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On Universally Efficient Estimation of the
First-Order Autoregressive Parameter

and Universal Data Compression

NERI MERHAV, MEMBER, IEEE, AND JACOB ZIV, FELLOW, IEEE

Abstract —A universal nearly efficient estimator is proposed for the
first order autoregressive (AR) model where the probability distribution
of the driving noise is unknown. The proposed estimator has an intu-
itively appealing relation to universal data compression and to universal
tests for randomness.

Index Terms —asymptotically efficient estimation, universal estima-
tion, Cramér-Rao bound, Fisher information, autoregressive process,
universal coding.

I. INTRODUCTION

ONSIDER A STATIONARY first-order autoregres-
sive (AR) process that satisfies the stochastic differ-
ence equation

X,=0X, ,+V, (1.1)

where {V}} are independent identically distributed (i.i.d.)
random variables governed by an unknown probability
distribution function (PDF) F(x)# Pr{V; < x}. The prob-
lem of estimating 6 from a finite sample x,, x,-* -, x, has
been widely studied in the literature, where usually F is
assumed to be of known form (in particular, Gaussian).
The case of unknown F has been discussed as well by
several investigators. Minimum distance (MD) estimators,
which do not depend on the underlying PDF have been
suggested by Wang [1] and Koul [2], and were shown to be
robust in a qualitative sense. Koul [2] assumed F to have
a symmetric derivative and demonstrated the existence of
an optimal estimator among estimators in a certain class,
but no global optimality results have been established.
Denby and Martin [3] also discussed some robustness
properties of an M-estimator (maximum likelihood type
estimator) they have proposed. A more comprehensive
study concerning robust estimation has been reported by
Millar [4]. For the AR model, however, the first step
towards universal estimation, that is uniformly asymptoti-
cally efficient estimation that is independent of the un-
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known PDF, was taken by Beran [5], who suggested an
estimator that is universal with respect to a relatively
small class of PDF’s. Stronger results have been derived
more recently by Kreiss [6], [7] who has proposed univer-
sally efficient estimators for the autoregressive moving
average (ARMA) model where F, the PDF of the driving
noise, is completely unknown. In [6] Kreiss assumes,
among other regularity conditions, a symmetric density
f=F'and in [7] the symmetry requirement was relaxed,
but new regularity conditions imposed are considerably
demanding.

In this paper, universal nearly efficient estimation of a
first order AR parameter is studied under regularity
conditions weaker than those in [6] and [7]. The main
purpose of this paper, however, is to demonstrate that
universal estimators for the AR model can be derived
from universal data compression algorithms and universal
tests for randomness [9]. In other words, estimators de-
rived appropriately from efficient universal codes, can be
expected to inherit good estimation performance under
some conditions. The estimator proposed in this paper, as
we shall see later, has a simple information theoretic
interpretation related to universal coding, which can be
easily generalized to the higher-order case and to other
parametric models, e.g., the one-sample location model,
the two-sample location model, and the linear regression
model.

Specifically, fix a real number ¢ and let Z,(t)= X, —
X;_t,i=1,---,n. Suppose that L divides n and consider
the L-tuples [Z,(t), -+, Z,(D), [Z, . (£)y- -+, Z,, (D), -,
[Z,_, . (), -, Z,()]. Next, denote by H,(¢) the unnor-
malized Lth order empirical entropy associated with these
L-tuples, where each Z/(t), i=1,"--,n is quantized to
(k +1) levels. Similarly, let H(¢), i=1,---,L denote
the first order empirical entropy associated with the
quantized version of the sequence {Z(¢),Z, (1), -,
Z,_; .{0)}). (More precise definitions will be given in
Section I1.) Generally speaking, our estimation 6,(k, L) is
given by

6,(k,L) = arg max [HL(z) - )1: H’(t)], (1.2)

00, i=1

where ©, c(—1,1) is a uniform grid formed by integer

0018-9448 /90 /1100-1245$01.00 ©1990 IEEE

Authorized licensed use limited to: Technion Israel School of Technology. Downloaded on January 16, 2009 at 01:06 from IEEE Xplore. Restrictions apply.



1246

multiples of 8 /vn for some fixed real number & > 0. It is
shown that the estimation error, when multiplied by Vn,
has a normal asymptotic distribution with mean arbitrarily
close to zero and variance arbitrarily close to the
Cramér—Rao lower bound, provided that § is sufficiently
small, k¥ and L are large enough, and the quantization is
sufficiently fine. This does not imply that the asymptotic
mean-squared error is close to the Cramér-Rao bound.
Following [8, Theorem 3.2.3], however, such a result im-
plies, under certain regularity conditions, that the pro-
posed estimator is nearly optimal in the sense of maximiz-
ing lim, ., Pl—a<Vn(6,—6)<b] for all a>0, b>0
and —1< 6 <1, in the class of all asymptotically median-
unbiased estimators, that is, estimators for which
N R 1

lim P,[6, <6] = lim P,[§,>6] = 7 (13
where P, denotes probability with respect to 6.

