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Information and Physics – Better Together
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Some Meeting Points Between the Fields

The Maxwell demon; the Szilárd engine.

The maximum entropy principle: Jaynes, Burg, Shore & Johnson,...

Physics of information: Landauer, Bennet, Maroney,...

Phys. systems with informational resources: Ueda, Sagawa, Jarzynski,...

Large deviations theory: Ellis, Oono, McAllester,...

Random matrix theory: Wigner, Balian, Foschini, Telatar, Verdú,...

Spin glasses and coding: Sourlas, Kabashima, Mézard, Montanari,...

Replica theory: same and many others..
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Talk Outline

Analogies and relations:

Conceptual level

Information measures ↔ physical quantities.

Coding theorems ↔ physical laws.

Physical systems with informational ingredients.

Phase transitions.

Technical level

Mapping physical models to communication system models.

The replica method and other analysis tools.

Random energy model (REM) and error exponents.

MSE analysis using statistical physics.
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Very Brief Background in Statistical Physics

Consider a system with N ≫ 1 particles which can lie in various microstates,

{x = (x1, . . . , xN )}, e.g., a combination of locations, momenta, angular

momenta, spins, ...

For every x, ∃ energy E(x) – Hamiltonian.

Example: For xi = (pi, ri),

E(x) =

NX

i=1

„‖pi‖2

2m
+ mghi

«

.
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Background (Cont’d)

In thermal equilibrium, x ∼ Boltzmann–Gibbs distribution:

Pβ(x) =
e−βE(x)

Z(β)

where β = 1
kT , k – Boltzmann’s constant, T – temperature, and

Z(β) =
X

x

e−βE(x), a normalization factor = partition function

φ(β) = ln Z(β) ⇒ many physical quantities:

mean internal energy: E = −dφ
dβ ;

entropy: S = k · log Ω(E) = φ − β dφ
dβ ; Ω(E)

△
= Vol{x : E(x) = E}.

free energy: F = −φ
β = E − TS; ∆F = min. work between two equil. states.

heat capacity: C = kβ2 d2φ
dβ2
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Part I

Relations in the Conceptual Level
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Information Measures and Physical Quantities

Entropy:

S ∝ log Vol{x : E(x) = E}

= log Vol

8

><

>:

x : − log Pβ(x) = βE + φ(β)
| {z }

H

9

>=

>;

β ‘tuned’ to E

≈ H = βE + φ(β) weak typicality

The ‘matching’ β turns out to be the minimizer of βE + φ(β), i.e.,

H = min
β≥0

[βE + φ(β)] Legendre–Fenchel transform

The two entropies are equivalent.
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Information Measures and Physical Quantities (Cont’d)

Divergence (Bağci 2007): Let Pβ be the B–G distribution and let Q be arbitrary:

D(Q‖Pβ) = −HQ −
X

x

Q(x) ln Pβ(x)

= −HQ − β
X

x

Q(x)[Fβ − E(x)] Fβ ≡ FPβ

= −HQ − βFβ + βEQ{E(X)}

= β(FQ − Fβ)

or FQ = Fβ + kT · D(Q‖Pβ)

Divergence is proportional to the free energy difference.

In equilibrium (X ∼ Pβ), F is minimum.
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Information Measures and Physical Quantities (Cont’d)

Rate–distortion. Parametric representation (Legendre transform relation):

−R(D) = min
β≥0

2

6
6
6
6
6
6
4

βD +
X

x

P (x) ln

0

@
X

y

Q(y)e−βd(x,y)

1

A

| {z }

φx(β)

3

7
7
7
7
7
7
5

,

= entropy of a mixture of systems, each with NP (x) particles, and Hamiltonian
Ex(y) = d(x, y), in thermal equilibrium with total normalized energy D.

Each x contributes normalized distortion Dx = −φ′
x(β∗).

Equilibrium temperature = 1/β∗ = negative slope of D(R).

