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Abstract 
 

An asynchronous router for QNoC (Quality-of service NoC) is presented. It combines multiple service levels (SL) with 
multiple equal-priority virtual channels (VC) within each level. The VCs are assigned dynamically per each link. A 
different number of VCs may be assigned to each SL and per each link. The router employs fast arbitration schemes to 
minimize latency. Asynchronous circuits for VC and SL arbitration, as well as detailed overall architecture, are presented 
and analyzed. 
 
NOTE TO REVIEWERS: We are presently porting the design to a 0.18u technology (the most advanced one for which 
we have sufficient process data). In the final paper, if accepted, we will replace the 0.35u results with 0.18u results. In 
addition, the text here is arranged into one column for a more convenient reading and will be organized into two columns 
IEEE format in the final version. 

1. Introduction 
Large systems on chip (SoC) are interconnect limited due to high area, power and delays of the internal interconnect 

 [1]. Requirements for wide-bandwidth inter-modular communications exacerbate the problem, incurring larger area and 
power costs of the interconnects. In addition, data synchronization problems arise in multi-clock domain SoCs, and 
operating clocked interconnects becomes increasingly more difficult. Large SoCs are treated as Globally Asynchronous 
Locally Synchronous (GALS) systems, calling for suitable interconnects beyond conventional synchronous buses. 
Networks on Chip (NoC) were proposed as a solution for the SoC interconnect problem  [2]– [5]. To support varying 
communication requirements, a Quality-of-Service NoC (QNoC) that performs preemptive scheduling according to packet 
priority was introduced in  [6]. Since QNoC was designed to enable GALS systems with multiple clock domains, including 
dynamic voltage and frequencies scaling per each synchronous module, the network was best implemented as an 
asynchronous circuit  [41] [7]– [14]. Hierarchical QNoC  [10] (HQNoC) utilizes GALS properties and provides several 
solutions, suitable for different communication range. In HQNoC simple GALS interfaces  [15]– [20] are employed for 
short range communication, fast serial point-to-point links  [21] [22] are employed for long range communication and 
regular QNoC is employed for all other communications. 

A 2D mesh architecture of QNoC is shown in Figure 1  [6]. The SoC comprises modules and a QNoC, consisting of 
links and routers. All inter-modular communications are carried out in packets; legacy modules (capable only of bus-
oriented read/write operations) may require wrappers that handle packet based communications  [23]. Packets are 
partitioned into small flits, which are sent through the NoC using wormhole routing  [24]. Each QNoC packet carries a 
Service-Level (SL) priority tag, related to data communication requirements.  

In QNoC a packet transfer can be preempted by higher priority (higher SL) packet transfer. The preemption causes 
stalls not only in the router where different service-level flits contend, but also in other routers on the preempted packet 
route. In the latter routers, the output ports are busy and idle, waiting for data, even though there might be flits of the same 
service level from other input ports that are ready for sending. This situation is shown in the example in Figure 1. The 
packet transfer from module "G" to module "C" is preempted by higher service level packet transfer from module "H" to 
module "I" (East port of router #10 is preempted). The preemption causes stalls at all the output ports along the route 
"G" "C", (namely at north ports of router #11 and #7 and at the module port of router #3). Thus, despite the fact that the 
north port of router #11 is idle, the flits sent by module "I" to module "F" are stalled. Employing virtual channels  [25] for 
each service level will allow better utilization of the output ports and links. Note that virtual channels (VC) imply no 
priority information and rather provide best-effort communication within a given service level (Figure 2).  
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Figure 1: QNoC 2D Mesh Architecture and the Impact of Service Level Preemption  

 

Figure 2: Service Level and Virtual Channels 
K Service Levels, M Virtual Channels (M can be different for each SL and port) 

In a previous paper  [10] we introduced QNoC routes with no virtual channels. In this paper we explore QNoC routers 
that support four service levels  [6] (Table 1), each having a configurable number of virtual channels. The packet consists 
of three types of flits: a header flit with routing address, body flits and a tail flit, indicating end-of-packet (EOP), as in 
Figure 3. Each flit contains bits indicating its type, service level and virtual channel. 

