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Abstract—Universal prediction of the next outcome of a binary
sequence drawn from a Markov source with unknown parameters
is considered. For a given source, the predictability is defined
as the least attainable expected fraction of prediction errors.
A lower bound is derived on the maximum rate at which the
predictability is asymptotically approached uniformly over all
sources in the Markov class. This bound is achieved by a simple
majority predictor. For Bernoulli sources, bounds on the large
deviations performance are investigated. A lower bound is de-
rived for the probability that the fraction of errors will exceed
the predictability by a prescribed amount A > 0. This bound is
achieved by the same predictor if A is sufficiently small.

Index Terms— Predictability, universal prediction, Bernoulli
processes, Markov sources, large deviations.

I. INTRODUCTION

N [1], universal finite-state (FS) predictors have been

sought that minimize the asymptotic fraction of errors for
an individual binary sequence. It has been shown in [1] that
the best prediction performance is asymptotically attained by a
(randomized) Markov predictor with a slowly growing order,
i.e., a predictor based on current estimates of the conditional
probabilities of the next outcome given the k preceding
bits, where the order & increases gradually with time. A
predictor based on the Lempel-Ziv (LZ) algorithm [2] has
been demonstrated in [1] to be such a growing-order Markov
predictor and hence to attain asymptotically the least possible
fraction of errors made by any FS predictor, that is, the FS
predictability [1). Independently, in [3] a similar predictor
(though nonrandomized) has been proposed with application
to prefetching memory pages in computers, where the page
sequence is modeled as being governed by a probabilistic
unifilar FS source. It has been shown in [3] that the resulting
expected fraction of errors (page faults) converges to the
optimum. However, if the source is known to have no more
than S states, then the LZ algorithm, which does not utilize this
prior information, might yield a relatively slow convergence.
A natural question that arises and that we shall be concerned
with, is: how fast can the optimum performance of approached
when the predictor knows the class of sources but not the
parameter value?
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In [4], a similar question has been addressed in the
context of predicting Gaussian autoregiessive moving average
(ARMA) processes under the minimum-mean-square-error
(mmse) criterion. It has been shown in [4] that no predictor
exists that approaches the asymptotic mmse faster than
n~llog n, n being the sample size, for all ARMA processes
except for a collection of ARMA processes corresponding to a
subset of parameter values whose volume is vanishingly small.
This argument was based on an analogous result in universal
data compression (proved in [4] as well), which rules out the
existence of a lossless code whose compression ratio converges
to the entropy faster than n =1 log n for a considerably large
subset of parameter values. Note that an exception of a small
subset of parameter values is necessary if every scheme is
allowed, including the optimal scheme for a specific parameter
value. ’

In this paper, an attempt is made to investigate, in the
same spirit, fundamental limitations in universal prediction
of finite-alphabet Markov sources, and in particular, binary
Markov sources. We derive a lower bound on the rate at
which the optimum prediction performance can be uniformly
approached by any sequential predictor when the underlying
Markovian source is known to be of order k, but otherwise
unknown. However, in contrast to [4], here one cannot expect
a nontrivial lower bound that holds simultaneously for most
sources in the class. Consider, for example, a Bernoulli source
parametrized by § = Pr{z; = 1} = 1 — Pr {; = 0}. Here,
predicting constantly “0” is a uniformly optimal strategy for
every 0 < 0 < 1/2, namely, for “half” of the sources in the
class there cannot be a lower bound on the rate of approaching
optimality. Thus, the bound here will hold for only half of the
sources. In the Markovian case, the bound will still hold for a
“considerably large” portion of the parameter space, i.e., for a
fixed fraction of its volume. In either case, the corresponding
bound is attained by a simple predictor based on a majority
count. .

Finally, we examine the achievable large deviations perfor-
mance for Bernoulli sources under the criterion of minimizing
the probability that the fraction of errors would exceed the op-
timum by a prescribed amount A. We derive an exponentially
tight lower bound and show that it is uniformly aitained by
the majority predictor in some range 0 < A < Ay, but not
for A > Ag.

