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General Background

Relations between information theory and statistical physics:

The maximum entropy principle: Jaynes, Shore & Johnson, Burg, ...

Physics of information: Landauer, Bennet, Maroney, Plenio & Vitelli, ...

Large deviations theory: Ellis, Oono, McAllester, ...

Random matrix theory: Wigner, Balian, Foschini, Telatar, Tse, Hanly,

Shamai, Verdú, Tulino, ...

Coding and spin glasses: Sourlas, Kabashima, Saad, Kanter, Mézard,

Montanari, Nishimori, Tanaka, ...

Physical insights and analysis tools are ‘imported’ to IT (and vice versa).
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In This Talk We:

Briefly review basic background in Information Theory.

Explore relations between information measures and free energy.

Present mutual information calculation as equilibrium between systems.

Provide some background in estimation theory.

Relate mutual information to estimation error from a physics viewpoint.

Show examples where this error is analyzable via statistical physics.
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Background in Information Theory

Source Coding – Data Compression

An information source generates random bits S1, S2, . . . , SN with

Pr{Si = 1} = q.

Q: How much can we compress and still reconstruct perfectly?

A: Shannon’s Lossless Source Coding Theorem: For large N , (S1, S2, . . . , SN )

can best be compressed to ∼ Nh2(q) bits, where:

h2(q) = −q log2 q − (1 − q) log2(1 − q).

Many practical algorithms asymptotically achieve h2(q).

Q: Can we compress further if we allow a bit error rate D?

A: Yes, we can reduce from h2(q) to the rate–distortion function:

R(D) = h2(q) − h2(D).
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Backgd in Info Theory (Cont’d) – Channel Coding

Suppose we have to transmit a message m of k bits over a noisy channel,

which flips each transmitted bit with probability p.

Reliable transmission – only if m is encoded, i.e., mapped (sophisticatedly) into

a codeword x(m) of n > k bits before transmission.

R =
k

n
= coding rate.

Let y = (y1, . . . , yn) be the received binary channel output sequence.

Optimum decoder for minimum decoding error probability = Maximum

Aposteriori Probability (MAP):

m̂ = arg maxmP (m|y) = arg maxm[P (m)P (y|x(m))].
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Backgd in Info Theory – Channel Coding (Cont’d)

If P (m) = 2−k for all m, MAP decoding = Maximum Likelihood (ML) decoding:

m̂ = arg maxmP (y|x(m)).

Channel capacity, C
∆
= max R s.t. ∃ encoder & decoder with limn→∞ Pe = 0.

Q: What is C for this bit–flipping channel?

A: Shannon’s Channel Coding Theorem:

C = 1 − h2(p) = 1 + p log p + (1 − p) log(1 − p).
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Backgd in Info Theory – Channel Coding (Cont’d)

∃ good codes with R ≈ C: normally proved by random coding:

x(1), x(2), . . . , x(2k) are selected independently at random. ‘Most’ codes

are good – except those that we can think of...

Ensemble of codes – ensembles that govern large systems – natural

relation to statistical mechanics: the code randomness is quenched.

Mainstream efforts in IT research: seeking good codes with R ≈ C & low

complexity:

Low complexity ⇐⇒ structure ⇐⇒ Low randomness ⇐⇒ bad

performance.

Turbo/LDPC codes – good compromise.
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Bckgd in IT (Cont’d) – Joint Source–Channel Coding

Consider a Ber(q) source and a bit–flipping channel with parameter p.

A joint source–channel code maps s = (s1, . . . , sN ) to a channel input x(s) of

length n = λN . Reliable communication ⇐⇒ h2(q) < λC.

The decoder estimates u from y = (y1, . . . , yn):

Word MAP decoder ⇐⇒ min. word error probability

ŝ = arg maxsP (s|y) = arg maxs[P (s)P (y|x(s))].

Bit MAP decoder ⇐⇒ min. bit error probability:

ŝi = arg maxsP (si = s|y) = arg maxs

X

s: si=s

P (s)P (y|x(s)).

The posterior P (s|y) plays a key role.
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encoder decoder
ŝyx(s)s

P (y|x)
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Background in Information Theory (Cont’d)

A key notion in IT is the mutual information:

Let (U, V ) ∼ P (u, v):

I(U ;V ) ≡
fi

log
P (U, V )

P (U)P (V )

fl

= H(U) + H(V ) − H(U, V )

where

H(U) = −〈log P (U)〉, H(V ) = −〈log P (V )〉, H(U, V ) = −〈log P (U, V )〉.

I(U, V ) – statistical dependence between U and V .

Other forms:

I(U ; V ) = H(U) − H(U |V ) = H(V ) − H(V |U)

where H(U |V ) = −〈log P (U |V )〉.
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The Second Law and the Data Processing Thm

A very fundamental inequality in IT: data processing theorem (DPT):

A → B → C Markov chain =⇒ I(A;B) ≥ I(A; C).

