
Assertion Based Verification of
Multiple-Clock GALS Systems

Rostislav (Reuven) Dobkin, Tsachy Kapshitz, Shaked Flur and Ran Ginosar
VLSI Systems Research Center, Technion—Israel Institute of Technology, Haifa 32000, Israel

ABSTRACT
Standard EDA ABV tools fall short of verifying multiple clock
domain systems on chip (MCD SoC), asynchronous systems and
Globally Asynchronous Locally Synchronous (GALS) systems.
This paper describes a method for verifying asynchronous and
multi-clock behavior in such systems using PSL and standard
ABV tools. We convert STG (signal transition graphs), a common
form for specifying asynchronous behavior, into PSL statements,
employ standard ABV tools, and formally prove complete
verification. The proposed ASE (automatic sequence extraction)
algorithm was applied to a MCD SoC model that employed a
network-on-chip (NoC) for asynchronous inter-modular
communications.

Categories and Subject Descriptors
B.6.3 [Design Aids]: Verification

General Terms
Algorithms, Design, Verification

Keywords
ABV, MCD, SoC, GALS, Asynchronous logic

1. INTRODUCTION
Large systems on chip (SoC) may incorporate multiple modules
operating at different frequencies. Moreover, in dynamic voltage
and frequency scaling (DVFS) systems, frequency and voltage
may dynamically change during operation [1]- [3]. The resulting
multiple clock domains (MCD) SoCs are treated as Globally
Asynchronous Locally Synchronous (GALS) systems [4] [5].
Inter-modular communications in MCD GALS systems are best
implemented by asynchronous logic, eliminating multiple
synchronization latencies and complex distribution of multiple
clocks. Indeed, the ITRS predicts that by 2020 40% of SoC global
signaling will be performed asynchronously [6]. However, to
reliably employ asynchronous signaling, suitable verification
techniques are required.
In a typical design and verification flow, the specification is
converted into a design and also into verification statements (e.g.
in PSL [7]). The design is typically verified with an ‘assertion
based verification’ (ABV) tool [8]. ABV may be based on either
simulation [9] [12] or formal verification [13] [14] . In addition,
advanced ABV supports temporal expression and/or data validity
verification (PSL, e-language, System-Verilog, etc.) [7]- [12].
However, this scheme is often limited to clocked designs that

employ a single clock, due to language limitations and tool
constraints. Thus, verification by ABV is usually inapplicable to
MCD systems and to any asynchronous circuits that may be
included in the design.
Verification techniques for pure asynchronous logic [15]- [20]
mostly employ custom tools, complicating their integration into
typical design and verification flows. GALS system verification
and test method was discussed in [21], where a special test
extension was added to each GALS wrapper. The test extensions
disconnect locally synchronous islands during test data transfer
between different GALS wrappers, allowing stand-alone massive
testing of the wrappers and their interconnections. This technique
appears to be more test-oriented. In [22] a GALS wrapper was
modeled by Petri nets and verified for reachability and deadlock
using model checking [23]. Clock domain crossing (CDC)
verification was discussed in [24], where structural and functional
synchronizer verification was performed using PSL. These
references do not provide a complete verification method for
GALS systems.
One common form of specifying asynchronous behavior is based
on signal transition graphs (STG) [25] which define untimed
ordering of transitions. However, typical ABV tools cannot
employ STG for verification of the design. In this work we
combine STG specifications and temporal PSL expressions to
enable CDC and asynchronous logic verification in MCD GALS
systems. First, clock domain crossings and other asynchronous
components of the specification are presented formally using
STG. Second, an algorithm is presented that converts STG
specifications into PSL statements. Third, ABV is performed,
using either an artificially generated clock or transition-sensitive
verification. We prove that such verification is complete.
The paper is organized as follows. In Sect. 2 we describe the
applicable STG and PSL properties. The algorithm that converts
STG to PSL is presented and analyzed in Sect. 3, and an example
of a complex SoC verification is shown in Sect. 4.

2. STG AND PSL PROPERTIES
In this section we survey the applicable features of signal
transition graph (STG) and property specification language (PSL),
providing for the description of the algorithm in Sect. 3.

