

Some Properties of Sequential Predictors for Binary Markov Sources

Neri Merhav, *Senior Member, IEEE*, Meir Feder, *Senior Member, IEEE*, and Michael Gutman, *Member, IEEE*

Abstract—Universal prediction of the next outcome of a binary sequence drawn from a Markov source with unknown parameters is considered. For a given source, the predictability is defined as the least attainable expected fraction of prediction errors. A lower bound is derived on the maximum rate at which the predictability is asymptotically approached uniformly over all sources in the Markov class. This bound is achieved by a simple majority predictor. For Bernoulli sources, bounds on the large deviations performance are investigated. A lower bound is derived for the probability that the fraction of errors will exceed the predictability by a prescribed amount $\Delta > 0$. This bound is achieved by the same predictor if Δ is sufficiently small.

Index Terms—Predictability, universal prediction, Bernoulli processes, Markov sources, large deviations.

I. INTRODUCTION

IN [1], universal finite-state (FS) predictors have been sought that minimize the asymptotic fraction of errors for an individual binary sequence. It has been shown in [1] that the best prediction performance is asymptotically attained by a (randomized) Markov predictor with a slowly growing order, i.e., a predictor based on current estimates of the conditional probabilities of the next outcome given the k preceding bits, where the order k increases gradually with time. A predictor based on the Lempel-Ziv (LZ) algorithm [2] has been demonstrated in [1] to be such a growing-order Markov predictor and hence to attain asymptotically the least possible fraction of errors made by any FS predictor, that is, the *FS predictability* [1]. Independently, in [3] a similar predictor (though nonrandomized) has been proposed with application to prefetching memory pages in computers, where the page sequence is modeled as being governed by a probabilistic unifilar FS source. It has been shown in [3] that the resulting expected fraction of errors (page faults) converges to the optimum. However, if the source is known to have no more than S states, then the LZ algorithm, which does not utilize this prior information, might yield a relatively slow convergence. A natural question that arises and that we shall be concerned with, is: how fast can the optimum performance be approached when the predictor knows the class of sources but not the parameter value?

Manuscript received February 7, 1992; revised September 28, 1992.

N. Merhav is with the Department of Electrical Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel.

M. Feder is with the Department of Electrical Engineering-Systems, Tel Aviv University, Tel Aviv 69978, Israel.

M. Gutman is with Intel Israel, P.O. Box 1659, Haifa 31015, Israel.

IEEE Log Number 9207087.

In [4], a similar question has been addressed in the context of predicting Gaussian autoregressive moving average (ARMA) processes under the minimum-mean-square-error (mmse) criterion. It has been shown in [4] that no predictor exists that approaches the asymptotic mmse faster than $n^{-1} \log n$, n being the sample size, for all ARMA processes except for a collection of ARMA processes corresponding to a subset of parameter values whose volume is vanishingly small. This argument was based on an analogous result in universal data compression (proved in [4] as well), which rules out the existence of a lossless code whose compression ratio converges to the entropy faster than $n^{-1} \log n$ for a considerably large subset of parameter values. Note that an exception of a small subset of parameter values is necessary if *every* scheme is allowed, including the optimal scheme for a specific parameter value.

In this paper, an attempt is made to investigate, in the same spirit, fundamental limitations in universal prediction of finite-alphabet Markov sources, and in particular, binary Markov sources. We derive a lower bound on the rate at which the optimum prediction performance can be uniformly approached by any sequential predictor when the underlying Markovian source is known to be of order k , but otherwise unknown. However, in contrast to [4], here one cannot expect a nontrivial lower bound that holds simultaneously for *most* sources in the class. Consider, for example, a Bernoulli source parametrized by $\theta = \Pr\{x_t = 1\} = 1 - \Pr\{x_t = 0\}$. Here, predicting constantly “0” is a uniformly optimal strategy for every $0 \leq \theta \leq 1/2$, namely, for “half” of the sources in the class there cannot be a lower bound on the rate of approaching optimality. Thus, the bound here will hold for only half of the sources. In the Markovian case, the bound will still hold for a “considerably large” portion of the parameter space, i.e., for a fixed fraction of its volume. In either case, the corresponding bound is attained by a simple predictor based on a majority count.

Finally, we examine the achievable large deviations performance for Bernoulli sources under the criterion of minimizing the probability that the fraction of errors would exceed the optimum by a prescribed amount Δ . We derive an exponentially tight lower bound and show that it is uniformly attained by the majority predictor in some range $0 < \Delta \leq \Delta_\theta$, but not for $\Delta > \Delta_\theta$.

II. A LOWER BOUND ON THE EXPECTED FRACTION OF ERRORS

We start with Bernoulli sources and later extend our discussion to Markov sources. Let $x_1, x_2, \dots, x_n, x_t \in \{0, 1\}$,

denote a binary n -tuple drawn from a Bernoulli source parametrized by $\theta = \Pr\{x_t = 1\}$. A predictor is a sequence of functions $f = (f_0, f_1, \dots, f_t: \{0, 1\}^t \rightarrow \{0, 1\}$, where at time t , the next outcome x_{t+1} is estimated by $\hat{x}_{t+1} = f_t(x_1, x_2, \dots, x_t)$. Let $n_e(f) \triangleq \sum_{t=1}^n 1\{\hat{x}_t \neq x_t\}$ (where $1\{\cdot\}$ denotes the indicator function of an event). We are interested in minimizing $\pi_\theta(f) \triangleq \limsup_{n \rightarrow \infty} E_\theta n_e(f)/n$, where E_θ denotes expectation w.r.t θ . The *predictability*, defined as $\pi_\theta \triangleq \inf_f \pi_\theta(f)$, is obviously attained by the predictor $\hat{x}_{t+1} = 0$ if $\theta \leq 1/2$ and $\hat{x}_{t+1} = 1$ if $\theta > 1/2$. Hence, $\pi_\theta = \min\{\theta, \bar{\theta}\}$, where $\bar{\alpha}$ denotes $1 - \alpha$.

