher power due to
greater use of metal and driver oversizing [15]. Several proposals
for optimizing non-tree distribution networks have been presented,
employing either customized meshes [1–7] or automating the
process of adding crosslinks to the clock tree to enhance tolerance
and lower power [8],[9]. Yet other papers propose removing some
edges from a mesh to reduce power while minimally increasing the
skew [10],[11].

While most of these papers focus on skew variations, the approach
proposed in this paper manages skew tolerance based on the
criticality of the timing margins. The clocks driving a critical logic
path are required to be more tolerant to skew variations to reduce
the effect of skew on timing margins and cycle time. Those clocks
that drive a non-critical logic path however must satisfy certain
skew variations without affecting the cycle time [16]. By relaxing
skew variation requirements in the non-critical paths, power
savings can be achieved. The proposed method employs graph-
theoretic and geometric algorithms with quasi-linear run time.
Using static timing analysis (STA), a physical floorplan, and
process information, a non-uniform clock mesh which tolerates
clock skew based on timing path criticality is generated. The
proposed flow has been successfully tested on several testbench
circuits.

The rest of the paper is organized as follows. Non-tree clock
distribution networks, skew constraints, constraint graphs, and
clock skew uncertainty are reviewed in section 2. The motivation
behind this work and a review of previous work on clock mesh
synthesis and optimization are discussed in section 3. The timing–
driven variation–aware clock mesh synthesis problem and the
proposed solution are presented along with a run time example in
Section 4. The experimental method and results are described in
section 5. Finally, this paper is concluded in section 6 with
suggestions for future research directions.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

GLSVLSI’10, May 16–18, 2010, Providence, Rhode Island, USA.

Copyright 2010 ACM 978-1-4503-0012-4/10/05...$10.00.

15

2. CLOCK MESHES AND SKEW
In this section, essential preliminaries are outlined. Specifically, in
section 2.1, non-tree clock topologies, and in particular, clock
meshes are described. In section 2.2, the concept of clock skew,
skew uncertainty modeling and notation, and constraint graphs for
representing synchronous circuits are reviewed.

2.1 Clock Meshes
Clock tree topologies provide a single path for each sink. For
distant sinks, these paths are largely separate from each other.
Each separate path suffers from delay uncertainty, resulting in
skew uncertainty between two sinks. One approach to reduce
variations is simply connecting nodes with a crosslink, hence, the
connected nodes will have more than one path from the clock
source, mutually compensating each path. This non-tree approach
has been manually applied to the Pentium 4 microprocessor [4],
where spines connect multi-clock nodes, as illustrated in Fig. 1(a).
Automation of this method has been evaluated in several papers
[8].

Since spines or crosslinks connect pairs of nodes and do not cover
an entire floorplan (see Fig. 1(b)), metal grids driven by a top level
clock driver which span several regions have been introduced. A
mesh is a grid of horizontal and vertical metal wire segments,
composed of interconnected mesh nodes. Typical mesh topologies
consist of three parts: the mesh itself (usually uniform), an upper
driving tree, and local interconnects connecting the clock sinks to
the mesh, as shown in Fig. 1(c). A wide variety of mesh structures
has been proposed. Non-uniform meshes [5],[10],[11] have been
developed to save wire resources and power. Design automation
and optimization of metal and power versus tolerance tradeoffs are
discussed in [10],[11]. Mesh architectures differ in the locality of
the mesh. A global mesh with local trees (MLT) [6] is a mesh fed
from a global clock source with local trees distributing the clock to
local regions (Fig. 1(d)), while a global tree with local meshes
(TLM) [6] is a clock tree fed from a global clock source with a
local mesh at each leaf (Fig. 1(e)). Other hybrid mesh-style
structures are also possible.

