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ABSTRACT 
Standard EDA ABV tools fall short of verifying multiple clock 
domain systems on chip (MCD SoC), asynchronous systems and 
Globally Asynchronous Locally Synchronous (GALS) systems. 
This paper describes a method for verifying asynchronous and 
multi-clock behavior in such systems using PSL and standard 
ABV tools. We convert STG (signal transition graphs), a common 
form for specifying asynchronous behavior, into PSL statements, 
employ standard ABV tools, and formally prove complete 
verification. The proposed ASE (automatic sequence extraction) 
algorithm was applied to a MCD SoC model that employed a 
network-on-chip (NoC) for asynchronous inter-modular 
communications. 

Categories and Subject Descriptors 
B.6.3 [Design Aids]: Verification 

General Terms 
Algorithms, Design, Verification 
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1. INTRODUCTION 
Large systems on chip (SoC) may incorporate multiple modules 
operating at different frequencies. Moreover, in dynamic voltage 
and frequency scaling (DVFS) systems, frequency and voltage 
may dynamically change during operation  [1]- [3]. The resulting 
multiple clock domains (MCD) SoCs are treated as Globally 
Asynchronous Locally Synchronous (GALS) systems  [4] [5]. 
Inter-modular communications in MCD GALS systems are best 
implemented by asynchronous logic, eliminating multiple 
synchronization latencies and complex distribution of multiple 
clocks. Indeed, the ITRS predicts that by 2020 40% of SoC global 
signaling will be performed asynchronously  [6]. However, to 
reliably employ asynchronous signaling, suitable verification 
techniques are required. 
In a typical design and verification flow, the specification is 
converted into a design and also into verification statements (e.g. 
in PSL  [7]). The design is typically verified with an ‘assertion 
based verification’ (ABV) tool  [8]. ABV may be based on either 
simulation  [9] [12] or formal verification  [13] [14] . In addition, 
advanced ABV supports temporal expression and/or data validity 
verification (PSL, e-language, System-Verilog, etc.)  [7]- [12]. 
However, this scheme is often limited to clocked designs that 

employ a single clock, due to language limitations and tool 
constraints. Thus, verification by ABV is usually inapplicable to 
MCD systems and to any asynchronous circuits that may be 
included in the design. 
Verification techniques for pure asynchronous logic  [15]- [20] 
mostly employ custom tools, complicating their  integration into 
typical design and verification flows. GALS system verification 
and test method was discussed in  [21], where a special test 
extension was added to each GALS wrapper. The test extensions 
disconnect locally synchronous islands during test data transfer 
between different GALS wrappers, allowing stand-alone massive 
testing of the wrappers and their interconnections. This technique 
appears to be more test-oriented. In  [22] a GALS wrapper was 
modeled by Petri nets and verified for reachability and deadlock 
using model checking  [23]. Clock domain crossing (CDC) 
verification was discussed in  [24], where structural and functional 
synchronizer verification was performed using PSL. These 
references do not provide a complete verification method for 
GALS systems. 
One common form of specifying asynchronous behavior is based 
on signal transition graphs (STG)  [25] which define untimed 
ordering of transitions. However, typical ABV tools cannot 
employ STG for verification of the design. In this work we 
combine STG specifications and temporal PSL expressions to 
enable CDC and asynchronous logic verification in MCD GALS 
systems. First, clock domain crossings and other asynchronous 
components of the specification are presented formally using 
STG. Second, an algorithm is presented that converts STG 
specifications into PSL statements. Third, ABV is performed, 
using either an artificially generated clock or transition-sensitive 
verification. We prove that such verification is complete. 
The paper is organized as follows. In Sect.  2 we describe the 
applicable STG and PSL properties. The algorithm that converts 
STG to PSL is presented and analyzed in Sect.  3, and an example 
of a complex SoC verification is shown in Sect.  4. 

2. STG AND PSL PROPERTIES 
In this section we survey the applicable features of signal 
transition graph (STG) and property specification language (PSL), 
providing for the description of the algorithm in Sect.  3. 