If θ is not known, then one does not know which one of these predictors to use, and therefore π_θ cannot be attained for every n and uniformly for every θ , but only asymptotically. We shall be interested in the rate at which π_θ can be uniformly attained when $n \rightarrow \infty$. Intuitively, the predictor

$$x_{t+1}^* = f_t^*(x_1, \dots, x_t) = \begin{cases} 0, & \text{if } \hat{\theta}(t) < 1/2, \\ \text{flip a fair coin,} & \text{if } \hat{\theta}(t) = 1/2, \\ 1, & \text{if } \hat{\theta}(t) > 1/2, \end{cases} \quad (1)$$

where $\hat{\theta}(t) = t^{-1} \sum_{\tau=1}^t x_\tau$ is the current estimate of θ ($\hat{\theta}(0) \triangleq 1/2$), is in some sense the best one can use when θ is unknown. The following theorem consolidates this intuition.

Theorem 1:

a) For every predictor f , and every $\theta \neq 1/2$ either

$$E_\theta n_e(f) \geq n\pi_\theta + c_0(\theta) - o(1)$$

or

$$E_{\bar{\theta}} n_e(f) \geq n\pi_{\bar{\theta}} + c_0(\bar{\theta}) - o(1),$$

where $c_0(\theta) = c_0(\bar{\theta}) = [2(1 - 2\pi_\theta)]^{-1}$.

b) The predictor f^* satisfies both

$$E_\theta n_e(f^*) \leq n\pi_\theta + c_0(\theta),$$

and

$$E_{\bar{\theta}} n_e(f^*) \leq n\pi_{\bar{\theta}} + c_0(\bar{\theta}).$$

Part a) tells us that every predictor must make on the average at least $c_0(\theta) = c_0(\bar{\theta})$ extra prediction errors beyond the minimum $n\pi_\theta = n\pi_{\bar{\theta}}$, for either θ or $\bar{\theta}$. Part b) implies that f^* is optimal in the sense of doing no worse for both sources. It follows from the simple inequality $0.5E_\theta n_e(f) + 0.5E_{\bar{\theta}} n_e(f) \geq 0.5E_\theta n_e(f^*) + 0.5E_{\bar{\theta}} n_e(f^*)$, which is justified below and has been observed independently by Rissanen [5]. Thus the convergence rate is $O(1/n)$.

In [1], [6]–[8] where prediction of *individual* sequences is considered, the convergence rate to the predictability (defined in [1] for the deterministic case) slows down to $O(1/\sqrt{n})$. The reason for the difference is that in the deterministic setup of [1], [6]–[8], a uniform upper bound is derived from a worst case analysis rather than the expectation over an ensemble of sequences.

Proof of Theorem 1: First we find a tight lower bound on $M(f) \triangleq 0.5E_\theta n_e(f) + 0.5E_{\bar{\theta}} n_e(f)$ for an arbitrary predictor f , and then we argue that this lower bound must hold for either $E_\theta n_e(f)$, or $E_{\bar{\theta}} n_e(f)$, or both, and hence for at least one half of the Bernoulli sources. We show that the tightest lower bound is $M(f^*)$ and hence it remains to evaluate the performance of f^* . First observe that by (1), $E_\theta n_e(f) = \sum_{t=1}^n P_\theta\{\hat{x}_t \neq x_t\}$, where $P_\theta\{\cdot\}$ denotes a probability w.r.t θ . Without loss of generality, let $\theta < 1/2$. Since x_t is independent of x_1, x_2, \dots, x_{t-1} , and hence also of \hat{x}_t ,

$$\begin{aligned} P_\theta\{\hat{x}_t \neq x_t\} &= P_\theta\{\hat{x}_t = 0\} \cdot P_\theta\{x_t = 1\} + P_\theta\{\hat{x}_t = 1\} \\ &\quad \cdot P_\theta\{x_t = 0\} \\ &= \theta \cdot [1 - P_\theta\{\hat{x}_t = 1\}] + (1 - \theta) \cdot P_\theta\{\hat{x}_t = 1\} \\ &= \theta + (1 - 2\theta) \cdot P_\theta\{\hat{x}_t = 1\} \\ &= \pi_\theta + (1 - 2\theta) \cdot P_\theta\{\hat{x}_t = 1\}. \end{aligned} \quad (2)$$

Similarly, $P_{\bar{\theta}}\{\hat{x}_t \neq x_t\} = \pi_{\bar{\theta}} + (1 - 2\theta) \cdot P_{\bar{\theta}}\{\hat{x}_t = 0\}$. The second term on the right-most side of (2) describes the excess in error probability beyond the predictability incurred by using a nonoptimal predictor for θ . Since $\pi_\theta = \pi_{\bar{\theta}}$, the minimization of $M(f)$ is equivalent to the minimization of $0.5P_\theta\{\hat{x}_t = 1\} + 0.5P_{\bar{\theta}}\{\hat{x}_t = 0\}$. This, in turn, can be thought of as a binary hypothesis testing problem where one seeks a rule f_t for deciding in favor of θ or $\bar{\theta}$ with priors $p(\theta) = p(\bar{\theta}) = 1/2$, and the goal is to minimize the error probability. This is accomplished by comparing the likelihood ratio $P_\theta(x_1, x_2, \dots, x_{t-1})/P_{\bar{\theta}}(x_1, x_2, \dots, x_{t-1})$ to unity, which is equivalent to f_{t-1}^* in (1). Thus the average of $E_\theta n_e(f)$ and $E_{\bar{\theta}} n_e(f)$ is minimized by f^* and either $E_\theta n_e(f)$ or $E_{\bar{\theta}} n_e(f)$ is not less than $E_\theta n_e(f^*) = E_{\bar{\theta}} n_e(f^*)$.