Table 1: Service Levels Example  [6] 

Service-Level Description Priority 
Signaling Urgent Messages, Short Packets, 

Interrupts, Control signals requiring 
low transport latency 

Highest 

Real-Time Real-time and streaming packets  
RD/WR Short memory and register access  
Block Transfer Long messages and blocks of data Lowest 

 
Static virtual channel assignment  [7] for each router (e.g. according to the info in the packet header) acts similarly to 

SL assignment that changes from router to router. We employ dynamic virtual channel allocation within each SL  [26]. 
The virtual channel information is shared only by the sending output port and the receiving input port of the next router on 
the packet route. The number of VCs of a given SL must be the same for an output port and the next input port that is 
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connected to it. However, the number of VCs can change among the output and input ports of the same router and among 
different SLs. 

The rest of the paper is organized as follows. In Section  2 we review previously published routers. In Section  3 we 
describe in detail the proposed QNoC router architecture and the arbitration issues. In Section  4 performance results are 
discussed. 

 

Figure 3: Packet Structure and Flit Format 
 

2. Previous Work on NoC Routers 
NoCs have been studied intensively recently  [7]– [14], [28]– [32]. Several NoC implementations have been published 

and fabricated. The implementations can be divided into either synchronous or asynchronous, and either providing quality 
of service and guaranteed service or not (single service level, best effort only). Most implementations employ 2D planar 
geometry with five-port routers (Figure 1) and wormhole routing  [24]. Packet addressing is usually performed using 
source routing, and the address header is shifted by each router to reveal the number of the output port. In some 
implementations, credit-based communication is considered for better network utilization  [6]. Various signaling protocols 
are used by asynchronous implementations. A major challenge in asynchronous routers is fair and fast arbitration that 
supports QoS and maximizes output port utilization. Most routers utilize static-priority arbiters (SPA)  [33].   

While synchronous and asynchronous routers exhibit similar performance, it should be noted that when the NoC spans 
multiple clock domains, a multi-link data transfer may incur the additional penalty of multiple synchronization latencies. 
An asynchronous NoC helps eliminate en-route resynchronizations. Most of the present work is focused on asynchronous 
implementation. 

Synchronous routers using round-robin arbitration and supporting asynchronous interconnect are presented in 
 [11] [27] [28], though synchronization issues are ignored. Synchronous NoC routers supporting virtual channels, which 
could be used to provide multiple service levels, are described in  [29] and  [30]. Other synchronous routers are discussed 
in  [31]. A synchronous five-port router that supports two service levels (best effort and guaranteed throughput) is 
described in  [32] [34] [35]. ViChaR  [36] performs dynamic allocation of VCs according to traffic conditions. 

Asynchronous packet routers for off-chip networks were presented as early as 1994  [37]. CHAIN  [8] [9] is proposed as 
an asynchronous interconnect for NoC that is not a 2D mesh. Its CHAINlink protocol employs 1-of-4 encoding. CHAIN 
provides a flexible framework for NoC, but is limited to a single service level. Another QDI implementation, also 
restricted to a single service level, was presented in  [12]. 

An asynchronous router architecture with QoS support was recently presented in  [7]. In  [7] five-port router with two 
service levels (guaranteed service (GS) and best-effort (BE)) was presented. In addition, the proposed router uses credit-
based communication for each SL (called VC in the paper). 

The FAUST asynchronous router  [11] [23] also employs two service levels (one called "real-rime" and the other BE). 
Arbitration is performed using "Fixed Topology Arbiter", which slightly differs from the SPA. The authors present an 
implementation using the TAST language.  

The MANGO  [13] [14] router explores VC usage for hard service guarantee routing in combination with BE routing. 
The MANGO router comprises two sub-modules, a non-blocking switch for hard GS packets and another for BE packets. 
Output ports are shared between the two modules using a link arbiter. The GS level is partitioned into different priority 
sub-levels. At the GS level the router employs Asynchronous Latency Guarantee (ALG) algorithm that improves fairness 
of link admission in between the different priority sub-levels. The design uses four-phase bundled data inside the router 
and 1-of-4 encoding at the external interfaces. In addition, the proposed router employs a credit mechanism ("VC 
control"), based on two-phase signaling. The hard guaranteed services are advocated to provide better performance than a 
statistical approach used in a regular QoS network. However, since service time contains both network admission time 
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and the time of propagation through the network, when the sources are constrained, both approaches provide a guaranteed 
service that can meet performance targets (latency and throughput). Hard link allocation, however, limits resource sharing 
and therefore seems less attractive.  