2.1 Signal Transition Graph (STG) 
A module behavior can be described formally with a signal 
transition graph (STG). An example of STG for a simple latch 
controller is shown in Figure 1. The STG is a special type of a 
Petri Net  [15]. Tokens are marked by solid circles and their 
position (marking) determine the circuit state; the token marking 



 
Figure 1: Latch controller example (a) Controller Interfaces, (b) STG, (c) Timing Diagram 

in Figure 1, denotes the initial state. Change of state is denoted by 
moving tokens along directed edges. A transition of node n is 
enabled when every incoming arc holds a token. When the 
transition takes place (node n “fires”), all incoming tokens are 
consumed and new tokens are produced on each outgoing arc. 
STG may also specify choice and merge conditions, which are not 
shown in this paper, but can be also treated by the ASE approach. 
The STG can be used for logic synthesis, for example using 
Petrify tool, which also performs formal verification of the 
synthesized logic  [15]. Unfortunately, Petrify cannot be used for 
large system synthesis and verification. In addition, when gate-
level asynchronous design is obtained manually or by tools 
without formal verifier inside, the verification of internal structure 
is an essential condition for the design sign-off. 
Note that STG tokens circulate in the STG for each new word in a 
repeating manner. While the cross-relation between the tokens 
may change for different cycles, the path that a single token goes 
through is never changed (this is partially true for STGs with 
choice, where current path is chosen from a certain number of 
predefined paths according to choice input value). 

2.2 Property specification language (PSL) 
The PSL language provides operators for defining and verifying 
timed sequences. For example, the following expression employs 
the ‘->’ and ‘eventually!’ PSL operators to verify that 
acknowledge signal AI is asserted each time request signal RI is 
asserted. 

property req_ack_in_p is always (RI->eventually!AI); 

More complex relations can be defined by Sequential Extended 
Regular Expressions (SERE). A SERE makes it easier to define 
long sequences, allows re-use of shared sequences and can be 
used in conditional statements. For example, a simple four-phase 
handshake protocol (RI+  AI+  RI-  AI-) can be defined as 
follows: 

sequence hs_init is {not RI; RI}; 
sequence hs_body is {RI; AI; not RI; not AI}; 
property sere_examp is always { hs_init } |-> { hs_body }; 
assert sere_examp; 

The brackets define sequences. hs_init expresses the initial 
transition of the sequence (RI+) and hs_body contains the 
remaining transitions. The sere_examp property uses the "always" 
operator to specify that it must be valid at all times. The assert 
statement actually initiates verification of the property.  
These sequence examples do not employ any clock. This is 
important when verifying multiple clock domains: PSL is defined 
only for a single clock. This verification code may be used in two 
ways. First, the ABV may be event-based, and asynchronous 
transitions are handled at arbitrary times rather than on any 
external clock ticks. Alternatively, a default verification clock 

may be defined. In any case, the verification is independent of 
any clock event ordering of external multiple clocks.  
Verification effectiveness is measured by coverage. The next 
example collects coverage for the sequence hs_body: 
cover hs_body; 

3. AUTOMATIC SEQUENCE 
EXTRACTION (ASE)  
Our goal is to generate assertion expressions for ABV from 
system level specification of GALS system. We use STGs for 
specification and then apply the Automatic Sequence Extraction 
(ASE) algorithm. ASE decomposes the STG into STC-1, a set of 
cyclic non-splitting circles, which are then transformed into PSL 
assertions. In this section we present all definitions, provide a 
formal analysis to prove the correctness of the STG 
decomposition into STC-1 (Sect.  3.1), describe the ASE algorithm 
in Sect.  3.2 and provide an example in Sect.  3.3.   

3.1 STG Decomposition and Complete 
Verification 
In this section we prove that the proposed STG decomposition is 
correct, namely that the generated PSL assertions preserve the 
original STG specification.  
Definitions 
1. Signal transition graph (STG) is a connected directed graph 
G=(V,E,T), where V is a set of nodes representing signal 
transitions (“+” and “-“), E are directed edges showing 
precedence relations, and T is the initial marking (‘marking’ is a 
set of edges having tokens on them). The STG follows three sets 
of rules: 

a. When all edges leading into a transition have tokens, the 
transition may “fire”, the said tokens are consumed and new 
tokens are placed on all edges emanating from the fired 
transition.  
b. In this work, STGs are free from deadlocks, 1-bounded (no 
more than one token per edge), and have only input free 
choices  [15] [26]. This also means that there are neither source 
nodes nor sink nodes in the STG, and every node may be 
revisited infinitely many times. 
c. The STG specifies a speed-independent system, namely it 
has consistent state assignment (transitions strictly alternate 
between “+” and “-“) and is persistent (enabled transitions must 
eventually fire)  [15] [26]. 