To complete the proof, it remains to prove part b). To do this, we evaluate the performance of f^* for $\theta < 1/2$. From (2), $E_\theta n_e(f^*) = n\pi_\theta + (1 - 2\theta) \cdot \sum_{t=1}^n P_\theta\{x_t^* = 1\}$, where the summation on the right-hand side converges to a constant $A \triangleq \sum_{t \geq 1} [P_\theta\{\hat{\theta}(t-1) > 1/2\} + 0.5P_\theta\{\hat{\theta}(t-1) = 1/2\}]$, which can be calculated by generating function techniques [9, ch. IV, section 17] in the following manner. Define $Y_t = 2x_t - 1$ and a random walk $S_t = \sum_{i=1}^t Y_i$. We wish to calculate $A = 0.5 + \sum_{t \geq 1} [P_\theta\{S_t > 0\} + 0.5P_\theta\{S_t = 0\}]$. Let $z = e^{i\omega}$ and $\phi(z) = E_\theta z^{Y_1} = \theta z + \bar{\theta}z^{-1}$. For $|r| \leq 1$ we first factor, in two different ways, the function $1 - r\phi(z)$ as a product $c(r)f_+(r, z)f_-(r, z)$, where f_+ and f_- contain positive and negative powers of z , respectively. A direct spectral factorization of the second-order polynomial in z , $1 - r\phi(z) = 1 - r\theta z - r\bar{\theta}z^{-1}$ yields $c(r) = 0.5(1 + \rho)$, $f_+(r, z) = 1 - (2\bar{\theta}r)^{-1}z(1 - \rho)$ and $f_-(r, z) = 1 - (2\theta r z)^{-1}(1 - \rho)$ where $\rho = [1 - 4\theta\bar{\theta}r^2]^{1/2}$. On the other hand, $1 - r\phi(z) = \exp[\log(1 - rE_\theta z^{Y_1})] = \exp[-\sum_{t \geq 1} t^{-1}(rE_\theta z^{Y_1})^t] = \exp[-\sum_{t \geq 1} r^t E_\theta z^{S_t}]$, where we have used the Taylor expansion of the logarithmic function and the fact that $[E_\theta z^{Y_1}]^t = E_\theta z^{S_t}$ for independent copies of Y_1 . Now, $E_\theta z^{S_t}$ is composed from contributions of negative and positive powers of z in accordance to the sign of S_t . Thus, the exponent can be factored as cf_+f_- where $c(r) = \exp[-\sum_{t \geq 1} t^{-1}r^t P_\theta\{S_t = 0\}]$, $f_+(r, z) = \exp[-\sum_{t \geq 1} t^{-1}r^t E_\theta(z^{S_t}) \cdot 1\{S_t > 0\}]$, and $f_-(r, z) =$

$\exp[-\sum_{t \geq 1} t^{-1} r^t E_\theta(z^{S_t} \cdot 1\{S_t < 0\})]$. Therefore,

$$\begin{aligned} A &= \frac{1}{2} - \frac{d}{dr} \log f_+(r, 1) \Big|_{r=1} - \frac{1}{2} \frac{d}{dr} \log c(r) \Big|_{r=1} \\ &= \frac{1}{2(1-2\theta)^2}, \end{aligned} \quad (3)$$

which yields the desired result and completes the proof of Theorem 1. \square

The explicit calculation of $c_0(\theta)$ is more involved in the Markovian case. An alternative representation of $c_0(\theta)$ in the Bernoulli case, which will be extended to the Markov case, is given by $c_0(\theta) = 0.5 \sum_{t=0}^{\infty} P_\theta\{\hat{\theta}(t) = 1/2\}$. This can be shown as an immediate corollary of the following lemma (whose proof appears in the appendix), and the fact that $n^{-1} E_\theta \min\{n(0), n(1)\}$ converges exponentially to π_θ .

Lemma 1: For a Bernoulli source θ , $E_\theta n_e(f^*) = E_\theta \min\{n(0), n(1)\} + 0.5 E_\theta n^*$, where $n(0)$ and $n(1)$ are counts of zeroes and ones, respectively, along x_1, \dots, x_n and n^* is the number of times t that $\hat{\theta}(t) = 1/2$, i.e., $n^* = \sum_{t=0}^{n-1} 1\{\hat{\theta}(t) = 1/2\}$.

Next, we consider binary Markov sources. For simplicity, we shall confine our discussion to the first-order case, but the results will generalize straightforwardly to the k th-order case. A first-order Markov source is indexed by a vector $\theta = (\theta_0, \theta_1)$, where $\theta_0 = \Pr\{x_{t+1} = 1 \mid x_t = 0\}$ and $\theta_1 = \Pr\{x_{t+1} = 1 \mid x_t = 1\}$. To guarantee that the source is irreducible and aperiodic (see, e.g., [10]), we shall assume that $\theta \in \Theta \triangleq \{\theta: \theta_0 > \theta, \theta_1 < 1, \text{ and either } \theta_0 < 1 \text{ or } \theta_1 > 0\}$. This ensures the existence of stationary probabilities $\mu_\theta = \lim_{t \rightarrow \infty} \Pr\{x_t = 1\}$ and $\bar{\mu}_\theta = \lim_{t \rightarrow \infty} \Pr\{x_t = 0\}$ and hence enables the definition of the predictability π_θ as $\inf_f \pi_\theta(f)$, which is attained by $\hat{x}_{t+1} = f_t(x_1, \dots, x_t) = g(x_t)$, where $g(x) \triangleq 1\{\hat{\theta}_x \geq 1/2\}$, $x = 0, 1$. Consequently, $\pi_\theta = \bar{\mu}_\theta \min\{\theta_0, \bar{\theta}_0\} + \mu_\theta \min\{\theta_1, \bar{\theta}_1\}$. For an unknown θ , a natural extension of f^* to the Markov case is

$$\begin{aligned} x_{t+1}^* &= f_t^*(x_1, \dots, x_t) \\ &= \begin{cases} 0, & \text{if } \hat{\theta}_{x_t}(t) < 1/2, \\ \text{flip a fair coin,} & \text{if } \hat{\theta}_{x_t}(t) = 1/2, \\ 1, & \text{if } \hat{\theta}_{x_t}(t) > 1/2, \end{cases} \end{aligned} \quad (4)$$

where $\hat{\theta}_x(t) = n_t(x, 1)/n_t(x)$, $x = 0, 1$, $n_t(x, 1)$ being the number of transitions from $x_\tau = x$ to $x_{\tau+1} = 1$, $\tau = 0, 1, \dots, t-1$, and $n_t(x) = n_t(x, 1) + n_t(x, 0)$ is the number of occurrences of the symbol x in x_0, x_1, \dots, x_{t-1} . If $n_t(x) = 0$, $\hat{\theta}_x(t) \triangleq 1/2$. Define the *prediction error redundancy* of f at θ as $R_n(f, \theta) = n^{-1} E_\theta n_e(f) - \pi_\theta$. For a given $\theta = (\theta_0, \theta_1)$, define the *reflection set* as $G(\theta) = \{(\theta_0, \theta_1), (\theta_0, \bar{\theta}_1), (\bar{\theta}_0, \theta_1), (\bar{\theta}_0, \bar{\theta}_1)\}$. The following is an extension of Theorem 1 to the Markovian case.