Virtually, in the proof of every negative result (converse theorem) in IT, the DPT

is used. Equivalent to Gibbs’ inequality, which can be represented as:

avg work of ‘abrupt’ force =⇒ 〈W 〉 ≥ ∆F ⇐= free energy increase

relating coded comm. systems with thermodynamical processes:

Suboptimum commun. system ⇐⇒ irreversible process.

Info rate loss ⇐⇒ dissipated work → entropy ↑

Fundamental limits of IT ⇐⇒ second law.
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Mutual Information

We will be interested in

I(X ;Y ) – pure channel coding

or
I(S; Y ) – joint source–channel coding.

Measures how much can one learn from Y about X or S, resp.
Suppose

Y = X + Z

where Z = noise: independent of X and Z ∼ Q

i P (zi).

I(X ; Y ) = H(Y ) − H(Y |X) ⇐= second term is easy:

H(Y |X) = H(Z) = nH(Z).

H(Y ) is more difficult to handle..
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Channel Output Entropy and Free Energy

Suppose Zi ∼ N (0, 1/β). Then, in pure channel coding:

H(Y ) = −〈log P (Y )〉

= −
*

log

"

X

m

P (m)P (Y |x(m))

#+

= const. −
*

log

"

X

m

e−β‖Y −x(m)‖2/2

#+

≡ const. − 〈log Z(β|Y )〉

Calculation of 〈log Z(β|Y )〉 – using statistical mechanical methods.

Y & code are quenched.
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A Slightly Different Look

Introduce

P (s) ∝ exp{−βES(s)}; P (y|x) ∝ exp{−βEC(x, y)}.

Thus,

P (s|y) =
P (s)P (y|x(s))

P

s′ P (s′)P (y|x(s′))
=

exp{−β[ES(s) + EC(x(s), y)]}
P

s′ exp{−β[ES(s′) + EC(x(s′), y)]}

where
Z(β|y) ≡ denominator

=⇒ partition function of a system in equilibrium between source and channel
at “temperature” T = 1/β.

I(S; Y ) = H(S) − H(S|Y )

where H(S) = entropy of ZS(β) =
P

s e−βES(s) and H(S|Y ) = entropy of
Z(β|Y ).
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Source–Channel Equilibrium

Let

ΣS(ǫ1) ≡
1

N
log [# of {s}: ES(s) ≈ Nǫ1] .

For a randomly selected code, let

Pr{EC(X , y) ≈ nǫ2} = enφn(ǫ2|y).

In many cases, φn converges and it is self-averaging:

φn(ǫ2|Y ) → φ(ǫ2).

Finally, let

Σ(ǫ|y) ≡ 1

N + n
log [# of {s}: ES(s) + EC(x(s), y) ≈ (N + n)ǫ] .
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Source–Channel Equilibrium (Cont’d)

For the typical code and for

(N + n)ǫ = Nǫ1 + nǫ2 =⇒ (1 + λ)ǫ = ǫ1 + λǫ2,

e(N+n)Σ(ǫ|Y ) =
X

ǫ1

eNΣS(ǫ1) · Pr{EC(X , y) ≈ nǫ2}

≈
X

ǫ1

eNΣS(ǫ1) · exp



nφ

„

(1 + λ)ǫ − ǫ1
1 + λ

«ff

≈ exp



(N + n)max
ǫ1

»

ΣS(ǫ1)

1 + λ
+

λ

1 + λ
· φ

„

(1 + λ)ǫ − ǫ1
1 + λ

«–ff

sum & max over ǫ1: in the range where [· · ·] > 0.
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Mutual Info via Source–Channel Equilibrium

Σ(ǫ|Y ) =
ΣS(ǫ∗1)

1 + λ
+

λ

1 + λ
· φ

„

(1 + λ)ǫ − ǫ∗1
1 + λ

«

Let ǫ = ǫ∗ maximize Σ(ǫ|Y ) − βǫ:
• Large β: Σ(ǫ∗|Y ) = H̄(S|Y ) = 0 → glassy/ferro φ; unreliable comm.
• Small β: Σ(ǫ∗|Y ) = H̄(S|Y ) > 0 → disordered φ; unreliable comm.

H(S|Y ) ≈ (N + n)Σ(ǫ|Y ) = NΣS(ǫ∗1) + nφ

„

(1 + λ)ǫ − ǫ∗1
1 + λ

«

≈ H(S) + nφ(ǫ∗2)

and so,

lim
n→∞

I(S;Y )

n
= −φ(ǫ∗2)
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I(S;Y ) via Source–Channel Equilibrium (Cont’d)

What is ǫ∗2? Share of EC per–particle at inv. temp. β. =⇒ solves the eqn:
β = φ′(ǫ2). If the codevectors ∼ µ(x):

ǫ∗2 = lim
n→∞

1

n
〈EC(X , Y )〉µ×PX→Y

.