A multiple service levels QNoC asynchronous router with credit based communication was presented and compared to 
similar-functionality synchronous implementations in  [10]. In the following sections we discuss a new architecture that 
supports output port sharing within each service level using dynamic VC allocation, thus achieving improved network 
utilization. 

We summarize several asynchronous architectures in Table 2. 

Table 2: Asynchronous Router Architectures 

NoC Type Number of Service 
Levels 

(Prioritized VCs) 

Type of Service Credit-Based 
Communication 

Support 

VC dimensions 

CHAIN  [7] [9] 1 N/A N/A 1 
QoS router  [7] 2 Statistical V 1 
FAUST  [11] [23]  2 Statistical V 1 
MANGO  [13] [14] Unlimited Hard V 1 
QNoC without VCs  [10]  Unlimited Statistical V 1 
QNoC with VCs 
(this paper) 

Unlimited Statistical V 2 
resource sharing 
within each SL 

  
3. QNoC Asynchronous Router 

Routers are the main functional blocks of QNoC. They route flits from an input port (IP) to one of the output ports 
(OP), according to the routing address and packet priority. As already mentioned in Section  1, previously published 
asynchronous routers, including our own  [10], explore only one dimension of output port sharing, namely the service level 
or priority (see Figure 2). NoC utilization may be improved by exploring a second dimension, providing sharing within 
each SL. In this section we describe the architecture of a QNoC router that supports the two dimensions. 

QNoC employs X-Y routing for a 2D mesh  [6] [38], where the packet is first routed along the X dimension and then 
along the Y dimension towards its destination. Using source routing, the packet contains a list of switching indices, 
providing a switching command for each router  [8]. 
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Figure 4: Routing Address from Source to Sink
In this work we present a design example of 5x5 port QNoC router, shown in Figure 4. The bi-directional router 

interfaces consist of multi-service level input and output ports (MSL-IP and MSL-OP). We assume that a packet entering 
through an IP does not loop back, and thus each IP is connected to four OPs (Figure 4) and only two bits are required for 
switching. The MSL-OPs emit flits according to their arrival order and their priority, as defined by the packet's Service 
Level (SL). 

The MSL-IP and MSL-OP contain multiple input and output virtual channels respectively, each implemented by 
virtual channel input and output ports (VC-IP and VC-OP). The VC-IP and VC-OP ports are upgraded versions of the 



 5

designs presented in our previous work  [10], having faster operation time and matching the new multi-virtual channel 
multi-service level environment.  

The number of service levels supported by the router can be chosen arbitrarily according to application requirements. 
In addition, the number of virtual channels per each service level over each link can be chosen arbitrarily, according to 
communication requirements. The numbers of virtual channels on a link affects the numbers of virtual channels in the 
output and input ports that are connected to the link. 

The data flow through the arbiter is shown in Figure 5. A flit entering the router through one of the MSL-IPs goes first 
through virtual channel and service level identification (Figure 3) and is sent to the appropriate virtual channel inside the 
MSL-IP (steps 1 and 2 in Figure 5). At this point input VC and SL information are peeled off the flit. In step 3 the input 
port computes the output port address and applies to the Virtual Channel Admission Control (VCAC) for output VC 
assignment. The communication between the input port and the VCAC is performed through a non-blocking switch. There 
is one such switch per each service level. In step 4, the VCAC assigns one of the output VCs to the requesting packet. 
This assignment occurs only once per packet, for the header flits. The flits are then fed into the corresponding virtual 
channel in the output port. Once there, the flit competes with other flits from the other VCs of the same SL, all trying to be 
sent out to the link. The VC arbiter selects a flit from one of the output VCs (Step 5). The flit subsequently gets into the 
last stage (Step 6), where it is arbitrated according to priority (SL).  

We distinguish between two types of arbitration. One type is priority arbitration (Step 6), which always grants access to 
the flit with the highest priority. The other type is single service level (SSL) arbitration (Step 5) among flits having the 
same priority. A SSL arbiter must be fair to avoid starvation. We discuss these arbitration issues in the following sections. 

In this paper we show a four service-level router example. In Sections  3.1 and  3.2 we present the detailed structure of 
the input and output ports. Details of credit implementation and buffering are omitted, as they were already described in 
 [10].  