2.1 Signal Transition Graph (STG)
A module behavior can be described formally with a signal
transition graph (STG). An example of STG for a simple latch
controller is shown in Figure 1. The STG is a special type of a
Petri Net [15]. Tokens are marked by solid circles and their
position (marking) determine the circuit state; the token marking

Figure 1: Latch controller example (a) Controller Interfaces, (b) STG, (c) Timing Diagram

in Figure 1, denotes the initial state. Change of state is denoted by
moving tokens along directed edges. A transition of node n is
enabled when every incoming arc holds a token. When the
transition takes place (node n “fires”), all incoming tokens are
consumed and new tokens are produced on each outgoing arc.
STG may also specify choice and merge conditions, which are not
shown in this paper, but can be also treated by the ASE approach.
The STG can be used for logic synthesis, for example using
Petrify tool, which also performs formal verification of the
synthesized logic [15]. Unfortunately, Petrify cannot be used for
large system synthesis and verification. In addition, when gate-
level asynchronous design is obtained manually or by tools
without formal verifier inside, the verification of internal structure
is an essential condition for the design sign-off.
Note that STG tokens circulate in the STG for each new word in a
repeating manner. While the cross-relation between the tokens
may change for different cycles, the path that a single token goes
through is never changed (this is partially true for STGs with
choice, where current path is chosen from a certain number of
predefined paths according to choice input value).

2.2 Property specification language (PSL)
The PSL language provides operators for defining and verifying
timed sequences. For example, the following expression employs
the ‘->’ and ‘eventually!’ PSL operators to verify that
acknowledge signal AI is asserted each time request signal RI is
asserted.

property req_ack_in_p is always (RI->eventually!AI);

More complex relations can be defined by Sequential Extended
Regular Expressions (SERE). A SERE makes it easier to define
long sequences, allows re-use of shared sequences and can be
used in conditional statements. For example, a simple four-phase
handshake protocol (RI+ AI+ RI- AI-) can be defined as
follows:

sequence hs_init is {not RI; RI};
sequence hs_body is {RI; AI; not RI; not AI};
property sere_examp is always { hs_init } |-> { hs_body };
assert sere_examp;

The brackets define sequences. hs_init expresses the initial
transition of the sequence (RI+) and hs_body contains the
remaining transitions. The sere_examp property uses the "always"
operator to specify that it must be valid at all times. The assert
statement actually initiates verification of the property.
These sequence examples do not employ any clock. This is
important when verifying multiple clock domains: PSL is defined
only for a single clock. This verification code may be used in two
ways. First, the ABV may be event-based, and asynchronous
transitions are handled at arbitrary times rather than on any
external clock ticks. Alternatively, a default verification clock

may be defined. In any case, the verification is independent of
any clock event ordering of external multiple clocks.
Verification effectiveness is measured by coverage. The next
example collects coverage for the sequence hs_body:
cover hs_body;

3. AUTOMATIC SEQUENCE
EXTRACTION (ASE)
Our goal is to generate assertion expressions for ABV from
system level specification of GALS system. We use STGs for
specification and then apply the Automatic Sequence Extraction
(ASE) algorithm. ASE decomposes the STG into STC-1, a set of
cyclic non-splitting circles, which are then transformed into PSL
assertions. In this section we present all definitions, provide a
formal analysis to prove the correctness of the STG
decomposition into STC-1 (Sect. 3.1), describe the ASE algorithm
in Sect. 3.2 and provide an example in Sect. 3.3.

3.1 STG Decomposition and Complete
Verification
In this section we prove that the proposed STG decomposition is
correct, namely that the generated PSL assertions preserve the
original STG specification.
Definitions
1. Signal transition graph (STG) is a connected directed graph
G=(V,E,T), where V is a set of nodes representing signal
transitions (“+” and “-“), E are directed edges showing
precedence relations, and T is the initial marking (‘marking’ is a
set of edges having tokens on them). The STG follows three sets
of rules:

a. When all edges leading into a transition have tokens, the
transition may “fire”, the said tokens are consumed and new
tokens are placed on all edges emanating from the fired
transition.
b. In this work, STGs are free from deadlocks, 1-bounded (no
more than one token per edge), and have only input free
choices [15] [26]. This also means that there are neither source
nodes nor sink nodes in the STG, and every node may be
revisited infinitely many times.
c. The STG specifies a speed-independent system, namely it
has consistent state assignment (transitions strictly alternate
between “+” and “-“) and is persistent (enabled transitions must
eventually fire) [15] [26].