Theorem 2:

- For every f , any $\theta \in \Theta$, and all n , there exists at least one point $\theta' \in G(\theta)$ such that $nR_n(f, \theta') \geq c_1(\theta') - o(1)$ where $c_1(\theta') = 0.5 \sum_{x=0}^1 \sum_{t=1}^{\infty} P_{\theta'}\{x_t = x, \hat{\theta}_x(t) = 1/2\}$.

- The predictor f^* satisfies $nR_n(f^*, \theta) \leq c_1(\theta)$ for all $\theta \in \Theta$ and all n .

The theorem tells that the decay rate of $R_n(f, \theta)$ cannot be faster than that of f^* at least at one of the four points in $G(\theta)$, for every θ . In other words, $R_n(f^*, \theta) \leq R_n(f, \theta)$ for at least a “quarter” of the binary Markov sources. Note that this holds for all n .

Proof of Theorem 2: We prove that $R_n(f, \theta') \geq R_n(f^*, \theta')$ for at least one point $\theta' \in G(\theta)$. The proof of part b) is a straightforward extension of the proof of Theorem 1b), where the expression for $c_1(\theta)$ is obtained as a simple generalization of the expression for $c_0(\theta)$. For a given f ,

$$\begin{aligned} &P_\theta\{\hat{x}_{t+1} \neq x_{t+1}\} \\ &= \sum_{a=0}^1 \sum_{b=0}^1 P_\theta(x_t = a) P_\theta(x_{t+1} = b \mid x_t = a) \\ &\quad \cdot P_\theta(\hat{x}_{t+1} = \bar{b} \mid x_{t+1} = b, x_t = a) \\ &\stackrel{(a)}{=} \sum_{a=0}^1 \sum_{b=0}^1 P_\theta(x_t = a) P_\theta(x_{t+1} = b \mid x_t = a) \\ &\quad \cdot P_\theta(\hat{x}_{t+1} = \bar{b} \mid x_t = a) \\ &\stackrel{(b)}{=} \pi_\theta + (1 - 2 \min\{\theta_0, \bar{\theta}_0\}) \\ &\quad \cdot P_\theta\{x_t = 0, \hat{x}_{t+1} \neq 1 \mid \theta_0 \geq 1/2\} \\ &\quad + (1 - 2 \min\{\bar{\theta}_1, \theta_1\}) \\ &\quad \cdot P_\theta\{x_t = 1, \hat{x}_{t+1} \neq 1 \mid \theta_1 \geq 1/2\} \\ &\triangleq \pi_\theta + r_t(f, \theta), \end{aligned} \quad (5)$$

where equality a) follows from Markovity and the fact that \hat{x}_{t+1} depends only on x_t, x_{t-1}, \dots , equality b) is obtained similarly to (2), and $R_n(f, \theta) = n^{-1} \sum_{t=0}^{n-1} r_t(f, \theta)$. Clearly, $\min R_n(f, \theta)$ is obtained by minimizing each term of $r_t(f, \theta)$ individually. Every predictor f is a pair (g_0, g_1) of sequences of prediction functions associated with state $x_t = 0$ and $x_t = 1$, respectively. We shall denote $r_t(f, \theta)$ and P_θ by the more detailed notations $r_t(g_0, g_1, \theta_0, \theta_1)$ and $P_{\theta_0 \theta_1}\{\cdot\}$, respectively. From (5),

$$\begin{aligned} &r_t(g_0, g_1, \theta_0, \theta_1) \\ &= (1 - 2 \min\{\theta_0, \bar{\theta}_0\}) \\ &\quad \cdot P_{\theta_0 \theta_1}\{x_t = 0, \hat{x}_{t+1} \neq 1 \mid \theta_0 \geq 1/2\} \\ &\quad + (1 - 2 \min\{\theta_1, \bar{\theta}_1\}) \\ &\quad \cdot P_{\theta_0 \theta_1}\{x_t = 1, \hat{x}_{t+1} \neq 1 \mid \theta_1 \geq 1/2\}, \end{aligned} \quad (6)$$

and similarly,

$$\begin{aligned} &r_t(g_0, g_1, \bar{\theta}_0, \theta_1) \\ &= (1 - 2 \min\{\theta_0, \bar{\theta}_0\}) \\ &\quad \cdot P_{\bar{\theta}_0 \theta_1}\{x_t = 0, \hat{x}_{t+1} \neq 1 \mid \theta_0 < 1/2\} \\ &\quad + (1 - 2 \min\{\theta_1, \bar{\theta}_1\}) \\ &\quad \cdot P_{\bar{\theta}_0 \theta_1}\{x_t = 1, \hat{x}_{t+1} \neq 1 \mid \theta_1 \geq 1/2\}. \end{aligned} \quad (7)$$

Similar to the hypothesis testing consideration of Theorem 1, the average of the first terms on the right-hand side of (6) and (7) is minimized if g_0 is replaced by g_0^* , which means using (4) when the current state x_t is zero. The second term

in both (6) and (7), which corresponds to state one, remains unaffected. Hence,

$$\begin{aligned} & \frac{1}{2}r_t(g_0, g_1, \theta_0, \theta_1) + \frac{1}{2}r_t(g_0, g_1, \bar{\theta}_0, \theta_1) \\ & \geq \frac{1}{2}r_t(g_0^*, g_1, \theta_0, \theta_1) + \frac{1}{2}r_t(g_0^*, g_1, \bar{\theta}_0, \theta_1). \end{aligned} \quad (8)$$

Similarly,

$$\begin{aligned} & \frac{1}{2}r_t(g_0, g_1, \theta_0, \bar{\theta}_1) + \frac{1}{2}r_t(g_0, g_1, \bar{\theta}_0, \bar{\theta}_1) \\ & \geq \frac{1}{2}r_t(g_0^*, g_1, \theta_0, \bar{\theta}_1) + \frac{1}{2}r_t(g_0^*, g_1, \bar{\theta}_0, \bar{\theta}_1). \end{aligned} \quad (9)$$