  

Figure 5: QNoC Router Data Flow 

 
3.1. Multi-Service Level Input Port (MSL-IP) 

A. Top Architecture 

The QNoC router input port (MSL-IP) comprises 
K

K
M∑

VC-IPs, where K is the number of service levels and MK is 
the number of virtual channels within the KTH service level). Figure 6 shows a K=4 example with the same number of 
virtual channels for all service levels. Additional bits are added to each flit to identify the service level and VC (Figure 3). 
For each incoming flit, the request is applied to only one of the VC-IPs, according to the service level and virtual channel 
indications. The selected VC-IP conducts handshake with the input channel asking for data transmission. After the data is 
latched inside the VC-IP, a request is sent to the appropriate MSL-OP, according to the latched flit’s routing address. Note 
that the data inside the router is transferred without SL and VC indicators since SL connections are mutually exclusive 
and VC is allocated dynamically at each OP. 
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Figure 6: QNoC Multi-Service Levels Router Input Port 
B. Virtual Channel Input Port (VC-IP) Architecture 

VC-IP manages incoming flits that belong to an input virtual channel. The incoming flits are first saved in a buffer L 
(Figure 7), decoupling the external (input) interface and internal processing, and enabling additional flit transmissions. 
Next, the port decodes the flit type (header, body or tail). 

 

 

Figure 7: Virtual Channel Input Port (VC-IP) Architecture
On a header flit, the first two data bits contain the target OP index i for the present router. This index is saved in the 

OP-Index latch, controlling the MUX that selects one of four OPs. The index will be changed only by the header flit of the 
next packet. In addition, a shifted version of the header flit is sent out, so that the first two data bits now contain the OP 
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index for the next router. Last, the header is sent out by signaling Rhii. No processing is required for body and tail flits—
they are sent out by signaling the common request Rbt, which is broadcasted to all MSL-OPs. 

 

Figure 8: Latch-Control Circuit and STG 
The Latch-Control STG and its circuit implementation are shown in Figure 8. The controller is based on Muller-

Pipeline stages  [39] and was found to be much faster than the one used in  [10]. The controller was verified using Petrify 
 [40] for being speed independent. Note that the controller employs asymmetric delay lines to match latch propagation 
delays. This latch controller is re-used throughout the router architecture – both in VC-OP and in MSL-OP. 
 
3.2. Multi-Service Level Output Port (MSL-OP) 

A. Top Architecture 
The QNoC multi-service level output port structure is shown in Figure 9. It consists of four stages. At the first stage the 

incoming packets are grouped according to their SL and then are dynamically assigned to output VCs by the VCAC 
module of that SL. Note that VCAC manages all requests of the same SL coming from all MSL-IPs connected to the 
given MSL-OP (the VCAC structure and operation are detailed in sub-section  B). At the second stage, packet flits are 
arbitrated inside each service level using M-Way VC arbiters (detailed in sub-section  C). Static Priority Arbiter (SPA) at 
the third stage performs arbitration of flits coming from different SLs according to SL priority. The data is also latched at 
the third stage allowing immediate release of the second stage right after the end of arbitration. The fourth stage switches 
the correct data to the external interface, controlled by the Latch Controller (Figure 8). 

 The header requests from the MSL-IPs are grouped according to their service level, and conflicts within each service 
level are resolved by VCAC. VCAC monitors BUSY lines of the managed output VCs (VC-OP) and assigns one of the 
free output VCs to an incoming packet. If no free output VCs are available, the header requests are stalled, waiting for at 
least one free output VC.   

The arbitrated header requests are directed to the assigned output VCs, and then the corresponding VC-OP modules 
conduct direct communication with the relevant input VCs of the relevant MSL-IP. Note that all packet flits, except for 
the header flit, are transferred directly between VC-IP and VC-OP, without any involvement of VCAC.  

At the second stage of MSL-OP VC arbitration is performed. Only one output VC of each SL is allowed to 
communicate with the third stage at a time. The VC Arbiter is responsible for flits arbitration inside each SL, providing 
bounded blockage time  [10] for each output VC inside the SL group. The VC Arbiter operation is explained in sub-section 
 C below. 

At the third stage flit requests from all service level channels enter the static priority arbiter (SPA)  [33]. The SPA 
decides according to service level priority which flit is sent at the next output data cycle. When a service level is granted 
(G_SLi), the corresponding address is latches in the C-elements (one-hot encoding), switching the data MUX. The flit 
from the MUX is latched into the output latch by the Latch Controller, which subsequently sends the flit through the 
shared output interface to the link.  