2.2 Skew constraints and uncertainty
Synchronous circuits comprise data paths, where each data path
consists of combinational logic located between two registers. A
clock network connects the clock source to a collection of clock
sinks S={s1,s2,…,sn}. Two registers are sequentially-adjacent if the
registers are connected with a combinational data path [1], as
illustrated in Fig. 2. The maximum permissible delay for a local
data path bounded by two sequentially-adjacent registers is
Pi,j

Delay,max=Tclock-tsetup-skewi,j
max where Tclock denotes the clock

period, tsetup is the setup time of the bounding registers, and
skewi,j

max denotes the maximum clock skew between two bounding

registers [1]. The maximum clock skew skewi,j
max is the difference

in the clock arrival time between two sequentially-adjacent
registers. If di and dj are the delays (maximum or minimum) of the
clock signals arriving at the registers i and j, respectively, the skew
between two adjacent registers is skewi,j

max=maxi,j(|di-dj|). The
clock skew is therefore bounded by the following maximum skew

constraint, skewi,j≤Tclock-tsetup- P
i,j

Delay,max.

Clock skew uncertainty: As technology scales, the effect of
process variations on clock skew is aggravated [14],[15]. Clock
skew can be modeled as composed of both deterministic and
probabilistic elements [13],[18].

In this work, the following notation is employed. For two
sequentially-adjacent registers i and j, the deterministic or nominal
skew components is skewi,j

nom, and the maximum skew variation of
the probabilistic component is δi,j

max. The mean of the skew
between two sequentially-adjacent registers i and j is denoted by
µi,j

skew and the standard deviation is denoted by σi,j
skew. A possible

design target may require that, for instance, the maximum skew
will be limited by skewi,j

max=µ
i,j

skew+3·σi,j
skew.

Constraint graph: Synchronous circuits are represented as a
directed multi-graph GC [1],[16],[17]. Each clock sink is

represented by a vertex vi∈GCV, so that GCV = S. Each local data
path located between two sequentially-adjacent clock sinks i and j

is represented by a weighted edge ei,j∈GCE connecting the two

vertices vi and vj. The graph edges are therefore GCE={ei,j=vi~vj |

Pi,j
Delay<∞, vi,vj∈GCV} (see Fig. 3). The edges can be weighted by

any corresponding combinational data path property, such as
delay, margin, and skew. Besides the edge weights, attributes can
be attached to either edges or vertices. For vertices, any
corresponding sink attribute can be used, such as the sink
capacitance, location, clock delay, and data arrival time.

Figure 1: Non-tree and mesh clock architectures: (a) Pentium 4 spine, (b) tree with crosslinks, (c) leaf level global mesh, (d) global mesh with local

trees (MLT), and (e) global tree with local meshes (TLM)

Figure 2: Sequentially-adjacent registers si and sj with skewi,j clock

skew, bounding a combinational data path with propagation delay

Pi,j
Delay.

Figure 3: Mapping of constraint graph: (a) synchronous circuit and

(b) corresponding constraint graph.

16

3. CLOCK MESH SYNTHESIS:

MOTIVATION AND RELATED WORK
Motivation for using timing information as a criterion for clock
mesh syntheses is discussed in section 3.1. A review of previous
clock mesh synthesis methods is presented in section 3.2.

3.1 Motivation
Aggressive process scaling increases the portion of clock skew as
compared to the cycle time, reducing timing margins [14],[15].
Some approaches have been proposed to minimize clock skew, but
these methods usually incur an increase in power consumption.
Other methods exploit useful skew by scheduling clock skew to
increase the maximum frequency [17]. These methods, however,
suffer from increased clock skew uncertainty with process scaling.
This issue limits circuit performance since timing margins are
reduced [14],[15].

In order to overcome uncertainty in the clock arrival time caused
by within-die variations, timing margins are provided. While poor
margins reduce yield, extreme worst case margins can produce
overdesigned circuits with increased power dissipation and
resource consumption.

In particular, the critical paths within a digital circuit are sensitive
to skew variations. Hence, skew variations should be minimized,
particularly in those clock paths that drive the critical paths. This
method, however, is usually achieved at the expense of higher
power dissipation [1]. This paper focuses on differential treatment
of the clock and selective management of the skew. The more
critical a path, the more sensitive the path is to skew variations and
the greater the effort to reduce these skew variations [16]. Paths
that are non-critical are assigned a lower effort to reduce skew
variations. Path criticality prioritization is intended to save power
since skew variations are not minimized on those paths that do not
affect circuit speed. This approach is in contrast to skew
optimization methods that aim to reduce maximum or nominal
skew over an entire circuit.