II. A LOWER BOUND ON THE EXPECTED FRACTION OF ERRORS

We start with Bernoulli sources and later extend our dis-
cussion to Markov sources. Let &1, T2, -, Tn, T+ € {0, 1},
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denote a binary n-tuple drawn from a Bernoulli source pa-
rametrized by § = Pr{z; = 1}. A predictor is a sequence
of functions f = (fo, f1, ), fi: {0, 1}* — {0, 1}, where
at time ¢, the next outcome z;.; is estimated by &;y; =
felm1, T2y -+, 71). Let no(f) E Son 1{&: # z¢} (where
1{-} denotes the indicator function of an event). We are
interested in minimizing g (f) 2 lim SUP, 00 Fone(f)/n,
where Ey denotes expectation w.r.t 6. The predictability,
defined as mp inff mp(f), is obviously attained by the
predictor £;49 = 0 if § < 1/2 and &1 = 1if 6 > 1/2.
Hence, mg = min {#, 8}, where & denotes 1 — a.

If § is not known, then one does not know which one of
these predictors to use, and therefore 7y cannot be attained for
every n and uniformly for every 6, but only asymptotically.
‘We shall be interested in the rate at which 74 can be uniformly
attained when n — oo. Intuitively, the predictor

0, if (t) < 1/2,
93:+1 = ff(z1,--,2¢) = < flip a fair coin, if H:(t) =1/2,
1, if 6(t) > 1/2,

»

where 6(t) = t! E:-=1 z, is the current estimate of

8 (6(0) 23 /2), is in some sense the best one can use when 6
is unknown. The following theorem consolidates this intuition.

Theorem 1:
a) For every predictor f, and every 8 # 1/2 either

Egne(f) > nmg + co(8) — o(1)
Egne(f) > ng + co(B) — o(1),

where 60(9) = Cg(g) = [2(1 - 27!'9)]"1.
b) The predictor f* satisfies both

Eone(f*) < nmg + co(9),
and
Egne(f*) < nmg + co(B).

Part a) tells us that every predictor must make on the
average at least co(f) = co(f) extra prediction errors beyond
the minimum nmy = nwg, for either § or 6. Part b) implies
that f* is optimal in the sense of doing no worse for both
sources. It follows from the simple inequality 0.5Fgn.(f) +
0.5Egn.(f) > 0.5FEgn.(f*)+0.5Egn.(f*), which is justified
below and has been observed independently by Rissanen [5].
Thus the convergence rate is O(1/n).

In [1], [6]-[8] where prediction of individual sequences is
considered, the convergence rate to the predictability (defined
in [1] for the deterministic case) slows down to O(1/y/n).
The reason for the difference is that in the deterministic setup
of [1], [6]-[8], a uniform upper bound is derived from a worst
case analysis rather than the expectation over an ensemble of
sequences.
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Proof of Theorem 1: First we find a tight lower bound on

M(f) = 0.5Fgn.(f) + 0.5Egn.(f) for an arbitrary predictor
f, and then we argue that this lower bound must hold for
either Egn.(f), or Egn.(f), or both, and hence for at least
one half of the Bernoulli sources. We show that the tightest
lower bound is M(f*) and hence it remains to evaluate the
performance of f*. First observe that by (1), Egn.(f) =
S Po{d: # 3}, where Pp{-} denotes a probability w.r.t §.
Without loss of generality, let § < 1/2. Since z; is independent

of z1, 9, -,%:—1, and hence also of Iy,
Pg{.’i)t#wt}ZPg{it:()}Pg{xtzl}-}-Pg{i‘t:l}
. Pg{mt = 0}

=0-[1 - Po{&, = 1}] + (1 - 0) - Pp{d: = 1}
=60+ (1-20) Pp{d: =1}

=g+ (1—20)- Po{&, = 1}. @

Similarly, Pg{i; # 2} = 75 + (1 — 20) - Pg{@; = 0}.
The second term on the right-most side of (2) describes the
excess in error probability beyond the predictability incurred
by using a nonoptimal predictor for 6. Since my = =g, the
minimization of M(f) is equivalent to the minimization of
0.5Py{#; = 1} + 0.5Pg{%; = 0}. This, in turn, can be
thought of as a binary hypothesis testing problem where one
seeks a rule f; for deciding in favor of # or § with priors
p(8) = p(#) = 1/2, and the goal is to minimize the error prob-
ability. This is accomplished by comparing the likelihood ratio
Py(xy, 22, -, 2¢-1)/Pg(z1, T2, -+, 24~1) to unity, which is
equivalent to f; ; in (1). Thus the average of Egn.(f) and
Egn.(f) is minimized by f* and either Egn.(f) or Egn.(f)
is not less than Egn.(f*) = Egn.(f*).

