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On Universally Efficient Estimation of the 
First-Order Autoregressive Parameter 

and Universal Data Compression 

Absfrucf -A universal nearly efficient estimator is proposed for the 
first order autoregressive (AR) model where the probability distribution 
of the driving noise is unknown. The proposed estimator has an intu- 
itively appealing relation to universal data compression and to universal 
tests for randomness. 

Index Terms -asymptotically efficient estimation, universal estima- 
tion, Cramer-Rao bound, Fisher information, autoregressive process, 
universal coding. 

I .  INTRODUCTION 

ONSIDER A STATIONARY first-order autoregres- C sive (AR) process that satisfies the stochastic differ- 
ence equation 

x, =ex,-, + v,, (1.1) 

where { Y) are independent identically distributed (i.i.d.) 
random variables governed by an unknown probability 
distribution function (PDF) F(x) 2 P r { v  I x}. The prob- 
lem of estimating 0 from a finite sample xu, xl,. . ., x, has 
been widely studied in the literature, where usually F is 
assumed to be of known form (in particular, Gaussian). 
The case of unknown F has been discussed as well by 
several investigators. Minimum distance (MD) estimators, 
which do not depend on the underlying PDF have been 
suggested by Wang [l l  and Koul[21, and were shown to be 
robust in a qualitative sense. Koul [2] assumed F to have 
a symmetric derivative and demonstrated the existence of 
an optimal estimator among estimators in a certain class, 
but no global optimality results have been established. 
Denby and Martin [ 3 ]  also discussed some robustness 
properties of an M-estimator (maximum likelihood type 
estimator) they have proposed. A more comprehensive 
study concerning robust estimation has been reported by 
Millar [4]. For the AR model, however, the first step 
towards unicersal estimation, that is uniformly asymptoti- 
cally efficient estimation that is independent of the un- 
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known PDF, was taken by Beran [51, who suggested an 
estimator that is universal with respect to a relatively 
small class of PDF's. Stronger results have been derived 
more recently by Kreiss [6], [7] who has proposed univer- 
sally efficient estimators for the autoregressive moving 
average (ARMA) model where F, the PDF of the driving 
noise, is completely unknown. In [6] Kreiss assumes, 
among other regularity conditions, a symmetric density 
f =  F'  and in [7] the symmetry requirement was relaxed, 
but new regularity conditions imposed are considerably 
demanding. 

In this paper, universal nearly efficient estimation of a 
first order AR parameter is studied under regularity 
conditions weaker than those in [6] and [7]. The main 
purpose of this paper, however, is to demonstrate that 
universal estimators for the AR model can be derived 
from universal data compression algorithms and universal 
tests for randomness [9]. In other words, estimators de- 
rived appropriately from efficient universal codes, can be 
expected to inherit good estimation performance under 
some conditions. The estimator proposed in this paper, as 
we shall see later, has a simple information theoretic 
interpretation related to universal coding, which can be 
easily generalized to the higher-order case and to other 
parametric models, e.g., the one-sample location model, 
the two-sample location model, and the linear regression 
model. 

Specifically, fix a real number t and let Z, ( t )  = X ,  - 
X l P l t ,  i = 1;. . ,n.  Suppose that L divides n and consider 
the L-tuples [Z , ( t>,  . . . , Z,(t>l, [ Z ,  + , ( t) ,  . . . , Z,,(t >I, .  . . , 
[Z,-,+,(t); ..,Z,(t)]. Next, denote by H,(t) the unnor- 
malized Lth order empirical entropy associated with these 
L-tuples, where each Z,(t), i =  l ; . . , n  is quantized to 
( k  + 1) levels. Similarly, let H'(t) ,  i = 1; . ., L denote 
the first order empirical entropy associated with the 
quantized version of the sequence {Z,(t) ,Z,+,(t);  . ., 
Zn-L+l ( t ) ] .  (More precise definitions will be ngiven in 
Section 11.) Generally speaking, our estimation O,(k, L)  is 
given by 

1 0 t e,, [ , = I  

I. 
i , (k ,  L )  = arg max ~ ~ ( t )  - ~ ' ( t )  , (1.2) 

where 0, c(- 1 , l )  is a uniform grid formed by integer 

001 8-9448/90/1100-1245$01 .OO 0 1990 IEEE 

I 

Authorized licensed use limited to: Technion Israel School of Technology. Downloaded on January 16, 2009 at 01:06 from IEEE Xplore.  Restrictions apply.



