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Abstract

In continuation to earlier works where the problem of joint information embedding
and lossless compression (of the composite signal) was studied in the absence [9] and
in the presence [10] of attacks, here we consider the additional ingredient of protecting
the secrecy of the watermark against an unauthorized party, which has no access to a
secret key shared by the legitimate parties. In other words, we study the problem of
joint coding for three objectives: information embedding, compression, and encryption.
Our main result is a coding theorem that provides a single–letter characterization of the
best achievable tradeoffs among the following parameters: the distortion between the
composite signal and the covertext, the distortion in reconstructing the watermark by
the legitimate receiver, the compressibility of the composite signal (with and without
the key), and the equivocation of the watermark, as well as its reconstructed version,
given the composite signal. In the attack–free case, if the key is independent of the
covertext, this coding theorem gives rise to a threefold separation principle that tells
that asymptotically, for long block codes, no optimality is lost by first applying a rate–
distortion code to the watermark source, then encrypting the compressed codeword,
and finally, embedding it into the covertext using the embedding scheme of [9]. In the
more general case, however, this separation principle is no longer valid, as the key plays
an additional role of side information used by the embedding unit.

Index Terms: Information hiding, watermarking, encryption, data compression, sep-
aration principle, side information, equivocation, rate–distortion.
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1 Introduction

It is common to say that encryption and watermarking (or information hiding) are related

but they are substantially different in the sense that in the former, the goal is to protect

the secrecy of the contents of information, whereas in the latter, it is the very existence of

this information that is to be kept secret.

In the last few years, however, we are witnessing increasing efforts around the combina-

tion of encryption and watermarking, which is motivated by the desire to further enhance

the security of sensitive information that is being hidden in the host signal. This is to

guarantee that even if the watermark is somehow detected by a hostile party, its contents

still remain secure due to the encryption. This combination of watermarking and encryp-

tion can be seen both in recently reported research work (see, e.g., [1],[2],[6],[8],[14],[16] and

references therein) and in actual technologies used in commercial products with a copyright

protection framework, such as the CD and the DVD. Also, some commercial companies

that provide Internet documents, have in their websites links to copyright warning mes-

sages, saying that their data are protected by digitally encrypted watermarks (see, e.g.,

http://genealogy.lv/1864Lancaster/copyright.htm).

This paper is devoted to the information–theoretic aspects of joint watermarking and

encryption together with lossless compression of the composite signal that contains the

encrypted watermark. Specifically, we extend the framework studied in [9] and [10] of joint

watermarking and compression, so as to include encryption using a secret key. Before we

describe the setting of this paper concretely, we pause then to give some more detailed

background on the work reported in [9] and [10].

In [9], the following problem was studied: Given a covertext source vector Xn =

(X1, . . . ,Xn), generated by a discrete memoryless source (DMS), and a message m, uni-

formly distributed in {1, 2, . . . , 2nRe}, independently of Xn, with Re designating the embed-

ding rate, we wish to generate a composite (stegotext) vector Y n = (Y1, . . . , Yn) that satisfies

the following requirements: (i) Similarity to the covertext (for reasons of maintaining qual-

ity), in the sense that a distortion constraint, Ed(Xn, Y n) =
∑n

t=1 Ed(Xt, Yt) ≤ nD, holds,

(ii) compressibility (for reasons of saving storage space and bandwidth), in the sense that

the normalized entropy, H(Y n)/n, does not exceed some threshold Rc, and (iii) reliability

in decoding the message m from Y n, in the sense that the decoding error probability is ar-
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bitrarily small for large n. A single–letter characterization of the best achievable tradeoffs

among Rc, Re, and D was given in [9], and was shown to be achievable by an extension

of the ordinary lossy source coding theorem, giving rise to the existence of 2nRe disjoint

rate–distortion codebooks (one per each possible watermark message) as long as Re does

not exceed a certain fundamental limit. In [10], this setup was extended to include a given

memoryless attack channel, P (Zn|Y n), where item (iii) above was redefined such that the

decoding was based on Zn rather than on Y n, and where, in view of requirement (ii), it is

understood that the attacker has access to the compressed version of Y n, and so, the at-

tacker decompresses Y n before the attack and re–compresses it after. This extension from

[8] to [9] involved an different approach, which was in the spirit of the Gel’fand–Pinsker

coding theorem for a channel with non–causal side information (SI) at the transmitter [5].

The role of SI, in this case, was played by the covertext.

In this paper, we extend the settings of [9] and [10] to include encryption. For the sake

of clarity of the exposition, we do that in several steps.

In the first step, we extend the attack–free setting of [9]: In addition to including

encryption, we also extend the model of the watermark message source to be an arbitrary

DMS, U1, U2, . . ., independent of the covertext, and not necessarily a binary symmetric

source (BSS) as in [9] and [10]. Specifically, we now assume that the encoder has three inputs

(see Fig. 1): The covertext source vector, Xn, an independent (watermark) message source

vector UN = (U1, . . . , UN ), where N may differ from n if the two sources operate in different

rates, and a secret key (shared also with the legitimate decoder) Kn = (K1, . . . ,Kn), which,

for mathematical convenience, is assumed to operate at the same rate as the covertext. It

is assumed, at this stage, that Kn is independent of UN and Xn. Now, in addition to

requirements (i)-(iii), we impose a requirement on the equivocation of the message source

relative to an eavesdropper that has access to Y n, but not to Kn. Specifically, we would

like the normalized conditional entropy, H(UN |Y n)/N , to exceed a prescribed threshold, h

(e.g., h = H(U) for perfect secrecy). Our first result is a coding theorem that gives a set of

necessary and sufficient conditions, in terms of single–letter inequalities, such that a triple

(D,Rc, h) is achievable, while maintaining reliable reconstruction of UN at the legitimate

receiver.

A few words are now in order about the secrecy metric H(UN |Y n)/N , whose evident

weakness (even when h = H(U)) is that it does not rule out sublinear learning rates at
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the eavesdropper’s side. Notwithstanding this weakness, this secrecy metric has been used

in many other information–theoretic works on cryptography (see, e.g., [18],[19] and many

others). Perhaps a more natural criterion for security could be the distortion associated

with the best estimate that an eavesdropper can get from the cryptogram. Yamamoto [19]

has made an attempt to analyze such a criterion, but at the price of a gap between the upper

and lower bounds on achievable performance. One obvious fact is that an equivocation level

h guarantees that this distortion will be lower bounded by D(H(U)− h), where D(·) is the

distortion–rate function of the source {Ui}. So, equivocation and distortion are related in

the sense that a certain level of h guarantees a desirable distortion level. Another alternative

is the stronger notion of secrecy due to Maurer. However, it is considerably more difficult

to work with.

Returning to the present work, in the second step, we relax the requirement of perfect

(or almost perfect) watermark reconstruction, and assume that we are willing to tolerate a

certain distortion between the watermark message UN and its reconstructed version ÛN ,

that is, Ed′(UN , ÛN ) =
∑N

i=1 Ed′(Ui, Ûi) ≤ ND′. For example, if d′ is the Hamming dis-

tortion measure then D′, of course, designates the maximum allowable bit error probability

(as opposed to the block error probability requirement of [9] and [10]). Also, in this case,

it makes sense to impose a requirement regarding the equivocation of the reconstructed

message, ÛN , namely, H(ÛN |Y n)/N ≥ h′, for some prescribed constant h′. The rationale

is that it is ÛN , not UN , that is actually conveyed to the legitimate receiver, and hence

there is an incentive to protect the secrecy of ÛN . We will take into account both equiv-

ocation requirements, with the understanding that if one of them is superfluous, then the

corresponding threshold (h or h′ accordingly) can always be set to zero. Our second result

then extends the above–mentioned coding theorem to a single–letter characterization of

achievable quintuples (D,D′, Rc, h, h′). As will be seen, this coding theorem gives rise to

a threefold separation theorem, that separates, without asymptotic loss of optimality, be-

tween three stages: rate–distortion coding of UN , encryption of the compressed bitstream,

and finally, embedding the resulting encrypted version using the embedding scheme of [9].