 
Figure 2: A specification may be designed and synthesized 
into a DUV. The CDC and asynchronous part of the spec is 

presented as STG. The STG is converted into PSL assertions 
(via STC) by the ASE algorithm, and the DUV is verified. This 

implies that the CDC and asynchronous parts of the design 
conform to the STG 

An STG specifies a logic circuit (and possibly its environment) by 
implying the following ‘STG properties’: 

a. The sets V, E, T. 
b. Sequences of transitions that are allowed in the logic circuit 
(transition sequences are ordered sets of transitions that are 
defined by paths in the directed STG).  
c. Sequences that are allowed to happen concurrently.  
d. The STG may also imply choice; this paper does not treat 
choice.  

2. Simple Circle (SC) in STG: A sequence of transitions that starts 
and ends at the same transition and does not contain any transition 
more than once (except for the first transition). 
3. Signal transition circles (STC): A STG decomposed into a set 
of Simple Circles. The decomposition extracts all existing SCs for 
a given STG. The original STG may be reconstructed by 
combining the SCs of the STC back together. 

a. Note that a transition sequence that exists in the original 
STG may consist of segments that belong to different SCs in 
the STC. 
b. STC-1 is an STC where each SC contains exactly one token. 

4. Concurrent transitions may happen in any order. Two 
transition sequences are concurrent sequences if any transition 
from one sequence is concurrent to all transitions of the other 
sequence. This implies: 

a. They share a starting common transition and an ending 
common transition. 
b. Other than the starting and ending transitions, they do not 
share any other common transitions, and there are no cross 
paths from one sequence to the other. 

Concurrent sequences are concurrently enabled when the starting 
common transition has fired (enabling the concurrent sequences) 
and the ending common transition has not yet fired  [27]. 
For the purpose of verification, the specification STG is converted 
into STC-1, and the STC-1 is converted into PSL assertions: 
5. Verification: proving that a set of rules (PSL assertions) is 
fulfilled by the logic circuit (“design under verification”, DUV). 
In other words, the DUV conforms to the PSL assertions. 
Verification may be performed by either a simulation-based ABV 
tool or formally. 
6. Complete verification is satisfied if: 

a. The DUV is verified, namely it fulfills the PSL assertions. 
b. The PSL assertions cover all STG properties of the 
specification. 
c. Consequently of a+b, the DUV fulfills at least all transition 
sequences allowed by the STG  [15]. 

Complete verification is demonstrated in Figure 2. Condition a is 
guaranteed by the ABV tool. Condition b is proven by the Claim 
below, and by discussing the ASE algorithm in Sect.  3.2 and  3.3 
below. 
The STG is decomposed into a STC-1, and we prove that: 
Claim: The STC-1 preserves all STG properties. 
The Claim is proven by means of the following lemmata. The 
proofs are given in the Appendix. 
Lemma 1: The STG always includes a SC that contains both "+" 

and "-" transitions of the same signal (S+, S-). 
Lemma 2: The STC-1 covers all STG transitions. 
Lemma 3: The STC-1 covers all STG edges. 
Lemma 4: Each SC has at least one token. 
Lemma 5: A SC with more than one token is redundant and is 

covered by a set of SCs with single token (STC-1). 
Lemma 6: The STC-1 preserves the initial marking of the STG. 
Lemma 7: The STC-1 preserves the concurrent branches of the 

STG. 

3.2 ASE Algorithm 
The ASE algorithm is applied to a reduced STG (which contains 
no redundant edges). The main steps are: 
1. Find all SCs in the STG. Add the SCs to a STC. 
2. Remove from the STC all SCs with multiple-tokens, resulting 

in STC-1.  
3. Remove from the STC-1 all SCs that can be covered by a 

combination of other SCs from the STC-1.  
4. Re-arrange the transitions inside each SC such that the first 

transition holds the token.  
5. Convert each SC into a PSL assertion (as demonstrated 

below). 

3.3 Algorithm Example 
For demonstration, the algorithm is applied to the STG of Figure 
1b. The STG is decomposed into four SCs shown in Figure 3. 
The extracted SCs are mapped into SEREs. To verify that only 
one transition happens at a time in each SC, the signal transitions 
are transformed into predicates that represent mutually exclusive 
events. These events are internally implemented by pulses, 
because it is easier to express mutual exclusion of pulses in PSL. 
For instance, a pulse is defined for each rising edge and another 
pulse for each falling edge of each signal, and the event S+ is 
replaced by the predicate “S+ and none of the other transitions of 
the same SC”, where each component is actually represented by 
pulses or lack thereof. Similarly a ‘transition complete’ predicate 
(TC) specifies no transitions, and it is inserted after each 
transition predicate to verify that the transition is complete before 
the next one starts. 
SEREs are constructed using only the predicates. First the 
algorithm generates SEREs representing the initial conditions 