1246 I t t F  TRANbACTIONS ON INFORMATION THFORY, VOL. 36, NO 6, NOVFMRFR 1990 

multiples of 6 /& for some fixed real number 6 > 0. It is 
shown that the estimation error, when multiplied by &, 
has a normal asymptotic distribution with mean arbitrarily 
close to zero and variance arbitrarily close to the 
CramCr-Rao lower bound, provided that 6 is sufficiently 
small, k and L are large enough, and the quantization is 
sufficiently fine. This does not imply that the asymptotic 
mean-squared error is close to the CramCr-Rao bound. 
Following [S, Theorem 3.2.31, however, such a result im- 
plies, under certain regularity conditions, that the pro- 
posed estimator is nearly 9ptimal in the sense of maximiz- 
ing limn ~ c o  pe[ - a 5 &<en - e> I b] for all a > 0, b > o 
and - 1 < 0 < 1, in the class of all asymptotically median- 
unbiased estimators, that is, estimators for which 

1 
lim P O [ i n ~ O ]  = lim P 0 [ i n 2 0 ]  =- ,  

n - m  I1 +m 2 (1.3) 

where Po denotes probability with respect to 8. 
Clearly, the memory requirement and ;he computa- 

tional effort associated with the estimator 8,(k, L )  grows 
exponentially with L.  For this reason, it is interesting to 
calculate the asymptotic variance of this estimator as 
k +w while L is kept fixed. It will be shown th:t for fixed 
L 2 2, and k sufficiently large, the estimator OJk, L )  has 
asymptotic variance (in the previous sense) that can be 
made arbitrarily close to the Cram&-Rao bound times a 
factor of 

- 1  1---) 1 i-e2, 
L 1-e2 ’ 

independently of F. Thus, if L = 2, for instance, the 
asymptotic variance is 2/(1- e*> times the Cram&-Rao 
bound for sufficiently large k.  

The relationship between this estimator and universal 
data compression is as follows. We seek a value of t for 
which Z ( t )  = (Z,( t ) ;  . ., Z,(t>) “looks as much as possi- 
ble” like white noise in the sense that encoding Z ( t )  in 
blocks of length L, which takes about H,(t) bits, is 
essentially equivalent to a letter-by-letter data compres- 
sion which disregards memory and nearly Cf.=,H‘(t) bits 
are required. Note, that by increasing L, longer term 
memory is removed by appropriately adjusting t ,  resulting 
in a more accurate estimation of 8. This can be consid- 
ered as a generalization of the decorrelation (whitening) 
approach, commonly used to remove second order depen- 
dencies. While in the Gaussian case, second order (wide 
sense) whitening is sufficient for estimating 6 efficiently, 
in the general case, efficient estimation can be ap- 
proached only by whitening Z(t> in the strict sense, 
namely, complete removal of statistical dependencies 
(rather than just correlations) among the components of 
Z(t) .  A similar idea has been used in [9] for deriving a 
universal test for randomness which is asymptotically opti- 
mal in the Neyman-Pearson sense. 

The remaining part of this paper is organized as fol- 
lows. In Section 11, we provide a more precise statement 
of the main result. Section I11 discusses this result and 

demonstrates how the underlying idea can be extended to 
other parameter estimation problems. Finally, in Section 
IV, we analyze the asymptotic performance of the pro- 
posed estimator and prove the main result. The technique 
of the proof is essentially the same as in Bhattacharya 
[lo]. For the sake of completeness, however, we cite the 
necessary auxiliary results from [lo]. 

11. STATEMENT OF MAIN RESULT 

We first assume several regularity conditions about F. 

1) The  derivatives f ( x >  (d/dx)F(x), f ’ ( x )  2 
(d2 /dx2)F(x> exist everywhere and are continuous. 

2) The variance of the driving noise a2 2 IYmx2f(x) du 
is finite and strictly positive. 

3) The density f is bounded and strictly positive every- 
where. 

4) The driving noise has mean zero, i.e., j”xf(x)dx 
= 0. 

5 )  0 < 
Note, that the integral in 5 )  is related to the Fishe 

[f’(x)12/f(x> du < 30. 

information of the AR parameter, 

Now, select k real numbers (quantization levels) 
- -oo= a, < a,  < . . . < ak < a k +  I =CO, 

and let ,y,(.>, j = 1,2; . ., k + 1, denote the indicator func- 
tion of the interval C, = (a,- ,, a,]. Next, fix a real number 
t ,  let 

Z , ( t ) = X , - t X , - , ,  i = I , 2 ; . . , n  (2.2) 

assume that a fixed integer L divides n, and define the 
following quantities. The relative frequency of the j th 
point in each L-tuple being in C,, 