The necessary and sufficient conditions related to the encryption are completely decoupled

from those of the embedding and the stegotext compression.

In the third and last step, we drop the assumption of an attack–free system and we

assume a given memoryless attack channel, in analogy to [10]. Again, referring to Fig. 1, it
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should be understood that the stegotext Y n is stored (or transmitted) in compressed form,

and that the attacker decompresses Y n before the attack and re–compresses after (the com-

pression and decompression units are omitted from the figure). As it will turn out, in the

case of a memoryless attack, there is an interaction between the encryption and the embed-

ding, even if the key is still assumed independent of the covertext. In particular, it will be

interesting to see that the key, in addition to its original role in encryption, serves also as

SI that is available to both encoder and decoder (see Fig. 2).1 Also, because of the depen-

dence between the key and the composite signal, and the fact that the content provider (at

the encoder side) may wish to store the compressed composite signal at its own end, it is

reasonable to let the compressibility constraint correspond also to the conditional entropy

of Y n given Kn, that is, private compression as opposed to the previously considered pub-

lic compression, without the key, which enables decompression but not decryption (when

these two operations are carried out by different, remote units). Accordingly, we will con-

sider both the conditional and the unconditional entropies of Y n, i.e., H(Y n)/n ≤ Rc and

H(Y n|Kn)/n ≤ R′
c. Our final result then is a coding theorem that provides a single–letter

characterization of the region of achievable six–tuples (D,D′, Rc, R
′
c, h, h′).

Interestingly, this characterization remains essentially unaltered even if there depen-

dency between Kn and Xn is introduced.2 In this context, the system designer confronts

an interesting dilemma regarding the desirable degree of statistical dependence between Kn

and Xn, which affects the dependence between Kn and Y n. On the one hand, strong depen-

dence can reduce the entropy of Y n given Kn (and thereby reduce R′
c), and can also help in

the embedding process: For example, the extreme case of Kn = Xn (which corresponds to

private watermarking since the decoder actually has access to the covertext) is particularly

interesting because in this case, for the Kn, there is no need for any external resources of

randomness, in addition to the randomness of Xn that is already available. On the other

hand, when there is strong dependence between Kn and Y n, the secrecy of the watermark

might be sacrificed since H(Kn|Y n) decreases as well. An interesting point, in this context,

is that the Slepian–Wolf encoder [15] (see Fig. 2) is used to generate, from Kn, random bits

that are essentially independent of Y n (as Y n is generated only after the encryption). All

1This idea of the double role of the secret key has been explored also in [7] in the context of compression
of encrypted data.

2In fact, the choice of the conditional distribution P (Kn|Xn) is a degree of freedom that can be optimized
subject to the given randomness resources.
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these aspects will be seen in detail in Section 4, and even more so, in Section 6.

The remaining parts of this paper are organized as follows: In Section 2, we set some

notation conventions. Section 3 will be devoted to a formal problem description and to

the presentation of the main result for the attack–free case with distortion–free watermark

reconstruction (first step described above). In Section 4, the setup and the results will

be extended along the lines of the second and the third steps, detailed above, i.e., a given

distortion level in the watermark reconstruction and the incorporation of an attack channel.

Finally, Sections 5 and 6 will be devoted to the proof of the last (and most general) version

of the coding theorem, with Section 5 focusing on the converse part, and Section 6 – on the

direct part.

2 Notation Conventions

We begin by establishing some notation conventions. Throughout this paper, scalar random

variables (RV’s) will be denoted by capital letters, their sample values will be denoted by

the respective lower case letters, and their alphabets will be denoted by the respective

calligraphic letters. A similar convention will apply to random vectors and their sample

values, which will be denoted with same symbols superscripted by the dimension. Thus,

for example, A` (` – positive integer) will denote a random `-vector (A1, ..., A`), and a` =

(a1, ..., a`) is a specific vector value in A`, the `-th Cartesian power of A. The notations

aj
i and Aj

i , where i and j are integers and i ≤ j, will designate segments (ai, . . . , aj) and

(Ai, . . . , Aj), respectively, where for i = 1, the subscript will be omitted (as above). For

i > j, aj
i (or Aj

i ) will be understood as the null string. Sequences without specifying indices

are denoted by {·}.

Sources and channels will be denoted generically by the letter P , or Q, subscripted by

the name of the RV and its conditioning, if applicable, e.g., PU (u) is the probability function

of U at the point U = u, PK|X(k|x) is the conditional probability of K = k given X = x,

and so on. Whenever clear from the context, these subscripts will be omitted. Information

theoretic quantities like entropies and mutual informations will be denoted following the

usual conventions of the information theory literature, e.g., H(UN ), I(Xn;Y n), and so on.

For single–letter information quantities (i.e., when n = 1 or N = 1), subscripts will be

omitted, e.g., H(U1) = H(U1) will be denoted by H(U), similarly, I(X1;Y 1) = I(X1;Y1)

will be denoted by I(X;Y ), and so on.
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3 Problem Definition and Main Result for Step 1

We now turn to the formal description of the model and the problem setting for step 1, as

described in the Introduction. A source PX , henceforth referred to as the covertext source or

the host source, generates a sequence of independent copies, {Xt}
∞
t=−∞, of a finite–alphabet

RV, X ∈ X . At the same time and independently, another source PU , henceforth referred to

as the message source, or the watermark source, generates a sequence of independent copies,

{Ui}
∞
i=−∞, of a finite–alphabet RV, U ∈ U . The relative rate between the message source

and the covertext source is λ message symbols per covertext symbol. This means that while

the covertext source generates a block of n symbols, say, Xn = (X1, . . . ,Xn), the message

source generates a block of N = λn symbols, UN = (U1, . . . , UN ) (assuming, without

essential loss of generality, that λn is a positive integer). In addition to the covertext source

and the message source, yet another source, PK , henceforth referred to as the key source,

generates a sequence of independent copies, {Kt}
∞
t=−∞, of a finite–alphabet RV, K ∈ K,

independently3 of both {Xt} and {Ui}. The key source is assumed to operate at the same

rate as the covertext source, that is, while the covertext source generates the block Xn of

length n, the key source generates a block of n symbols as well, Kn = (K1, . . . ,Kn). As the

probability distribution PK of the key source is given, its entropy H(K) is dictated. The

entropy H(K) has a dual meaning: It refers both to the available amount of randomness

resources, and to the rate at which Kn should be conveyed to the legitimate decoder (i.e.,

the capacity of the secure channel in between [11]).

Given n and λ, a block code for joint watermarking, encryption, and compression is

a mapping fn : UN × X n × Kn → Yn, N = λn, whose output yn = (y1, . . . , yn) =

fn(uN , xn, kn) ∈ Yn is referred to as the stegotext or the composite signal, and accord-

ingly, the finite alphabet Y is referred to as the stegotext alphabet. Let d : X × Y → IR+

denote a single–letter distortion measure between covertext symbols and stegotext symbols,

and let the distortion between the vectors, xn ∈ X n and yn ∈ Yn, be defined additively

across the corresponding components, as usual.

An (n, λ,D,Rc, h, δ) code is a block code for joint watermarking, encryption, and com-

pression, with parameters n and λ, that satisfies the following requirements:

3The assumption of independence between {Kt} and {Xt} is temporary and made now primarily for the
sake of simplicity of the exposition. It will be dropped later on.
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1. The expected distortion between the covertext and the stegotext satisfies

n
∑

t=1

Ed(Xt, Yt) ≤ nD. (1)

2. The entropy of the stegotext satisfies

H(Y n) ≤ nRc. (2)

3. The equivocation of the message source satisfies

H(UN |Y n) ≥ Nh. (3)

4. There exists a decoder gn : Yn ×Kn → UN such that

Pe
∆
= Pr{gn(Y n,Kn) 6= UN} ≤ δ. (4)

For a given λ, a triple (D,Rc, h) is said to be achievable if for every ε > 0, there is a

sufficiently large n for which (n, λ,D + ε,Rc + ε, h− ε, ε) codes exist. The achievable region

of triples (D,Rc, h) is the set of all achievable triples (D,Rc, h). For simplicity, it is assumed4

that H(K) ≤ λH(U) as this upper limit on H(K) suffices to achieve perfect secrecy.