Channel capacity: same with D = H(Y |X), d(x, y) = − ln P (y|x), β∗ = 1.
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Rate–distortion (Cont’d) – “I-MMSE” Relations

Parametric representation in terms of MMSE:

R(D) =

Z β

0
dβ̂ · β̂ · mmse

β̂
{d(X,Y )|X}

Dβ = D0 −
Z β

0
dβ̂ · mmse

β̂
{d(X,Y )|X}

where P (x, y) ∝ P (x)Q(y)e−β̂d(x,y).

mmse
β̂
{d(X,Y )|X} related to heat capacity, C(T ).

First integral – related to entropy: S =
R C(T )dT

T .

Second integral – related to heat: E =
R

C(T )dT .

Enables derivation of bounds on R(D) via bounds on MMSE.
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Example: P = N (0, 1); Q = BSS {−1,+1}; d(x, y) = (x − y)2.

R(D) ≥ (2 − D)2

8
− 3(2 − D)4

64
; R(D) ≤ 2

3
sin2

»
1

3
sin−1

„
3
√

3(2 − D)

4

«–

.
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Physics of Coding Theorems

Physics of rate–distortion theory (or vice versa):

Chain of N connected elements at temperature T .

|X | types of elements, indexed by x.

Number of elements of type x ∈ X is NP (x).

Each element – in one of |Y| states, labeled by y.

Length of type–x element at state y is d(x, y)

Energy of any element at state y is ǫ(y) = −kT ln Q(y).

What is the minimum work needed to shrink to length ND?

type ‘0’ type ‘1’

d(1, 1)
d(0, 0)

λ

ND

d(0, 1) d(1, 0)
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Minimum Required Work =?

ND0

ND λ =?

W =?
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Minimum Required Work ∝ R(D)

ND0

ND λ = kT R′(D)

W = NkT R(D)

Achievability: λ should grow slowly from zero to λ = kTR′(D).
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Information Loss and the 2nd Law

Essentially all fundamental limits of IT are based on the information inequality
in some form (DPT, Fano’s inequality, “conditioning reduces entropy,” ...).

For any two distributions, P and Q, over an alphabet X :

D(P‖Q)
△
=
X

x

P (x) log
P (x)

Q(x)
≥ 0.

Strict inequality is normally associated with some information loss.

An equivalent inequality – the log–sum inequality:

X

i

ai log
ai

bi
≥ A log

A

B
,

where A =
P

i ai and B =
P

i bi.

In physics, this is Gibbs inequality (A and B are partition functions).
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The Gibbs Inequality

Let E0(x) and E1(x) be two Hamiltonians of a system. For a given β, let

Pi(x) =
e−βEi(x)

Zi
, Zi =

X

x

e−βEi(x), i = 0, 1.

Then,

0 ≤ D(P0‖P1) = E0

(

ln
e−βE0(X)/Z0

e−βE1(X)/Z1

)

or

E0{E1(X) − E0(X)} ≥ kT ln Z0 − kT ln Z1

= F1 − F0

– p. 16/46



Interpretation of E0{E1(X) − E0(X)} ≥ ∆F

A system with Hamiltonian E0(x) – in equilibrium ∀ t < 0.
Free energy = −kT ln Z0.

At t = 0, the Hamiltonian jumps, by W = E1(x) − E0(x): from E0(x) to
E1(x) – by abruptly applying a force. Energy injected:
E0{W} = E0{E1(X) − E0(X)}.

New system, with Hamiltonian E1, equilibrates.
Free energy = −kT ln Z1.

Gibbs inequality: E0{W} ≥ ∆F .

E0{W} − ∆F = kT · D(P0‖P1)

= dissipated work = T× entropy production (system + environment) due to
irreversibility of the abruptly applied force.

Irreversibility of information loss ↔ irreversibility of entropy production.

Converse theorems ↔ second law of thermodynamics.

– p. 17/46



Extension

Consider, more generally, Eλ(x) = (1 − λ)E0(x) + λE1(x), where the “force” λ

varies from 0 to 1 according to

λ(t) =

n−1X

i=0

(λi+1 − λi)u(t − ti), λi ∈ (0, 1) ∀i, λ0 = 0, λn = 1.