Figure 2: A specification may be designed and synthesized
into a DUV. The CDC and asynchronous part of the spec is

presented as STG. The STG is converted into PSL assertions
(via STC) by the ASE algorithm, and the DUV is verified. This

implies that the CDC and asynchronous parts of the design
conform to the STG

An STG specifies a logic circuit (and possibly its environment) by
implying the following ‘STG properties’:

a. The sets V, E, T.
b. Sequences of transitions that are allowed in the logic circuit
(transition sequences are ordered sets of transitions that are
defined by paths in the directed STG).
c. Sequences that are allowed to happen concurrently.
d. The STG may also imply choice; this paper does not treat
choice.

2. Simple Circle (SC) in STG: A sequence of transitions that starts
and ends at the same transition and does not contain any transition
more than once (except for the first transition).
3. Signal transition circles (STC): A STG decomposed into a set
of Simple Circles. The decomposition extracts all existing SCs for
a given STG. The original STG may be reconstructed by
combining the SCs of the STC back together.

a. Note that a transition sequence that exists in the original
STG may consist of segments that belong to different SCs in
the STC.
b. STC-1 is an STC where each SC contains exactly one token.

4. Concurrent transitions may happen in any order. Two
transition sequences are concurrent sequences if any transition
from one sequence is concurrent to all transitions of the other
sequence. This implies:

a. They share a starting common transition and an ending
common transition.
b. Other than the starting and ending transitions, they do not
share any other common transitions, and there are no cross
paths from one sequence to the other.

Concurrent sequences are concurrently enabled when the starting
common transition has fired (enabling the concurrent sequences)
and the ending common transition has not yet fired [27].
For the purpose of verification, the specification STG is converted
into STC-1, and the STC-1 is converted into PSL assertions:
5. Verification: proving that a set of rules (PSL assertions) is
fulfilled by the logic circuit (“design under verification”, DUV).
In other words, the DUV conforms to the PSL assertions.
Verification may be performed by either a simulation-based ABV
tool or formally.
6. Complete verification is satisfied if:

a. The DUV is verified, namely it fulfills the PSL assertions.
b. The PSL assertions cover all STG properties of the
specification.
c. Consequently of a+b, the DUV fulfills at least all transition
sequences allowed by the STG [15].

Complete verification is demonstrated in Figure 2. Condition a is
guaranteed by the ABV tool. Condition b is proven by the Claim
below, and by discussing the ASE algorithm in Sect. 3.2 and 3.3
below.
The STG is decomposed into a STC-1, and we prove that:
Claim: The STC-1 preserves all STG properties.
The Claim is proven by means of the following lemmata. The
proofs are given in the Appendix.
Lemma 1: The STG always includes a SC that contains both "+"

and "-" transitions of the same signal (S+, S-).
Lemma 2: The STC-1 covers all STG transitions.
Lemma 3: The STC-1 covers all STG edges.
Lemma 4: Each SC has at least one token.
Lemma 5: A SC with more than one token is redundant and is

covered by a set of SCs with single token (STC-1).
Lemma 6: The STC-1 preserves the initial marking of the STG.
Lemma 7: The STC-1 preserves the concurrent branches of the

STG.

3.2 ASE Algorithm
The ASE algorithm is applied to a reduced STG (which contains
no redundant edges). The main steps are:
1. Find all SCs in the STG. Add the SCs to a STC.
2. Remove from the STC all SCs with multiple-tokens, resulting

in STC-1.
3. Remove from the STC-1 all SCs that can be covered by a

combination of other SCs from the STC-1.
4. Re-arrange the transitions inside each SC such that the first

transition holds the token.
5. Convert each SC into a PSL assertion (as demonstrated

below).

3.3 Algorithm Example
For demonstration, the algorithm is applied to the STG of Figure
1b. The STG is decomposed into four SCs shown in Figure 3.
The extracted SCs are mapped into SEREs. To verify that only
one transition happens at a time in each SC, the signal transitions
are transformed into predicates that represent mutually exclusive
events. These events are internally implemented by pulses,
because it is easier to express mutual exclusion of pulses in PSL.
For instance, a pulse is defined for each rising edge and another
pulse for each falling edge of each signal, and the event S+ is
replaced by the predicate “S+ and none of the other transitions of
the same SC”, where each component is actually represented by
pulses or lack thereof. Similarly a ‘transition complete’ predicate
(TC) specifies no transitions, and it is inserted after each
transition predicate to verify that the transition is complete before
the next one starts.
SEREs are constructed using only the predicates. First the
algorithm generates SEREs representing the initial conditions