Our first coding theorem is the following:

Theorem 1 A triple (D,Rc, h) is achievable if and only if the following conditions are both

satisfied:

(a) h ≤ H(K)/λ.

(b) There exists a channel {PY |X(y|x), x ∈ X , y ∈ Y} such that: (i) H(Y |X) ≥ λH(U),

(ii) Rc ≥ λH(U) + I(X;Y ), and (iii) D ≥ Ed(X,Y ).

As can be seen, the encryption, on the one hand, and the embedding and the com-

pression, on the other hand, do not interact at all in this theorem. There is a complete

decoupling between them: While condition (a) refers solely to the key and the secrecy of

the watermark, condition (b) is only about the embedding–compression part, and it is a

replica of the conditions of the coding theorem in [9], where the role of the embedding rate,

Re (see Introduction above), is played by the product λH(U). This suggests a very simple

4At the end of Section 4 (after Theorem 4), we discuss the case where this limitation (or its analogue in
lossy reconstruction of UN ) is dropped.
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separation principle, telling that in order to attain a given achievable triple (D,Rc, h), first

compress the watermark UN to its entropy, then encrypt Nh bits (out of the NH(U)) of

the compressed bit–string (by bit–by–bit XORing with the same number of compressed key

bits), and finally, embed this partially encrypted compressed bit–string into the covertext,

using the coding theorem of [9] (again, see the Introduction above for a brief description of

this).

4 Extensions to Steps 2 and 3

Moving on to Step 2, we now relax requirement no. 4 in the above definition of an (n, λ,D,Rc, h, δ)

code, and allow a certain distortion between UN and its reconstruction ÛN at the legit-

imate decoder. More precisely, let Û denote a finite alphabet, henceforth referred to as

the message reconstruction alphabet. Let d′ : U × Û → IR+ denote a single–letter distor-

tion measure between message symbols and message reconstruction symbols, and let the

distortion between vectors uN ∈ UN and ûN ∈ ÛN be again, defined additively across the

corresponding components. Finally, let RU (D′) denote the rate–distortion function of the

source PU w.r.t. d′, i.e.,

RU (D′) = min{I(U ; Û ) : Ed′(U, Û) ≤ D′}. (5)

It will now be assumed that H(K) ≤ λRU (D′), for the same reasoning as before.

Requirement no. 4 is now replaced by the following requirement: There exists a decoder

gn : Yn ×Kn → ÛN such that ÛN = (Û1, . . . , ÛN ) = gn(Y n,Kn) satisfies:

N
∑

i=1

Ed′(Ui, Ûi) ≤ ND′. (6)

In addition to this modification of requirement no. 4, we add, to requirement no. 3, a

specification regarding the minimum allowed equivocation w.r.t. the reconstructed message:

H(ÛN |Y n) ≥ Nh′, (7)

in order to guarantee that the secrecy of the reconstructed message is also secure enough.

Accordingly, we modify the above definition of a block code as follows: An (n, λ,D,D′, Rc, h, h′)

code is a block code for joint watermarking, encryption, and compression with parameters

n and λ that satisfies requirements 1–4, with the above modifications of requirements 3 and
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4. For a given λ, a quintuple (D,D′, Rc, h, h′) is said to be achievable if for every ε > 0,

there is a sufficiently large n for which (n, λ,D + ε,D′ + ε,Rc + ε, h − ε, h′ − ε) codes exist.

Our second theorem extends Theorem 1 to this setting:

Theorem 2 A quintuple (D,D′, Rc, h, h′) is achievable if and only if the following condi-

tions are all satisfied:

(a) h ≤ H(K)/λ + H(U) − RU (D′).

(b) h′ ≤ H(K)/λ.

(c) There exists a channel {PY |X(y|x), x ∈ X , y ∈ Y} such that: (i) λRU (D′) ≤ H(Y |X),

(ii) Rc ≥ λRU (D′) + I(X;Y ), and (iii) D ≥ Ed(X,Y ).

As can be seen, the passage from Theorem 1 to Theorem 2 includes the following modifi-

cations: In condition (c), H(U) is simply replaced by RU (D′) as expected. This means that

the lossless compression code of UN , in the achievability of Theorem 1, is now replaced by a

rate–distortion code for distortion level D′. Conditions (a) and (b) now tell us that the key

rate (in terms of entropy) should be sufficiently large to satisfy both equivocation require-

ments. Note that the condition regarding the equivocation w.r.t. the clean message source

is softer than in Theorem 1 as H(U) − RU (D′) ≥ 0. This is because the rate–distortion

code for UN already introduces an uncertainty of H(U)−RU (D′) bits per symbol, and so,

the encryption should only complete it to the desired level of h bits per symbol. This point

is discussed in depth in [19]. Of course, by setting D′ = 0 (and hence also h′ = h), we are

back to Theorem 1.

We also observe that the encryption and the embedding are still decoupled in Theorem

2, and that an achievable quintuple can still be attained by separation: First, apply a rate–

distortion code to UN , as mentioned earlier, then encrypt N ·max{h + RU (D′)−H(U), h′}

bits of the compressed codeword (to satisfy both equivocation requirements), and finally,

embed the (partially) encrypted codeword into Xn, again, by using the scheme of [9]. Note

that without the encryption and without requirement no. 2 of the compressibility of Y n,

this separation principle is a special case of the one in [12], where a separation theorem

was established for the Wyner–Ziv source (with SI correlated to the source at the decoder)

and the Gel’fand–Pinsker channel (with channel SI at the encoder). Here, there is no SI

correlated to the source and the role of channel SI is fulfilled by the covertext. Thus, the
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new observation here is that the separation theorem continues to hold in the presence of

encryption and requirement no. 2.

Finally, we turn to step 3, of including an attack channel (see Fig. 1). Let Z be a finite

alphabet, henceforth referred to as the forgery alphabet, and let {PZ|Y (z|y), y ∈ Y, z ∈ Z}

denote a set of conditional PMF’s from the stegotext alphabet to the forgery alphabet. We

now assume that the stegotext vector is subjected to an attack modelled by the memoryless

channel,

PZn|Y n(zn|yn) =

n
∏

t=1

PZ|Y (zt|yt). (8)

The output Zn of the attack channel will henceforth be referred to as the forgery.

It is now assumed and that the legitimate decoder has access to Zn, rather than Y n (in

addition, of course, to Kn). Thus, in requirement no. 4, the decoder is redefined again, this

time, as a mapping gn : Zn ×Kn → ÛN such that ÛN = gn(Zn,Kn) satisfies the distortion

constraint (6). As for the equivocation requirements, the conditioning will now be on both

Y n and Zn, i.e.,

H(UN |Y n, Zn) ≥ Nh and H(ÛN |Y n, Zn) ≥ Nh′, (9)

as if the attacker and the eavesdropper are the same party (or if they cooperate), then s/he

may access both. In fact, for the equivocation of UN , the conditioning on Zn is immaterial

since UN → Y n → Zn is always a Markov chain, but it is not clear that Zn is superfluous

for the equivocation w.r.t. ÛN since Zn is one of the inputs to the decoder whose output

is ÛN . Nonetheless, for the sake of uniformity and convenience (in the proof), we keep the

conditioning on Zn in both equivocation criteria.