Dissipated work = kT ·
n−1X

i=0

(λi+1 − λi)Eλi



ln
P0(X)

P1(X)

ff

≥ 0.

A new information inequality inspired from physical considerations.

The ordinary divergence D(P0‖P1) is a special case where n = 1 and t0 = 0.
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DPT and the 2nd Law: Dynamical System Perspective

Let {Xt} be a finite–alphabet Markov jump process:

Pr{Xt+δ = x′|Xt = x} = Wxx′δ + o(δ) x′ 6= x

Define
H(Xt) = −

X

x∈X

Pt(x) log Pt(x).

H–theorem: if {Xt} obeys detailed balance Wxx′ = Wx′x then:

dH(Xt)

dt
≥ 0.

Comments:

{Xt} corresponds to an isolated dynamical system P∞(x) = 1/|X |.
Discrete–time analogue – holds too.

Similar to the 2nd law of thermo, but not precisely equivalent.
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DPT and the Second Law (Cont’d)

What if P∞(x) is not uniform?
Cover & Thomas (2006):

D(Pt‖P∞) =
X

x∈X

Pt(x) log
Pt(x)

P∞(x)
ց

Indeed, for P∞ uniform

D(Pt‖P∞) = log |X | − H(Xt).

Detailed balance is not needed.

Maximum entropy → minimum free energy.

Characterizes monotonic convergence Pt → P∞ in the divergence sense.

More generally, for Pt and P ′
t , two time–varying state distributions pertaining a

given Markov process, D(Pt‖P ′
t) ց Cover & Thomas (2006).
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DPT and the Second Law (Cont’d)

Kelly (1979): If Q is convex and P∞ is a steady–state distribution

DQ(P∞‖Pt) =
X

x∈X

P∞(x)Q

„
Pt(x)

P∞(x)

«

ց

for whatever Pt that evolves according to the Markov process. This covers both
D(P∞‖Pt) and D(Pt‖P∞), but not D(Pt‖P ′

t). To be handled soon...

Define Pt(x, x′) = P (X0 = x, Xt = x′) and P ′
t(x, x′) = P (X0 = x)P (Xt = x′)

then

DQ(Pt‖P ′
t) =

X

x,x′

Pt(x, x′)Q

„
P ′

t(x, x′)

Pt(x, x′)

«

ց

because here DQ(Pt‖P ′
t) = IQ(X0; Xt), and the above is the Ziv–Zakai DPT

(1973) for the Markov chain X0 → Xt → Xt+1.
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DPT and the Second Law (Cont’d)

This monotonicity thm does not cover the entire picture. Can we put everything
under one umbrella?

Yes, we can! including the 1975 Ziv–Zakai information measure.
Theorem: Let µ0

t , µ1
t , . . . , µk

t be arbitrary measures that obey the Markov
recursion

µi
t+1(x) =

X

x′

µi
t(x

′)P (x|x′).

Then,

Vt
△
=
X

x

µ0
t (x)Q

 

µ1
t (x)

µ0
t (x)

, . . . ,
µk

t (x)

µ0
t (x)

!

ց

The 1975 ZZ DPT for the Markov chain X0 → Xt → Xt+1 is obtained for
µ0

t (x, x′) = P (X0 = x, Xt = x′).

Temporal monotonicity of gen. info measures for Markov processes ↔
gen. DPT for systems with a spatial Markov structure.

Both are special cases of the above theorem.
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A New Perspective on the 1973 Ziv–Zakai DPT
While the 1973 Ziv–Zakai info measure is

IQ(X; Y ) =
X

x,y

P (x, y)Q

„
P (x)P (y)

P (x, y)

«

,

one can use any µ0 and µ1 (satisfying the Markov relations) and define

IQ(X; Y ) =
X

x,y

µ0(x, y)Q

„
µ1(x, y)

µ0(x, y)

«

,

Consider µ’s of the form: µ(x, y) = s0P (x, y)+
X

xi∈X

siP (x)P (y|x = xi), s0, si ≥ 0

For example, IQ(X; Y ) =
X

x,y

[P (x, y) + sP (x)P (y)] · Q
„

P (x)P (y)

P (x, y) + sP (x)P (y)

«

satisfies a DPT for every s ≥ 0. s = 0 → 1973 Ziv–Zakai info measure.