To complete the proof, it remains to prove part b). To
do this, we evaluate the performance of f* for § < 1/2.
From (2), Egne(f*) = nmg + (1 — 26) - Y1, Po{z} = 1},
where the summation on the right-hand side converges to a
constant A 2 3, [Pe{f(t — 1) > 1/2} + 0.5P;{0(t —
1) = 1/2}], which can be calculated by generating function
techniques [9, ch. IV, section 17] in the following manner.
Define Y; = 2z; — 1 and a random walk S; = Eﬁ:]_}/i'
We wish to calculate A 0.5 + 3,5 [Pe{S: > 0} +
0.5P5{S; 0}]. Let z = ¢ and ¢(z) = Egz"t =
0z + 0z~ 1. For |r] <1 we first factor, in two different ways,
the function 1 — r¢(z) as a product e(r)f+(r, 2)f_(r, 2),
where f. and f_ contain positive and negative powers of
z, respectively. A direct spectral factorization of the second-
order polynomial in z, 1 — r¢(z) = 1 — 78z — rfz"! yields
e(r) = 0.5(1 + p), fu(r,z) = 1 — (20r)"12(1 — p) and
fo(r, 2) =1 = (26rz)~1(1 — p) where p = [1 — 468r%]'/2.
On the other hand, 1 — r¢(z) = exp[log(l — rEgz¥1)] =
exp[— 3,5t H(rEez"1)t] = exp [~ 3,5, r'Ep2St], where
we have used the Taylor expansion of the logarithmic func-
tion and the fact that [Epz*?]! = E42°¢ for independent
copies of Y;. Now, Eoz5 is composed from contributions
of negative and positive powers of z in accordance to the
sign of S;. Thus, the exponent can be factored as cfyf_
where ¢(r) = exp[— ¥ ;5 t T Po{S; = 0}], fi(r, 2)
exp [~ Yot Eg(25 - 1{S; > 0})], and f_(r, 2)
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exp [~ Y5y 7 Eg(25 - 1{S; < 0})]. Therefore,

1)

A= 2dr

d
- a;log fe(r 1)

_ 1
T 2(1-20)%’

1
2 r=1 r=1

6)

which yields the desired result and completes the proof of
Theorem 1. O

The explicit calculation of co(f) is more involved in the
Markovian case. An alternative representation of co(f) in
the Bernoulli case, which will be extend;d to the Markov
case, is given by co(f) = 0.5 0, Pe{0(t) = 1/2}. This
can be shown as an immediate corollary of the following
lemma (whose proof appears in the appendix), and the fact
that n=! Ey min {n(0), n{1)} converges exponentially to ms.

Lemma 1: For a Bemoulli source 6, Eyn.(f*) =

Ejy min {n(0), n(1)} + 0.5E¢n*, where n(0) and n(l) are
counts of zeroes and ones, respectively, along i, ,Zn
and n* 1s the number of times ¢ that 6(¢) = 1/2, ie.,
n* =31, L1{6(t) = 1/2}.

Next, we consider binary Markov sources. For simplicity,
we shall confine our discussion to the first-order case, but
the results will generalize straightforwardly to the kth-order
case. A first-order Markov source is indexed by a vector
8 = (6o, 61), where §p = Pr{zs41 = 1 | 2 = 0} and
6 = Pr{zyy1 = 1| z¢ = 1}. To guarantee that the source is
irreducible and aperiodic (see, e.g., [10]), we shall assume that
9e02(6:6,>80, 6 <1, and either §p < 1 or f; > 0}.
This ensures the existence of stationary probabilities pg =
lim;—, 0 Pr {z; = 1} and fig = lim;_,c Pr {z; = 0} and hence
enables the definition of the predictability 7y as infyma(f),
which is attained by #:11 = fi(z1,- -, 2¢) = g(x:), where
g(z) = {6, > 1/2}, = = 0,1 Consequently, 7y =
Tig min {fo, B0} + e min {6y, 1}. For an unknown 6, a
natural extension of f* to the Markov case is