Normalized mutual info = exponential rate of the prob. that X ′ ⊥ Y yields
EC(X ′, Y ) ≈ 〈EC(X , Y )〉, where (X , Y ) are related via the channel.

Gaussian Example: EC(x, y) = 1
2‖y − x‖2. EC(X , Y ) is typically n/(2β). If

X ∼ Surf(
√

nσ2),

Pr


EC(X ′, Y ) ≈ n

2β

ff

∼ e−nC

where

C =
1

2
log(1 + βσ2),

the capacity of the Gaussian channel with input power σ2.
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Signal Estimation – Background

We said that I(X ; Y ) tells how much can we learn from Y about X , e.g.,
I(X ; Y ) = H(X) − H(X |Y ) = reduction in uncertainty of X as Y becomes
available.

Can we estimate X better for I large?

First, a word of background in estimation theory:

An estimator is any X̂ = f(Y ). We want X̂ as ‘close’ as possible to X .

mean square error =
D

‖X − X̂‖2
E

=
D

‖X − f(Y )‖2
E

.

A fundamental result: minimum mean square error (MMSE) = conditional
mean:

X
∗ = f∗(y) = 〈X〉Y =y ≡

Z

dx · xP (x|y).

Normally, difficult both to apply X∗ and to assess performance.
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The I–MMSE Relation

[Guo–Shamai–Verdú 2005]: for Y = X + Z, Z ∼ N (0, I · 1/β), regardless of
P (x):

mmse(X |Y ) = 2 · d
dβ

I(X ; Y ),

where mmse(X |Y ) ≡ 〈‖X − f∗(Y )‖2〉.
Example: If X ∼ N (0, σ2I),

I(X ; Y )

n
=

1

2
log(1 + βσ2)

=⇒ mmse(X |Y )

n
=

σ2

1 + βσ2
.

MMSE – now calculated using stat–mech via the mutual info and I–MMSE
relation.

Analogue stat–mech system exhibits φ transitions −→ irregularities in MMSE.
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Statistical Physics of the MMSE

I(X ; Y ) =

fi

log
P (X |Y )

P (X)

fl

β

=

fi

log
exp{−β‖Y − X‖2/2}

P

x P (x) exp{−β‖Y − x‖2/2}

fl

β

= −n

2
− 〈log Z(β|Y )〉β

and so,

mmse(X |Y ) = 2 · dI(X ; Y )

dβ
= −2

∂

∂β
〈log Z(β|Y )〉β .

Similar to internal energy, but here also 〈·〉β depends on β.
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Statistical Physics of the MMSE (Cont’d)

A more detailed derivation yields:

mmse(X |Y ) =
n

β
+ Cov{‖Y − X‖2, log Z(β|Y )}

The term n/β ∼ energy equipartition theorem.

Covariance term – dependence of 〈·〉β on β.
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Statistical Physics of the MMSE (Cont’d)

In stat. mech: Σ(β) = log Z(β) + β〈E(X)〉

= log Z(β) − β
d log Z(β)

dβ
⇐= diff. eq.

log Z(β) = −βE0 + β ·
Z ∞

β

dβ̂ · Σ(β̂)

β̂2
; E0 = ground–state energy

=⇒ E = −d log Z(β)

dβ
=

"

E0 −
Z ∞

β

dβ̂ · Σ(β̂)

β̂2

#

+
Σ(β)

β

Similarly for 〈log Z(β|Y )〉β except that

Σ(β) ⇐=
β

2
Cov{‖Y − X‖2, log Z(β|Y )} − I(X ; Y )

E0 ⇐=
1

2

D

min
x

‖Y − x‖2
E

β
.
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Examples

Example 1 – Random Codebook on a Sphere Surface

Y = X + Z ; X ∼ Unif{x1, . . . , xM}, M = enR

Codewords: randomly drawn independently uniformly on Surf(
√

nσ2).

lim
n→∞

〈I(X ;Y )〉
n

=

(

1
2 log(1 + βσ2) β < βR

R β ≥ βR

where βR is the solution to the eqn R = 1
2 log(1 + βσ2). Thus,

lim
n→∞

mmse(X |Y )

n
=

(

σ2

1+βσ2 β < βR

0 β ≥ βR

A 1st–order φ transition in MMSE: At high temp. behaves as if X was
Gaussian and at β = βR jumps to zero!
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+ +encoder

strong
decoder decoder

weak

Example 2 − broadcast channel

î

i, j

Z2Z1

î, ĵ
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Example 2 − broadcast channel (cont’d)

index of ‘cloud’ center
index of codeword within cloud

i =
j =
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Example 2 (Cont’d)

