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Abstract

In a recent paper' we studied the problem of universal simulation of an unknown
information source of a certain parametric family, given a training sequence from that
source and given a limited budget of purely random bits. The goal was to generate
another random sequence (of the same length or shorter), whose probability law is iden-
tical to that of the given training sequence, but with minimum statistical dependency
(minimum mutual information) between the input training sequence and the output
sequence. In this addendum, we point out to a concrete optimal simulation scheme that
is easy to implement, as opposed to the non—constructive existence result in that paper,
and we make a number of additional observations on the universal simulation problem.

Index Terms: Random number generators, enumeration, random process simulation,
mutual information, typical sequences.

1 studied the following universal simulation problem: An unknown

A recent paper,
source P, which is assumed to belong to a certain parametric family P (like the fam-
ily of finite-alphabet memoryless sources, Markov sources, finite-state sources, paramet-
ric subsets of these families, etc.), is to be simulated. We are given a training sequence
X™ = (X1,...,Xp,) that has emerged from this unknown source, as well as a string of
k purely random bits U¥ = (Uy,...,U), that are independent of X™, and our goal is to

generate an output sequence Y" = (Y1,...,Y,), n < m, corresponding to the simulated

process, that satisfies the following three conditions:

C1. The mechanism by which Y™ is generated can be represented by a deterministic func-

tion Y™ = ¢(X™, U*), where ¢ does not depend on the unknown source P.
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C2. The probability distribution of Y is ezactly the n-dimensional marginal of the prob-
ability law P corresponding to X™ for all P € P.

C3. The mutual information I(X™;Y™) is as small as possible, simultaneously for all

PeP.

In Subsection 4.2 of the referenced paper, we referred to the case where n < m and the
key rate, R 2 k/n, is finite. Unlike the other cases, for which we were able to demon-
strate concrete simulation schemes that satisfy all three conditions, C1-C3, in this case,
we only presented a non—constructive existence result in a very large ensemble of schemes
(Theorem 3, therein).

The primary purpose of this addendum is to suggest a simple simulation scheme that
satisfies the above conditions in the case where n < m as well. In the sequel, lower—case
notation such as ™, y", and u*, will denote specific realizations of the random vectors X™,

Y™, and U*, respectively. For a given training sequence z™, let

B, ub) = [T (Jn(5™) @ [F () - [Tam| /241 (1)

n
1
and

¢, uF) = I (Jule™) + f(uF) mod [Tyn)) (2)

where J; (t — positive integer) maps a sequence z' to the lezicographic index within its
type class Ty, |Tym| is the cardinality of Tym, f maps u* to a corresponding integer in
{0,1,...,2%—1}, ® denotes addition modulo [Tym|, J; " is the inverse of .J;, and [-]} denotes
truncation of an m-sequence to an n-sequence, i.e., elimination of the last r 2 n—m
symbols. In Eq. (1), ¢(z™,u*) is given by the first n symbols of a sequence in Tym. The
key idea is that, as u* exhausts {0, l}k, the lexicographic indexes of the sequences in Tym
from which the ¢(z™,u¥) are obtained by the truncation [} are uniformly spaced when
|Tym| > 2%, with a distance of |Tm|/2¥F between every two consecutive candidate indexes
(up to integer truncation errors). If, instead, |Tym| < 2%, each index is selected 2% /|T;m |

m

times (again, up to integer truncation errors). In Eq. (2), 2™ is first truncated to n bits,

and only then a sequence in T,» is randomly selected. Now, define

n_ qx/.m ky 2 ¢($mauk) 10g|sz| <mR
) ¢ (.%‘ , U )_ { ¢I(wm,uk) log|T$m| > mR. (3)

As in the paper,! the idea is that when R is larger than the entropy rate H of the source,

y" is likely to take the value ¢(z™,u*), whereas otherwise it is likely to take the value



#'(z™,u*). Notice, however, that the test to determine the relation between H and R is
based here on ™, and not just on z™ as in the paper.!
The simulation scheme ¢* obviously satisfies Condition C1. To see that Condition C2

is also satisfied, notice that with &£ 2 {z™ : log |Tym| > mR}, we have

Pr{Y" = y"|uf} = > P(z™) + > P(z™). (4)
zmege:p(xm uk)=y" zme€: P! (™ uk)=y"
For a given u¥, each sequence of the form 5”2 in £ is obtained with ¢ (before truncating 2")
from exactly one sequence z™ € £¢. In addition, for each sequence y™ there exists exactly
one sequence z" (of the same type) such that ¢'(z"z",u*) = y" for any 2. Therefore, (4)
can be written as
Pr{Y" =y"luf} = Y P+ Y. P@"")=P@")
2TynaT EEC 2Ty 2T EE

as claimed.