Combining (8) and (9), we get

$$\begin{aligned} & \frac{1}{4}\sum_{\theta' \in G(\theta)} r_t(f, \theta') \\ & \geq \frac{1}{2}[\frac{1}{2}(r_t(g_0^*, g_1, \theta_0, \theta_1) + r_t(g_0^*, g_1, \theta_0, \bar{\theta}_1)) \\ & \quad + \frac{1}{2}(r_t(g_0^*, g_1, \bar{\theta}_0, \theta_1) + r_t(g_0^*, g_1, \bar{\theta}_0, \bar{\theta}_1))] \\ & \geq \frac{1}{2}[\frac{1}{2}(r_t(g_0^*, g_1^*, \theta_0, \theta_1) + r_t(g_0^*, g_1^*, \theta_0, \bar{\theta}_1)) \\ & \quad + \frac{1}{2}(r_t(g_0^*, g_1^*, \bar{\theta}_0, \theta_1) + r_t(g_0^*, g_1^*, \bar{\theta}_0, \bar{\theta}_1))] \\ & = \frac{1}{4}\sum_{\theta' \in G(\theta)} r_t(f^*, \theta'). \end{aligned} \quad (10)$$

where the second inequality follows from the hypothesis testing consideration applied to g_1^* , i.e., the predictor (4) at state $x_t = 1$. Taking a time average of $r_t(f, \theta')$ results in $R_n(f, \theta') \geq R_n(f^*, \theta')$ for at least one θ' in $G(\theta)$, completing the proof of Theorem 2. \square

One might wonder whether optimality of f^* on a quarter of Θ , as was mentioned earlier, is the strongest possible statement that can be made when allowing simultaneously both every θ and every f . There seems to be two answers to this question.

- 1) Strictly speaking, one answer is yes since there exists a predictor \tilde{f} for which $r_t(\tilde{f}, \theta') < r_t(f^*, \theta')$ at three points of $G(\theta)$ for every θ . Thus the lower bound can be violated simultaneously for three quarters of Θ . A counterexample is a predictor that knows θ is outside one quarter of the parameter space, say, $\theta \notin Q \triangleq \{\theta: \theta_0 > 1/2, \theta_1 > 1/2\}$. Such prior information improves the prediction performance for every $\theta \in Q^c$ as shown in the appendix.
- 2) Theorem 2a) can be modified to hold for at least three quarters of Θ at the expense of decreasing $c_1(\theta')$. An alternative form of Theorem 2a) is the following: For every predictor f , every parameter θ , and for at least three points θ' in $G(\theta)$,

$$\begin{aligned} nR_n(f, \theta') & \geq \tilde{c}_1(\theta') \\ & \triangleq \frac{1}{2} \min_{x \in \{0, 1\}} \sum_{t=1}^{\infty} P_{\theta'}\{x_t = x, \hat{\theta}_x(t) = \frac{1}{2}\}. \end{aligned} \quad (11)$$

(The proof appears in the Appendix.) This means that the lower bound given in the right-hand side of (11) holds for three quarters of the binary first-order Markov sources. Again, note that this result cannot be strengthened as there exists a predictor that indeed violates (11) at one point $\theta' \in \Theta$: the optimal predictor for $\theta \in G(\theta)$, which satisfies $nR_n(f, \theta) = 0$ simultaneously for all sources in the same quarter as θ .

In the extension of Theorem 2 to k th-order Markov sources parametrized by $\theta = (\theta_0, \theta_1, \dots, \theta_{2^k-1})$, where

$$\begin{aligned} \theta_i & \triangleq \Pr\{x_t = 1 | (x_{t-k}, \dots, x_{t-1}) = \text{binary expansion of } i\}, \\ & i = 0, 1, \dots, 2^k - 1, \end{aligned}$$

$G(\theta)$ includes all 2^k points of the form $\tilde{\theta} = (\tilde{\theta}_0, \tilde{\theta}_1, \dots, \tilde{\theta}_{2^k-1})$, where $\tilde{\theta}_i$ is either θ_i or $\bar{\theta}_i$. Here, the extension of Theorem 2a), which describes the behavior of f^* for k th-order Markov sources, holds for a fraction 2^{-2^k} of Θ , but the extension of (11) holds for a fraction $(1 - 2^{-2^k})$ of Θ .

III. LARGE DEVIATIONS PERFORMANCE

We now return to Bernoulli sources and evaluate the large deviations performance of f^* , i.e., the exponential decay rate of $P_\theta\{n_e(f) > n(\pi_\theta + \Delta)\}$ for a prescribed $\Delta \in (0, 1/2 - \pi_\theta)$. We show that f^* attains the optimal error exponent for a certain range $0 < \Delta \leq \Delta_\theta$. However, if $\Delta > \Delta_\theta$ this is no longer true. We first derive an exponentially tight upper bound for the error exponent.

Theorem 3: For every Bernoulli source θ and any predictor f ,

$$\limsup_{n \rightarrow \infty} \left[-\frac{1}{n} \ln P_\theta\{n_e(f) > n\zeta\} \right] \leq D(\zeta \| \pi_\theta),$$

where $\zeta \triangleq \pi_\theta + \Delta < 1/2$ and $D(\zeta \| \pi_\theta) \triangleq \zeta \ln(\zeta / \pi_\theta) + \bar{\zeta} \ln(\bar{\zeta} / \bar{\pi}_\theta)$.

The bound is exponentially tight because, for $\theta \leq 1/2$ and $f = 0$, $n_e(f) = n(1)$ and the large deviations behavior of $n(1)$ is obviously characterized by $D(\zeta \| \theta)$.

Proof of Theorem 3: Define $E = \{\mathbf{x}: \min\{n(0), n(1)\} \geq n(\zeta + \epsilon)\}$, $F = \{\mathbf{x}: n_e(f) \geq \min\{n(0), n(1)\} - \epsilon\}$, and $G = \{\mathbf{x}: n_e(f) \geq n\zeta\}$. Since $G \supseteq E \cap F$ then $P_\theta(G) \geq P_\theta(E \cap F) = [1 - P_\theta(F^c|E)]P_\theta(E)$. Now $P_\theta(E) = P_\theta(\zeta + \epsilon \leq n(1)/n \leq 1 - \zeta - \epsilon) = \exp[-nD(\zeta + \epsilon \| \pi_\theta)]$, where the notation $a_n = b_n$ means that $n^{-1} \log(a_n/b_n) \rightarrow 0$. The exponent on the right-hand side can be made arbitrarily close to $D(\zeta \| \pi_\theta)$ by choosing ϵ sufficiently small. Thus, to complete the proof it suffices to show that $P_\theta(F^c|E) \rightarrow 0$ as $n \rightarrow \infty$. To see this, divide the space of binary n -tuples into *types*, where the type $T_{\mathbf{x}}$ associated with a binary n -tuple $\mathbf{x} = (x_1, \dots, x_n)$ is the set of all n -sequences with the same composition $\{n(0), n(1)\}$ as that of \mathbf{x} . Now

$$\begin{aligned} P_\theta(F^c|E) & = \sum_{T_{\mathbf{x}} \subseteq E} P_\theta(F^c|T_{\mathbf{x}}) \cdot \frac{P_\theta(T_{\mathbf{x}})}{P_\theta(E)} \\ & \leq (n+1) \cdot \max_{T_{\mathbf{x}}} P_\theta(F^c|T_{\mathbf{x}}). \end{aligned} \quad (12)$$