3.2 Related work
The effect of increasing process variations is particularly
pronounced in clock distribution networks, since skew variations
strongly influence system performance and require careful
treatment of minimum delays [14],[15]. Non-tree clock meshes,
although useful in mitigating process variations, are difficult to
analyze and automate due to the complex structure; most mesh
clock networks are manually designed in high performance
applications such as microprocessors [1–7]. Several approaches
automate the clock mesh design process. Mesh sizing and, in
particular, segment wire width sizing using network flow
algorithms have been used to optimize nominal skew rather than
skew variations [19]. Other methods start from a clock tree and
incrementally add crosslinks among the tree nodes or leaves.
Crosslinks are added between those nodes exhibiting high
variation. The objective is to add the fewest number of crosslinks
that can reduce the maximum or overall variations [8],[9]. Other
approaches start with a fully uniform mesh, identify and remove
redundant segments whose effect on variations is minimal by
applying network theory techniques, thereby trading off variations
with wire length. A set-cover problem is solved to obtain mesh
pre-driver minimum buffers [10],[11]. The initial uniform grid is
designed to ensure that metal redundancies within the grid satisfy
target skew requirements [10].

4. TIMING–DRIVEN VARIATION–AWARE

CLOCK MESH SYNTHESIS
The timing-driven variation-aware nonunifrom clock mesh
synthesis problem is presented in this section. The problem
formulation and solution approach are presented in sections 4.1
and 4.2, respectively.

4.1 Problem statement
The problem of managing skew variations can be formulated using
the notations defined in Section 2.2:

Inputs: Given a circuit connectivity and static timing analysis,
including (1) a set of clock sinks S={s1,s2,…,sn}, (2) maximum
skew constraints between each set of sequentially-adjacent
registers si and sj, namely, the maximum permissible skew skewi,j,
and (3) the relative tolerance parameter ξ, a user defined parameter
denoting the upper bound of the maximum skew variation ratio
over all maximum skew constraints allowed for all data paths,

(∀ei,j ∈ GCE) ξ ≥ δi,j
max /skewi,j. (1)

Problem Formulation: Construct a clock mesh with reduced wire
length and power consumption that limits the fraction of the
maximum skew variation over all maximum skew constraints by ξ
for every combinational data path, as expressed by equation (1).

The mesh density is the number of nodes connecting wire
segments within the mesh. A uniform mesh consists of m
horizontal segments and n vertical segment requiring n×m nodes.

Higher levels of ξ lead to further reductions in clock skew
variations at the expense of a denser mesh, longer wire length, and
higher power consumption. ξ may be tuned by considering the
tradeoff among power dissipation, metal consumption, and design
robustness.

4.2 Mesh construction algorithm
The algorithm places multiple clock meshes over certain
rectangular regions. The regions may partly overlap. The meshes
may be of different densities. Each region covered by a mesh is
associated with a specific maximum skew constraint, which
determines the density of the corresponding mesh. The algorithm
comprises four phases.

Phase I: A constraint graph, as defined in Section 2.3 above, is
derived from circuit connectivity information. See the example
shown in Fig. 4. The vertices represent clock sinks and the edges
represent data paths between vertices. The edge weight w(ei,j)
represents the maximum skew constraint of the local data path
represented by the edge ei,j, w(ei,j)=skewi,j. Each vertex can be
assigned multiple attributes, such as the capacitance of the
corresponding sink C(vi)=Capacitance(si) and the geometric
location of the clock sinks of the vertex.

Figure 4: Phase I, constraint graph construction: (a) synchronous

circuit floorplan and connectivity with placed registers, (b)

corresponding constraint graph; edge weights are the maximum allowed

skew, and (c) vertex attributes and edge weights are the initial values

17

As the algorithm progresses, some vertices are merged,
representing a geometric rectangular region containing multiple
clock sinks. As the vertices are merged, the inner connectivity
between the constituent sinks is ignored, and only the inter-vertex
connectivity is preserved. The attributes of a vertex represent the
properties of all sinks included in the vertex: the capacitance is the
sum of all sink capacitances and the geometric location is replaced
by a rectangular bounding box covering the physical location of all
of the corresponding clock sinks.