Clearly, the memory requirement and the computa-
tional effort associated with the estimator 6,(k, L) grows
exponentially with L. For this reason, it is interesting to
calculate the asymptotic variance of this estimator as
k — while L is kept fixed. It will be shown that for fixed
L >2, and k sufficiently large, the estimator én(k, L) has
asymptotic variance (in the previous sense) that can be
made arbitrarily close to the Cramér—Rao bound times a

factor of
1 1—g2Ly "
1-— > s
L 1-6

independently of F. Thus, if L =2, for instance, the
asymptotic variance is 2/(1— %) times the Cramér—Rao
bound for sufficiently large k.

The relationship between this estimator and universal
data compression is as follows. We seek a value of ¢ for
which Z(t)={Z(t),-- -, Z,(¢)} “looks as much as possi-
ble” like white noise in the sense that encoding Z(¢) in
blocks of length L, which takes about H,(¢) bits, is
essentially equivalent to a letter-by-letter data compres-
sion which disregards memory and nearly =% , H'(¢) bits
are required. Note, that by increasing L, longer term
memory is removed by appropriately adjusting ¢, resulting
in a more accurate estimation of 6. This can be consid-
ered as a generalization of the decorrelation (whitening)
approach, commonly used to remove second order depen-
dencies. While in the Gaussian case, second order (wide
sense) whitening is sufficient for estimating 6 efficiently,
in the general case, efficient estimation can be ap-
proached only by whitening Z(z) in the strict sense,
namely, complete removal of statistical dependencies
(rather than just correlations) among the components of
Z(t). A similar idea has been used in [9] for deriving a
universal test for randomness which is asymptotically opti-
mal in the Neyman—Pearson sense.

The remaining part of this paper is organized as fol-
lows. In Section I, we provide a more precise statement
of the main result. Section III discusses this result and

(1.4)
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demonstrates how the underlying idea can be extended to
other parameter estimation problems. Finally, in Section
IV, we analyze the asymptotic performance of the pro-
posed estimator and prove the main result. The technique
of the proof is essentially the same as in Bhattacharya
[10]. For the sake of completeness, however, we cite the
necessary auxiliary results from [10].

II.  STATEMENT OF MAIN RESULT
We first assume several regularity conditions about F.

1) The derivatives f(x) = (d/dx)F(x), f'(x)2
(d*/dx*)F(x) exist everywhere and are continuous.

2) The variance of the driving noise o2 2 [* _x2f(x)dx
is finite and strictly positive.

3) The density f is bounded and strictly positive every-
where.

4) The driving noise has mean zero, i.e., [ _xf(x)dx
=0.

5) 0< (= [fCP/f(x)dx <o,

Note, that the integral in 5) is related to the Fisher
information of the AR parameter,

o’ e [f(0)]?
1(f,a)=1_02[7w ) dx.

Now, select k real numbers (quantization levels)
—wo=gy<ag; < -

(2.1)

<a,<dap, =%,

and let x;(+), j=1,2,-- -,k +1, denote the indicator func-
tion of the interval C; = (aj, i a]-]. Next, fix a real number
t, let

Z(t)=X,—X,_,, (2.2)
assume that a fixed integer L divides n, and define the

following quantities. The relative frequency of the jth
point in each L-tuple being in C,,

i=1,2,--,n

n/L—1

) L
a()=— Y x[Z,.,(0], =1L, (23)
r=0

the relative frequencies of quantized L-tuples,
L n/L-1 [
qi,[zwi,‘(t) =— X Xi,[ZLj—H(t)] . (24)
oo I=1
the (marginal) empirical entropy associated with (2.3),
k+1

HI(1) == Y q{(t)logq/(t),

i=1

j=1,---,L, (2.5)

the Lth order empirical entropy associated with (2.4),
k+1 k+1

H()=- Y - X Qi[»-~iL(')10gqil~~»t,(t)’ (2.6)

=1 ip=1

and finally,
L
Q,(1)=H,(t)— X H'(1).

j=1

(2.7)

Observe that Q (1) <0 for any sample and every ¢, with
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equality iff the empirical measure g; ...,(¢) factorizes into
the product of its marginals qf.(’)""’qil,(’)’ ie., g is
memoryless within a block of length L. Hence, maximiz-
ing Q,(¢) with respect to ¢ is a reasonable objective if we
are interested in finding the value of ¢ for which Z(¢) is
“as menioryless as possible,” namely, an estimate of 6.
However, since Q,(r) is a piecewise constant function of ¢
for any given sample, the asymptotic behavior of
argmax, Q,(t) cannot be analyzed by the usual methods.
To this end, fix 6 >0 and confine attention to the grid
0,={r6/Vn: r=0,%1,---, +|Vn /8I} in search of an
estimate of 8, where |a] denotes the largest integer not
exceeding a.

Let us now define our estimator 6,(k, L) as the point
r8/Vn that locally maximizes Q, (1) in ©, ie.,

n

Q,(ré/Vn)

>max{Q,((r—=1)8/Vn ),Q,((r+1)8/Vn)}, (2.8)

provided that such a point exists uniquely. Obviously,
(2.8) can cither have more than one solution or no solu-
tions at all, but it can be shown (similar to [10, Theorems
1, 2] that the probabilities of these events (no solution or
many solutions) are asymptotically negligible. To make
the estimator 6,(k, L) well defined, however, these situa-
tions must be considered as well. To tAhis end, let us make
the convention that in these cases 6,(k, L) will rely on
some Vn -consistent estimator 6,, say, the least square
estimator 6, =6, ¢ = (X7, x,x,_,)/L/_ x| in the follow-
ing manner: If (2.8) is satisfied nowhere, then 6,(k, L) is
defined as the nearest neighbor 8, €®, of 9-,,; Else, if
(2.8) holds at more than one point in ®,, then 6,(k, L) is
defined as the one lying closest to ,.