Ty = ff (@100, 2)
0, if 6,,(t) < 1/2,
= < flip a fair coin, if 6, (t) = 1/2, 4
1, if 6,,(t) > 1/2,

where 0,(t) = ni(z, 1)/ni(z), = = 0, 1, ny(z, 1) being
the number of transitions from z, = z t0 z,41 = 1,
T=0,1,---,t =1, and ns(z) = ns(z, 1) + ns(z, 0) is the
number of occurrences of the symbol z in 2o, z1,- -+, Ts—1-
If ni(z) = 0, 0.(2) & 1/2. Define the prediction error
redundancy of f at 6 as R,(f, §) = n~ Egn.(f) — mg. For
a given § = (g, 61), define the reflection set as G(6) =
{(80, 81), (6o, 61), (Bo, 61), (8o, B1)}. The following is an
extension of Theorem 1 to the Markovian case.

Theorem 2:

a) For every f, any § € ©, and all n, there exists at
least one point 8’ € G(6) such that nR,(f, 6') >
c1(6") — o(1) where c1(6) =0. 5276 0 vy Por{me =

0.(t) = 1/2}.

b) The predictor f* satisfies nR,(f*, ) < c1(6) for all
f € © and all n.

The theorem tells that the decay rate of R,(f, §) cannot
be faster than that of f* at least at one of the four points in
G(9), for every . In other words, R, (f*, 8) < Ryn(f, 6) for
at least a “quarter” of the binary Markov sources. Note that
this holds for all n.

Proof of Theorem 2: We prove that R,,(f,0') > R (f ,8’)
for at least one point ' € G(f). The proof of part b) is a
straightforward extension of the proof of Theorem 1b), where
the expression for c1(6) is obtained as a simple generalization
of the expression for cy(6). For a given f,

Po{Z141 # et}

= ZZPQ(J& = a)P9($t+1 = b|$t = 0,)

a=0b=0
Pg(.’it.i_l = b|mt+1 = b Ty = a)

(a)ZZPg (zt = a)Py(z141 = by = a)

a=0b=0
. Pg(wt+1 = b\xt = CL)

('E)ﬂ'g + (1.— 2 min {6, Bo})

. Pg{xt = O,ZA?H_l # 1{00 _>_ 1/2}}
+ (1 -2 min {6y, 6;})
- Po{ws = 1,841 # 1{61 > 1/2}}
£ mo+ri(f, 6), ®)
where equality a) follows from Markovity and the fact that
Z+4+1 depends only on x4, T¢—1,- -, equahty b) is obtained
similarly to (2), and R, (f, §) = n~* Zt—O r:(f, 8). Clearly,
min R,(f, §) is obtained by minimizing each term of 7;(f, 6)
individually. Every predictor f is a pair (go, g1) of sequences
of prediction functions associated with state z; = 0 and
x; = 1, respectively. We shall denote r.(f, §) and Py by

the more detailed notations 7:(go, g1, 6o, 81) and Py,e, {-},
respectively. From (5),

7¢(g0, 91, 0o, 01)
= (1 —2 min {6y, Oo})
- Poog, {1 = 0,3¢11 # 1{60 > 1/2}}
+ (1 — 2 min {91, 91})
“Pogo, {72 = 1, &141 # 1{61 2 1/2}}, ©)
and similarly,
Tt(gm 91 aO, 01)
= (1 -2 min {6p; 6o})
P@oel {.l't = 0, .’f}t+1 -','é 1{60 < 1/2}}
+ (1 — 2 min {6y, 61})
Py ol =1, 8111 # 1{01 2 1/2}}. )
Similar to the hypothesis testing consideration of Theorem 1,
the average of the first terms on the right-hand side of (6)

and (7) is minimized if go is replaced by gg, which means
using (4) when the current state z; is zero. The second term
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in both (6) and (7), which corresponds to state one, remains
unaffected. Hence,

re(go, 91, b0, 01) + 1r:(g0, 91, bo, 61)
> 1ri(g3, 91, o, 61) + 57:(98, 91, B0, 61).  (8)

Similarly,

37+(g0, 91, b0, 01) + 3re(g0, 91, B0, B1)
2 %rt(gFL g1, 907 91) + %Tt(gav g1, 907 91) (9)

Combining (8) and (9), we get
iXwea@ri(f, 9)

> 5[5(re(g5, 91, 0o, 61) + re(gd, g1, 00, 61))
+ 5(r:(g5, g1, B0, 1) + 7:(95, 91, 8o, 61))]