Even for the 1973 ZZ DPT (univariate Q), we have added a degree of freedom.
Important since only few functions Q, are easy to work with.
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Example

Source U and the reconstruction V are uniform over {0, 1, . . . , K − 1}.

d(u, v) =

8

>><

>>:

0 v = u

1 v = (u + 1) mod K

∞ elsewhere

Channel: clean L–ary channel.

For Q(z) = −√
z, we obtain

IQ(U ;V ) = −
X

u,v

P (u)P (v)

s

s +
P (v|u)

P (v)
.
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Example (Cont’d)

Applying the DPT RQ(d) ≤ CQ (for a given s), we obtain the lower bound

d ≥ ds.

For s = 0 (ZZ ‘73), we have:

d0 =
1

2
− 1

2

p

2θ − θ2,

where θ
△
= K/L.

For s → ∞,

d∞ =
1

2
− 1

2θ

p

2θ − θ2,

which is larger than d0 for all 1 < θ < 2.

The Shannon bound: dShannon = h−1(log θ) is in between.
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The Maxwell Demon

– p. 27/46



The Maxwell Demon
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The Maxwell Demon
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The Maxwell Demon
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The Szilard Engine
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Generalized Szilard Engine (Sagawa & Ueda, 2011)

�
�
�
�

��
��
��

��
��
��

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

Insert a barrierEquilibrium

E
xp

an
si

on

N
oi

sy
M

ea
su

re
m

en
t

p 1 − p

q0

q1 1 − q1

Removal of the barrier

1 − q0

maxq0,q1 W = kT · I(X ; Y )

X

Y

Vinkler, Permuter and M. (2014): relation to gambling. – p. 32/46



System with Feedback Control – Directed Information

Channel

Controller

Thermodynamical

System

Xt Yt

λt

Sagawa and Ueda (2008–2011) : Extracted work ≤ −∆F+kT · I(Xn → Y n).

Feedback is linked to directed information in physics too! – p. 33/46



Physical Systems with an Informational Ingredient
Mandal & Jarzynski (2012): system converting thermal fluctuations to work
while writing info.

0 0 0 01 1 1 1 10 0 0

10

m

∆Senv + kT · ∆H ≥ 0

W ≤ kT · ∆H

λ0→1

λ1→0
= e

−mg∆h/kT

half cycle CW

half cycle CCW

M. (2015):

W ≤ kT · F [LZ complexity]

More generally, Deffner and Jarzynski (2013):

A system (device) + a heat bath (heat reservoir),

An information reservoir, e.g., a memory device with N bits (2N states).

An extended 2nd law: ∆Sdev + ∆Sheat-res + ∆Sinfo-res ≥ 0.
– p. 34/46



Phase Transitions

In physics: an abrupt change in the “behavior” of a physical system upon a

small change in a parameter (temperature, magnetic field,...).

Occurs with “strong” interactions: E(x) =
P

i E(xi) +
P

i,j E(xi, xj).

Mathematically: a discontinuity in a derivative of φ(β).

An asymptotic concept – in the thermodynamic limit N → ∞.

Xmpls: magnetization below Tc; glassy φ–transition; freezing/boiling.

In communication systems: an abrupt change in the behavior/performance ...

upon a small change in a parameter (SNR, bandwidth, ...).

Occurs in coded coded systems and in non–linear modulation.

A discontinuity in performance, e.g., Pe ≈ 0 ↔ Pe ≈ 1.

An asymptotic concept - in the limit of long blocks N → ∞.