As mentioned earlier, we would like to analyze the
asymptotic distribution of the estimation error scaled by
Vn . Note, however, that once we restrict 6,(k, L) to ©,
only, then the distribution of the scaled estimation error,
Vi (6,(k, L)~ ), does not converge in general, as n — .
This follows from the following consideration: If 6 is
allowed to take any real value in (—1,1), then it can be
uniquely represented as 0 =(c, +r,8)/vVn, where r, is
an integer and ¢, =(8Vn )mod(8) characterizes the posi-
tion of @ relative to its left-hand side neighbor in ©,.
Hence, the scaled estimation error takes values of the
form (r —ry)é + ¢, (r integer), namely, integer multiples
of & shifted by 0 <c¢, <#é. But ¢, does not converge in
general as n grows indefinitely, hence the scaled estima-
tion error cannot have an asymptotic distribution for an
arbitrary fixed 6.

To alleviate this difficulty, we shall formalize the result
with respect to an underlying parameter value 6, that is
the nearest neighbor of 8 among all members in ®,. By
doing this, we guarantee that |6, — 8] <5 /(2V/n), that is
6,— 6, and at the same time, ¢,=0 for an n, hence
avoiding the aforementioned obstacle.

The main result is given in the following theorem.

1247

Theorem 1: If conditions 1)-5) are met, then for any
integer s,

lim P, {Vn (6,(k,L)—6,) < 56}
et

1 -
=<I>((s+ 5)8-\/1[-(f,0) ) (2.9)
where @ is the standard normal PDF, i.e.,

D(x) 2 2y, (2.10)

1 x
v €
V2 /7oc
and [}(f,0) is the Fisher information associated with k
levels of quantization and blocks of length L, i.e.,

Ie(f.60)

LA ) = fla )]

L F(a,)— F(a,_,)

i=1

L k+1 k+1
2T R nec, e

p=1li=1

Pr{V,€C,, .V, €C,), (2.11)
E,(-) being the mathematical expectation with respect
to 6.

The proof is given in Section IV.

The theorem states that the asymptotic distribution of
the random variable v (6,(k, L)—6,) is roughly normal
with mean — & /2 and variance 1/I/(f,0). It is easy to
check (see also [10]) that IF(f,8) < I(f,6) but IX(f,8) —
I(f,0) as L —w, and k —x, provided that a,— —c,
ay—>xand a;—a;_—0,j=2---k,ie, the high resolu-
tion limit. Hence, we observe that the parameters k and
L control the asymptotic variance of the estimator while
the parameter & dictates the asymptotic bias. By choosing
k and L sufficiently large, the asymptotic variance can be
made arbitrarily close to the Cramér—Rao lower bound,
and by selecting § sufficiently small, the asymptotic bias
can be reduced arbitrarily.

III. Discussion

Note, that the application of HA”(k,L) requires compu-
tational resources and storage that grow exponentially
with L. It is of interest, therefore, to observe the asymp-
totic behavior of I}-(f,8) as k - while L is fixed. To
this end, recall that the outer summation over p in (2.11)
consists of L terms of the form

k+1
Y ENX, IvieC, .-V, eC,)
i =1

Pr{V,€C,, -V, €C, ). (3.1)

As for the first term, H{, observe that X, =X, is
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independent of future noise samples V|, - -,V . Thus,
EB(X()|V1 SISRENG Cz‘,_) =Ey(X,) =0, (32)

where the last equality follows from condition 4). Hence,
H{ is identically zero for all k. Now, since

p—1

X,;—I:GP_IX()+ Z 9[71Vp—i’ (3.3)
i=1
by (1.1), it is easy to see that for p > 2,
H, tim 1 = E[E3(X, V)]
p—1 2 p-2
=E|[ L0, | |=0> X Y
i=1 j=0
g (1-9%r— 1)
= 34
1-02 (3.4)
Next, the summation of (3.4) over p results in
L L g L
H% Y H,= ) Hy=1— Y (1-9%r7 1)
-1 p=2 p=2
o? 1-9%
= > L — 35
19#( 1-6° ) (3-5)

Finally, on substituting the asymptotic summation (3.5)
into (2.11) and using the fact that

k+1

)y [f(”i)*f(awl)]z/[F(ai)* F(ai—l)]

i=1

tends to »
S AP /s

in the high resolution limit, we obtain

_ OZL

zw)’“’”
(3.6)

Thus, IX(f,0) approaches I(f,8) at the rate of 1/L,
essentially.

The idea of deriving nearly efficient estimators from
universal coding algorithms can be used in several other
parametric models as well, as we shall see in the following
examples.