Misplaced registers, e.g., sequentially-adjacent registers bounding
a critical timing path and placed diagonally apart, may cause
undesired results. These cases are reported at an early stage,
suggesting replacing interfering registers to avoid unnecessary
design loops.

Phase II: The rectangular regions satisfying certain skew
requirements are identified. The algorithm iterates over an
increasing threshold level. A vector T contains all pre-determined
threshold values and defines basic time steps for mesh
construction. At each iteration, each connected vertex is
interconnected by edges with a weight below the current threshold
and merged into a new vertex. A geometric bounding box covering
all clock sinks within the same vertex is identified. The algorithm

is described in Fig. 5. A threshold t∈T is selected, edges with
weight less than the threshold are eliminated (step 1.2), the
corresponding vertices are identified as a connected component
(step 1.3), and these vertices are merged into one larger vertex
(step 1.4.1). The skew constraint of this new vertex is the tightest
skew constraint among all edges inside the corresponding
connected component (step 1.4.2). The algorithm terminates when
no threshold values remain in T, or only one vertex remains. A run
time example of Phase II is shown in Fig. 6. The merge operation
is performed by the subroutine shown in Fig. 7, as follows: The
inner edges inside a connected component are removed and
externally connected edges are connected to the new merged
vertex (step 2). The attributes of all vertices inside the connected
component are merged into the attributes of the corresponding new
vertex. The capacitance is the sum of all inner capacitances (step
3) and the bounding box bounds all inner sinks or inner bounding
boxes (step 4). The merge operation is illustrated in Fig. 8. Note
that this phase produces a set of possibly overlapping rectangular
regions.

Merge vertices procedure:

Inputs:
Output:

G: Graph, V: Group of vertices to be merged
Vmerge: Merged vertex with merged attributes

MergeVertices(G,V)

1. create new vertex vmerge

2. foreach v∈V

2.1. foreach e=v~v’

2.1.1. if v’∉V e=v’~vmerge

2.2. remove v

3. C(vmerge)=∑v∈VC(v)

4. Bbox(vmerge)=[min(x0),min(y0),max(x1),max(y1)]|

 (x0,y0,x1,y1)=bbox(v), v∈V

5. return vmerge
Figure 7: Vertex merging algorithm (part of Phase II)

Figure 8: Merge example: (a) constraint graph, vertices are placed at

the same place as the corresponding registers, (b) constraint graph

after merge, and (c) values of attributes after merge

Generate [skew,capacitance,bounding box] triplets

 Inputs:
 Output:

GC: Constraints graph, T: Thresholds vector
skewBbox stack, contains [skewucc,capucc,bboxucc] triplets,
in ascending order by skew

1. foreach t∈T

1.1. GC
undirected=getUndirected(GC)

1.2. foreach e∈GC
E

1.2.1. if we<t GC
undirected=GC

undirected/e

1.3. UCC=getConnectedComponents(GC
undirected)

1.4. foreach ucc∈UCC

1.4.1. vmerge=mergeVertices(GC,ucc)

1.4.2. skewucc=min(we|e=vi~vj, vi,vj∈ucc)

1.4.3. bboxucc=bbox(vmerge)

1.4.4. capucc=cap(vmerge)

1.4.5. push(skewBbox, skewucc,capucc,bboxucc])
Figure 5: Phase II algorithm for generating [skew, cap., bounding box]

triplets (mergeVertices() is shown in Fig. 7)

Figure 6: Phase II execution example. Rows are iterations and columns are steps of the algorithm

18

The time complexity of Phase II is O(|S|). Extracting and merging
all connected components requires O(|GC

V|+|GC
E|). The overall

run time of phase II is therefore O(|T|·(|GC
V|+|GC

E|)). Since |T| is
constant and the number of edges is of the same order as the
number of vertices |GC

E|=O|GC
V|, the time complexity of phase II

is O|GC
V|=O(|S|).