the relative frequencies of quantized L-tuples, 
I n / L - l  L 

the (marginal) empirical entropy associated with (2.31, 
k + 1  

H ’ ( t ) = -  q:( t ) logq:( t ) ,  j = l ; . . , L ,  (2.5) 
r = l  

the Lth order empirical entropy associated with (2.41, 
k + l  k + l  

H,,(t) = - c . . .  c 41, ,,(t)log4,, f,(o> (2.6) 
r , = l  I L = l  

and finally, 
L 

Q n ( t >  = H,,(t) - ” ( t ) .  (2.7) 
] = I  

Observe that QJt )  I 0 for any sample and every t ,  with 
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equality iff the empirical measure qr,  , f t )  factorizes into 
the product of its marginals q,l(t); . . ,q,l(t),  i.e., q is 
memoryless within a block of length L.  Hence, maximiz- 
ing Q,,(t) with respect to t is a reasonable objective if we 
are inter'ested in finding the value of t for which Z ( t )  is 
"as memoryless a5 possible," namely, an estimate of 13. 
However, since Q,,(t, is a piecewise constant function of t 
for any given sample, the asymptotic behavior of 
argmax, Q,,(t, cannot be analyzed by the usual methods. 
To this end, fix 6 > 0 and confine attention to the grid 
O , , = ( r 6 / 6 :  r = o , i l ; . . , k I & / 6 1 }  in search of an 
estimate of 0, where La] denotes the largest integer not 
exceeding a. 

Let us now define our estimator f$,(k, L )  as the point 
r 6 / &  that locally maximizes Q,l(t)  in O,,, i.e., 

provided that such a point exists uniquely. Obviously, 
(2.8) can either have more than one solution or no solu- 
tions at all, but it can be shown (similar to [lo,  Theorems 
1, 21) that the probabilities of these events (no solution or 
many solution:) are asymptotically negligible. To make 
the estimator 0,,(k, L )  well defined, however, these situa- 
tions must be considered as well. To t j is  end, let us make 
the convention that in these cases 0,,(k, L )  will rely on 
some &-consi:tent estimator O , ,  say, the least square 
estimator o,, = oLs =(E:'= I x , x , -  ,)/Cy= lx:- I in tke follow- 
ing manner: If (2.8) is satisfied nowhere, then BJk, L )  is 
defined as the nearest neighbor e, EO,, of G,, Else, if  
(2.8) holds at more than one point in O,,, then 0,(k,  L )  is 
defined as the one lying closest to in. 

As mentioned earlier, we would like to analyze the 
asymptotic distribution of the estimation eI;ror scaled by 
6. Note, however, that once we restrict 0, , (k ,  L )  to O,, 
only, then the distribution of the scaled estimation error, 
6 ( O , , ( k ,  L ) -  e)), does not converge in general, as n +m. 

This follows from the following consideration: If 0 is 
allowed to take any real value in ( -  1, I), then it can be 
uniquely represented as H = (c,, + ro6) /&,  where r(, is 
an integer and c,, = ( 0 6 ) m o d ( s )  characterizes the posi- 
tion of 0 relative to its left-hand side neighbor in e,,. 
Hence, the scaled estimation error takes values of the 
form ( r  - r,))6 + c,, ( r  integer), namely, integer multiples 
of 6 shifted by 0 I c,, < 6. But c,, does not converge in 
general as n grows indefinitely, hence the scaled estima- 
tion error cannot have an asymptotic distribution for an 
arbitrary fixed 0. 

To alleviate this difficulty, we shall formalize the result 
with respect to an underlying parameter value O,, that is 
the nearest neighbor of 0 among all members in @,,. By 
doing this, we guarantee that IOn - 01 I 6 / ( 2 6 ) ,  that is 
0,, + 0, and at the same time, c,, = 0 for an n,  hence 
avoiding the aforementioned obstacle. 

The main result is given in the following theorem. 

~ 

1247 

Theorem I :  If conditions 1)-5) are met, then for any 
integer s, 

lim Po { & ( e , ( k , L )  - O , , )  5 s6} 
r, ---f r ' j  

where @ is the standard normal PDF, i.e., 

and f L ( f , 0 )  is the Fisher information associated with k 
levels of quantization and blocks of length L ,  i.e., 

43 f 3 0 )  

1- k + 1  k + l  

E H ( .  ) being the mathematical expectation with respect 
to 0. 

The proof is given in Section IV. 
The theorem states that the asymptotic distribution of 

the random variable 6 ( i , , ( k ,  L )  - e,,) is roughly normal 
with mean - 6/2  and variance l/ZL(f,0). It is easy to 
check (see also [lO])  that I , " ( f ,  0)  < Z ( f ,  0)  but Z,"(f, 0)  + 

Z ( f ,  0) as L + =, and k -+ x, provided that a,  + -m, 

a k  + x and a, - a,- , + 0, j = 2 . . . k ,  i.e., the high resolu- 
tion limit. Hence, we observe that the parameters k and 
L control the asymptotic variance of the estimator while 
the parameter 6 dictates the asymptotic bias. By choosing 
k and L sufficiently large, the asymptotic variance can be 
made arbitrarily close to the Cram&-Rao lower bound, 
and by selecting 6 sufficiently small, the asymptotic bias 
can be reduced arbitrarily. 