Redefining block codes and achievable quintuples (D,D′, RC , h, h′) according to the

modified requirements in the same spirit, we now have the following coding theorem, which

is substantially different from Theorems 1 and 2:

Theorem 3 A quintuple (D,D′, Rc, h, h′) is achievable if and only if there exist RV’s V

and Y such that PKXV Y Z(k, x, v, y, z) = PX(x)PK(k)PV Y |KX(v, y|k, x)PZ|Y (z|y), where the

alphabet size of V is bounded by |V| ≤ |K|·|X |·|Y|+1, and such that the following conditions

are all satisfied:

(a) h ≤ H(K|Y )/λ + H(U) − RU (D′).

(b) h′ ≤ H(K|Y )/λ.
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(c) λRU (D′) ≤ I(V ;Z|K) − I(V ;X|K).

(d) Rc ≥ λRU (D′) + I(X;Y, V |K) + I(K;Y ).

(e) D ≥ Ed(X,Y ).

First, observe that here, unlike in Theorems 1 and 2, it is no longer true that the

encryption and the embedding (along with stegotext compression) are decoupled, yet the

rate–distortion compression of UN is still separate and decoupled from both. In other words,

the separation principle applies here in a partial manner only. Note that now, although K

is still assumed independent of X, it may, in general, depend on Y . On the negative side,

this dependence causes a reduction in the equivocation of both the message source and

its reconstruction, and therefore H(K|Y ) replaces H(K) in conditions (a) and (b). On

the positive side, on the other hand, this dependence introduces new degrees of freedom

in enhancing the tradeoffs between the embedding performance (condition (c)) and the

compressibility (condition (d)).

The achievability of Theorem 3 involves essentially the same stages as before (rate–

distortion coding of UN , followed by encryption, followed in turn by embedding), but this

time, the embedding scheme is a conditional version of the one proposed in [10], where

all codebooks depend on Kn, the SI given at both ends (see Fig. 2). An interesting point

regarding the encryption is that one needs to generate, from Kn, essentially nH(K|Y )

random bits that are independent of Y n (and Zn), in order to protect the secrecy against an

eavesdropper that observes Y n and Zn. Clearly, if Y n was given in advance to the encrypting

unit, then the compressed bitstring of an optimal lossless source code that compresses Kn,

given Y n as SI, would have this property (as if there was any dependence, then this bitstring

could have been further compressed, which is a contradiction). However, such a source code

cannot be implemented since Y n itself is generated from the encrypted message, i.e., after

the encryption. In other words, this would have required a circular mechanism, which may

not be feasible. A simple remedy is then to use a Slepian–Wolf encoder [15], that generates

nH(K|Y ) bits that are essentially independent of Y n (due to the same consideration),

without the need to access the vector Y n to be generated. For more details, the reader is

referred to the proof of the direct part (Section 6).

Observe that in the absence of attack (i.e., Z = Y ), Theorem 2 is obtained as a special

case of Theorem 3 by choosing V = Y and letting both be independent of K, a choice
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which is simultaneously the best for conditions (a)–(d) of Theorem 3. To see this, note the

following simple inequalities: In conditions (a) and (b), H(K|Y ) ≤ H(K). In condition (c),

by setting Z = Y , we have

I(V ;Y |K) − I(V ;X|K) ≤ I(V ;X,Y |K) − I(V ;X|K)

= I(V ;Y |X,K)

≤ H(Y |X,K)

≤ H(Y |X). (10)

Finally in condition (d), clearly, I(K;Y ) ≥ 0 and since X is independent of K, then

I(X;Y, V |K) = I(X;Y, V,K) ≥ I(X;Y ). Thus, for Z = Y , the achievable region of

Theorem 3 is a subset of the one given in Theorem 2. However, since all these inequalities

become equalities at the same time by choosing V = Y and letting both be independent of

K, the two regions are identical in the attack–free case.

Returning now to Theorem 3, as we observed, Kn is now involved not only in the role of

a cipher key, but also as SI available at both encoder and decoder. Two important points

are now in order, in view of this fact.

First, one may argue that, actually, there is no real reason to assume that Kn is necessar-

ily independent of Xn. The idea of dropping this independence assumption was suggested

also earlier in [13]. In this situation, it is more plausible to think of Kn in the spirit of

its new role, namely, as (synthetic) side information, rather than in its original role, i.e.,

strictly as a cryptographic key (which is normally assumed to be an independent source

of randomness at a certain rate), although Kn is still used in order to protect the secrecy

of UN and ÛN . The idea then is as follows: If the user has control of the mechanism of

generating Kn, then s/he might implement, in general, a channel PKn|Xn(kn|xn) by using

the available independent randomness resources,5 taking advantage of the randomness of

the covertext. This can be done by using the notion of channel simulation (see, e.g., [17]).

Let us assume that this channel is stationary and memoryless, i.e.,

PKn|Xn(kn|xn) =
n
∏

t=1

PK|X(kt|xt) (11)

with the single–letter transition probabilities {PK|X(k|x) x ∈ X , k ∈ K} left as a de-

gree of freedom for design. Given the covertext Xn, one generates Kn using this channel,

5These randomness resources are, in fact, purely random, independent bits, which can now be redefined
as our secret “key”, in the original meaning of this term.
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and then Kn is shared with the legitimate decoder.6 While so far, we assumed that Kn

was independent of Xn, the other extreme is, of course, Kn = Xn (corresponding to pri-

vate watermarking). Note, however, that in the attack–free case, in the absence of the

compressibility requirement no. 2 (say, Rc = ∞), no optimality is lost by assuming that

Kn is independent of Xn, since the only inequality where we have used the independence

assumption, in the previous paragraph, corresponds to condition (d).

The second point is that in Theorems 1–3, so far, we have defined the compressibility

of the stegotext in terms of H(Y n), which is suitable when the decompression of Y n is

public, i.e., without access to Kn. However, since the content provider may wish to store

the stegotext Y n (in the presence of Kn) for possible future use, it may make sense to

measure the compressibility of the stegotext also in a private regime, i.e., in terms of the

conditional entropy, H(Y n|Kn).

Our last (and most general) version of the coding theorem below takes these two points

in to account. Specifically, let us impose, in requirement no. 2, an additional inequality,

H(Y n|Kn) ≤ nR′
c, (12)

where R′
c is a prescribed constant, and let us redefine accordingly the block codes and the

achievable region in terms of six–tuples (D,D′, Rc, R
′
c, h, h′). We now have the following

result:

Theorem 4 A six–tuple (D,D′, Rc, R
′
c, h, h′) is achievable if and only if there exist RV’s V

and Y such that PKXV Y Z(k, x, v, y, z) = PXK(x, k)PV Y |KX(v, y|k, x)PZ|Y (z|y), where the

alphabet size of V is bounded by |V| ≤ |K|·|X |·|Y|+1, and such that the following conditions

are all satisfied:

(a) h ≤ H(K|Y )/λ + H(U) − RU (D′).

(b) h′ ≤ H(K|Y )/λ.

(c) λRU (D′) ≤ I(V ;Z|K) − I(V ;X|K).

(d) Rc ≥ λRU (D′) + I(X;Y, V |K) + I(K;Y ).

6Note that now there is a distinction between the required available randomness rate, which is
H(Kn|Xn)/n = H(K|X) [17], and the rate at which the key must be conveyed to the legitimate decoder,
which remains H(K) (as the decoder has no access to Xn). This is in contrast to the case of independence
between Kn and Xn, where these two parameters coincide.
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(e) R′
c ≥ λRU (D′) + I(X;Y, V |K).

(f) D ≥ Ed(X,Y ).

Note that the additional condition, (e), is similar to condition (d) except for the term

I(K;Y ). Also, in the joint PMF of (K,X, V, Y, Z) we are no longer assuming that K and

X are independent. It should be pointed out that in the presence of the new requirement

regarding H(Y n|Kn), it is more clear now that introducing dependence of (V, Y ) upon

K is reasonable, in general. In the case K = X, that was mentioned earlier, the term

I(V ;X|K), in condition (c), and the term I(X;Y, V |K), in conditions (d) and (e), both

vanish. Thus, both embedding performance and compression performance improve, like in

private watermarking.