> 3[5(rlgs, g5, bo, 01) + (g5, g, 90, 61))
+5(re(g8, 91, Bo, 61) + 7:(98, 97, bo, 61))]

= ZZefeG(e)Tt(f ) 07). (10)

where the second inequality follows from the hypothesis
testing consideration applied to g7, i.e., the predictor (4) at
state z; = 1. Taking a time average of r(f, ') results in
R,.(f,0") > R,.(f*, ¢) for at least one #’ in G(8), completing
the proof of Theorem 2. g

One might wonder whether optimality of f* on a quarter of
0, as was mentioned earlier, is the strongest possible statement
that can be made when allowing simultaneously both every 4
and every f. There seems to be two answers to this question.

1) Strictly speaking, one answer is yes since there exists
a predictor f for which 7¢(f, 8') < r:(f*, 6') at three
points of G(6) for every 6. Thus the lower bound can
be violated simultaneously for three quarters of ©. A
counterexample is a predictor that knows 8 is outside one
quarter of the parameter space, say, § ¢ @ 2 {6: 6y >
1/2, 61 > 1/2}. Such prior information improves the
prediction performance for every § € Q¢ as shown in
the appendix.

2) Theorem 2a) can be modified to hold for at least three
quarters of © at the expense of decreasing c1(8’). An
alternative form of Theorem 2a) is the following: For
every predictor f, every parameter 6, and for at least
three points 6’ in G(6),

nR.(f,0')>¢ (0/)
21 mip ZPg/{xt =z,0,(t) = i}

1:6{0 1} 1
(The proof appears in the Appendix.) This means that
the lower bound given in the right-hand side of (11)
holds for three quarters of the binary first-order Markov
sources. Again, note that this result cannot be strength-
ened as there exists a predictor that indeed violates (11)
at one point 6 € ©: the optimal predictor for 6 € G(8),
which satisfies nR,,(f, §) = 0 simultaneously for all
sources in the same quarter as 6.
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In the extension of Theorem 2 to kth-order Markov sources
parametrized by 6 = (6o, 01, --,02x_1), Where

0; 2pr {z¢ = 1|(%¢t—k, -+, T+—1) = binary expansion of i},

i=0,1,---,2F -1,

G(0) includes all 2* points of the form §=(fo, 61, -, fc_),
where §; is either §; or ;. Here, the extension of Theorem
2a), which describes the behav1or of f* for kth-order Markov
sources, holds for a fraction 2~ 2 of O, but the extension of
(11) holds for a fraction (1 — 272 ) of ©.

III. LARGE DEVIATIONS PERFORMANCE

We now return to Bernoulli sources and evaluate the large
deviations performance of f*, i.e., the exponential decay rate
of Pg{ne(f) > n(me+A)} for a prescribed A € (0, 1/2—myg).
We show that f* attains the optimal error exponent for a
certain range 0 < A < Ay. However, if A > Ay this is
no longer true. We first derive an exponentially tight upper
bound for the error exponent.

Theorem 3: For every Bernoulli source 6 and any predictor

£

limsup | —— ln Py{n.(f) > nl}| < D({||ms),

n—00

where ¢ 2 m + A < 1/2 and D(C||ms) £ ¢ In(¢/me) +
¢ In(¢/7o).

The bound is exponentially tight because, for § < 1/2 and
f =0, ne(f) = n(l) and the large deviations behavior of
n(1) is obviously characterized by D((||6).

Proof of Theorem 3: Define E = {z: min {n(0), n(1)} >
n(¢+ ¢}, F = {z: n.(f) > min{n(0), n(1)} — €}, and
G = {z: n.(f) > n(}. Since G 2 ENF then Py(G) >
Py(ENF) = [L—Py(F°|E)|Ps(E). Now Py(E) = Pp{{+e <
n(1)/n < 1—-{—e}=exp [-nD({+¢€||mq)], where the notation
an=b,, means that n=! log(a,/b,) — 0. The exponent on the
right-hand side can be made arbitrarily close to D((||7g) by
choosing e sufficiently small. Thus, to complete the proof it
suffices to show that Py(F°¢|E) — 0 as n — oo. To see this,
divide the space of binary n-tuples into types, where the type
T, associated with a binary n-tuple £ = (1, -, ) is the set
of all n-sequences with the same composition {n(0), n(1)}
as that of z. Now

Z P, FC|T ( )
TxCE ( )
<(n+1) ~n%z:xP9(F°|Tz).