Phase III: Partly overlapping rectangular skew regions are merged
into polygons, and skew levels are assigned to the polygons. When
two skew regions overlap, the tighter skew constraint prevails and
is inherited by the resulting polygon, as illustrated in Fig. 9. The
input [skew, capacitance, bounding box] triplets are sorted in
ascending order of skew. Iteratively, a triplet with a tighter skew
constraint is removed from the input stack (step 2.1). The circuit
floorplan is filled with non-overlapping skew regions (steps 2.2
and 2.3) and polygon shaped skew regions are constructed from
overlapping regions. A run time example of Phase III is shown in
Fig. 10.

Polygon union and intersection operations can be performed in
O(n·log(n)) steps using a segmented tree data structure [20], where
n is the total number of polygon segments. This complexity is the
same order as the number of vertices n=O(|GC

V|)=O(|S|), and the
run-time of this phase is therefore quasi-linear, O(|S|·log(|S|)).

Final Phase IV: A clock mesh is designed for each of the non-
overlapping skew polygons. Each mesh should satisfy the skew

requirement of the polygon. If the maximum allowed skew for a
specific region is skewmax, the maximum allowed variation is
skewmax < ξ·skewmax. The skew variation is inversely proportional
to the mesh density. The density of each mesh is therefore tuned to
match the required skew variation. Skew as a function of mesh
density has also been discussed in [10]. Optimized pre-drivers are
placed by solving a set-covers problem [10],[11].

The overall run time for the entire algorithm is quasi-linear in the
number of clock sinks: O(|S|·log(|S|)). An example output of the
algorithm is illustrated in Fig. 11.

5. EXPERIMENTAL RESULTS
In order to verify the capability of the proposed method to reduce
power and wire length consumed by the mesh architecture, and
compare these capabilities to previous methods, several
experiments have been conducted. These experiments are
described and the results are discussed in sections 5.1 and 5.2,
respectively.

5.1 Flow and design environment
The proposed algorithm has been implemented in Perl and TCL.
Experiments have been performed on several circuits from the
ISCAS89 sequential benchmark suite. These benchmark circuits
have been designed using the Virage Logic standard cell logic
library with a 65 nm process operating at a 1 GHz frequency. RTL
representations of the benchmark circuits have been synthesized
into a netlist using Synopsys Design Compiler Ultra (DC Ultra)
and placed and routed by Cadence SoC Encounter™ RTL-to-
GDSII System. A TCL hook procedure is used to construct the
constraint graphs, which are imported into a XML database. The
proposed algorithm generates mesh and pre-driver locations. The
Cadence SoC Encounter constructs the final physical layout.
Results are analyzed using Cadence Virtuoso UltraSim Full-Chip
Simulator, a transistor-level FastSPICE circuit simulator.

5.2 Results
The results of applying the proposed algorithm to several
benchmark circuits are listed in Table 1. The first two columns list
the benchmark name and number of registers. The following three
columns list, respectively, the total wire length, power
consumption, and maximum skew. The experimental parameter ξ
is varied around a typical value. The experiment evaluates the

Generate [skew,capacitance,polygon] triplets:

Inputs:
Output:

[skew,capacitance,bbox] triplets from phase II
skewPolygon stack, containing
[skew,capacitance,polygon] triplets

1. covered=Ø

2. while skewBbox≠Ø

2.1. [skew,cap.,bbox]= pop(reversed((skewBbox))

2.2. polygon=coveredc∩bbox

2.3. covered=covered∪bbox

2.4. push(skewPolygon, [skew,capacitance,polygon])

Figure 9: Generating [skew,cap.,polygon] triplets (part of Phase III)

Figure 11: Example of the proposed mesh

Figure 10: Phase III execution example. Rows are iterations and

columns are steps of the algorithm

Table 1: Results of the proposed algorithm as compared with other approaches [10], [11]

Testcase #Sinks

Wire Length (um) Power (mw) Maximum skew (ps)