Figure 3: Extraction of Simple Circles from STG

Figure 4: Verification Example: Module and NoC interfaces

and the SCs:
sequence circle1_i is {not Ri_r; Ri_r);
sequence circle23_i is {not En_r; En_r);
sequence circle4_i is {not Ro_r; Ro_r);

sequence circle1_c is {Ri_r; TC; En_r; TC; Cd_r; TC; En_f; TC;
 Ai_r; TC; Ri_f; TC; Ai_f; TC; Ri_r};
sequence circle2_c is {En_r; TC; Cd_r; TC; En_f; TC; Cd_f; TC;
 En_r};
sequence circle3_c is {En_r; TC; Cd_r; TC; En_f; TC; Ro_r; TC;
 Ao_r; TC; En_r};
sequence circle4_c is {Ro_r; TC; Ao_r; TC; Ro_f; TC; Ao_f; TC;
 Ro_r};
Next the initial condition and circle sequences are combined into
properties, asserted and monitored for coverage:
property circle1_p is always {circle1_i} |-> {circle1_c};
assert circle1_p; cover circle1_c;
property circle2_p is always {circle23_i} |-> {circle2_c};
assert circle2_p; cover circle2_c;
property circle3_p is always {circle23_i} |-> {circle3_c};
assert circle3_p; cover circle3_c;
property circle4_p is always {circle4_i} |-> {circle4_c};
assert circle4_p; cover circle4_c;

4. SOC/NOC VERIFICATION EXAMPLE
The ASE algorithm and a simulation-based ABV were applied to
verify the SoC of Figure 5. The SoC contains locally synchronous
modules each having its own local clock, interconnected by an
asynchronous network-on-chip (NoC). The interfaces between the
modules and the network comprise input and output ports (IP and
OP) and provide synchronization and handshake, following [28].
The asynchronous NoC consists of links and asynchronous routers
 [29] and employs packet-based communication and wormhole
routing [30].
An example segment of the SoC (Figure 4) consisting of a sender
module, three intermediate routers, and a receiver module. The
STG specification of the port asynchronous controllers is shown
in Figure 6a,b. The asynchronous routers employ a four-phase
bundle data protocol (Figure 6c). A new data flit is sent out for
each new R2+ event.
The NoC traffic pattern is usually known for each specific
application, allowing optimizing the NoC in terms of buffers and
links. We specify each point-to-point NoC traffic path by means
of STG; Figure 7 shows an example path from M1 to M3. The
example STG represents 2-deep buffers (e.g. R1+, R1+/1).

The specification STGs were converted into PSL assertions by
ASE, and the circuits were successfully verified using NC-Sim
ABV. Coverage results for the input and output ports are shown in
Figure 8a. The results are correlated through traffic addresses as
shown by the arrows, thanks to the fact that in this example each
output port always sends packets to the same destination.

Figure 5: Design example. Multi-clock domain SoC with NoC

Figure 6: STG specifications

Figure 7: Traffic path specification for 2-buffer routers

0 200 400 600 800 1000

1

2

3

4

5

6

7

8

9

G
A

LS
 W

R
A

PP
ER

HITS

OP
IP

0 200 400 600 800 1000

1

6

11

16

21
N

oC
 L

in
k

ST
G

HITS
0 50 100 150 200 250

1

2

3

4

5

6

7

8

9

VA
LI

D
 T

R
A

FF
IC

 S
TG

HITS

Figure 8: Verification example coverage results

Coverage results for NoC links are shown in Figure 8b. The
coverage holes may be repaired by extending the verification
cases as needed. In this example we defined nine valid traffic
patterns, whose coverage is shown in Figure 8c.

5. CONCLUSIONS
A novel verification approach for multiple-clock domain (MCD)
GALS systems was presented. Previously, the asynchronous
aspects of MCD GALS systems could be specified with STG,
but it was impossible to verify the design against the STG using
standard ABV. Further, normal ABV could verify PSL
expressions, but they were practically limited to single-clock
systems, and it was impossible to verify MCD systems. This
work overcomes these difficulties by converting STG into PSL
and employing standard ABV to achieve verification of MCD
GALS systems.
In this work the asynchronous aspects of the MCD GALS
system are specified by an STG. The STG is converted into PSL
statements by the novel Automatic Sequence Extraction (ASE)
algorithm. A correctness proof for the transformation was
provided. In addition, a verification example is shown which
applies the new technique to a complex MCD SoC that uses
NoC (network on chip). Future research includes extending this
approach to timed and choice STG.

6. REFERENCES
[1] G. Semeraro, D.H. Albonesi, S.G. Dropsho, G. Magklis, S.

Dwarkadas, M.L. Scott, "Dynamic frequency and voltage
control for a multiple clock domain microarchitecture,"
IEEE/ACM Int. Symp. on Microarchitecture, 356-367,
2002.