111. DISCUSSION 

Note, that the application of i , , (k ,  L )  requires compu- 
tational resources and storage that grow exponentially 
with L .  It is of interest, therefore, to observe the asymp- 
totic behavior of I ; - ( f , O )  as k --)m while L is fixed. To 
this end, recall that the outer summation over p in (2.11) 
consists of L terms of the form 

I t 1  X t l  

' . '  E ~ ( X , ~ ~ , I V I E C , l , . . . : V / ~ E C , , )  
[ , = I  1 / - 1  

.Pr{V, EC,]; . . ,V,  EC,,}. (3.1) 

As for the first term, H f ,  observe that X,>-,  = X,,  is 
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independent of future noise samples VI , .  . . , V, . Thus, 

E,(X,,IV,EC,, , . . . ,~-EC. , , )= E,(XO) = o ,  (3.2) 

where the last equality follows from condition 4). Hence, 
H,k is identically zero for all k .  Now, since 

P - 1  

X,>-, = 6”-1x0 + c o , - y - , ,  (3.3) 
r = l  

by (1.11, it is easy to see that for p 2 2, 

H,,A lim H , ” = E [ E ~ ( x ~ - ~ I v / ) ]  
k - x  

= E [  [;:; 0 1 - 1 V p - , ] 2 ]  = a 2  P - 2  02’ 

J = 0 

(3.4) 
’1 a 2 (  1 - I 

1 - O 2  
- - 

Next, the summation of (3.4) over p results in 

- - 

Finally, on substituting the asymptotic summation 
into (2.11) and using the fact that 

k + l  c [ f ( a , )  - f (a , -1)I2/[F(ar)  - F(a,- , ) I  
r = l  

tends to 

3.5) 

(3.5) 

in the high resolution limit, we obtain 

(3.6) 

Thus, Z L ( f , O )  approaches Z(f,0> at the rate of 1/L, 
essentially. 

The idea of deriving nearly efficient estimators from 
universal coding algorithms can be used in several other 
parametric models as well, as we shall see in the following 
examples. 

The One-Sample Location Model: Let X,; . ’, X ,  be 
i.i.d. random variables drawn from a PDF F(x - e), where 
0 is an unknown parameter to be estimated and F(x) has 
a symmetric density f ( x >  about the origin. Namely, we are 
interested in estimating the center of symmetry of a 
density. Fix a constant t and form quantized versions, 
(using a k-level symmetric quantizer), say, Y ( t )  and Z( t ) ,  
of the sequences X - t A (XI - t ;  . ., X ,  - t )  and t - X 
( t  - XI, .  . ., t - X,,), respectively. Similarly to (2.5) and 
(2.61, let H,(t), Hz( t )  and H,,(t) denote the entropies 
associated with the empirical distributions (relative fre- 
quencies of letters) of Y(t>, Z ( t ) ,  and the concatenation 
of Y ( t )  and Z(t>, respectively. Nearly efficient estimation 

of 8,  in the sense of Theorem 1, is now achieved by 
maximizing (over a grid) the quantity 

Q,,(t> = H y ( t )  + H z ( t )  - H y z ( f ) .  (3.7) 
Note, that Q,,(t> I 0 with equality iff Y ( t )  and Z ( t )  have 
the same empirical distribution, in which case encoding 
these two sequences jointly, using approximately H v z ( t )  
bits, is equivalent to encoding them separately, with nearly 
H,(t)+ H,(t) bits. By the symmetry of f ,  however, Y ( t )  
and Z ( t )  have the same distribution iff t = 0, hence 
maximizing (3.7) results in a reasonable estimate. A quan- 
tity similar to (3.71, serves as a test statistic of an asymp- 
totically optimal test [11], [12] in the Neyman-Pearson 
sense, for deciding whether or not two given sequences, 
say, Y and Z ,  have emerged from the same source. 

The Two-Sample Location Model: Let XI; . . , X ,  be 
i.i.d. random variables drawn from an unknown PDF F(x) 
(not necessarily with symmetric density), and let Y,, . . . , Y, 
be another sequence of i.i.d. random variables, indepen- 
dent of XI;. ., X,, and governed by F ( x  - e), a shifted 
version of F ,  but by an unknown amount 0 to be esti- 
mated. An idea similar to (3.7) can be used to estimate 0 
efficiently: Subtract t from one sequence, quantize, and 
adjust t such that the two sequences have the same 
empirical distribution in a sense similar to (3.7). Alterna- 
tively, in [lo] nearly efficient estimation has been achieved 
by minimizing (with respect to t )  the informational diver- 
gence between these two empirical distributions. 

The Linear Regression Model: The simplest linear re- 
gression model is as follows. Let =OX, + y ,  i =  
1,2; ’ ., n ,  where XI; . ., X ,  and Y,;  . ., Y,  are given ob- 
servation sequences, and V,,. . . , V, are i.i.d. random vari- 
ables, independent of x,; . ., x,, and drawn from an 
unknown distribution F.  In this case, a reasonable idea 
for estimating 0 is to adjust t such that the sequence 
Y, - tX,, i = 1,2;. . ,n ,  “looks” independent of X,; . ., X,. 
This can achieved by minimizing with respect to t the 
empirical mutual information associated with quantized 
versions of these two sequences. Again, a similar idea has 
been used for universal optimal testing for independence 
in the Neyman-Pearson sense [9]. 