ξ = 1.1 ξ = 1.0 ξ = 0.9 [10] [11] ξ = 1.1 ξ = 1.0 ξ = 0.9 [10] [11] ξ = 1.1 ξ = 1.0 ξ = 0.9 [10] [11]

s9234 135 12490 13376 13857 33610 27177 5.03 5.27 6.8 8 6.7 113.7 93.7 82.5 163.9 124.1

s5378 165 20149 20839 22165 31009 24911 4.57 4.84 4.92 6.7 6.72 128.3 106.2 94.1 204.16 128.06

s13209 500 51220 51443 52834 82884 109538 11.8 12.59 12.91 20.6 23.8 132.1 111.4 91.8 62.33 95.81

s15850 566 44535 45628 45735 84055 100778 13.32 13.93 14.72 22 23.8 126 102.1 85.5 94 106.64

s38584 1426 164224 166274 165372 256567 262528 42.36 41.18 43.55 65.2 60.9 150.2 131.1 104.6 182.28 130.7

s35932 1728 237513 239342 241680 349432 321293 43.14 44.25 41.83 73.5 74.3 153.6 124.6 107.2 108.5 134.65

Average 753.3 88355.2 89483.7 90273.8 139593 141038 20 20.3 20.8 32.7 32.7 134 111.5 94.3 135.9 120

19

relationship among the metal resources, power consumption, and
relative skew tolerance parameter ξ. The maximum skew is
compared with other methods, and, as expected, a larger ξ
increases wire length and power consumption but reduces
maximum skew (see Fig. 12). Comparing these results to the
methods proposed in [10],[11], a typical value of ξ = 1 improves
the wire length and power dissipation with an insignificant
increase in maximum skew, as depicted in Fig. 13. As compared to
[10] and [11], the proposed method achieves a 37% average
reduction in metal consumption and a 39% average reduction in
power dissipation. These results demonstrate that managing skew
tolerance by wisely prioritizing critical paths saves significant
metal resources and dissipates less power as compared to
traditional methods.

6. CONCLUSIONS
An efficient graph-theoretic and geometric quasi-linear algorithm
for managing clock skew tolerance is presented in this paper. Skew
variations are managed while considering the criticality of the
timing of each data path. An algorithm and flow for planning and
synthesizing non-uniform clock meshes are integrated with current
CAD tools and demonstrated on a 65 nm CMOS process and cell
library. Experimental results on a set of benchmark circuits exhibit
a 37% average decrease in metal wire length and a 39% average
decrease in power dissipation with an insignificant increase in
maximum skew as compared to existing methods.

Future improvements of the algorithm should be considered. Other
parameters, e.g., metal width and layer, could be integrated into
the optimization process. Since constraint graph extraction is
computationally expensive, registers at the same local region could
be clustered into one node before extraction. Rather than a global
mesh that directly drives the clock sinks, a hybrid clock mesh
topology may be employed, e.g., a global mesh with local trees

(MLT) [6]. The algorithm presented here can be adapted to
automate the crosslink insertion process [8]. Rather than inserting
crosslinks to reduce maximum variations, the crosslinks could be
inserted according to the criticality of the individual data paths.
The algorithm presented here targets a mesh for zero-skew; useful
skew may also be considered.

7. ACKNOWLEDGMENTS
The authors would like to thank the VLSI Systems Research
Center at the Technion for providing CAD tools, and Virage Logic
Corp. for providing technology process and cell library. The
research is supported in part by the Technion ACRC and by the
ALPHA research consortium.

8. REFERENCES
[1] E. G. Friedman, “Clock Distribution Networks in Synchronous Digital Integrated

Circuits,” Proceedings of the IEEE, Vol. 89, No. 5, pp. 665-692, May 2001.

[2] P. J. Restle et al., “The Clock Distribution of the Power4 Microprocessor,”

Proceedings of the IEEE International Solid-State Circuits Conference, pp.

1.144-1.145, February 2002.

[3] T. Xanthopoulos et al., “The Design and Analysis of the Clock Distribution

Network for a 1.2 GHz Alpha Microprocessor,” Proceedings of the IEEE

International Solid-State Circuits Conference, pp. 402-403, February 2001.

[4] N. A. Kurd et al., “A Multigigahertz Clocking Scheme for the Pentium® 4

Microprocessor,” IEEE Journal of Solid-State Circuits, Vol. 36, No. 11, pp.

1647-1653, November 2001.