[2] L. S. Nielsen, C. Niessen, J. Sparsø, C. H. van Berkel,
"Low-power operation using self-timed and adaptive
scaling of the supply voltage," TVLSI Systems, 2(4):391-
397, 1994.

[3] W.R. Daasch, C.H. Lim, G. Cai, "Design of VLSI CMOS
Circuits Under Thermal Constraint," TVLSI Systems,
49(8):589-593, 2002.

[4] D.M. Chapiro, "Globally-Asynchronous Locally-
Synchronous Systems," PhD Dissertation, Stanford
University, 1984.

[5] D. Bormann, P. Cheung, "Asynchronous Wrapper for
Heterogeneous Systems," ICCD, 307-314, 1997.

[6] International Technology Roadmap for Semiconductors
(ITRS), 2005, www.itrs.net.

[7] IEEE P1850 Standard for PSL, Property Specification
Language. http://www.eda-stds.org/ieee-1850.

[8] B. Wile, J.C. Goss, W. Roesner, "Comprehensive
Functional Verification: The Complete Industry Cycle,"
Morgan Kaufmann, 2005.

[9] E-language,
http://www.cadence.com/partners/industry_initiatives/e_pa
ge/index.aspx.

[10] System-Verilog language, http://www.systemverilog.org.
[11] Synopsys, Vera.

http://www.synopsys.com/products/vera/vera.html.
[12] Mentor, Modelsim. http://www.model.com.
[13] E.M. Clarke, O. Grumberg, D. Peled, "Model Checking,"

MIT Press, 1999.
[14] RuleBase,

http://www.haifa.il.ibm.com/projects/verification/RB_Hom
epage.

[15] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno,
A. Yakovlev, “Petrify: a tool for manipulating concurrent
specifications and synthesis of asynchronous controllers,”
IEICE Trans. on Information and Systems, E80-D(3), 315–
325, 1997.

[16] D.L. Dill, S.M. Nowick, R.F. Sproull, "Automatic
verification of speed-independent circuits with Petri net
specifications," Int. Conf. on Computer Design: VLSI in
Computers and Processors, 212-216, 1998.

[17] D. Borrione, M. Boubekeur, L. Mounier, M. Renaudin, A.
Sirianni, "Validation of asynchronous circuit specifications
using IF/ CADP", VLSI-SOC, 85-100, 2003.

[18] J. Gong, E.M.C. Wong, "Verification of asynchronous
circuits with bounded inertial gate delays," 7th Asian Test
Symposium, 399-401, 1998.

[19] T.W.S. Lee, M.R. Greenstreet, C.J. Seger, "Automatic
Verification of Asynchronous Circuits," Design and Test of
Computers, 1995.

[20] D.L. Dill, Trace theory for automatic hierarchical
verification, MIT Press, 1988.

[21] F.K. Gurkaynak, T. Villiger, S. Oetiker, N. Felber, H.
Kaeslin, W. Fichtner, "A functional test methodology for
globally-asynchronous locally-synchronous systems,"
ASYNC, 181-189, 2002.

[22] S. Dasgupta, A. Yakovlev, "Modeling and Verification of
Globally Asynchronous and Locally Synchronous Ring
Architectures," DATE, 568-569, 2005.

[23] V. Khomenko, "Model checking based on Petri net
unfolding prefixes," PhD thesis, School of Computer
Science, University of Newcastle upon Tyne, 2002.

[24] T. Kapschitz, R.Ginosar, "Formal Verification of
Synchronizers," CHARME, 363-366, 2005.

[25] T.A. Chu, C.K.C. Leung, T.S. Wanuga, "A Design
Methodology for Concurrent VLSI Systems", ICCD, 407-
410, 1985.

[26] Sparsø and Furber, Principles of Asynchronous Circuit
Design, Kluwer Academic Publishers, 2001.

[27] Y. Wolfsthal, M. Yoeli, "An Equivalence Theorem for
Labeled marked Graphs," Trans. on Parallel and
Distributed Systems, 5(8):886-891, 1994.

[28] R. Dobkin, R. Ginosar, C. P. Sotiriou, "High Rate Data
Synchronization in GALS SoCs," TVLSI, 14(10):1063-
1074, 2006.

[29] R. Dobkin, V. Vishnyakov, E. Friedman, R. Ginosar, "An
Asynchronous Router for Multiple Service Levels
Networks on Chip," ASYNC, 44-53, 2005.