Since all sequences of a given type are equiprobable, we see that $P_\theta(F^c|T_{\mathbf{x}})$ is just the fraction of $T_{\mathbf{x}}$ -typical sequences with $n_e(f) < \min\{n(0), n(1)\} - n\epsilon$. We claim that this fraction is exponentially small. Indeed, a type $T_{\mathbf{x}}$ that corresponds to a composition $\{n(0) = n\alpha, n(1) = n\bar{\alpha}\}$ contains $n! / [(n\alpha)!(n\bar{\alpha})!] = e^{nh(\alpha)}$ sequences where $h(\alpha) = -\alpha \ln \alpha - \bar{\alpha} \ln \bar{\alpha}$. Without loss of generality, assume that $\alpha \leq 1/2$ and observe that for a given f , the mapping from \mathbf{x} to the error

sequence e_1, e_2, \dots, e_n , (where $e_t = |x_t - \hat{x}_t|$) is one-to-one. The number of error sequences with less than $n(\alpha - \epsilon)$ ones (prediction errors) is less than $e^{nh(\alpha - \epsilon)}$ [11, lemma 2.3.5]. Thus, the fraction of sequences in F^c is exponentially never larger than $\exp\{-n[h(\alpha) - h(\alpha - \epsilon)]\}$. This completes the proof of Theorem 3. \square

We next present the upper bound associated with f^* .

Theorem 4: For a Bernoulli source θ , and $\pi_\theta < \zeta \leq \zeta_\theta \triangleq 0.5\sqrt{\pi_\theta/\bar{\pi}_\theta}$,

$$\lim_{n \rightarrow \infty} \left[-\frac{1}{n} \ln P_\theta \{n_e(f^*) > n\zeta\} \right] \geq D(\zeta \|\pi_\theta). \quad (13)$$

Proof: Again, assume that $0 \leq \theta \leq 1/2$ and hence $\pi_\theta = \theta$. It is shown in the appendix (proof of Lemma 1) that $n_e(f^*) \leq \min\{n(0), n(1)\} + n^*$, where $n^* = \sum_{t=0}^{n-1} 1\{\hat{\theta}(t) = 1/2\}$. Let Q denote the random variable $n(1)/n$ and let $\tilde{Q} \triangleq \min\{Q, \bar{Q}\}$. Similarly, let q denote a particular value of Q and let $\tilde{q} = \min\{q, \bar{q}\}$. By Lemma 1, the large deviation event $G^* = \{\mathbf{x}: n_e(f^*) > n\zeta\}$ is a subset of $\{\mathbf{x}: n^* \geq n\alpha\}$ where $\alpha \triangleq \zeta - \tilde{Q}$. For a given q (i.e., for a given type T_x), we first upper bound $P_\theta\{n^* > n\alpha | Q = q\}$. Since all q -typical sequences are equiprobable given $Q = q$, this is just the fraction of q -typical sequences for which $n^* > n\alpha$. Let $n_t(x)$, $x = 0, 1$ denote the count of the symbol x in x_1, x_2, \dots, x_t . Note that if there are at least $n\alpha$ occurrences of $\hat{\theta}(t) = 1/2$, i.e., $n_t(0) = n_t(1)$, then there must be at least one occurrence for some $t \geq 2n\alpha$, as this event can occur only at even time instants. Thus,

$$G^* \subseteq \{\mathbf{x}: n^* \geq n\alpha\} \subseteq \bigcup_{t=2n\alpha}^n \{\mathbf{x}: n_t(0) = n_t(1)\}. \quad (14)$$

Since the number of sequences with a given $Q = q$ is larger than $(n+1)^{-1} \exp[nh(q)]$, [12] where $h(q) \triangleq -q \ln q - \bar{q} \ln \bar{q}$, it follows from (14) and the union bound that

$$\begin{aligned} & P_\theta\{G^* | Q = q\} \\ & \leq (n+1) \exp[-nh(q)] \sum_{t=2n\alpha}^n 2^t \left(\max\{n(0), n(1)\} - t/2 \right) \\ & = (n+1)^2 \exp[-nh(q)] \\ & \quad \cdot \sum_{t=2n\alpha}^n \exp \left[t \ln 2 + (n-t)h \left(\frac{\max\{n(0), n(1)\} - t/2}{n-t} \right) \right] \\ & \leq (n+1)^2 \exp \left\{ n \cdot \max_{2\alpha \leq \xi \leq 1} \right. \\ & \quad \left. \cdot \left[\xi \ln 2 + (1-\xi) \cdot h \left(\frac{\tilde{q} - \xi/2}{1-\xi} \right) - h(\tilde{q}) \right] \right\} \\ & = \exp[nC(\tilde{q}, \alpha)], \end{aligned} \quad (15)$$

where

$$C(\tilde{q}, \alpha) \triangleq \begin{cases} 0, & \text{if } \alpha < 0, \\ 2\alpha \ln 2 + (1-2\alpha) + \\ h[(\tilde{q} - \alpha)/(1-2\alpha)] - h(\tilde{q}), & \text{if } 0 \leq \alpha \leq \tilde{q}. \end{cases} \quad (16)$$

Note that for $\alpha > \tilde{q}$ the set $\{\mathbf{x}: n^* > n\alpha\}$ is empty because $n^* \leq \min\{n(0), n(1)\}$. The last step in (15) is obtained by

maximizing the previous exponent function in the usual way. Since $P_\theta\{Q = q\} \leq e^{-nD(q \|\theta)}$,

$$\begin{aligned} P_\theta(G^*) &= \sum_{q=0/n}^{n/n} P_\theta\{Q = q\} \cdot P_\theta\{G^* | Q = q\} \\ &\leq (n+1)^2 \sum_q \exp[-nD(q \|\theta)] \cdot \exp[-nC(\tilde{q}, \zeta - \tilde{q})] \\ &\leq (n+1)^3 \exp \left\{ -n \inf_{q: \zeta/2 \leq \tilde{q} \leq \zeta} \right. \\ &\quad \left. [D(q \|\theta) + C(\tilde{q}, \zeta - \tilde{q})] \right\}. \end{aligned} \quad (17)$$