Finally, a comment is in order regarding the assumption H(K) ≤ λRU (D′), which

implies that H(K|Y ) cannot exceed λRU (D′) either. If this assumption is removed, and

even H(K|Y ) is allowed to exceed λRU (D′), then Theorem 4 can be somewhat further

extended. While h cannot be further improved if H(K|Y ) is allowed to exceed λRU (D′)

(as it already reaches the maximum possible value, h = H(U), for H(K|Y ) = λRU (D′)), it

turns out that there is still room for improvement in h′. Suppose that instead of one rate–

distortion codebook for UN , we have many disjoint codebooks. In fact, it has been shown

in [9] that there are exponentially 2NH(Û |U) disjoint codebooks, each covering the set of

typical source sequences by jointly typical codewords. Now, if H(K|Y ) > λRU (D′), we can

use the T = nH(K|Y )−NRU (D′) excess bits of the compressed key (beyond the NRU (D′)

bits that are used to encrypt the binary of representation of ÛN ), so as to select one of 2T

codebooks (as long as T < NH(Û |U)), and thus reach a total equivocation of nH(K|Y ) as

long as nH(K|Y ) ≤ NH(Û), or equivalently, H(K|Y ) ≤ λH(Û ). The equivocation level

h′ = H(Û) is now the “saturation value” that cannot be further improved (in analogy to

h = H(U) for the original source). This means that condition (b) of Theorem 4 would now

be replaced by the condition

h′ ≤ min{H(Û ),H(K|Y )/λ}. (13)

But with this condition, it is no longer clear that the best test channel for lossy compression

of UN is the one that achieves RU (D′), because for the above modified version of condition

(b), it would be best to have H(Û) as large as possible (as long as it is below H(K|Y )/λ),
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which is in partial conflict with the minimization of I(U ; Û) that leads to RU (D′). Therefore,

a restatement of Theorem 4 would require the existence of a channel {P
Û |U (û|u), u ∈ U , û ∈

Û} (in addition to the existing requirement of a channel PV Y |KX), such that the random

variable Û takes now part in the compromise among all criteria of the problem. This means

that in conditions (a),(c),(d), and (e) of Theorem 4, RU (D′) should be replaced by I(U ; Û),

and there would be an additional condition (g): Ed′(U, Û) ≤ D′. Condition (a), in view of

the earlier discussion above, would now be of the form:

h ≤ min{H(U),H(K|Y )/λ + H(U) − I(U ; Û)} ≡ H(U) − [I(U ; Û ) − H(K|Y )/λ]+, (14)

where [z]+
∆
= max{0, z}. Of course, under the assumption H(K) ≤ λRU (D′), that we have

used thus far,

H(Û) ≥ I(U ; Û ) ≥ RU (D′) ≥ H(K)/λ ≥ H(K|Y )/λ, (15)

in other words, min{H(Û ),H(K|Y )/λ} is always attained by H(K|Y )/λ, and so, the depen-

dence on H(Û) disappears, which means that the best choice of Û (for all other conditions)

is back to be the one that minimizes I(U ; Û ), which gives us Theorem 4 as is.

It is interesting to point out that this additional extension gives rise to yet another

step in the direction of invalidating the separation principle: While in Theorem 4 only the

encryption and the embedding interacted, yet the rate–distortion coding of UN was still

independent of all other ingredients of the system, here even this is no longer true, as the

choice of the test channel P
Û |U takes into account also compromises that are associated

with the encryption and the embedding.

Note that this discussion applies also to the classical joint source–channel coding, where

there is no embedding at all: In this case, X is a degenerate RV (say, X ≡ 0, if 0 ∈ X ),

and so, the mutual information terms depending on X in conditions (c), (d) and (e), all

vanish, the best choice of V is V = Y (thus, the r.h.s in condition (c) becomes the capacity

of the channel PZ|Y with K as SI at both ends), and condition (f) may be interpreted as

a (generalized) power constraint (with power function φ(y) = d(0, y)). Nonetheless, the

new versions of conditions (a) and (b) remain the same as in eqs. (13) and (14). This is

to say that the violation of the separation principle occurs even in the classical model of a

communication system, once security becomes an issue and one is interested in the security

of the reconstructed source.
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5 Proof of the Converse Part of Theorem 4

Let an (n, λ,D + ε,D′ + ε,Rc + ε,R′
c + ε, h − ε, h′ − ε) code be given. First, from the

requirement H(Y n|Kn) ≤ n(R′
c + ε), we have:

n(R′
c + ε) ≥ H(Y n|Kn) (16)

= H(Y n|UN ,Kn) + I(UN ;Y n|Kn)

≥ H(Y n|UN ,Kn) + I(UN ;Zn|Kn)

= H(Y n|UN ,Kn) + I(UN ;Zn,Kn) (17)

where the second inequality comes from the data processing theorem (UN → Y n → Zn is a

Markov chain given Kn) and the last equality comes from the chain rule and the fact that

UN and Kn are independent. Define Ṽt = (Xn
t+1, U

N ,Kt−1, Zt−1), J – as a uniform RV

over {1, . . . , n}, X = XJ , K = KJ , Y = YJ , V ′ = ṼJ , and V = (ṼJ , J) = (V ′, J). Now,

the first term on the right–most side of eq. (17) is further lower bounded in the following

manner.

H(Y n|UN ,Kn) ≥ I(Xn;Y n|UN ,Kn)

= I(Xn;Y n, UN ,Kn) − I(Xn;UN ,Kn)

=
n
∑

t=1

I(Xt;Y
n, UN ,Kn|Xn

t+1) − I(Xn;Kn) (18)

=

n
∑

t=1

I(Xt;Y
n, UN ,Kn,Xn

t+1) − nI(X;K) (19)

≥

n
∑

t=1

I(Xt;Kt, Yt, U
N ,Kt−1, Zt−1,Xn

t+1) − nI(X;K) (20)

=
n
∑

t=1

I(Xt;Kt, Yt, Ṽt) − nI(X;K)

= n[I(X;K,Y, V ′|J) − I(X;K)]

= n[I(X;K,Y, V ′, J) − I(X;K)] (21)

= nI(X;Y, V |K) (22)

where (18) is due to the chain rule and fact that (Xn,Kn) is independent of UN (hence

UN → Kn → Xn is trivially a Markov chain), (19) is due to the memorylessness of

{(Xt,Kt)}, (20) is due to the data processing theorem, and (21) follows from the fact

that {Xt} is stationary and so, X = XJ is independent of J . The second term on the
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right–most side of eq. (17) is in turn lower bounded following essentially the same ideas as

in the proof of the converse to the rate–distortion coding theorem (see, e.g., [3]):

I(UN ;Zn,Kn) = H(UN ) − H(UN |Zn,Kn)

=

N
∑

i=1

[H(Ui) − H(Ui|U
i−1, Zn,Kn)]

=

N
∑

i=1

I(Ui;U
i−1, Zn,Kn)

≥

N
∑

i=1

I(Ui; [gn(Zn,Kn)]i)

≥

N
∑

i=1

RU (Ed′(Ui, [gn(Zn,Kn)]i))

≥ NRU

(

1

N

N
∑

i=1

Ed′(Ui, [gn(Zn,Kn)]i)

)

≥ NRU (D′ + ε), (23)

where [gn(Zn,Kn)]i denotes the i-th component projection of gn(Zn,Kn), i.e., Ûi as a

function of (Zn,Kn). Combining eqs. (17), (22), and (23), we get

n(R′
c + ε) ≥ NRU (D′ + ε) + nI(X;Y, V |K). (24)

Dividing by n, we get

R′
c + ε ≥ λRU (D′ + ε) + I(X;Y, V |K). (25)

Using the arbitrariness of ε together with the continuity of RU (·), we get condition (e) of

Theorem 4.