To prove that these estimators are asymptotically nearly 
efficient in the sense of Theorem 1, again, a technique 
similar to [lo] can be used. In the next section we use this 
technique to prove Theorem 1 for the first order AR 
model. 

IV. PROOF OF THEOREM 1 

We shall adopt the following notation: 
cy, A Pr { V ,  E c,} 

=/I x,( r ) f (  L ’ )  d c ,  j =  1;. ’ , k  + 1, (4.1) 
z 

p , W  A PHpl(t) EC,} 
a, + x ( r  ~ e,) 

f ( c )  d c ,  

j = l ; . . k + 1  (4.2) 
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where g,Jx) denotes the marginal density of X I .  (Note 
that p,(O,) = a,.) For every two integers p and q with 
p 5 q,  let 

7 A (v,, % + I  >.  . . > g ,  (4.3) 

and similarly, 

Z,"(t)  qz , ( t ) , . . . ,Z , ( t ) ) .  (4.4) 

Next, let 

i 2 ( i , , i , ; .  . , i L ) ,  j 0 ( jl ,  j 2 ; .  ., j I < ) ,  (4.5) 

(4.6) 

(4.7) 

N { i :  i , , i , ; .  . , i L  = 1,2;. ., k + l},  

c, 2 c,, x CI2 x . . . x CLL' 

where x denotes a Cartesian product between sets, 
L 

] = I  

L 

x,( I.;:::) n x f j ~ p + , ) 7  (4.8) 

x, (z ;Xt , )  A n x,,(Zp+,(t))7 (4.9) 
, = 1  

L 
(4.10) 

n 
r = 0 , 1 ; . .  --1 (4.13) 

L 
is closely related to Q,(t) as we shall see later. Finally, 
define 

~, ' (s)  A Jr(e ,  + 6,(4), (4.14) 

U,W c U,'(s), (4.15) 

Wl ,( s A U,( s) - U,( s - 1) > (4.16) 

W2J s) 2 U,( s) - U,( s + 1). (4.17) 

Our first goal is to calculate limn POn[Wl,(s) > 0, 
W2,(s) > 01 and limn+- Pon[W,,(s)  < 0, W2n(s) < 01 for a 
fixed integer s. Then, it will be shown that the event 

n / L - l  

r = O  

and 
i 
~ 

I 

{W,.(s) > 0, W2,1(s) > O} is asymptotically equivalent to 
(2.8) for r = s. To compute these limiting probabilities, it 
is necessary to evaluate first Pi ( t ) ,  P$.(t , ,  t,), log P , ( t )  and 
log P i ( t )  at t ,  t , ,  t ,  = 0 + 6,(r),  r = s - 1, s and s + 1, re- 
spectively, and some moments of W,,(s) and W,,(s>. 
Hence, we need the asymptotic expansions of the previ- 
ous functions about t = These are given in the follow- 
ing lemma. 

Lemma 1: Let 

h,  +ff(a,> - f ( a , - , >  

and 

1, Af'( a , )  - f ' (a , - l ) ,  i = 1 , .  . . k + 1. 

Then, for any fixed s, as n -+os 

1 

lyhere 

and 
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where 

. (x,,, fi,- I IV,L E c, > y:/:/ E cJ)ls=s, ,  

h l ,~ I ,  L - 1  L 

EH,, 1 2  e ; y -  
aI,aI,, p = I rl = 1 

p,:, +/l-llv/ E c,, v;',';+," E C J )  

hl,, L - 1  L 

E% + 2  
p = l  y - p + l  al~,ffl ' l  

. ( X d ,  + / l -  I I v: E c, I/ddLL++t E c,) 
+2'cI hl,hl, 

P = 1 9 = p + 1 aI ,pI l , ,  

d ~ i q - 1  

'EO,, x d /  + i l - ~  y0iL+4-r-' IV,L E c,, 
r = d L  + p + 1 

.y;:++/ E c, . (4.22) 

Proof of Lemma 1: To prove a) and b), differentiate 
(4.2) twice with respect to t at t = 0, and use the Taylor 
expansion. Parts c) and d) can be checked by changing the 
integration variables of (4.1 1) using the following transfor- 
mation: 

i 
1 

k 

X,) = Z , ) ,  X I  = 21 + zo t , .  . ' X,> = 2 , t k - J .  
] = U  

By doing this, (4.11) can be rewritten as follows: 

k - 1  \ 

Again, by differentiating (4.23) twice with respect to 
t at t = e,,, the Taylor expansions c) and d) are ob- 
tained. Part e) is verified similarly by calculating the 
first- and second-order derivatives (d /d t )p f>( t ,  O,l)lr=H,,, 
( d / d t ) ~ f ~ ( ~ , , ,  t > l ,=  H , , ,  ( a 2 / d t 2 ) p  + . ( t ,  e,>l,= H,,, 