We prove that ¢* also satisfies Condition C3. For given sequences z™ and y”, let
Tym\yn = {2" : y"2" € Tym}. Notice that for all 2" € Tym\yn we have Tr = Tym\yn (the set
Typm\y» can be viewed as the type of the “difference” between ™ and y™). In the absence
of key rate limitations, it is shown in the paper!' that the mutual information is minimized
when y" is drawn according to the “channel” W*(y"|z™) 2 | Tygm\yn|/|Tym |, which is the
fraction of sequences in T,m that start with y™. However, this “ideal” channel cannot be
implemented in general with a limited supply of random bits. Let W (y"|z™) denote the

channel induced by ¢*, i.e.,
W(y"|a™) =275 Y 1{y" = ¢" (=™, u")}. (5)
uk

For the case in which R < H, the analysis in the paper!' (Egs. (35) and (36)) remains
valid, and the mutual information achieved by the scheme in this case still approaches its
optimum value n(H — R). This case is handled with high probability by the scheme ¢’
given in (2), since £° is a large deviations event in this case, as shown in Appendix A of the
paper.! To analyze the case R > H, according to the derivation of Eq. (34) in the paper,*
any channel that satisfies the following requirement asymptotically achieves the minimum

attainable mutual information whenever R > H: For a given (small) € > 0, let
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S={("y"): k>log|Tym| —log|Tym\yn| + ne}.



Then, for any (z™,y") € S,
(1 =27")W*(y"|z"™) < W(y"|z™) < (1 + 27" )W (y"[z™). (6)

While Lemma 1 in the paper! only guarantees the ezistence of such a channel, we
now prove that the concrete scheme ¢ given in (1) indeed induces a channel that satisfies
this condition. First, note that since Jy, is defined by lexicographic ordering, all |Tym\ym |
members of T,m that are prefixed by the same y” are enumerated consecutively. Thus,
due to the (roughly) uniform spacing between the possible sequences from which ¢(z™, u¥)
is obtained by truncation as u* exhausts {0,1}*, for |Tym| > 2¥, the number N(z™) of
key sequences u* for which J,,(z™) @ [f(u¥)|Tym|/2¥] is prefixed by y" is (within +1)
the ratio between |[Tym\yn| and the spacing |Tpm|/2%. For [Tpm| < 2%, in turn, every £
consecutive locations are selected 2¢£/|T,m| times as candidate output sequences (up to
integer truncation errors), so that N(z™) is in this case |Tym\y»| times 2k /| Tym |. Therefore,
in any case, N(z™) = 2*W*(y"|z") £ 1, and according to Eq. (5) we have W (y"|z") =
W*(y™|z™) £ 27, But for (z™,y") € S we have 2% < 27 "W*(y"|z™), and so Eq. (6)
indeed holds. Consequently, the scheme ¢* satisfies Condition C3 as claimed.

The addition of J,(z™) in (1) is aimed at preserving the probability law regardless of
inaccuracies in the implementation of the optimal channel W* due to key rate limitations.
If exact implementation of W* were possible, then it would not be necessary to introduce
additional randomness through X™ in order to satisfy Condition C2 and, for a given key
value, y™ would depend on z™ only through its type.

In an alternative setting, one can aim at an exact implementation of the channel with an
Elias decoder [1, pp. 479-482], using ideas from [2], and upper-bound the ezpected number
of random bits that are needed for the decoder to generate n output symbols, where the
expectation is with respect to the random key. Specifically,

n
W*(y"a™) = [[W*(wsly* ", 2™)
t=1
where
A |Tomy|

W*(yly™', ™) = ﬁ (7)
T™m\yt—

is clearly the fraction of sequences in Tym\ -1 that start with y:, and thus defines a prob-
ability distribution on the source alphabet. If P is the entire class of discrete memoryless
sources, then W*(-|y*~1, z™) is simply the empirical distribution defined by any sequence in