Condition (d) is derived in the very same manner except that the starting point is the

inequality n(Rc + ε) ≥ H(Y n), and when H(Y n) is further bounded from below, in analogy

to the chain of inequalities (17), there is an additional term, I(Kn;Y n), that is in turn

lower bounded in the following manner:

I(Kn;Y n) ≥

n
∑

t=1

I(Kt;Yt)

= nI(K;Y |J)

= n[H(K|J) − H(K|J, Y )]

≥ n[H(K) − H(K|Y )]

= nI(K;Y ), (26)
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where the first inequality is because of the memorylessness of {Kt}, and the second inequal-

ity comes from the facts that conditioning reduces entropy (in the second term) and that

K is independent of J (again, due to the stationarity of {Kt}). This gives the additional

term, I(K;Y ), in condition (d).

Condition (c) is obtained as follows:

NRU (D′ + ε) ≤ I(UN ;Kn, Zn)

= I(UN ;Kn, Zn) − I(UN ;Kn,Xn)

≤
n
∑

t=1

[I(Ṽt;Kt, Zt) − I(Ṽt;Kt,Xt)] (27)

= n[I(V ′;K,Z|J) − I(V ′;K,X|J)]

≤ n[I(V ′, J ;K,Z) − I(V ′, J ;K,X)] (28)

= n[I(V ;K,Z) − I(V ;K,X)]

= n[I(V ;Z|K) − I(V ;X|K)], (29)

where the first inequality is (23), the first equality is due to the independence between UN

and (Kn,Xn), the second inequality is an application of [5, Lemma 4], the third inequality

is due to the fact that I(K,Z;J) ≥ 0 and I(K,X;J) = 0 (due to the stationarity of

{(Kt,Xt)}), and the last equality is obtained by adding and subtracting I(V ;K). Again,

since this is true for every ε > 0, it holds also for ε = 0, due to continuity.

As for condition (f), we have:

D + ε ≥
1

n

n
∑

t=1

Ed(Xt, Yt) = Ed(X,Y ), (30)
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and we use once again the arbitrariness of ε. Regarding condition (b), we have:

nH(K|Y ) ≥ nH(K|Y, J)

=
n
∑

t=1

H(Kt|Yt)

≥

n
∑

t=1

H(Kt|K
t−1, Y n)

= H(Kn|Y n)

= H(Kn|Y n, Zn)

≥ I(Kn; ÛN |Y n, Zn)

= H(ÛN |Y n, Zn) − H(ÛN |Y n, Zn,Kn)

= H(ÛN |Y n, Zn)

≥ N(h′ − ε), (31)

where the last equality is due to the fact that ÛN is, by definition, a function of (Zn,Kn),

and the last inequality is by the hypothesis that the code achieves an equivocation of at

least N(h′ − ε). Dividing by N and taking the limit ε → 0, leads to h′ ≤ H(K|Y )/λ,

which is condition (b). Finally, to prove condition (a), consider the inequality nH(K|Y ) ≥

H(ÛN |Y n, Zn), that we have just proved, and proceed as follows (see also [19]):

nH(K|Y ) ≥ H(ÛN |Y n, Zn)

≥ H(ÛN |Y n, Zn) + N(h − ε) − H(UN |Y n, Zn)

= N(h − ε) − H(UN ) + I(UN ;Y n, Zn) −

I(ÛN ;Y n, Zn) + I(ÛN ;UN ) + H(ÛN |UN )

≥ N [h − ε − H(U) + RU (D′ + ε)] +

[I(UN ;Y n, Zn) − I(ÛN ;Y n, Zn) + H(ÛN |UN )], (32)

where the second inequality follows from the hypothesis that the code satisfies H(UN |Y n, Zn) ≥

N(h − ε), and the third inequality is due to the memorylessness of {Ui}, the hypothesis

that
∑N

i=1 Ed′(Ui, Ûi) ≤ N(D′+ ε), and the converse to the rate–distortion coding theorem.

Now, to see that the second bracketed term is non–negative, we have the following chain of

20



inequalities:

I(UN ;Y n, Zn) − I(ÛN ;Y n, Zn) + H(ÛN |UN )

= I(UN ;Y n, Zn) − H(Y n, Zn) + H(Y n, Zn|ÛN ) + H(ÛN |UN )

≥ I(UN ;Y n, Zn) − H(Y n, Zn) + H(Y n, Zn|UN , ÛN ) + H(ÛN |UN )

= I(UN ;Y n, Zn) − H(Y n, Zn) + H(Y n, Zn, ÛN |UN )

≥ I(UN ;Y n, Zn) − H(Y n, Zn) + H(Y n, Zn|UN )

= 0. (33)

Combining this with eq. (32), we have

nH(K|Y ) ≥ N [h − ε − H(U) + RU (D′ + ε)]. (34)

Dividing again by N , and letting ε vanish, we obtain h ≤ H(K|Y )/λ + H(U) − RU (D′),

which completes the proof of condition (a).

To complete the proof of the converse part, it remains to show that the alphabet size

of V can be reduced to |K| · |X | · |Y| + 1. To this end, we extend the proof of the parallel

argument in [10] by using the support lemma (cf. [4]), which is based on Carathéodory’s

theorem. According to this lemma, given J real valued continuous functionals fj, j = 1, ..., J

on the set P(X ) of probability distributions over the alphabets X , and given any probability

measure µ on the Borel σ-algebra of P(X ), there exist J elements Q1, ..., QJ of P(X ) and

J non-negative reals, α1, ..., αJ , such that
∑J

j=1 αj = 1 and for every j = 1, ..., J

∫

P(X )
fj(Q)µ(dQ) =

J
∑

i=1

αifj(Qi). (35)

Before we actually apply the support lemma, we first rewrite the relevant mutual informa-

tions of Theorem 4 in a more convenient form for the use of this lemma. First, observe

that

I(V ;Z|K) − I(V ;X|K) = H(Z|K) − H(Z|V,K) − H(X|K) + H(X|V,K)

= H(Z|K) − H(X|K) + H(K,X|V ) − H(K,Z|V ). (36)
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and

I(X;Y, V |K) = I(X;V |K) + I(X;Y |V,K) (37)

= H(X|K) − H(X|V,K) + H(X|V,K) − H(X|V, Y,K)

= H(X|K) − H(X|V, Y,K)

= H(X|K) − H(K,X, Y |V ) + H(K,Y |V ). (38)

For a given joint distribution of (K,X, Y ), and given PZ|Y , H(Z|K) and H(X|K) are both

given and unaffected by V . Therefore, in order to preserve prescribed values of I(V ;Z|K)−

I(V ;X|K) and I(X;V, Y |K), it is sufficient to preserve the associated values H(K,X|V )−

H(K,Z|V ) and H(K,X, Y |V ) − H(K,Y |V ). Let us define then the following functionals

of a generic distribution Q over K × X × Y, where K × X × Y is assumed, without loss of

generality, to be {1, 2, ...,m}, m = |K| · |X | · |Y|:

fi(Q) = Q(k, x, y), i
∆
= (k, x, y) = 1, ...,m − 1 (39)

fm(Q) =
∑

k,x,y

Q(k, x, y)
∑

z

PZ|Y (z|y) log

∑

x,y Q(k, x, y)PZ|Y (z|y)

Q(k, x)
. (40)

Next define

fm+1(Q) =
∑

k,x,y

Q(k, x, y) log
Q(k, y)

Q(k, x, y)
. (41)

Applying now the support lemma, we find that there exists a random variable V (jointly

distributed with (K,X, Y )), whose alphabet size is |V| = m + 1 = |K| · |X | · |Y| + 1 and it

satisfies simultaneously:

∑

v

Pr{V = v}fi(P (·|v)) = PKXY (k, x, y), i = 1, ...,m − 1, (42)

∑

v

Pr{V = v}fm(P (·|v)) = H(K,X|V ) − H(K,Z|V ), (43)

and

∑

u

Pr{V = v}fm+1(P (·|v)) = H(K,X, Y |V ) − H(K,Y |V ). (44)

It should be pointed out that this random variable maintains the prescribed distortion

level Ed(X,Y ) since PXY is preserved. By the same token, H(K|Y ) and I(K;Y ), which

depend only on PKY , are preserved as well. This completes the proof of the converse part

of Theorem 4.
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6 Proof of the Direct Part of Theorem 4

In this section, we show that if there exist RV’s (V, Y ) that satisfy the conditions of Theorem

4, then for every ε > 0, there is a sufficiently large n for which (n, λ,D+ε,D′+ε,Rc+ε,R′
c+

ε, h − ε, h′ − ε) codes exist. One part of the proof is strongly based on a straightforward

extension of the proof of the direct part of [10] to the case of additional SI present at both

encoder and decoder. Nonetheless, for the sake of completeness, the full details are provided

here. It should be pointed out that for the attack–free case, an analogous extension can

easily be offered to the direct part of [9].