The One-Sample Location Model: Let X, ---, X, be
i.i.d. random variables drawn from a PDF F(x — 6), where
6 is an unknown parameter to be estimated and F(x) has
a symmetric density f(x) about the origin. Namely, we are
interested in estimating the center of symmetry of a
density. Fix a constant ¢ and form quantized versions,
(using a k-level symmetric quantizer), say, Y(¢) and Z(¢),
of the sequences X —t £ (X, ~¢,"--, X, —t)and t — X =
(t—X,,-+-,t — X,), respectively. Similarly to (2.5) and
(2.6), let H, (1), H,(t) and Hy,(¢) denote the entropies
associated with the empirical distributions (relative fre-
quencies of letters) of Y{(¢), Z(¢), and the concatenation
of Y(¢) and Z(t), respectively. Nearly efficient estimation

10 £ fim 11£0) = 1-
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of 6, in the sense of Theorem 1, is now achieved by
maximizing (over a grid) the quantity

0.(1) = Hy (1) + Hz(t) — Hy,(1). (3.7)
Note, that Q,(r) < 0 with equality iff Y(¢) and Z(¢) have
the same empirical distribution, in which case encoding
these two sequences jointly, using approximately H,,(t)
bits, is equivalent to encoding them separately, with nearly

- H,(1)+ H,(t) bits. By the symmetry of f, however, Y(¢)

and Z(t) have the same distribution iff =8, hence
maximizing (3.7) results in a reasonable estimate. A quan-
tity similar to (3.7), serves as a test statistic of an asymp-
totically optimal test [11], [12] in the Neyman-—Pearson
sense, for deciding whether or not two given sequences,
say, Y and Z, have emerged from the same source.

The Two-Sample Location Model: Let X,,---,X, be
i.i.d. random variables drawn from an unknown PDF F(x)
(not necessarily with symmetric density), and let Y,," -+, Y,
be another sequence of i.i.d. random variables, indepen-
dent of X, -, X, and governed by F(x —#6), a shifted
version of F, but by an unknown amount 6 to be esti-
mated. An idea similar to (3.7) can be used to estimate
efficiently: Subtract ¢ from one sequence, quantize, and
adjust ¢ such that the two sequences have the same
empirical distribution in a sense similar to (3.7). Alterna-
tively, in [10] nearly efficient estimation has been achieved
by minimizing (with respect to ¢) the informational diver-
gence between these two empirical distributions.

The Linear Regression Model: The simplest linear re-
gression model is as follows. Let Y, =0X,+V,, i=
1,2,--+,n, where X,,---,X, and Y,,---,Y, are given ob-
servation sequences, and Vy,- - -,V are ii.d. random vari-
ables, independent of X,,"--, X,, and drawn from an
unknown distribution F. In this case, a reasonable idea
for estimating 6 is to adjust r such that the sequence
Y, —tX,,i=1,2,---,n, " “looks” independent of X,,---, X,.
This can achieved by minimizing with respect to ¢ the
empirical mutual information associated with quantized
versions of these two sequences. Again, a similar idea has
been used for universal optimal testing for independence
in the Neyman-Pearson sense [9].

To prove that these estimators are asymptotically nearly
efficient in the sense of Theorem 1, again, a technique
similar to [10] can be used. In the next section we use this
technique to prove Theorem 1 for the first order AR
model.

IV. PRroofr oF THEOREM 1

We shall adopt the following notation:
a; 2 Pr{V, eC}

=[x d,
BN 2P, [Z(1)eC)
=[xy [T f(oyar,

a;. +x(t-0,)

j=1,-k+1 (42)

j=1,,k+1, (4.1)
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where g, (x) denotes the marginal density of X,. (Note
that B, (o, )=a,.) For every two integers p and g with
p<gq, let

) VALV, V5V, (4.3)
and similarly,
Zg(t)é(Zp(t),'-',Zq(t)). (4.4)
Next, let
P2 (i iy, i), JE Ui i), (45)
N2 iy, i, =12, k+1}, (4.6)
C2C, XC X XCy (4.7)

where X denotes a Cartesian product between sets,

(I/pp++1L) l_IXl( ]7+j) (48)
xi(Zpi(n)) = nx,( Z,.(0), (4.9)
=i
L
a, & H (4.10)
B.(t) = PG,,{Z]L(t) €C;)
a;, + g
:f g(,'(x(]) dx(,f dx,
xp=a; .t
‘/a,2+tx] dxz . a,I+Lx,_~1 de
Xy=a; |+, xp=a; to; .,
L
: ].—];f(xl_anxi—l)’ (411)
i

and for any positive integer d, let
Bi(1,1) 2 P{Z(1) €CLZiTH (1) € Gy} (412)

The quantity s8/vn, s integer, will be denoted by §,(s).
The function

. Bi(1) - Bi(D)
s B xlziz(nllee=—pm=—
n

r=0,1,- -1 (4.13)

is closely related to Q,(z) as we shall see later. Finally,
define

Ur(s)27(8,+8,(s)), (4.14)
n/L-1
U(s) = Z Uy (s), (4.15)
W, (s) 2 U(S) Uf(s—1), (4.16)
and
W, (s)2U(s)—U(s+1). (4.17)

Our first goal is to calculate lim, . Py [W,(s)>0,
W,,(s)> 0] and lim,, .. P, [W,,(s) <0, W,,(s) <0] for a
fixed integer s. Then, it will be shown that the event
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{(W,,(s)>0,W,,(s)>0} is asymptotically equivalent to
(2.8) for r =s. To compute these limiting probabilities, it
is necessary to evaluate first B,(1), B{(t,,1,), log B(1) and
log B(1) at t,t,,t,=0+8,(r), r=s—1, s and s +1, re-
spectively, and some moments of W, (s) and W, (s).
Hence, we need the asymptotic expansions of the previ-
ous functions about ¢ = 6,. These are given in the follow-
ing lemma.
Lemma 1: Let

h[éf(ai)*f(ai—l)

and
Af’(ai)_f’(alfl)’ i

Then, for any fixed s, as n >

1, - k+1.