Tym\yt-1- Notice that the sequence of distributions {W*(-[y*~",2™)}{2, is precisely the one
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used by an enumerative decoder [3] that decodes a sequence y™ of a given type Tym. To
output y;, the Elias decoder is tuned to the distribution W*(-|y* !, 2™), and uses the key
as an input bitstream. As shown in [2], the expected number of key bits that the decoder
consumes to (sequentially) produce y™ is upper-bounded by the entropy of the distribution
W*(-|z™), plus 3 bits. The expected value of this upper bound (with respect to X™ and
Y™) is Elog |Tym|— E log | Tym\yn |+ 3, which is shown in the paper! to be nH + O(1) under
mild regularity assumptions. Note that the decoder may require an unbounded number of
random input bits. However, the probability that the scheme will fail to produce a sequence
y™ after processing k random bits, k > nH, decays with exponent —(k — nH). Thus, with
probability one it produces an output, although a hard limit on the key rate will in general
affect the exact preservation of the probability law if the randomness in X™ is not utilized.
An efficient implementation of this approach via arithmetic decoding, with a finite register
length [4], will cause additional deviations. The ezact enumeration in (1) and (2) addresses
these issues, at a complexity cost.

This discussion partially applies also to another paper on universal simulation [5], where
achievable rates where sought for maintaining probabilities of certain events corresponding
to a given set of statistical tests. If there is only one event, or a relatively small number
of events such that all members of each event (within the type class of ™) can be ordered
consecutively in the enumeration J,(z™) (which may not necessarily be lexicographic),
then the simulation algorithm proposed in (3) will give rise to good approximations of the
corresponding probabilities. However, there may not be an efficient enumeration algorithm,
in general, for an arbitrary set of events.

Our second comment is that this problem setting, in the case n = m, has an additional
application other than universal simulation, and this is in cryptography: Here, X™ plays
the role of the plaintext, U* is the secret key, and Y™ is the cryptogram. Minimizing the
mutual information I(X™;Y"™) corresponds to maximum equivocation H(X"|Y™), which is
the classical figure of merit of the cipher system. The fact that Y™ is of the same type class
as X™ (which is a necessary condition to maintain Condition C2), corresponds to encryption
based on a scrambling method.

Our third and last comment refers to a possible approach of relaxing Condition C2.
In [6], the main results of the classical (non—universal) simulation, were extended to relax
the requirement of vanishing distances between the probability distributions of the simu-

lated process and the desired process: For a given non-vanishing bound on this distance



(defined by several possible accuracy measures), the minimum rate of random bits required
is given by the rate-distortion function of the desired process, where the fidelity criterion
depends on the accuracy measure. Specifically, one possible distance measure between two
distributions P and P is Ornstein’s p distance, which is the minimum expected distortion
(1/n) 31, Ep(X;,Y;) among all joint distributions of (X™,Y™) with marginals P and P,
respectively, where p is a given distortion measure. In [6], it is shown that under certain
conditions, if the simulated process P is only required to be within p distance D from the
desired P, then the minimum key rate required is given by the rate—distortion function
R(D) of the source P with respect to p.

This finding has an analogue in the universal simulation problem, where now R(D)
(rather than H) becomes the critical key rate beyond which I(X™;Y")/n may vanish
when Y™ is distributed according to Py such that p(P, Py) < D. First, we claim that for
R < R(D) the normalized mutual information cannot be smaller than R(D)— R. This claim
follows from the fact that I(X™;Y") = H(Y") — H(Y"|X™), where H(Y"|X™) cannot
exceed k = nR, and H(Y"™) can be lower-bounded, following [6], by noticing that for any
Py such that p(P, Py) < D (with X™ governed by P and Y" governed by Py ), there exists
a distribution W (X™|Y™) such that (1/n) Y 1 | Ep(X;,Y;) < D, so that the corresponding
mutual information between X™ and Y™ is lower-bounded by nR(D) and therefore so is
H(Y™). It is also relatively easy to show convergence of the mutual information to zero
when R > R(D), as well as the above R(D) — R behavior for R < R(D), although it
appears to be much harder now to characterize the exact convergence rate of the mutual
information to zero for R > R(D). For example, when n = m, adapting ideas from [6] to
the universal setting, a universal simulation scheme could be based on a (universal) rate—
distortion codebook that covers Tyn. The (at least) n(R(D) + €) random key bits would
be used to select an index in the codebook according to the conditional probabilities of
the quantization cells induced by the code. The output would be the reproduction vector

corresponding to the selected index.
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