(d2 /J lh )P id j ( f ,  T ) I ~ = ~ = ~ , ,  and (d2/dt2>pll(0,,, dl t ) l l=O,, ,  and 
substituting these in the bivariate Taylor expansion of 

0 P:(tl,  t 2 )  about t ,  = t ,  = e,,. 
To calculate the required moments of W,,,(s) and 

W,,,(s> we first establish an auxiliary result. 
Lemma 2: Under conditions 1) and 3),  

where 

i € N  

Proof of Lemma 2: Since J,(t> is differentiable almost 
everywhere, it is also differentiable at t = e,, with proba- 
bility 1, and the almost sure derivative is given by jr(O,l) 
- Ci ,,,xi( V&?',") Ei. Hence, 

= 0, (4.24) 

0 

The asymptotic moments of W,,,(s) and W,,,(S) are 

Lemma 3: For any fixed s, as n -m, 

almost surely by the definition of a derivative. 

given in Lemma 3. 

The proof of Lemma 3 appears in the Appendix. Lemma 
3 implies immediately by the Chebychev inequality that 

in probability. The next lemma introduces the asymptotic 
distribution of W,,(s) for a fixed integer s. 

Lemma 4: For fixed s, W,,,(s) is asymptotically nor- 
mally distributed with mean - a2(s - 1/2)Zk(f, 0)  and 
variance S 2 z L > ( f ,  e). 
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Proof of Lemma 4: First, observe that 

- Jr(0 , )  . (4.26) 1 
The first term of the last expression is a sum of 
i.i.d. zero-mean random variables with variances 
S2( L /n)Zk( f ,  0,). Thus, by the central limit theorem its 
asymptotic distribution is N(0, S'Z,"(f, 0,)). It remains to 
show that the second term tends to - 6 2 ( s  - $)Z,"( f ,  0)  in 
probability. To prove that, we rewrite the summand of the 
second term as 

(4.27) 

Since f and f' are continuous, it follows from the stochas- 
tic Taylor expansion of J r ( t )  that 

1 .. 
2 

= -Jr(e,)6,(s) + o,(n- ' /*),  (4.28) 

where 

( 4.29) 

is the almost sure second derivative of Jr( t )  at t = 0,. We 
therefore obtain by (4.27) and (4.281, 

1 .6,( s - 1) + op( n-112) 

= - - a 2  s-- Zk(f,0). i :I (4.30) 

Equation (4.25) together with Lemma 4 suggests that to 
calculate the asymptotic probabilities of the events 
{Wl,(s> > 0, W2,(s) > 0) and { W J s )  < 0, W2,(s) < 01, we 
may substitute W2,(s) by a2Z:( f ,  0) -  W,,(s), and then 
use the asymptotic distribution of W,,(s) as it was derived 
in Lemma 4. The following lemma [lo, Lemma 71 enables 
us to use that procedure. 

Lemma 5 (Bhattacharya): Let {A,} and {B,} be se- 
quences of random variables such that the distribution of 
{ A , )  converges to a distribution function F at all points 
of continuity of F ,  and A ,  + B, converges in probability 
to a constant p. If a + b < p ,  and if a and p - b are 
points of continuity of F ,  then 

lim P[ A ,  I a ,  B, I b ]  = 0, (4.31a) 
n + m  

and 

lirn P [ A ,  > a ,  B, > b ]  = F ( p  - b )  - F ( a ) .  (4.31b) 
n - m  

The proof is given in [lo]. 
From Lemmas 4 and 5 we now conclude that for any 

two constants a ,  and a2 whose sum is less than S2Z:(if,0>, 
we have 
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Next, by the stochastic Taylor expansion of Q,(t) at 
f = e,, + 6,,(r) ,  r = s - 1, s, s + 1, we note that for any fixed 
s and as n +x, 

Next, from the consistency of in, for any positive inte- 

P,,18, + a,,( - S )  I 6,, I O,, + 6,( S)} 2 1 - E (  S ) ,  (4.37) 

where E ( S )  + 0 as S + E .  Denote by C,(S) the set of all 
samples of size n for which - S I S I S.  Let D,,(s) be the 
sFt of samples for which S= s. Then, by definition of 

ger S we have 

Qn(O,, + * ' t , ( s ) ) - Q , l ( ' / 7 +  ' , ( s - ' ) ) = W , , ( S ) + ' , , ( ' ) ,  

(4'34) 

and 

The last auxiliary lemma states that the situation of 
multiple solutions to (2.8), in a fixed interval of integers r ,  
becomes rare as n grows. 