[30] W.J. Dally, A VLSI Architecture for Concurrent Data
Structures, Kluwer Academic Publishers, 1987.

APPENDIX
Proof of Lemma 1: Since the STG is consistent, for any signal
S, the STG contains both a path from S+ to S- and a path from
S- to S+. Otherwise S+ and S- are independent and can happen
concurrently. The combination of these two paths is thus
cyclical. We now prove that the set of such possible cyclical
paths contains at least one SC. Assume on the contrary that this
set does not contain any SC. Then for each cyclic path p in the
set there is always at least one transition Sp that appears at least
twice on p (its crossing point). This crossing point divides p into
two circles where S+ and S- belong to different circles (Figure
9a). Therefore, S+ can happen concurrently with S-. Since the
STG is consistent, this situation is impossible. Hence there
exists at least one SC that contains both S+ and S-. QED.

Proof of Lemma 2: Since for each signal S∈V, there exists a SC
that contains S+ and S- (Lemma 1), all transitions exist in the
STC. Hence, the STC covers all transitions of the original STG.
QED.
Proof of Lemma 3: Consider two signals A and B, where the
STG contains an edge (A*,B*) (‘*’ is either ‘+’ or ‘-‘). Observe
Figure 9b, which demonstrates that for the given edge (A*, B*)
there must also exist the return path (B*, A*), or else A* may be
enabled twice before B* happens, in contrast with 1-
boundedness of the STG. Since (A*,B*) is a single edge that
cannot be crossed, the edge (A*,B*) and the path (B*,A*)
constitute a SC. Thus, the STC covers all edges of the STG.
QED.
Proof of Lemma 4: a SC has at least one token otherwise none
of its transitions ever fires. This would contradict the property
that every node in the STG can be fired infinitely many times.
QED.

Proof of Lemma 5: Assume that an edge (u,v)=e∈E is covered
only by SCs that have more than one token (the edge is covered
by at least one SC according to Lemma 3). When u fires, a
single token from each of the covering SCs is consumed,

Figure 9: Proof of Lemma 1 and 3

Figure 10: Proof of Lemma 5 and 7

resulting in a single token on e. At this state the SCs are left
with at least one more edge eT≠e that has a token (Figure 10a).
The propagation of that token towards u can be blocked only by
a path from v that would bring the token from edge e to the
blocking transition (dashed line in Figure 10a). Such a path
would result in a SC with a single token, contradicting the
assumption. On the other hand, if the propagation is not blocked
this could result in multiple tokens on edge e, contradicting 1-
boundness and consistency. Thus, the assumption is incorrect
and there exist at least one SC that does not have more than one
token. Considering Lemma 4, we conclude that for each edge e
there is at least one SC covering e with exactly one token. Thus,
all transitions and edges can be covered by single token SCs
(designated STC-1), and SC with multiple tokens are redundant
and can be discarded. Since STC is covered by STC-1, Lemmata
2,3 are also applicable for STC-1. QED.
Proof of Lemma 6: The ASE algorithm does not add new tokens
to the STC-1. It only copies existing tokens, with the edges they
belong to (all edges are preserved, Lemma 3). Therefore, the
markings of STC-1, containing SCs with single token each,
match the initial marking T of the STG. QED.
Proof of Lemma 7: Since the STC-1 covers all transitions and
edges of the STG (Lemmata 2, 3), all transition sequences that
exist in the original STG exist also in STC-1 (sequences may
span multiple SCs). Assume that STC-1 does not preserve
concurrency. Then STC-1 must contain at least one pair of
concurrent sequences (A, B) and (C, D) which have a cross path
between two intermediate transitions F, G such that F∈(A,B),
G∈(C,D) (Figure 10b). The path (F,G) does not exist in the
original STG and since STC-1 does not add any new transition
or edges, such path cannot exist in the STC-1. Thus, concurrent
sequences of the STG are also concurrent in the STC-1. QED.
Proof of the Claim: The combination of lemmata 2, 3, 5 proves
that the original STG is fully covered by STC-1 (STC-1 contains
the sets V, E). Since STC-1 does not add any additional
transitions or edges, the sequences of transitions are also
preserved. In addition, STC-1 preserves the initial marking T
(Lemma 6) and sequence concurrency (Lemma 7). Thus, STC-1
preserves all the STG properties listed in Sect. 3. EOP Claim.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for export to IEEE PDF eXpress. May 2005. PaperCept.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