After sending one flit to the Latch Controller (fourth stage), control is returned to the SPA, since there could be higher 
service level flits pending. Next priority decision is performed only when the data is latched inside the fourth stage, thanks 
to the Gate signal of the SPA. 

A modified SPA [33] consists of a Request Lock Register (containing the MUTEX elements) and priority logic (Figure 
10). When at least one request is sensed, the set of pending input requests are locked in the register, and eventually the 
highest priority request is granted at the output (Gi+). As a result, the Request Lock Register is reset. The C-element 
holding the grant is released only after the corresponding request goes low. The SPA's locked requests (AND-gate 
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outputs) are used to latch data at the third MSL-OP stage (LOAD signal). In this way only flits that have attached request 
signal are sampled.  

Although fairness of the priority arbiter has been improved  [41], we employ a modified version of the simpler 
approach  [33], since in our case fairness among service levels is less of an issue, thanks to additional MUTEX-arbitration 
within each service level (inside VCAC and VC Arbiter). 

 

Figure 9: QNoC Multi-Service Level Router Output Port (M-Way VC arbiters are used in VC Arbitration 
stage, K-Way SPA is used in SL arbitration Stage). In this figure K=4, M=3 

 

Figure 10: N-Way Static Priority Arbiter 
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B. Virtual Channel Admission Control (VCAC) 
Since the router is asynchronous, arrival time of the request signals is unknown, and requests may conflict. Therefore, 

the requests from IPs should be arbitrated. Note that only header-type requests are arbitrated, since once an IP-OP 
connection is established the body and tail requests are directly communicated between an input port VC and an assigned 
output port VC. 

The arbitration and output VC assignment are performed by the VCAC architecture shown in Figure 11. The incoming 
header requests are first arbitrated by MUTEX-NET, which structure is discussed below. Thanks to the MUTEX-NET 
only one request is granted. The granted request enables the SPA, which in turn decides on output VC assignment. SPA 
picks one of the free output VCs according to BUSY signals coming from the VCs. When an output VC is free, its BUSY 
signal is low, enabling the SPA lock operation. However, the lock operation also depends on an existence of enable (see 
Figure 10), therefore only when both request and at least one free VC exist, the SPA decides on the VC assignment. 

When SPA issues a decision, the input VC address is sent to the output VC that was picked by the SPA (using the 
MUX). Once the address is latched inside the output VC, GATE signal is returned to the SPA (and BUSY of the assigned 
output VC becomes high). GATE signal is released only after the corresponding header request is de-asserted, therefore 
an input request is associated only with single output VC. When GATE is de-asserted, subsequent header requests, 
arbitrated by the MUTEX-NET, are processed.  

 

Figure 11: Virtual Channel Admission Control (VCAC) Module 
The header request arbitration is performed by MUTEX-NET, which was found to be slightly faster than the tree-

arbiter, having similar latency and area  [10]. 
In an arbiter, one of the main concerns is fairness, which guarantees that a request will be granted after a bounded 

number of other requests  [33]. Fairness and correctness  [42] of arbitration can be improved by using ordered arbiters  [43], 
preserving the closest possible granting order to input arrival, by storing the incoming requests in an internal FIFO. In  [10] 
we proved that the MUTEX-NET is fair, having a bounded blocking time. 

In  [10] four-way MUTEX-NET was implemented (Figure 12). Four requests are mutually excluded by means of a net 
of six two-input MUTEX elements, arranged in three stages. The latency of the MUTEX-NET is expected to be very low 
for non-conflicting cases, making this solution fast and effective for the majority of packet transmissions. Note that the 
arbitration is performed only once per packet and therefore most of the bits are unaffected by the arbitration latency. In 
this work we extend the four-way arbiter to N-Way MUTEX-NET arbiter, when N is a power of 2. This extension allows 
construction of a generic router with any number of VCs. We refer to the interconnect connections inside the MUTEX-
NET as "group-connections", each consisting of N/4 wires, and construct a N-Way MUTEX-NET using the same 
topology as the one of four-way MUTTEX-NET, while the MUTEXes are replaced by N/2-Way MUTEX-NETs. 
Examples of 8-Way and 16-Way MUTEX-NETs are shown in Figure 13. 