Py(F°|E) =
12)

Since all sequences of a given type are equiprobable, we see
that Pp(F°|Ty) is just the fraction of T.-typical sequences
with ne(f) < min{n(0), n(1)} — ne. We claim that this
fraction is exponentially small. Indeed, a type T, that cor-
responds to a composition {n(0) = na, n(1) = na} contains
n!/[(na)!(n@)!|=e™(®) sequences where h(a) = ~a In a —
@ In @. Without loss of generality, assume that @ < 1/2 and
observe that for a given f, the mapping from  to the error
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sequence ey, €z, -+, €n, (Where e; = |4 — £¢|) is one-to-one.
The number of error sequences with less than n{a — €) ones
(prediction errors) is less than e(@=9) (11, lemma 2.3.5].
Thus, the fraction of sequences in F° is exponentially never
larger than exp{—n[h(c) — h(e — ¢€)]}. This completes the
proof of Theorem 3. O

We next present the upper bound associated with f*.

Theorem 4: For a Bernoulli source 6, and 79 < ¢ <
A —
(s = 0.54/mg/T6,

lim [--1-111 Py{ne(f*) > nC}| > D¢Clima).  (13)
n—00 n
Proof: Again, assume that 0 < § < 1/2 and hence
mg = 6. It is shown in the appendix (proof of Lemma
1) that n.(f*) < min{n(0), n(1)} + n~, where n* =
"5 1{f(t) = 1/2}. Let Q denote the random variable
n(1)/n and let Q 2 min {Q, @}. Similarly, let g denote a
particular value of @ and let ¢ = min {g, 7} By Lemma 1, the
large deviation event G* = {= ne(f*) > n¢} is a subset of
{z: n* > na} where o 2 ¢—0Q. For a given g (i.e., for a given
type Tz), we first upper bound Py{n* > na|@ = g¢}. Since
all g-typical sequences are equiprobable given Q = g, this is
just the fraction of g-typical sequences for which n* > na.
Let ny(z), z = 0, 1 denote the count of the symbol z in
Ty, T, -+, Tt Note that if there are at least na occurrences
of B(t) = 1/2, i.e., ne(0) = nz(1), then there must be at least
one occurrence for some ¢t > 2na, as this event can occur
only at even time instants. Thus,

n
G* C{z:n* >na} C U {z: n:(0) = (1)} (14)
t=2na
Since the number of sequences with a given @ = g is larger
than (n + 1)~ exp [nh(q)], [12] where h(q) 2 _glng-
7 ln g, it follows from (14) and the union bound that

P{G*|Q = q}
< (n+1)exp [-nh(q)] Z 2t(max {n(OT)L,_nfl)} - t/2>

t=2na

=(n + 1) exp [-nh(q)]
’ i exp [t In2+(n— t)h(ma.x {n(0), ngl)} - t/z)}

n—1t
t=2na

< (n+1)%exp {n-

max
20<€<1
. [g In2+(1-¢)- h(i‘_?) - h(ti)]}
=exp [nC(g, )], 15)
where
0 fa<O,

C@G, @) 2 { 20n2+(1-20)+
hl(§—a)/(1—20)] —h(g), f0<a<i
(16)
Note that for « > § the set {z: n* > no} is empty because
n* < min {n(0), n(1)}. The last step in (15) is obtained by

maximizing the previous exponent function in the usual way.
Since Po{Q = ¢} < e~PUl®),

n/n

S P{Q=q}-Pe{G"|Q=0a}

q=0/n

(n+1)?Y " exp [-nD(ql|6)]- exp [-nC(§, ¢~ @)]

Py(G™)

IN

inf

<(n+1 3 ex; {—n
( ) exp a: ¢/2<§<(

~wwm+0@<—m} an

The lower limit ¢/2 is obtained from the fact that n* <
min {n(0), n(1)} and hence o = ¢ — ¢ < §. For the upper
limit, observe that for sequences with § > ¢ (which means
o < 0), the event n* > na obviously holds. These sequences
contribute a probability which is exponentially equivalent to
¢~D(19) Since the exponent on the right-most side of (17)
never exceeds D(C||9) (set ¢ = § = ¢ in (17)), the maximum
of the previous function can be found for § < (. From
standard extremum analysis of this function, we find that for
9 < ¢ < (g, the minimum is obtained at ¢ = ¢ and its value
is D(¢||#). This completes the proof of Theorem 4. O