The lower limit $\zeta/2$ is obtained from the fact that $n^* \leq \min\{n(0), n(1)\}$ and hence $\alpha = \zeta - \tilde{q} \leq \tilde{q}$. For the upper limit, observe that for sequences with $\tilde{q} > \zeta$ (which means $\alpha < 0$), the event $n^* > n\alpha$ obviously holds. These sequences contribute a probability which is exponentially equivalent to $e^{-nD(\zeta \|\theta)}$. Since the exponent on the right-most side of (17) never exceeds $D(\zeta \|\theta)$ (set $q = \tilde{q} = \zeta$ in (17)), the maximum of the previous function can be found for $\tilde{q} \leq \zeta$. From standard extremum analysis of this function, we find that for $\theta < \zeta \leq \zeta_\theta$, the minimum is obtained at $q = \zeta$ and its value is $D(\zeta \|\theta)$. This completes the proof of Theorem 4. \square

This interesting phenomenon, that the error exponent is optimal for small threshold values $\Delta = \zeta - \theta$ but suboptimal for large values of Δ , is not a consequence of a possible looseness of the upper bound. A lower bound on $\Pr\{n_e(f^*) > n\zeta\}$ reveals the same effect. The intuition is that $n_e(f^*)$ is composed from $\min\{n(0), n(1)\}$ and n^* . When Δ is small, then $D(\zeta \|\theta)$, which characterizes the large deviations behavior of $\min\{n(0), n(1)\}$, is small as well. Thus, the large deviations behavior of $n_e(f^*)$ is dominated by that of $\min\{n(0), n(1)\}$. On the other hand, if Δ grows beyond a certain point, then the large deviations properties of n^* affect the performance.

Another aspect of the large deviations performance of f^* is its *competitive optimality*. Specifically, since $n_e(f^*) \leq \min\{n(0), n(1)\} + n^*$ and for every competing predictor $n_e(f) \geq \min\{n(0), n(1)\} - n_e$ except for an exponentially small minority of sequences from each type, we see that $P_\theta\{n_e(f^*) \geq n_e(f) + n_e\}$ decays exponentially with n for every $\epsilon > 0$. An immediate conclusion, by the Borel-Cantelli lemma, is that $\limsup_{n \rightarrow \infty} n^{-1}[n_e(f^*) - n_e(f)] \leq 0$ with probability one.

APPENDIX

Proof of Lemma 1: The predictor f^* can be described by a trellis diagram (see also [1, Appendix A]) in the following manner. Let $n_t(0)$ and $n_t(1)$ denote current counts at time t of zeros and ones, respectively. Define $C_t = |n_t(0) - n_t(1)|$ as the state and observe that every increment in C_t , i.e., a transition ($C_t = k, C_{t+1} = k+1$), $k > 0$, corresponds to a correct prediction of f^* and every decrement is associated with an error. The exception is $C_t = 0$ that must be followed by an increment ($C_{t+1} = 1$) whether or not the prediction at time t is correct. Assume, without loss of generality, that

$n(0) \leq n(1)$. Clearly, $C_0 = 0$ and $C_n = n(1) - n(0)$. Let I and D denote the number of increments and decrements of C_t , respectively. Then, obviously $I + D = n$ and $I - D = C_n = n(1) - n(0)$, which together imply that $I = n(1)$ and $D = n(0)$. Thus, $n_e(f^*)$ involves errors associated with $D = n(0) = \min\{n(0), n(1)\}$ decrements of C_t plus errors that may occur when $C_t = 0$, which happens n^* times along the sequence. Since a fair coin is flipped whenever $C_t = 0$, then on the average $n^*/2$ additional errors appear. \square

A Counterexample \tilde{f} : Define $R = \{\theta: \theta_0 > 1/2\}$, $B = \{\theta: \theta_1 < 1/2\}$, $Q = \{\theta: \theta_0 > 1/2 \text{ and } \theta_1 > 1/2\}$, $U = Q \cap \{\theta: \theta_0 < \theta_1\}$ and $V = Q - U$. Let $\hat{\theta}(t) = (\hat{\theta}_0(t), \hat{\theta}_1(t))$ denote the estimator of $\theta = (\theta_0, \theta_1)$ as in (18). The predictor \tilde{f} is defined by $\tilde{x}_{t+1} = 1\{\hat{\theta}(t) \in Q^c\} \cdot x_{t+1}^* + 1\{\hat{\theta}(t) \in U\} \cdot x_{t+1}^{0,1} + 1\{\hat{\theta}(t) \in V\} \cdot x_{t+1}^{1,0}$ where x_{t+1}^* is as in (4), and $x_{t+1}^{a,b}$, $a, b = 0, 1$, is defined as $x_{t+1}^{a,b} = a$ when $x_t = 0$ and $x_{t+1}^{a,b} = b$ when $x_t = 1$. In other words, \tilde{x}_{t+1} is the same as x_{t+1}^* as long as $\hat{\theta}(t)$ falls in the permissible domain Q^c . If $\hat{\theta}(t)$ happens to fall in Q , then the smaller between $\hat{\theta}_0(t)$ and $\hat{\theta}_1(t)$ is assumed to be in the wrong half interval and the predictor is “corrected” accordingly. Let $\theta = (\theta_0, \theta_1)$ satisfy $0 < \theta_0 < 1/2$ and $0 < \theta_1 < 1/2$. We next compare the performance of \tilde{f} to that of f^* at (θ_0, θ_1) and its two reflections $(\bar{\theta}_0, \theta_1)$ and $(\theta_0, \bar{\theta}_1)$ and show that \tilde{f} outperforms f^* at these three points. For θ in the lower left quarter of Θ , this result is obvious by making the two following observations. First, $r_t(f, \theta)$ depends of f only through the probability that f does not agree with the optimal predictor for that quarter (see (6), (7)), namely, the probability that $\hat{x}_{t+1} \neq 0$. Secondly, $\{\tilde{x}_{t+1} \neq 0\} \subset \{x_{t+1}^* \neq 0\}$. For $(\theta_0, \bar{\theta}_1)$ in the upper left quarter of Θ , we have from (6),