Xmpls: un/reliable comm. as R ↑ C; est. threshold effects, comp. sensing.
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Part II

Relations in the Technical Level

– p. 36/46



Mapping Models Between Physics and IT
Customary model of disordered magnetic materials (spin arrays)

E(s) = −
X

i

Bisi −
X

i,j

Jijsisj s ∈ {−1,+1}N

Bi – (random) local magnetic fields; Jij – (random) coupling coefficients.
Let C = {x0, x1, . . . , xM−1} be a code for P (y|x) and let

P (x|y) =
1
M P (y|x)

1
M

P

x′∈C P (y|x′)
x ∈ C

=
exp{−

Ey(x)
z }| {

ln[1/P (y|x)]}
P

x′∈C exp{− ln[1/P (y|x′)]}

Or more generally, Pβ(x|y) =
exp{−βEy(x)}

Zy(β)

Example: for a BPSK AWGNC: Ey(x) ∝ ‖y − x‖2 ∼ −c
P

i xiyi.
xi – spin; yi – local magnetic field.
For Ey(x) ∝ ‖y − Ax‖2 ∼ −c

P

i xiỹi +
P

i,j Jijxixj . Sourlas (1989, 1994).
– p. 37/46



Performance Analysis

Let C be a random code and consider the calculation of

E{I(X ; Y )} = E{H(Y )}
| {z }

difficult

− E{H(Y |X)}
| {z }

easy for additive channels

E{H(Y )} = −E{log P (Y )} = −E

(

log

"

1

M

M−1X

m=0

P (y|Xm)

#)

= log M − E log

M−1X

m=0

exp[−Ey(Xm)]

| {z }

partition function

(1)

{Ey(Xm)}M−1
m=0 are i.i.d. RV’s.

Analogous to the Random Energy Model (Montanari 2001).

Also, many (Gallager–style) performance bounds include expressions like

X

m

Pβ(y|Xm) = Zy(β) for some β
– p. 38/46



The Random Energy Model (REM)

The REM (Derrida 1980s) is a toy model obtained as limit of strong disorder,
where

E(s) ∼ N (0, NJ2/2) i.i.d.

It exhibits a φ-transition since Ω(E) = |{s : E(s) ≈ Nǫ}| is a binomial RV with

2N = eN ln 2 trials and probability of ‘success’ ∼ e−Nǫ2/J2

:

Typically: Ω(E)
·
=

(

exp{N [ln 2 − ǫ2/J2]} |ǫ| ≤ J
√

ln 2

0 |ǫ| > J
√

ln 2

The entropy jumps to −∞ for high energies!

Thus, φ(β) is non–smooth – a phase transition: below a certain temperature
the system freezes, i.e., dominated by a sub–exponential number of
ground–state {s} – glassy phase.

– p. 39/46



A Few Words on Useful Analysis Methods

While the REM can be analyzed rigorously, the calculation of E log Z(β) for
random Z(β) is difficult in general. A very popular (but non–rigorous)
technique: the replica method – based on the identity

E log Z = lim
n→0

EZn − 1

n
.

Works in many cases, but not always..

Another useful tool (in general): saddle point integration:

Z

P

g(z)eNf(z)dz ∼ eiθ

s

2π

N |f ′′(z0)|g(z0)e
Nf(z0)

where z0 is a saddle point (f ′(z0) = 0) and θ = (π − arg{f ′′(z0)})/2.
If the integrand includes a non-analytic function (e.g., the Dirac delta function
or the unit step function) then a common trick is to present it as the inverse
transform of a ‘nice’ function

δ(x) =
1

2π

Z +∞

−∞

eiωxdω and switch the order of the integrals.
– p. 40/46



REM–Based Analysis of Correct Decoding Exponent

For the BSC(p)

P (y|x) = (1 − p)Ne−Bd(x,y), B = ln
1 − p

p

Ey(x) = d(x, y)

Ωy(Nδ) = |{x : x ∈ C, d(x, y) = Nδ}|

Binomial RV with eNR trials and probability of success exp{−N [ln 2 − h2(δ)]}.