We first digress to establish some additional notation conventions associated with the

method of types [4]. For a given generic finite–alphabet random variable (RV) A ∈ A (or

a vector of RV’s taking on values in A), and a vector a` ∈ A` (` – positive integer), the

empirical probability mass function (EPMF) is a vector Pa` = {Pa`(a′), a′ ∈ A}, where

Pa`(a′) is the relative frequency of the letter a′ ∈ A in the vector a`. Given δ > 0, let

us denote the set of all δ-typical sequences of length ` by T δ
PA

, or by T δ
A (if there is no

ambiguity regarding the PMF that governs A), i.e., T δ
A is the set of the sequences a` ∈ A`

such that

(1 − δ)PA(a′) ≤ Pa`(a′) ≤ (1 + δ)PA(a′) (45)

for every a′ ∈ A. For sufficiently large `, the size of T δ
A is well–known [4] to be bounded by

2`[(1−δ)H(A)−δ] ≤ |T δ
A| ≤ 2`(1+δ)H(A). (46)

It is also well–known (by the weak law of large numbers) that:

Pr
{

A` /∈ T δ
A

}

≤ δ (47)

for all ` sufficiently large. For a given generic channel PB|A(b|a) and for each a` ∈ T δ
A, the

set of all sequences bl that are jointly δ-typical with a`, will be denoted by T δ
PB|A

(a`), or by

T δ
B|A(a`) if there is no ambiguity, i.e., T δ

B|A(a`) is the set of all b` such that:

(1 − δ)Pa` (a′)PB|A(b′|a′) ≤ Pa`b`(a′, b′) ≤ (1 + δ)Pa`(a′)PB|A(b′|a′), (48)

for all a′ ∈ A, b′ ∈ B, where Pa`b`(a′, b′) denotes the fraction of occurrences of the pair

(a′, b′) in (a`, b`). Similarly as in eq. (46), for all sufficiently large ` and a` ∈ T δ
A, the size of

T δ
B|A(a`) is bounded as follows:

2`[(1−δ)H(B|A)−δ] ≤ |T δ
B|A(a`)| ≤ 2`(1+δ)H(B|A). (49)
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Finally, observe that for all a` ∈ T δ
A and b` ∈ T δ

B|A(a`), the distortion d(a`, b`) =
∑`

j=1 d(aj , bj)

is upper bounded by:

d(a`, b`) ≤ `(1 + δ)2
∑

a′,b′

PA(a′)PB|A(b′|a′)d(a′, b′)
∆
= `(1 + δ)2Ed(A,B). (50)

Let (K,X, V, Y, Z) be a given random vector that satisfies the conditions of Theorem 4.

We now describe the mechanisms of random code selection and the encoding and decoding

operations. For a given ε > 0, fix δ such that 2δ+max{2 ·exp{−2nδ}+2−nδ, δ2} ≤ ε. Define

also

ε1
∆
= δ[1 + H(V |K) + H(V |K,X)], (51)

ε2
∆
= δ[1 + H(Y |K,V ) + H(Y |K,X, V )], (52)

and

ε3
∆
= δ[1 + H(V |K) + H(V |Z,K)]. (53)

Generation of a rate–distortion code:

Apply the type–covering lemma [4] and construct a rate–distortion codebook that covers

T δ
U within distortion N(D′ + ε) w.r.t. d′, using 2NRU (D′) codewords.

Generation of the encrypting bitstream:

For every kn ∈ T δ
K , randomly select an index in the set {0, 1, . . . , 2n[H(K|Y )+δ]−1} with a uni-

form distribution. Denote by sJ(kn) = (s1(k
n), . . . , sJ(kn)), sj(k

n) ∈ {0, 1}, j = 1, . . . , J ,

the binary string of length J = n[H(K|Y )+δ] that represents this index. (Note that sJ(kn)

can be interpreted as the output of the Slepian–Wolf encoder for Kn, where Y n plays the

role of SI at the decoder [15].)

Generation of an auxiliary embedding code:

We first construct an auxiliary code capable of embedding 2NRU (D′) watermarks by a ran-

dom selection technique. First, M1 = 2nR1 , R1 = I(V ;Z|K)−ε3−δ, sequences {V n(i, kn)},

i ∈ {1, . . . ,M1}, are drawn independently from T δ
V |K(kn) for every kn ∈ T δ

K . For every such

kn, let us denote the set of these sequences by C(kn). The elements of C(kn) are evenly

distributed among MU
∆
= 2NRU (D′) bins, each of size M2 = 2nR2 , R2 = I(X;V |K) + ε1 + δ
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(this is possible thanks to condition (c) of Theorem 4, provided that the inequality therein

is strict). A different (encrypted) message of length L = NRU (D′) = nλRU (D′) bits is

attached to each bin, identifying a sub-code that represents this message. We denote the

codewords in bin number m (m ∈ {1, 2, . . . ,MU}), by {V n(m, j, kn)}, j ∈ {1, 2, . . . ,M2}.

Stegotext sequence generation:

For each auxiliary sequence (in the above auxiliary codebook of each δ–typical kn), V n(m, j, kn) =

vn, a set of M3
∆
= 2nR3 , R3 = I(X;Y |V,K) + ε2 + δ, stegotext sequences {Y n(j′, vn, kn)},

j′ ∈ {1, . . . ,M3}, are independently drawn from T δ
Y |V K

(vn, kn). We denote this set by

C(vn, kn).

Encoding:

Upon receiving a triple (uN , xn, kn), the encoder acts as follows:

1. If uN ∈ T δ
U , let wL = (w1, . . . , wL), wi ∈ {0, 1}, i = 1, . . . , L be the binary repre-

sentation of the index of the rate–distortion codeword for the message source. For

kn ∈ T δ
K , let sJ(kn) = (s1(k

n), . . . , sJ(kn)) denote binary representation string of the

index of kn. Let w̃L = (w̃1, . . . , w̃L), where w̃j = wj ⊕ sj(k
n), j = 1, . . . , J , and

w̃j = wj , j = J + 1, . . . , L, and where ⊕ denotes modulo 2 addition i.e., the XOR op-

eration.7 The binary vector w̃L is the (partially) encrypted message to be embedded.

Let m =
∑L

l=1 w̃l2
l−1 + 1 denote the index of this message. If uN /∈ T δ

U or kn /∈ T δ
K ,

an arbitrary (error) message w̃L is generated (say, the all–zero message).

2. If (kn, xn) ∈ T δ
KX find, in bin number m, the first j such that V n(m, j, kn) = vn

is jointly typical, i.e., (kn, xn, vn) ∈ T δ
KXV , and then find the first j′ such that

Y n(j′, vn, kn) = yn ∈ C(vn, kn) is jointly typical, i.e., (kn, xn, vn, yn) ∈ T δ
KXV Y .

This vector yn is chosen for transmission. If (kn, xn) /∈ T δ
KX , or if there is no

V n(m, j, kn) = vn and Y n(j′, vn, kn) = yn such that (kn, xn, vn, yn) ∈ T δ
KXV Y , an

arbitrary vector yn ∈ Yn is transmitted.