0'2 -
1A031,-+0(n ),

1
a) B0,+8,(s)=qa; + 56,2,(3)

2

1
b) log B8, +8,(s) = log a; + =82(s)
o(n™h),

1
c) B, +6,(s)=a,;+8,(s)E;q; +252(S)Sa +

1-62 a,

n i

o(n™h,

where
L
E &2 Y —E,( WVi-ec) (4.18)
p=1"7"i,
and
L]
s,2 Y 2E, (X2 viec,)
I)=1a’p
4 L h .
+2£p§1 o (X, ,IVEeC)lo-,
hih;
+2Z 2 037 ——E, (X} Vl €C)
p=lg=p+i @i,
L-1 L h;
w2y X errl— Eo,,(Xp—1|V1L€Ci)
p=lg=p+1 ir)aiq
L-1 L h; h;
2y ¥ Lt
p=1la=p+1 %%,
q—1
‘Eg| X,y X Ve Wied), (4.19)

j=p+1

1
d) log B(6,+5,(s)=log a;+8,(s)E+=82(sXS;— E})

+o(n™1h),
e) B, +8,(s),0, +8,(s,))=a;a; +8,(s)E;a;a; +
8,(s))Efa,a; + — 5 2s)Saa; +

1
dasa;+o(n™h),

1
5,,(51)8"(52)Mda o;+ = 5 2(5,)S

1j i
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where Again, by differentiating (4.23) twice with respect to

Loh t at t=46,, the Taylor expansions ¢) and d) are ob-
Ed A In E, tained. Part ¢) is verified similarly by calculating the
Y2 a, first- and second-order derivatives (H/Bt)B"(t,B,,)I, 8,

a/at)ﬁ,l(e,,,z)l,,g,, (82/01*)B (e, 0,00, -4,
(X, lVEec, Vit ec;), (420) (0%61am)B1,7)|,~,s, and (3 /atz)ﬁ“’(en,t)l, 6, and
substltutmg these in the bivariate Taylor expansion of

¢ 2 i Atk ,,h,(,E {ty,t,) about t,=1,=8,. O
BN
p=1g=dL+1 %%, To calculate the required moments of W, (s) and
W,,(s) we first establish an auxiliary result.
L dL+L 2n
(X,; 1 Xy Vi e G ViR j)’ (4.21) Lemma 2: Under conditions 1) and 3),
and
Lo _(Vn .
. Jr —I\U/(s)-U/(s—=1)|—=J(6,)} =0, S,
Sii'é )y o EG,,(XtIZL+pfl|V] eC, Vil Ecj) ,,II—I}L{ 8 [U"(s) (s =D] = I« ")} as
p=1%,
L K where
+2— ¥ —"E, _
(,)0 pP= ajp ‘,r(en) - Z XI(I/III’++L)E *
ieN
) (X(lLﬂ)—l'V]L eq, VddLlel € Cj)‘ﬂ:@,,
L1 hoh Proof of Lemma 2: Since J(t) is differentiable almost
+2 Z Z go—ptrte iv g E, everywhere, it is also differentiable at ¢ =6, with _proba-
g1 @ a; bility 1, and the almost sure derivative is glven by J.(6,) 2
Zl e NXI( l/llri:-lL)E‘ Hence
(thl +p— 1|V1L = C Vddlljll_ < Cj)
h lim -U/(s—1 J(0
+2 Z Z 06] —p—1 Ip EH" "o [ ( )] r( n)
p=1lg=p+1 a}pal,
J(6,+8,(s))—J(6,+8,(s—1)) .
. X B |V EC VdL+LeC, — “m r n n ¥ n n ~J. 0
( dL+p—1 1 dL+1 j) e 5/‘/; r( n)
L—1 L hf,,hjq
+2) Y -0, (4.24)
p=lg=p+1 aj,yaill
dL+q—1 almost surely by the definition of a derivative. O
‘Eg( Xgrspr 2 VTV EEC, The asymptotic moments of W, (s) and W, (s) are
r=dL+p+1 given in Lemma 3.

Lemma 3: For any fixed s, as n — oo,

ik ec, (4.22)

a) E[W, ()= —8%(s — DIFf,0)+ o(1).
b) E[W,,(s)=56%(s + HI-(f,0)+ o(1).

c) var[W,, ()= 82IL(f,0)+ o(1).

d) var[W,,(s)]= 21k f,8)+ o(1).

e) cov[W, (), W, ()] = — 82IL(f,8)+ o(1).