This interesting phenomenon, that the error exponent is
optimal for small threshold values A = (.— 6 but suboptimal
for large values of A, is not a consequence of a possible
Jooseness of the upper bound. A lower bound on Pr {n.(f*) >
nC} reveals the same effect. The intuition is that me(f*)
is composed from min {n(0), n(1)} and n*. When A is
small, then D((]|6), which characterizes the large deviations
behavior of min {n(0), n(1)}, is small as well. Thus, the
large deviations behavior of ne(f*) is dominated by that of
min {n(0), n(1)}. On the other hand, if A grows beyond a
certain point, then the large deviations properties of n* affect
the performance.

Another aspect of the large deviations performance of f*
is its competitive optimality. Specifically, since ne( ™) <
min {n(0), n(1)} + n* and for every competing predictor
ne(f) > min {n(0), n(1)} — ne except for an exponentially
small minority of sequences from each type, we see that
Po{nc(f*) > ne(f) + ne} decays exponentially with n for
every € > 0. An immediate conclusion, by the Borel-Cantelli
lemma, is that imsup,_.o 7~ [ne(f*) — ne(f)] < 0 with
probability one.

APPENDIX

Proof of Lemma 1: The predictor f* can be described by
a trellis diagram (see also [1, Appendix A]) in the following
manner. Let 74(0) and n(1) denote current counts at time ¢
of zeros and ones, respectively. Define C; = |ns(0) — n4(1)]
as the state and observe that every increment in Cj, ie., a
transition (C; = k, Cpy1 = k+1), k& >0, corresponds to
a correct prediction of f* and every decrement is associated
with an error. The exception is C; = 0 that must be followed
by an increment (Cyq1 = 1) whether or not the prediction -
at time ¢ is correct. Assume, without loss of generality, that
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n(0) < n(1). Clearly, Co = 0 and C,, = n(1) — n(0). Let
I and D denote the number of increments and decrements of
C., respectively. Then, obviously I+ D =nand I — D =
Cn = n(1) — n(0), which together imply that I = n(1)
and D = n(0). Thus, n.(f*) involves errors associated with
D = n(0) = min {n(0), n(1)} decrements of C; plus errors
that may occur when C; = 0, which happens n* times along
the sequence. Since a fair coin is flipped whenever C; = 0,
then on the average n*/2 additional errors appear. ]

A Counterexample f: Define R = {6: 60 > 1/2}, B
{0:60: < 1/2}, Q@ = {6:6p > 1/2 and 6; > 125 U =
QN{f: 60 <61} and V =Q — U. Let §(t) = (6o(t), 6:(t))
denote the estimator of 6 = (o, 6, ) as in (18). The predictor
f is defined by &y = 1{0() € Q% -z, + 1{9(t) E
U} xt+1+1{6’(t) eV} xt“ where z}, ; is as in (4), and xtH,
a,b=0,1, lsdeﬁnedasmﬂfi = a when z, —Oarlda:t_H =b
when z; = 1. In other words, ;1 is the same as Zyy, as long
as f(t) falls in the permissible domain Q°. If 6( ) happens to
fall in Q, then the smaller between fo(t) and 6, (¢) is assumed
to be in the wrong half interval and the predictor is “corrected”
accordingly. Let § = (o, 61) satisfy 0 < 6, < 1/2 and
0 < 81 < 1/2. We next compare the performance of f to that
of f* at (6o, 61) and its two reflections (6, 61) and (6o, ;)
and show that f outperforms f* at these three points. For 6 in
the lower left quarter of ©, this result is obvious by making the
two following observations. First, (f, §) depends of f only
through the probability that f does not agree with the optimal
predictor for that quarter (see (6), (7)), namely, the probability
that £,41 # 0. Secondly, {Z:11 # 0} C {z}.; # 0}. For
(80, 81) in the upper left quarter of ©, we have from ),

re(f, B0, 81) = (1~ 26p) - Pys{m=0,6(t)e R-U}
+H(1=261)- Py 5 {m=1,80) e BUV}, (A1)

while
’I't(f*, 9(], yl) (]. i 200)

+(1-26,)- P,

508, 17t = 0, 4(t) € R}
907, {z: =1, O(t) € B}. (A2)
The difference is
Tt(f*7 bo, 51) - Tt(f, bo, yl)A
=(1—260)-P = {ztzo 6(t) e U}
-(1-26,) P 907, {z: =1, 0 t) eV}

1— 2(90 Z ',-’Et—l)

@: 6(t)ev
Py g, (@ = 0|z41)
—(1=261) Py, (00) € V}
> (1= 260)6: - Py 5. {d) e}
-(1-261)- P, 5 {8ty e V).