 
Figure 3: Extraction of Simple Circles from STG 

 
Figure 4: Verification Example: Module and NoC interfaces

and the SCs: 
sequence circle1_i   is {not Ri_r; Ri_r); 
sequence circle23_i is {not En_r; En_r); 
sequence circle4_i   is {not Ro_r; Ro_r); 

sequence circle1_c is {Ri_r; TC; En_r; TC; Cd_r; TC; En_f; TC; 
                                            Ai_r;  TC;  Ri_f;  TC;  Ai_f;   TC;  Ri_r}; 
sequence circle2_c is {En_r; TC; Cd_r; TC; En_f; TC; Cd_f; TC; 
                                            En_r}; 
sequence circle3_c is {En_r; TC; Cd_r; TC; En_f; TC; Ro_r; TC; 
                                            Ao_r; TC; En_r}; 
sequence circle4_c is {Ro_r; TC; Ao_r; TC; Ro_f; TC; Ao_f; TC; 
                                            Ro_r}; 
Next the initial condition and circle sequences are combined into 
properties, asserted and monitored for coverage:  
property circle1_p is always {circle1_i}  |-> {circle1_c}; 
assert circle1_p; cover circle1_c; 
property circle2_p is always {circle23_i} |-> {circle2_c}; 
assert circle2_p; cover circle2_c; 
property circle3_p is always {circle23_i} |-> {circle3_c}; 
assert circle3_p; cover circle3_c; 
property circle4_p is always {circle4_i}   |-> {circle4_c}; 
assert circle4_p; cover circle4_c; 

4. SOC/NOC VERIFICATION EXAMPLE 
The ASE algorithm and a simulation-based ABV were applied to 
verify the SoC of Figure 5. The SoC contains locally synchronous 
modules each having its own local clock, interconnected by an 
asynchronous network-on-chip (NoC). The interfaces between the 
modules and the network comprise input and output ports (IP and 
OP) and provide synchronization and handshake, following  [28]. 
The asynchronous NoC consists of links and asynchronous routers 
 [29] and employs packet-based communication and wormhole 
routing  [30].  
An example segment of the SoC (Figure 4) consisting of a sender 
module, three intermediate routers, and a receiver module.  The 
STG specification of the port asynchronous controllers is shown 
in Figure 6a,b. The asynchronous routers employ a four-phase 
bundle data protocol (Figure 6c). A new data flit is sent out for 
each new R2+ event. 
The NoC traffic pattern is usually known for each specific 
application, allowing optimizing the NoC in terms of buffers and 
links. We specify each point-to-point NoC traffic path by means 
of STG; Figure 7 shows an example path from M1 to M3. The 
example STG represents 2-deep buffers (e.g. R1+, R1+/1). 

The specification STGs were converted into PSL assertions by 
ASE, and the circuits were successfully verified using NC-Sim 
ABV. Coverage results for the input and output ports are shown in 
Figure 8a. The results are correlated through traffic addresses as 
shown by the arrows, thanks to the fact that in this example each 
output port always sends packets to the same destination. 

 
Figure 5: Design example. Multi-clock domain SoC with NoC 

  
Figure 6: STG specifications 

  
Figure 7: Traffic path specification for 2-buffer routers 
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Figure 8: Verification example coverage results 

Coverage results for NoC links are shown in Figure 8b. The 
coverage holes may be repaired by extending the verification 
cases as needed. In this example we defined nine valid traffic 
patterns, whose coverage is shown in Figure 8c. 

5. CONCLUSIONS 
A novel verification approach for multiple-clock domain (MCD) 
GALS systems was presented. Previously, the asynchronous 
aspects of MCD GALS systems could be specified with STG, 
but it was impossible to verify the design against the STG using 
standard ABV. Further, normal ABV could verify PSL 
expressions, but they were practically limited to single-clock 
systems, and it was impossible to verify MCD systems. This 
work overcomes these difficulties by converting STG into PSL 
and employing standard ABV to achieve verification of MCD 
GALS systems. 
In this work the asynchronous aspects of the MCD GALS 
system are specified by an STG. The STG is converted into PSL 
statements by the novel Automatic Sequence Extraction (ASE) 
algorithm. A correctness proof for the transformation was 
provided. In addition, a verification example is shown which 
applies the new technique to a complex MCD SoC that uses 
NoC (network on chip). Future research includes extending this 
approach to timed and choice STG. 
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APPENDIX 
Proof of Lemma 1: Since the STG is consistent, for any signal 
S, the STG contains both a path from S+ to S- and a path from 
S- to S+. Otherwise S+ and S- are independent and can happen 
concurrently. The combination of these two paths is thus 
cyclical. We now prove that the set of such possible cyclical 
paths contains at least one SC. Assume on the contrary that this 
set does not contain any SC. Then for each cyclic path p in the 
set there is always at least one transition Sp that appears at least 
twice on p (its crossing point). This crossing point divides p into 
two circles where S+ and S- belong to different circles (Figure 
9a). Therefore, S+ can happen concurrently with S-. Since the 
STG is consistent, this situation is impossible. Hence there 
exists at least one SC that contains both S+ and S-. QED. 