Lemma 6: For any K > 0, the probability that (2.8) 
holds for more than one point in the interval (O,, - 
K / 6 , 8 , ,  - K / G )  tends to zero as n +Co.  

The proof of Lemma 6 is a straightforward extension of 
[lo, Theorem 11. 

We are now ready to prove the main result. Recall that 
i r I ( k , L )  is defined as follows. Let 6,, be a &-consistent 
estimator and let S 

if (2.8) holds for a unique member r 6 / 6  of On, then 
i , , ( k ,  L )  = r S / & ;  
if (2.8) holds nowhere, then i , ( k ,  L )  = O,, + 6,,(S); 
if (2.8) is satisfied at more than one point, then e^,(k, L )  is 
the one lying close to 8 + 6,(S). 

Let A,,(s) be the set of all samples of size n for which 
(2.8) is satisfied at t = en + 6,(s), and Let B,,(s) denote the 
set of all samples'of size n for which O,(k, L )  = On + 6,,(s). 
Then, 

arg min, IO,, + 6,,(s)- i,,I. Then, 

P, ,{f i (4 , (kL) -e,,) 2 $6) = Po,( U B,W}> (4.36) 
/ < \  

and we want to prove that this probability tends to 
@((s + 1/2)6JZk( f , O )  as n +Co.  We first note the fol- 
lowing facts about A,(s) and B,,(s): 

a) For any given s, 

2 D,,( s'> r'l A,( .y) n [ n m r ) ] ,  (4.38) 
r t M ,  

where M ,  
denotes the complementary set. Similarly, for all s 

{ r :  - 3s I r 2 3S7 r # s} and the superscript c 

B , ( s ) n D , ( s ) = D , , ( s ) n  A ' ( r )  u A  (s)  . [i? i ] 
(4.39) 

Hence, by (4.38) and Lemma 6, for any E' > 0, s # s' and 
n sufficiently large 

P0, , [D17(s ' )n  - E ' I P 6 , , [ D , 7 ( s ' ) n  B,(s )]  

- < Po,[ D,(s') n A,(s)I .  (4.40) 

Similarly, by (4.39) and by b), we get 

Pon[D,(s) n 4 W l  2 PH,,[Dn(S)n B,(41 

2 pH,,[ Q,( S) n A,( s)]  - E ' .  (4.41) 

Thus, (4.40) holds either if s = s' or s # S I .  Next, since 
D,(s,)n Dll(s,) = 4 for any s, # s2 we have 

IP,,,[C,(S) n B,WI - PH,[CII(S) n A,(s)ll 

5 c Ipo,,[D,(.~')nB,(s)I - ~ , , [ D , ( s ' ) ~ A , ( s ) l l  
1 5 ' 1  5 J 

- < (2s + 1 ) E ' .  (4.42) 

As P,n[C,(S)] 2 1 - E ( S  - 1) by (4.37), we also have 

implying that 

d) The union U -=< \ <,BAS) is the entire sample space JPJ A,( s)] - PH,,[ B,( $) ] I  I 2 4  s - 1) + (2s + 1 ) E ' .  
of size n. 

( 4.45) 
To prove a), note from (4.34) and (4.35) that 

lim,,,, P,,,[A,,(s)l lies between l imn+= P,,,[W,,,(s) 2 E ,  

W,,,(s) 2 E ]  and lim,l +,P,,2[Wl,(s) 2 - E ,  W2,(s) 2 - E ]  for 
any E > 0. Choosing E < 62ZL-( fO)/2, using (4.331, once 

Now fix 6 > 0 and let S be so large that E ( S  - 1) 5 6/4. 
Next, choose E ' >  0 sufficiently small such that (2s + 1 ) ~ '  
I 6/2.  It fo~lows from (4.45) and fact a) that - 

lim p,,,[B,,(s)] = @(b + t ) 6 J l , i ( f J )  ) for a ,  = a ,  = E ,  then for a ,  = a ,  = - E ,  and finally letting 
E + 0, yields the result. Part b) follows easily from part a) n +sc 

and from Lemma ,6, and parts c) and d) simply follow 
from the fact that 8,,(k,  L )  is well defined. - Q((s - +)64Zm). (4.46) 
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To complete the proof, note that ACKNOWLEDGMENT 

lim ~ ~ , , [ ~ ( ~ , ( k , ~ ) - t m ) ~ s ~ ]  
n - =  greatly appreciated. 

Useful comments made by the anonymous referees are 

a fixed s: 

and 
I .  