$$r_t(\tilde{f}, \theta_0, \bar{\theta}_1) = (1 - 2\theta_0) \cdot P_{\theta_0 \bar{\theta}_1}\{x_t = 0, \hat{\theta}(t) \in R - U\} \\ + (1 - 2\theta_1) \cdot P_{\theta_0 \bar{\theta}_1}\{x_t = 1, \hat{\theta}(t) \in B \cup V\}, \quad (\text{A.1})$$

while

$$r_t(f^*, \theta_0, \bar{\theta}_1) = (1 - 2\theta_0) \cdot P_{\theta_0 \bar{\theta}_1}\{x_t = 0, \hat{\theta}(t) \in R\} \\ + (1 - 2\theta_1) \cdot P_{\theta_0 \bar{\theta}_1}\{x_t = 1, \hat{\theta}(t) \in B\}. \quad (\text{A.2})$$

The difference is

$$\begin{aligned} & r_t(f^*, \theta_0, \bar{\theta}_1) - r_t(\tilde{f}, \theta_0, \bar{\theta}_1) \\ &= (1 - 2\theta_0) \cdot P_{\theta_0 \bar{\theta}_1}\{x_t = 0, \hat{\theta}(t) \in U\} \\ &\quad - (1 - 2\theta_1) \cdot P_{\theta_0 \bar{\theta}_1}\{x_t = 1, \hat{\theta}(t) \in V\} \\ &> (1 - 2\theta_0) \cdot \sum_{x: \hat{\theta}(t) \in U} P_{\theta_0 \bar{\theta}_1}(x_1, \dots, x_{t-1}) \\ &\quad \cdot P_{\theta_0 \bar{\theta}_1}(x_t = 0 | x_{t-1}) \\ &\quad - (1 - 2\theta_1) \cdot P_{\theta_0 \bar{\theta}_1}\{\hat{\theta}(t) \in V\} \\ &\geq (1 - 2\theta_0)\theta_1 \cdot P_{\theta_0 \bar{\theta}_1}\{\hat{\theta}(t) \in U\} \\ &\quad - (1 - 2\theta_1) \cdot P_{\theta_0 \bar{\theta}_1}\{\hat{\theta}(t) \in V\}. \end{aligned} \quad (\text{A.3})$$

The large deviations theory for discrete Markov sources implies that $P_{\theta_0 \bar{\theta}_1}\{\hat{\theta}(t) \in V\}$ is exponentially negligible relative to $P_{\theta_0 \bar{\theta}_1}\{\hat{\theta}(t) \in U\}$, and hence that (A.3) is positive when t is sufficiently large. A similar consideration holds for $(\bar{\theta}_0, \theta_1)$ due to symmetry.

Proof of (11): The idea is to observe that at each state $x_t = x$ both the next outcome and the best prediction strategy behave like these of a Bernoulli process with a parameter θ_x . Any predictor (g_0, g_1) can be improved if g_0 is replaced by the optimal strategy for state “0”, i.e., $\hat{x}_{t+1} = 1\{\theta_0 \geq 1/2\}$ while at state $x_t = 1$ the strategy g_1 remains unchanged. A straightforward application of Theorem 1a) to state “1” implies that for every value of θ_0 and for half of the values of θ_1 , i.e., for half the sources, $nR_n(f, \theta) \geq c_1^1(\theta) \triangleq 0.5 \sum_{t=1}^{\infty} P_{\theta}\{x_t = 1, \hat{\theta}_1(t) = 1/2\}$. Interchanging the roles of state “0” and state “1” in the previous argument, we conclude similarly that for every θ_1 and for half the values of θ_0 , $nR_n(f, \theta) \geq c_1^0(\theta) \triangleq 0.5 \sum_{t=1}^{\infty} P_{\theta}\{x_t = 0, \hat{\theta}_0(t) = 1/2\}$. Thus, when the right-hand side is replaced by $\tilde{c}_1(\theta) = \min\{c_1^0(\theta), c_1^1(\theta)\}$, the inequality holds simultaneously for at least 3/4 of the sources in Θ . \square

ACKNOWLEDGMENT

The authors wish to thank P. Algoet for helpful suggestions he has provided.

REFERENCES

- [1] M. Feder, N. Merhav, and M. Gutman, “Universal prediction of individual sequences,” *IEEE Trans. Inform. Theory*, vol. 38, pp. 1258–1270, July 1992.
- [2] J. Ziv and A. Lempel, “Compression of individual sequences via variable-rate coding,” *IEEE Trans. Inform. Theory*, vol. IT-24, pp. 530–536, Sept. 1978.
- [3] J. S. Vitter and P. Krishnan, “Optimal prefetching via data compression,” Tech. Rep. No. CS-91-46, Dept. of Comput. Sci., Brown Univ., July 1991. (Also summarized in *Proc. FOCS-91*, pp. 121–130, 1991.)
- [4] J. Rissanen, “Universal coding, information, prediction, and estimation,” *IEEE Trans. Inform. Theory*, vol. IT-30, pp. 629–636, July, 1984.
- [5] ———, private communication.
- [6] J. F. Hannan, “Approximation to Bayes risk in repeated plays. In contribution to theory of games,” *Ann. Math. Studies*, vol. 3, no. 39, pp. 97–139, 1957.
- [7] T. M. Cover, “Behavior of sequential predictors of binary sequences,” in *Proc. 4th Prague Conf. Inform. Theory, Statistical Decision Functions, Random Processes*, 1965, pp. 263–272.
- [8] T. M. Cover and A. Shenhar, “Compound Bayes predictors for sequences with apparent Markov structure,” *IEEE Trans. Syst. Man Cybern.*, vol. SMC-7, pp. 421–424, June 1977.
- [9] F. Spitzer, *Principles of Random Walk*. New York: Springer-Verlag, 1976.
- [10] F. T. Leighton and R. L. Rivest, “Estimating a probability using finite memory,” *IEEE Trans. Inform. Theory*, vol. IT-32, pp. 733–742, Nov. 1986.
- [11] R. M. Gray, *Entropy and Information Theory*. New York: Springer-Verlag, 1990.
- [12] I. Csiszár and J. Körner, *Information Theory: Coding Theorems for Discrete Memoryless Systems*. New York: Academic, 1981.