Proof of Lemma 2: Since for each signal S∈V, there exists a SC 
that contains S+ and S- (Lemma 1), all transitions exist in the 
STC. Hence, the STC covers all transitions of the original STG. 
QED. 
Proof of Lemma 3: Consider two signals A and B, where the 
STG contains an edge (A*,B*) (‘*’ is either ‘+’ or ‘-‘). Observe 
Figure 9b, which demonstrates that for the given edge (A*, B*) 
there must also exist the return path (B*, A*), or else A* may be 
enabled twice before B* happens, in contrast with 1-
boundedness of the STG. Since (A*,B*) is a single edge that 
cannot be crossed, the edge (A*,B*) and the path (B*,A*) 
constitute a SC. Thus, the STC covers all edges of the STG. 
QED.  
Proof of Lemma 4: a SC has at least one token otherwise none 
of its transitions ever fires. This would contradict the property 
that every node in the STG can be fired infinitely many times. 
QED.  

Proof of Lemma 5: Assume that an edge (u,v)=e∈E is covered 
only by SCs that have more than one token (the edge is covered 
by at least one SC according to Lemma 3). When u fires, a 
single token from each of the covering SCs is consumed,  

 
Figure 9: Proof of Lemma 1 and 3 

 
Figure 10: Proof of Lemma 5 and 7  

resulting in a single token on e. At this state the SCs are left 
with at least one more edge eT≠e that has a token (Figure 10a). 
The propagation of that token towards u can be blocked only by 
a path from v that would bring the token from edge e to the 
blocking transition (dashed line in Figure 10a). Such a path 
would result in a SC with a single token, contradicting the 
assumption. On the other hand, if the propagation is not blocked 
this could result in multiple tokens on edge e, contradicting 1-
boundness and consistency. Thus, the assumption is incorrect 
and there exist at least one SC that does not have more than one 
token. Considering Lemma 4, we conclude that for each edge e 
there is at least one SC covering e with exactly one token. Thus, 
all transitions and edges can be covered by single token SCs 
(designated STC-1), and SC with multiple tokens are redundant 
and can be discarded. Since STC is covered by STC-1, Lemmata 
2,3 are also applicable for STC-1. QED.  
Proof of Lemma 6: The ASE algorithm does not add new tokens 
to the STC-1. It only copies existing tokens, with the edges they 
belong to (all edges are preserved, Lemma 3). Therefore, the 
markings of STC-1, containing SCs with single token each, 
match the initial marking T of the STG. QED. 
Proof of Lemma 7: Since the STC-1 covers all transitions and 
edges of the STG (Lemmata 2, 3), all transition sequences that 
exist in the original STG exist also in STC-1 (sequences may 
span multiple SCs). Assume that STC-1 does not preserve 
concurrency. Then STC-1 must contain at least one pair of 
concurrent sequences (A, B) and (C, D) which have a cross path 
between two intermediate transitions F, G such that F∈(A,B), 
G∈(C,D) (Figure 10b). The path (F,G) does not exist in the 
original STG and since STC-1 does not add any new transition 
or edges, such path cannot exist in the STC-1. Thus, concurrent 
sequences of the STG are also concurrent in the STC-1. QED.  
Proof of the Claim: The combination of lemmata 2, 3, 5 proves 
that the original STG is fully covered by STC-1 (STC-1 contains 
the sets V, E). Since STC-1 does not add any additional 
transitions or edges, the sequences of transitions are also 
preserved. In addition, STC-1 preserves the initial marking T 
(Lemma 6) and sequence concurrency (Lemma 7). Thus, STC-1 
preserves all the STG properties listed in Sect.  3. EOP Claim. 
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