- c P i ( %  + 6 , ( s ) ) l o g P ; ( %  + 4 L s ) ) .  (A.1) ( [ s2 + ; j S J m  j I 1 - E .  (4.49) 
i t N  

Now by the asymptotic Taylor expansions of Lemma 1, and the 
facts that If E is sufficiently small then sI < s < s2,  and hence 

k + l  k + l  

S 

h ,=  1, = 0 ,  
, = I  { = I  

and consequently, 

E;a,( 1 +logai)  = 0, ( '4.3) 

S;a;=O, (A.4) 

i t N 

i t N  

k t l  

S i a i l o g a j = L a ' ( l - 8 ' ) ~ '  l , loga,,  (AS)  
i t N i =  I 

and 

E,?"; = LZk(f , f l , l )  + LZk(f ,O),  (A.6) 
i t N  

parts a) and b) are easily verified. T o  prove c), expand 
r @ ( ( s + + ) S J m ) - ~ .  (4.50) v a r [ ~ , , , ( s ) ]  as follows: 

+ 2  (; ~ (I) cov [ U,;( s) ~ q:(s - l),  
d = 1 

s2 U,; to(  5 )  - U,:+"( s - l ) ]  . ('4.7) 

= lim p o , , [ B n ( r ) ]  - lim P,,,[B,(r)] It can be shown that the sequence of random variables 
{ (&/S)[U;(s ) -  U,:($ - l)]},,, I is uniformly bounded with prob- 
ability 1 ,  and therefore from Lemma 2 we can calculate the first 
term on the right-hand side of (A.7) using the dominated 

r = s + l  n+30 n+= 

= lim Po,,[ U B,l( r ) ]  - @ ( ( s 2  + i ) S J m )  
n - x  r s \ ?  convergence theorem [ 13, page 257, Theorem 6.5.51, 

+ @( (s  + I ) s J I : o )  

Since E > 0 is arbitrary in (4.50) and (4.51), the theorem is 
proved. 

l 2  
6 2  -- - lim E l ~ a i = S Z Z f ( f , O ) .  (A.8) 
L 
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It remains to show that the second term on the right-hand side 
of (A.7) vanishes as n --f m. T o  d o  this, it is sufficient to demon- 
strate that for every fixed s1 and s 2 ,  

for any E > 0 and n sufficiently large. Consequently, since 
(h,  /a,l, j = 1, . . . k + 1, are all bounded by some A < 30, then for 
all large n,  

n / L - 1  

d = l  
, l im C O V [ ~ L ( S ~ ) , ~ L + ~ ( S ~ ) ]  = o .  ( ~ . 9 )  IE:.-E,I= vBl/f ; -+: .~~~) 

p = 1 
n + C O  

We first evaluate 

c o v [ ~ n r < s l > , ~ , ~ + d ( s 2 ) ]  

+ Sn(s1)Sn(s2)(Mfi - EiEj)aiaj 

+ -S,3s2)(s;:- sj)aiaj  + . ( . - I )  

.[ -6 , (s1)E;+0(n-”2)]  
I 1 

2 

. [  - S n ( s 2 ) E j + O ( n - 1 ’ 2 ) ] .  (A.lO) 

To examine the behavior of (E;. - E j )  as d increases, note that 

E@,,( xd, + p  - 11’; E Ci > vd::: E cj) 
I ,  

= x,,e;L+p-l+ y m e t L + p - l - m  

m = l  

dL  
i 

+ vmefL.+~-l-m 

m = L + l  

d L + p - 1  1 + v m e t L + ~ - I - m  tv; E c;, vd”,”,:” E cj 
m = d L + l  

L 

= o +  E(VmIVm E c ; _ ) e ; L + p - ’ - m  

m = I 

d L + p - l  

+ o +  ~ ( v ~ ~ v , ~ c ~ _ ) e ~ ~ + p - ~ l - - r n  
m = d L + l  

L 
= ~ ( v m i v m € c j ~ ) e n d L + p - i - m  

in = 1 

+ Eo,( x, - I v:/-:f € C j )  . (A . l l )  

As IE(V,lV, E C,)l is bounded by, say, E,,, < 00 under assump- 
tion in Condition 21, it follows from (A.ll)  that 

~ ~ o , ( ~ d , < + p -  IIvf E Ci 7 I/hdLL+:L E Cj)  

- EB,,(XdL+p-iIvddLL+:L E Cj)l 
I L  I 

- < AL~E,,, ~ e , i ( ~ - l ) ~ -  

- < AL2E,,,(lf+ E ) ( ~ - ’ ) ~ .  (A.13) 

The terms (M$  - E,Ej) and (S$ - S j )  in (A.10) are similarly 
bounded by exponential functions of d .  Hence, for all large n 

~ c o v [ u ~ ( s , ) , U ~ + * ( s , ) ]  I I ( l e l + E ) ( d - l ) L .  0 ( ~ - 3 / 2 ) .  ( A . I ~ )  

This implies that 

oc 

d = l  

= (1 - le,l‘-)- ’ .  O( n- ‘I2) 

I [ 1 - ( l s l + E ) ~ ] - 1 . 0 ( n - l / 2 ) =  4 1 ) ,  (A.15) 
which completes the proof of part c). Parts d) and e) can be 

0 proved in a similar manner. 
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