Proof of Lemma I: To prove a) and b), differentiate
(4.2) twice with respect to ¢ at t =6, and use the Taylor
expansion. Parts ¢) and d) can be checked by changing the
integration variables of (4.11) using the following transfor-
mation:

The proof of Lemma 3 appears in the Appendix. Lemma
=2y Xy =z, 4zt Z 2tk 3 implies immediately by the Chebychev inequality that
j=0

. — 52yl
By doing this, (4.11) can be rewritten as follows: ,,hinx [W1,(5) + W, ()] = 81 £,6) - (4.29)

B:(t) =f 80 (2¢) dz, in probability. The next lemma introduces the asymptotic
- distribution of W,,(s) for a fixed integer s.
L k-1 . Lemma 4: For fixed s, W,,(s) is asymptotically nor-
fC I_I flac+(t=0,) X z;0* "' dzf. (4.23) mally distributed with mean —&%(s —1/2)1*(f,8) and
k=t i=0 variance 82IL(f,9).
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Proof of Lemma 4: First, observe that

n/L—1
W)=Y [U(s)=Ui(s—1)]

=0

5 "/i‘l J,(8,+8,(5))—J.(0,+8,(s—1))

TS 5/Vn
s n/L-v
- g 1.(0,)
5 n/L-1 J.(6,+6,(s)—J(0,+8,(s—1)
+t= X
\m r=0 { 6/‘/;
—J}(Gn)]- (4.26)

The first term of the last expression is a sum of
iid. zero-mean random variables with variances
8%(L /n)IF(f,0,). Thus, by the central limit theorem its
asymptotic distribution is N(0,8*L-(f,6,)). It remains to
show that the second term tends to — 8%(s — D I(f,0) in
probability. To prove that, we rewrite the summand of the
second term as

18, +8,(5)) = J,(6, +8,(s - 1))

5/5 _Jr(en)
J(8,+8,(s))-J.(6,) .
Jr(0n+6n(s—1))_‘,r(6n) .
s, |
(4.27)

Since f and f' are continuous, it follows from the stochas-
tic Taylor expansion of J.(¢) that

1.(8, +8,(5))— 71,(6,)
8,(s)

- 7(6,)

J(e, )8,(s)+o0,(n"17%), (4.28)

Nlr—*

where

. a2
j;(@n) 2 — Z X:(VLer:lL) Si—Ei2 2 Z
-0 a;,
ieN n k=1

(4,29)

is the almost sure second derivative of J(t) at t =6,. We
therefore obtain by (4.27) and (4.28),

1251

§ "EI(6,+8,(s)—J(8,+8,(s~1)) .

W rgu |: 6/‘/% 7Jr(0n)
n/L-1

-7 L, [Frene- 5

S (s—1)+ op(n_l/z)]

n/L—1
:_% ’ [(33) ~((s—1)8)’]J.(8,) + 0,(1)
82
,.i‘f(s“)E[”")]
82 Iy 2
=‘f(s_5)nh—r'n°°i§Nai(Si_Ei 1-6; kgl Xk
1
ﬁsz(s—g)lt(f,e). (4.30)

Equation (4.25) together with Lemma 4 suggests that to
calculate the asymptotic probabilities of the events
{W,,(s)>0, W,,(s)>0} and {W(s) <0, W,,(s) <0}, we
may substitute W, (s) by 8%IL(f,0)— W, (s), and then
use the asymptotic distribution of W,(s) as it was derived
in Lemma 4. The following lemma [10, Lemma 7] enables
us to use that procedure.

Lemma 5 (Bhattacharya): Let {A,} and {B,} be se-
quences of random variables such that the distribution of
{A4,} converges to a distribution function F at all points
of continuity of F, and A, + B, converges in probability
to a constant p. If a+b<u, and if @ and pw—b are
points of continuity of F, then

lim P[A4,<a, B,<b]=0,

n—ow

(4.31a)

and

lim P[A,>a, B,>b]=F(u—b)—F(a). (431b)

n—oo

The proof is given in [10].

From Lemmas 4 and 5 we now conclude that for any
two constants a, and a, whose sum is less than §2I/(if,0),
we have

lim P, [W,,(s) <a,, W,(s)<a,]=0, (4.32)
n-—o

and

lim P(,”[Wl,,(s) >a,, W,(s)>a,]
1
—@([Ezl,f(f,e)—a2+62(s——Z—)I,f(f,a)]/ﬁ\/l,f‘(f,e))
1 .
—(I>([a1+32(s—E)I,f(f,ﬂ)]/aﬁf(f,ﬂ)). (4.33)
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Next, by the stochastic Taylor expansion of Q,(r) at
t=6,+68,r), r=s—1,515+1, we note that for any fixed
s and as n — o,

Q,(0,+8,(5)) = 0,(6,+8,(s —1)) =W,,(s) + 0,(1),

(4.34)
and
Qn(gn + Bn(s))_ Qn(gn + Bn(s + 1)) = WZn(s) + Op(l)'
(4.35)

The last auxiliary lemma states that the situation of
multiple solutions to (2.8), in a fixed interval of integers r,
becomes rare as n grows.

Lemma 6: For any K >0, the probability that (2.8)
holds for more than one point in the interval (6, —
K /Vn .8, — K /Vn) tends to zero as n — .

The proof of Lemma 6 is a straightforward extension of
[10, Theorem 1].

We are now ready to prove the main result. Recall that
6,(k,L) is defined as follows. Let 6, be a ﬁ-consistent
estimator and let §£ arg min,|6, + 8,(s)— 6,]. Then,

if (2.8) holds for a unique member ré/\/; of ©,, then
0,0k, L)=r8/Vn; )

if (2.8) holds nowhere, then 6,(k, L) =8, + 5,(5);

if (2.8) is satisfied at more than one point, then én(k, L)is
the one lying close to 6 + §,(3).