908, ;[;1, ..

(A3)
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The large deviations theory for discrete Markov sources im-
plies that P 7 {0(t) e VVis exponentially negligible relative

to Paoﬁl{e( ) € U}, and hence that (A.3) is positive when ¢
is sufficiently large. A similar consideration holds for (8, ;)
due to symmetry.

Proof of (11): The idea is to observe that at each state
zy = x both the next outcome and the best prediction strategy
behave like these of a Bernoulli process with a parameter 6.
Any predictor (go, g1) can be improved if go is teplaced by
the optimal strategy for state “07, i.e., 141 = 1{f > 1/2}
while at state z; = 1 the strategy g, remains unchanged. A
straightforward application of Theorem 1a) to state “1” implies
that for every value of § and for half of the values of 61, i.e.,
for half the sources, nR,(f, 6) > 01(6') =05 2, Pofzy =
1, 61(¢) 1/2}. Interchanging the roles of state “0” and
state “1” in the previous argument, we conclude similarly
that for every 61 and for half the values of 6y, nR,(f, §) >

MOE 2 0. 53 0y Po{w: = 0, fo(t) = 1/2}. Thus, when the
nght -hand side is replaced by c1(0) = min {c}(F), c}(6)}, the
inequality holds simultaneously for at least 3/4 of the sources
in ©. O

ACKNOWLEDGMENT

The authors wish to thank P. Algoet for helpful suggestions
he has provided.

REFERENCES

[1] M. Feder, N. Merhav, and M. Gutman, “Universal prediction of indi-

vidual sequences,” IEEE Trans. Inform Theory, vol. 38, pp. 1258-1270,

July 1992.

J. Ziv and A. Lempel, “Compression of individual sequences via

variable-rate coding,” IEEE Trans. Inform. Theory, vol. IT-24, Pp-

530-536, Sept. 1978.

J.8. Vitter and P. Krishnan, “Optimal prefetching via data compression,”

Tech. Rep. No. CS-91-46, Dept. of Comput. Sci., Brown Univ. , July

1991. (Also summarized in Proc. FOCS-91, pp. 121-130, 1991)

[4] J. Rissanen, “Universal coding, information, prediction, and estimation,”
IEEE Trans. Inform. Theory, vol. IT-30, pp. 629636, July, 1984.

[5] —, private communication.

[6] J.F. Hannan, “Approximation to Bayes risk in repeated plays. In

contribution to theory of games,” Ann. Math. Studies, vol. 3, no. 39,

pp. 97-139, 1957.

T.M. Cover, “Behavior of sequential predictors of binary sequences,” in

Proc. 4th Prague Conf. Inform. Theory, Statistical Decision Functions,

Random Processes, 1965, pp. 263-272.

T. M. Cover and A. Shenhar, “Compound Bayes predictors for sequences

with apparent Markov structure,” IEEE Trans. Syst. Man Cybern., vol.

SMC-7, pp. 421424, June 1977.

F. Spitzer, Prmczples of Random Walk. New York: Springer-Verlag,

1976.

F.T. Leighton and R.L. Rivest, “Estimating a probability using finite

memory,” IEEE Trans. Inform. Theory, vol. IT-32, pp. 733-742, Nov.

1986.

R.M. Gray, Entropy and Information Theory. New York: Springer-

Verlag, 1990.

L. Csiszdr and J. Komer, Information Theory: Coding Theorems for

Discrete Memoryless Systems. New York: Academic, 1981.

2

—

(3]

71

(81

[9

—

[10]

1]

[12]

Authorized licensed use limited to: Technion Israel School of Technology. Downloaded on January 15, 2009 at 10:02 from IEEE Xplore. Restrictions apply.