Pc = E

8

<

:

1

M

X

y

max
m

P (y|Xm)

9

=

;

= E

8

<

:

1

M

X

y

lim
β→∞

"
M−1X

m=0

Pβ(y|Xm)

#1/β
9

=

;

=
1

M

X

y

lim
β→∞

E

n

Z(β|y)1/β
o

– p. 41/46



The Correct Decoding Exponent (Cont’d)

E{Z(β|y)1/β} = E

(

[ (1 − p)Nβ
X

δ

Ωy(Nδ)e−βBNδ ]1/β

)

·
= (1 − p)NE

(
X

δ

Ω
1/β
y (Nδ)e−BNδ

)

= (1 − p)N
X

δ

E

n

Ω
1/β
y (Nδ)

o

· e−BNδ

E

n

Ω
1/β
y (Nδ)

o

=

(

exp{N [R + h(δ) − ln 2]} δ ≤ δGV (R) or δ ≥ 1 − δGV (R)

exp{N [R + h(δ) − ln 2]/β} δGV (R) < δ < 1 − δGV (R)

This gives the correct exponential behavior, unlike the traditional use of
Jensen’s inequality:

EZ1/β ≤ (EZ)1/β .

Tighter bounds on random coding and expurgated error exponents!
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Statistical Physics of Signal Estimation

In a joint work with Guo and Shamai (2010), stat–mech methods were applied
on the I–MMSE relation:

dI(X ;
√

snrX + N )

d snr
=

1

2
mmse(X |√snrX + N ), N ∼ N (0, I)

to compute MMSE and to relate threshold effects (in estimation) to phase
transitions (in physics).

An alternative approach: For the purpose of evaluating the MMSE (using
stat-mech methods), more direct relations can be used: Given P (x, y),
x ∈ IRN , y ∈ IRK :

Z(y, λ) =
X

x

exp{λT
x}P (x, y)

x̂ = E{X |y} = ∇λ ln Z(y, λ)

˛
˛
˛
˛
λ=0

; Cov{(X − X̂)} = E



∇2
λ ln Z(Y , λ)

˛
˛
˛
˛
λ=0

ff

– p. 43/46



Example: Codeword Sent Over an AWGN Channel

Channel input: M = eNR; C = {x0, . . . , xM−1};
xi ∼ Surf{sphere of radius

√
NP}.

AWGN channel:
Y = X + W ; W ∼ N (0, σ2I)

Partition function:

Z(y, λ) =
X

x∈C

e−NR · exp{−‖y − x‖2/(2σ2) + λ
T

x}.

Analyzable using the above REM technique.
The MMSE undergoes a phase transition:

mmse(X |Y ) =

(

0 R < C
Pσ2

P+σ2 R > C

Huleihel and M. (2014): extension to Y = HX + W (H – filter) + mismatch.
Huleihel and M. (2014): Y = HX + W , where X is sparse and H is random.
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Other Applications of This and Related Techniques

Ordinary random coding exponents (2009).

Source coding w. hierarchical ensembles (2009); tree codes (2010).

JSC coding – source–channel equilibrium (2009).

IFC (w. Etkin and Ordentlich – 2009); revisited (w. Huleihel – 2015).

Estimation of codewords in AWGN (w. Guo and Shamai – 2010).

Broadcast channels (w. Kaspi – 2011); improved (2014).

Erasure/list decoding (w. Somekh–Baruch – 2011);

Implications of the above on info rates (w. Huleihel and Shamai – 2014).

Expurgated exponents (w. Scarlett et al. – 2014).

Ordinary and erasure/list decoding for S–W codes (2014).

Codeword or noise? (w. Weinberger – 2014).

The wiretap channel with optimal decoding (2014).

List decoding: random coding and expurgated bounds.

Universal erasure/list decoding (w. Weinberger and Huleihel – 2014).

Statistical physics of random binning (2015).
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Summary

Relations in the conceptual level:

Info measures ↔ phys. quantities

Coding theorems ↔ physical laws.

Information plays a role in physics.

Phase transitions

Relations in the technical level:

Mapping models.

Replica mtd + more (+ cavity mtd, fin.–size scaling, interpolation,...).

Rigorous REM analysis and error exponents.

MMSE via I–MMSE relations and gradients of partition functions.

Bounds inspired by stat. phys. (R(D), DPT, err. exp., new info ineq).

Stat. physics has much more to offer us than just the replica method!

We have just scratched the surface in this talk ...
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