[5] S. Tam et al., “Clock Generation and Distribution of a Dual-Core Xeon Processor

with 16MB L3 Cache,” Proceedings of the IEEE International Solid-State

Circuits Conference, pp. 1512-1521, February 2006.

[6] C. Yeh et al., “Clock Distribution Architectures: a Comparative Study,”

Proceedings of the IEEE International Symposium on Quality Electronic Design,

pp. 85-91, March 2006.

[7] P. J. Restle and A. Deutsch, “Designing the Best Clock Distribution Network,”

Proceedings of the IEEE Symposium on VLSI Circuits, pp. 2-5, June 1998.

[8] A. Rajaram, J. Hu, and R. Mahapatra, “Reducing Clock Skew Variability Via

Crosslinks,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, Vol. 25, No. 6, pp.1176-1182, June 2006.

[9] I. Vaisband, R. Ginosar, A. Kolodny, and E. G. Friedman, “Power Efficient Tree-

Based Crosslinks for Skew Reduction,” Proceedings of the ACM/IEEE Great

Lakes Symposium on VLSI, pp. 285-290, May 2009.

[10] A. Rajaram and D. Z. Pan, “MeshWorks: an Efficient Framework for Planning,

Synthesis and Optimization of Clock Mesh Networks,” Proceedings of the IEEE

Asia and South Pacific Design Automation Conference, pp. 250-257, January

2008.

[11] G. Venkataraman, Z. Feng, J. Hu, and P. Li “Combinational Algorithms for Fast

Clock Mesh Optimization,” Proceedings of the IEEE/ACM International

Conference on Computer-Aided Design, pp. 563-567, November 2006.

[12] A. L. Sobczyk, A. W. Luczyk, and W. A. Pleskacz, “Power Dissipation in Basic

Global Clock Distribution Networks,” Proceedings of the IEEE Design and

Diagnostics of Electronic Circuits and Systems, pp. 1-4, April 2007.

[13] G. Tosik, L. M. S. Gallego, and Z. Lisik, “Different Approaches for Clock Skew

Analysis in Present and Future Synchronous IC's,” Proceedings of the

International Conference on "Computer as a Tool," pp. 1227-1232, September

2007.

[14] V. Mehrotra and D. Boning, “Technology Scaling Impact of Variation on Clock

Skew and Interconnect Delay,” Proceedings of the IEEE International

Interconnect Technology Conference, pp. 122-124, June 2001.

[15] S. Abe, M. Hashimoto, and T. Onoye, “Clock Skew Evaluation Considering

Manufacturing Variability in Mesh-Style Clock Distribution,” Proceedings of the

IEEE International Symposium on Quality Electronic Design, pp. 520-525,

March 2008.

[16] D. Velenis, M. C. Papaefthymiou, and E. G. Friedman, “Reduced Delay

Uncertainty in High Performance Clock Distribution Networks,” Proceedings of

the IEEE Design Automation and Test in Europe Conference, pp. 68-73, March

2003.

[17] I. S. Kourtev, B. Taskin, and E. G. Friedman, Timing Optimization Through

Clock Skew Scheduling, Second Edition, Springer Science+Business Media, 2009.

[18] S. D. Kugelmass and K. Steiglitz, “A Probabilistic Model for Clock Skew,”

Proceedings of the IEEE International Conference on Systolic Arrays, pp. 545-

554, May 1988.

[19] M. P. Desai, R. Cvijetic, and J. Jensen, “Sizing of Clock Distribution Networks

for High Performance CPU Chips,” Proceedings of the IEEE/ACM Annual

Design Automation Conference, pp. 389-394, June 1996.

[20] F. P. Preparata and M. I. Shamos, Computational Geometry: an Introduction,

Springer-Verlag, 1985.

P
o

w
er

 (
m

w
)

M
a

x
im

u
m

 s
k

ew

(p
s)

Relative skew tolerance – ξ

Figure 12: Power and maximum skew vs. relative skew tolerance

parameter ξ

(a) Wire length (um) (b) Power (mw)

(c) Maximum skew (ps)

Figure 13: Proposed method with ξ = 1 vs. [10] and [11]: (a) wire

length, (b) power, and (c) maximum skew

20