In each MUTEX-NET junction, first in-group connection arbitration is performed. This operation is required only 
during the first MUTEX-NET stage. Therefore, at the second and the third stages of the MUTEX-NET, "star" units are 
employed, omitting the in-group connection arbitration and reducing the arbitration latency. The structure of "star" 
MUTEX-NET arbiter is shown in Figure 14.  
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Figure 14: STAR MUTEX-NET 
 
C. Virtual Channel Arbiter 

The VC Arbiter is based on MUTEX-NET arbiter (sub-section  B) and is responsible for flits arbitration inside each SL, 
providing bounded blockage time  [10] for each output VC inside the SL group. VC Arbiter operation is as follows. First, 
incoming request from output VCs are arbitrated by M-Way MUTEX-NET that grants one of them per a time. The 
granted request is latched in corresponding c-element and serves as address for connection between the granted output VC 
and SPA. After arbitrating the common request Ro, SPA issues grant signal (Figure 9) that serves as acknowledge to the 
VC arbiter. The acknowledge signal is passed directly to the correct output VC thanks to the address latched in c-
elements. Finally, the output VC de-asserts its requests allowing other VCs requests processing. Note that the new output 
VC request arbitration is performed immediately, however, c-elements will remain locked until the last handshake with 
SPA is over (Ao is low). 



 11

 

Figure 15: M-Way VC Arbiter 
 

D. Virtual Channel Output Port (VC-OP) Architecture 
VC-OP (Figure 16) interfaces the four IPs of the same SL. The admission to the port is managed by Virtual Channel 

Admission Control (VCAC) module (described in sub-section  B).  The port receives an IP index from VCAC module, 
establishing IP-OP connection and maintains the connection for the duration of the packet, until receiving a tail-type flit. 

Upon the reception of a header flit (Hi high), the port sends out "GATE_TO_VCAC" signal that resets the arbiter of 
VCAC, allowing to perform new output VC allocation. In addition, the port produces BUSY signal that indicates to 
VCAC that the output VC is taken and no new packet can be applied to it. After header flit handling, body and tail 
requests arrive in a mutually exclusive manner. Body and tail flits are immediately sent out to the output interface, 
through latch L.  

Upon a tail-flit, the IP-Index latch becomes transparent, latching "all zeros" value from VCAC. Consequently, the 
BUSY signal goes low, indicating to VCAC the port readiness to accept a new packet. The latch becomes transparent only 
after the port completes the (Ri, Ai) handshake for the tail-flit. This is assured by the NOR gate, keeping the c-element 
input low during the tail-flit data cycle.  

The Latch-Control unit latches the selected data in data latch L. Subsequently, it conducts the handshake with the next 
MSL-OP module (VC arbiter). The unit is identical to the one used in VC-IP (Figure 8).  

 

Figure 16: Virtual Channel Output Port (VC-OP) Architecture
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4. Performance Results 
The proposed asynchronous QNoC router was designed using 0.35μm CMOS technology. The router has 5 ports, four 

service levels, two virtual channels for each service level (same number of VCs for all ports) and eight-bit flit width. In 
this configuration router cell area is 1,345mm2 or 24,500 equivalent gates. Data latches are about 30% of the total cell 
area. Gate-level simulations were performed for the gate-level prototype of the router. The router data cycle was found to 
be 9.7ns or 103Mflits/s. We plan to port the design to 0.18μm technology process in order to present more scalable 
results. We also plan to perform the design layout in order to explore the interconnect layout issues and their impact on 
router area and performance. 

Note that the reported results depend closely on the choice of protocols and on implementation details. Future research 
is required to optimize the design, to investigate alternative protocols, and to evaluate bottlenecks. As explained in  [10], 
data buffers may be added to enhance performance – both inside the router and on the NoC links.  

 

5. Conclusions 
We presented a detailed architecture of asynchronous Quality-of-Service NoC (QNoC) router. The router supports 

multiple service levels as well as multiple virtual channels within each service level. This two-dimensional virtualization 
provides higher NoC link utilization relative to the one dimensional structures, consisting of a set of either prioritized or 
non-prioritized virtual channels. The virtual channel allocation is performed dynamically, using Virtual Channel 
Admission Control unit. The router is highly configurable both in terms of using a desired number of service levels and in 
terms of choosing different number of virtual channels for each port and service level. This allows complete application 
matching, according to capacity allocation requirements. 
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