Let A,(s) be the set of all samples of size n for which
(2.8) is satisfied at t =6, + 8,(s), and let B,(s) denote the
set of all samples of size n for which 6,(k, L)=6, + 5,(s).
Then,

B (0,0k. 1) =6,) <58} = P { U B,(r)}, (4.36)

and we want to prove that this probability tends to

O((s +1/2)6\/1,f(f,0) ) as n >=. We first note the fol-
lowing facts about A4,(s) and B,(s):

a) For any given s,

lim P, [A,(s)] = <I>((s + %)Sx/lf(fﬁ) )

oY)

b) lim, . P, [U,A4,()]=1,

¢) For any s, #s,, B,(s)U B,(s,)= ¢,

d) The union U _,, ., ..B,(s) is the entire sample space
of size n.

To prove a), note from (4.34) and (4.35) that
lim, .. P, [A4,(s)] lies between lim, . P, [W, (s)>e,
Wy, (s) = eland lim, P, [W,,(s) 2 — €, W,,(s) > — €] for
any €> 0. Choosing € <8%I-(f8)/2, using (4.33), once
for a, = a, =¢, then for a,=a, = — ¢, and finally letting
e — 0, yields the result. Part b) follows easily from part a)
and from Lemma 6, and parts ¢) and d) simply follow
from the fact that 6,(k, L) is well defined.

Next, from the consistency of én, for any positive inte-
ger § we have

Py{6,+8,(—5)<6,<06,+5,(S))=1-e(S), (437)

where e(§)— 0 as § —o. Denote by C,(S) the set of all
samples of size n for which —§ <§ < S. Let D,(s) be the
set of samples for which 5=s5. Then, by definition of
6,(k, L) we have for any s+ s with |s',|s| < S,

D,(s)N A,(s)2D,(s)N B,(s)

5 D,(s) N 4,(5)N

N A‘n'(r)], (438)
reM,

where M, 2{r: —3S <r <3S, r # s} and the superscript ¢
denotes the complementary set. Similarly, for all s

B,(s)N D,(s) = D,(s)N [{ N Ay} u An(s)].
' (4.39)

Hence, by (4.38) and Lemma 6, for any €' >0, s # s and
n sufficiently large

P, [D(s)NA,(s)]~€ <P, [D,(s)NB,(s)]
<P, [D,(s)N A, s)]. (4.40)
Similarly, by (4.39) and by b), we get
Py [D,(s)N A,(5)] = Py [ D,(5) N B,(5)]
2P, [D(s)NA(s)]—€. (441)

Thus, (4.40) holds either if s=s" or s #s'. Next, since
D,(s)N D,(s,) = ¢ for any s, # 5, we have

1P, [C,(S)N B,(5)] = P, [C,($)n A,(5)]l
= Z \Pﬂ,l[Dn(S,)mBn(S)]_PG"[DH(SI)mAn(S)]I
IsT<S
<25 +1)e’. (4.42)

As P, [C($)]=1~e(S —1) by (4.37), we also have

1P, [C(S)N A ()] = Py [A,(5)]| <e(S—1), (4.43)
and

125, [C.(S)N B, ()] = Py [ B,(s)]| <e(S—1), (4.44)
implying that

1P, [4,(s)] = P, [B,(s5)]I <2e(S—1)+(2S +1)€".
(4.45)

Now fix 6 > 0 and let S be so large that (S —1) <6 /4.
Next, choose €’ > 0 sufficiently small such that (25 + 1)e’
<6 /2. 1t follows from (4.45) and fact a) that

tim P, [B,()] = @((s+£)oy/1(7.0) )

—0((s = 1)oy/IE(£.6) ). (4.46)
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To complete the proof, note that ACKNOWLEDGMENT

lim P, [\/;(()A,,(k, L)-8,) < s6] Useful comments made by the anonymous referees are
neE greatly appreciated.

APPENDIX
Proor or LEMMmA 3

fim Pen[ U B,,(r)]
n—o res

= lim Y P [B,(r)]. (4.47)
r<s As for parts a) and b), we first nced to calculate E[U/(s)] for
a fixed s:
For an arbitrary € > 0 let us choose s, and s, such that L
- L1 Bi(6,+0,(5)
1 — E|U, 0,+8 log—————
®((s1—5)5\/l,f(f,0) ) <e (4.48) [ur ,EZNB( +8,(5))log * Bi(0,+3,(s))
k+1
and =L ) Bi(6,+5,(s))logB;(6, +8,(s))
i=1
1
@((52 + 5)5\/1k~(f,9) <l-e. (4.49) - 2 Bi{6,+38,(5))logB(6,+35,(s)). (A1)
ieN
Now by the asymptotic Taylor expansions of Lemma 1, and the
If € is sufficiently small then s, <s <s,, and hence facts that
k+1 k+1
lim Y P, [B,(r)] g] h;= ,; l;=0, (A2)
e and consequently,
> lim ¥ B, [B,(r)] L Ea(1+loge;) =0, (A3)
n—ox r=s, ieN
s ¥ S, =0, (A4)
= Z lim Pf,’[Bn(r)] ieN
r=s "7 ' > lkil
S;a;loga; = La*(1-867%) Lloga;, (AS)
=(D((s+%)6\/1,f(f,0)) ieN i=1
and '
Sk
—&((s, —1)SVIE(S, IE(£.9) ) EVE ;= LIF(f.6,) = LIE(f.9), (A6)

parts a) and b) are casily verified. To prove c), expand

(I)((s + %)5\/115(]019) )— €. (4.50) var[W,,(s)] as follows:

n
var | W, (s)|=—var|U/(s)- U (s -1
On the other hand, (W1 ()] I [U;() (s—1]

n/L—1 n ' '
lim Y P, [B,(r)] +2 E, (z*d)cov[U,,'(s)fUn’(s—l),
- . U = U (s = 1] (A7)