X ∼ Unif{xi,j}, 1 ≤ i ≤ enR1 ; 1 ≤ j ≤ enR2

xi,j = αui +
p

1 − α2vi,j

where {ui} and {vi,j} are drawn independently on Surf(
√

n).
Two phase transitions:

lim
n→∞

〈I(X ;Y )〉
n

=

8

>

>

<

>

>

:

1
2 log(1 + β) β < β1

R1 + 1
2 log[(1 + β(1 − α2)] β1 ≤ β < β2

R = R1 + R2 β ≥ β2

lim
n→∞

mmse(X |Y )

n
=

8

>

>

<

>

>

:

1
1+β β < β1

1−α2

1+β(1−α2)
β1 ≤ β < β2

0 β ≥ β2

– p. 27/34



0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

beta

I(
X

;Y
)

– p. 28/34



Examples (Cont’d)

Example 3 – Sparse Signals

Xi = SiUi, i = 1, . . . , n

where S = (S1, . . . , Sn) ∼ P (s) is binary 0–1; Ui ∼ N (0, σ2) – i.i.d. ⊥ S.

Z(β|y) =

Z

IRn

dxP (x) exp{−β‖y − x‖2/2} ⇐= P (x) =
X

s

P (s)P (x|s)

=
X

s

P (s) exp

(

−1

2

n
X

i=1

func(yi, si, q)

)

⇐= q ≡ βσ2

= const. ×
X

µ

P (µ) · exp

(

n
X

i=1

µihi

)

µi = 1 − 2si; hi = func(yi).

Sum over {µ} ≡ Ẑ(β|y): “partition function” of spins in a random field {hi}.
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Example 3 (Cont’d)

Let P (µ) ∝ exp{nf [m(µ)]} where m(µ) ≡ 1
n

P

i µi and f [m] is ‘nice’.

Ẑ(β|y) ∝
X

µ

exp

(

n

"

f [m(µ)] +
1

n

X

i

µihi

#)

Ẑ is dominated by configurations with magnetization m∗, solving the
zero–derivative equation

m = 〈tanh(f ′[m] + H)〉

where H is a RV pertaining to hi. m∗ = local maximum if:

D

tanh2(f ′[m∗] + H)
E

> 1 − 1

f ′′[m∗]
.

When this becomes equality (and then reversed), m∗ ceases to dominate Ẑ

(critical point) =⇒ dominant magentization jumps elsewhere.
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Example 3 (Cont’d)

Consider the case

f [m] = am +
bm2

2

Ẑ – similar to the random–field Curie–Weiss (RFCW) model.

We analyze the mutual info using stat–mech methods, and then derive the
MMSE using the I–MMSE relation:

Defining ma to be the maximizer of

h2

„

1 + m

2

«

+ am +
bm2

2
,

mmse(X |Y ) = closed-form-expression(a, b, ma, m∗, σ2, β).
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Example 3: Discussion

MMSE depends on m∗: jumps of m∗ yield discontinuities in MMSE.

As m∗ jumps, the response of X∗(Y ) jumps as well.

In the C–W model: 1st order transition w.r.t. mag. field and 2nd order
transition w.r.t. β. Here – a 1st order transition w.r.t. β because
dependence on β is via the “magnetic fields” {hi}..

b = 0: i.i.d. spins =⇒ no φ transitions =⇒ sparsity alone does not cause φ

transitions.
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Conclusion

The mutual info, which is a fundamental quantity in IT, is a measure of the
relevant info given in one RV on the other.

We demonstrated that mutual info can be assessed from a stat–mech
perspective: one approach is via source–channel thermal equilibrium.

The mutual info is related to the MMSE.

=⇒ the MMSE is calculated using stat–mech tools.

Statistical–mech techniques can be used to inspect inherent irregularities
in the estimation error, via phase transitions.
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MMSE for Example 3

mmse =
σ2q

2(1 + q)2
+

(1 − ma)σ2

2

»

1 − q(1 + q/2)

(1 + q)2

–

+

1 + ma

2

»

Cov0{Y 2, log[2 cosh(bm∗ + a + H)]} +

˙

H ′ tanh(bm∗ + a + H)
¸

0

–

+

+
1 − ma

2

»

1

(1 + q)2
· Cov1{Y 2, log[2 cosh(bm∗ + a + H)]} +

˙

H ′ tanh(bm∗ + a + H)
¸

1

–

where 〈·〉s and Covs are w.r.t. Y ∼ N (0, σ2s + 1/β), s = 0, 1, and

H ′ = − σ2

2(1 + q)
+

q(q + 2)Y 2

2(1 + q)2
.
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