Il

lim Y Pe,,[ B,(r)] - Y lim P [Bn( r)] It can be shown that the sequence of random variables
"% s, r=s+1 7% {(n /&MU (s)— U/ (s = DI}, -, is uniformly bounded with prob-
ability 1, and thercfore from Lemma 2 we can calculate the first

lim Py | U B,(r)|— <I)((s2 +3)8VIE(f.0) ) term on the right-hand side of (A.7) using the dominated
n—x r<s, convergence theorem [13, page 257, Theorem 6.5.5],

n
+®((s+1)8VIH(f,0) ) Jlim —var [U(s) = U (s = )]
- 8 U -y G-
51“1’((52+%)5\/115‘(f,0)) =f]}f1x5[—_wn—*]
+®((5+1:)5v115(f,9)) =§f_5[ lim ———U”r(s)_U"r(s_l)}-
| L n—ox 5/\/;
i 1 L 52
‘ s@((s+2)6\/1k(f,0) )+e. (4.51) -2 hmJ(a,,)]
2
Since € > 0 is arbitrary in (4.50) and (4.51), the theorem is 2 lim Y E’a,=8%5(f.0). (AS8)
proved. n—w o
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It remains to show that the second term on the right-hand side
of (A.7) vanishes as n — . To do this, it is sufficient to demon-
strate that for every fixed s, and s,,

n/L—1
Jim Y cov[Un'(sl),Un”d(sz)] =0.
L |
We first evaluate
COV[U;(SI),U"'+J(S2)]

= Z Z [Bidj(en+5n(s])’6n+5n(s2))

ieNjeN
- Bi(en + Bn(sl))ﬁj(an + Bn(SZ))]
L L
kE[lB’k(G"+5"(sl)) kEllBjk(G"+6"(52))
R Y Oy e I e Y )

L
(A9 Ef-ElI=| ¥
p=1

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 36, NO. 6, NOVEMBER 1990

for any e >0 and n sufficiently large. Consequently, since
fhj-/al-l, j=1,-+k +1, are all bounded by some A <, then for
all large n,

h.
va [Eon(XdL+p—1lV1L eC;,

Ip

dL+L
- Vil EC;—)

N Eﬂ,.(Xd1,+p71|VddLlflL € Cj)]

< AL2E |0n|(drl)L

max

<AL’E,, (18]+ €)™ Pk (A.13)

max

The terms (Mf — E;E;) and (S%,—S,) in (A.10) are similarly
bounded by exponential functions of d. Hence, for all large n

[cov [Ur(5)), U 4(5,)] | < (16)+ )P 0(n=37%). (A14)

This implies that

=X X an(sz)(Eidj"Ej)aiaj

ieNjeN

+ 5n(31)5,,(52)(M,51j— E,-Ej)aiaj
+ %5,21(52)(551,7—S,-)a,-aj-!—o(n“)
(=0, Ei+ o(n™1/2)]
'[~5n(sz)Ej + o(n‘l/z)].

To examine the behavior of (E,.dj — E;) as d increases, note that

Een(XdL oV eC, Vil e Cj)

(A.10)

L
S RO WA 0
1

m=
dL
+ Z Vmoglﬁrpfl*m [2]
m=L+1
dL+p—1
+ X VmejL*-pil‘m,VlLECi’Vd“Z‘:lLeCj 31
m=dL +1
L {4)
=0+ X E(V, IV, ecC, )oittr=t-m
m=1 [5]
dL+p—1 6
+0+ Y E(Vv,ec; )oittr-iom 16
m=dL +1

M
L

Y E(W, v, ec, Jogtrr-t-m

m=1

+E, (X, Vit ec;).

Il

(8]

Al
(A-11) 0]

As |[E(V,IV, € C))| is bounded by, say, E,,. <« under assump-
tion in Condition 2), it follows from (A.11) that

\Ea,.(XdLﬂ,,,W]L e, Vitite Cj)

[10]

‘ 11]
- Ea,,( XdL+p*]|V;1dLL++1L [ Cj)l [
L
= Z E(leVmEC,- )0’111'L+p——1‘m [12)
m=1
f13)

S LE g (1614 €)“ 708, (A.12)

n/L—1

)»

d=1

(% - d)cov [Ur(s), U7 (sy)]

™

<n- |9"|(d—l)L,0(n—3/2)

d=1

(1-10,45) " 0(n=12)

Il

<[1-wo1+e)t] o1 =0(1), (A15)

which completes the proof of part c). Parts d) and e) can be
proved in a similar manner. |
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