Decoding:

Upon receiving Zn = zn and Kn = kn, the decoder finds all sequences {vn} in C(kn) such

that (kn, vn, zn) ∈ T δ
KV Z . If all {vn} found belong to the same bin, say, m̂, then m̂ is decoded

7Note that since H(K) is assumed smaller than λRU (D′), then so is H(K|Y ), and therefore J ≤ L.
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as the embedded message, and then the binary representation vector ŵL = (ŵ1, . . . , ŵL)

corresponding to m̂ is decrypted, again, by modulo 2 addition of its first J bits with sJ(kn).

This decrypted binary L–vector is then mapped to the corresponding reproduction vector

ũN of the rate–distortion codebook for the message source. If there is no vn ∈ C(kn) such

that (kn, vn, zn) ∈ T δ
KV Z or if there exist two or more bins that contain such a sequence, an

error is declared.

We now turn to the performance analysis of this code in all relevant aspects. For each

triple (kn, xn, uN ) and particular choices of the codes, the possible causes for incorrect

watermark decoding are the following:

1. (kn, xn, uN ) /∈ T δ
KX × T δ

U . Let the probability of this event be defined as Pe1
.

2. (kn, xn, uN ) ∈ T δ
KX × T δ

U , but in bin no. m there is no vn s.t. (kn, xn, vn) ∈ T δ
KXV .

Let the probability of this event be defined as Pe2
.

3. (kn, xn, uN ) ∈ T δ
KX × T δ

U and in bin no. m there is vn s.t. (kn, xn, vn) ∈ T δ
KXV , but

there is no yn ∈ C(vn, kn) s.t. (kn, xn, vn, yn) ∈ T δ
KXV Y . Let the probability of this

event be defined as Pe3
.

4. (kn, xn, uN ) ∈ T δ
KX × T δ

U and in bin no. m there is vn and yn ∈ C(vn, kn) such that

(kn, xn, vn, yn) ∈ T δ
KXV Y , but (kn, vn, zn) /∈ T δ

KV Z . Let the probability of this event

be defined as Pe4
.

5. (kn, xn, uN ) ∈ T δ
KX × T δ

U and in bin no. m there is vn and yn ∈ C(vn, kn) such that

(kn, xn, vn, yn) ∈ T δ
KXV Y , and (kn, vn, zn) ∈ T δ

KV Z , but there exists another bin, say,

no. m̃, that contains ṽn s.t. (kn, ṽn, zn) ∈ T δ
KV Z . Let the probability of this event be

defined as Pe5
.

If none of these events occur, the message w̃L (or, equivalently, m) is decoded correctly

from zn, the distortion constraint between xn and yn is within n(D + ε) (as follows from

(50)), and the distortion between uN and its rate–distortion codeword, ũN = ûN , does not

exceed N(D′ + ε). Thus, requirements 1 and 4 (modified according to eq. (6), with D′ + ε

replacing D′) are both satisfied. Therefore, we first prove that the probability for none of

the events 1–5 to occur, tends to unity as n → ∞.
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The average probability of error Pe in decoding m is bounded by

Pe ≤
5
∑

i=1

Pei
. (54)

The fact that Pe1
→ 0 follows immediately from (47). As for Pe2

, we have:

Pe2

∆
=

M2
∏

j=1

Pr{(kn, xn, V n(m, j, kn)) /∈ T δ
KXV }. (55)

Now, by (46), for every j and every (kn, xn) ∈ T δ
KX :

Pr{V n(m, j, kn) /∈ T δ
V |KX(kn, xn)} = 1 − Pr{V n(m, j, kn) ∈ T δ

V |KX(kn, xn)}

= 1 −
|T δ

V |KX
(kn, xn)|

|T δ
V |K(kn)|

≤ 1 −
2n[(1−δ)H(V |K,X)−δ]

2n(1+δ)H(V |K)

= 1 − 2−n[I(X;V |K)+ε1]. (56)

Substitution of (56) into (55) provides us with the following upper bound:

Pe2
≤
[

1 − 2−n[I(X;V |K)+ε1]
]M2

≤ exp

{

− 2nR2 · 2−n[I(X;V |K)+ε1]

}

→ 0, (57)

double–exponentially rapidly since R2 = I(X;V |K) + ε1 + δ. To estimate Pe3
, we repeat

the same technique:

Pe3

∆
=

M3
∏

j′=1

Pr{(kn, xn, vn, Y n(j′, vn, kn)) /∈ T δ
KXV Y }. (58)

Again, by the property of the typical sequences, for every j′ and (kn, xn, vn) ∈ T δ
KXV :

Pr{Y n(j′, vn, kn) /∈ T δ
Y |KXV (kn, xn, vn)} ≤ 1 − 2−n[I(X;Y |V,K)+ε2], (59)

and therefore, substitution of (59) into (58) gives

Pe3
≤
[

1 − 2−n[I(X;Y |V,K)+ε2]
]M3

≤ exp

{

− 2nR3 · 2−n[I(X;Y |V,K)+ε2]

}

→ 0, (60)

double–exponentially rapidly since R3 = I(X;Y |V,K)+ε2+δ. The estimation of Pe4
is again

based on properties of typical sequences. Since Zn is the output of a memoryless channel

PZ|Y with input yn = Y n(j′, vn, kn) and by the assumption of this step (kn, xn, vn, yn) ∈

T δ
KXV Y , from (47) and the Markov lemma [3, Lemma 14.8.1], we obtain

Pe4
= Pr{(kn, xn, vn, yn, Zn) /∈ T δ

KXV Y Z} ≤ δ, (61)
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and similarly to Pe1
, Pe4

can be made as small as desired by an appropriate choice of δ.

Finally, we estimate Pe5
as follows:

Pe5
= Pr{∃m̃ 6= m : (kn, V n(m̃, j, kn), zn) ∈ T δ

KV Z} (62)

≤
∑

m̃6=m, j∈{1,2,...,M2}

Pr{(kn, V n(m̃, j, kn), zn) ∈ T δ
KV Z}

= (2NRU (D′) − 1)2nR2 Pr{(kn, V n(m̃, j, kn), zn) ∈ T δ
KV Z}

≤ 2nR12−n[I(V ;Z|K)−ε3]. (63)

Now, since R1 = I(V ;Z|K) − ε3 − δ, Pe5
→ 0. Since Pei

→ 0 for i = 1, . . . , 5, their sum

tends to zero as well, implying that there exist at least one choice of an auxiliary code and

related stegotext codes that give rise to the reliable decoding of W̃ L.

Now, let us denote by Nc the total number of composite sequences in a codebook that

corresponds to a δ–typical kn. Then,

Nc = MU · M2 · M3

= 2n[λRU (D′)+I(X;V |K)+I(X;Y |V,K)+ε1+ε2+2δ]

= 2n[λRU (D′)+I(X;Y,V |K)+ε1+ε2+2δ]. (64)

Thus,

H(Y n|Kn) ≤ log Nc

= n[λRU (D′) + I(X;Y, V |K) + ε1 + ε2 + 2δ]

≤ n(R′
c + ε1 + ε2 + 2δ), (65)

where in the last inequality we have used condition (e). For sufficiently small values of δ

(and hence of ε1 and ε2) ε1 + ε2 + 2δ ≤ ε and so, the compressibility requirement in the

presence of Kn is satisfied.

We next prove the achievability of Rc. Let us consider the set of δ–typical key sequences

T δ
K , and view it as the union of 0–typical sets (i.e., δ–typical sets with δ = 0), {T 0

QK
}, where

QK exhausts the set of all rational PMF’s with denominator n, and with the property

(1 − δ)PK(k) ≤ QK(k) ≤ (1 + δ)PK(k), ∀k ∈ K. (66)

Suppose that we have already randomly selected a codebook for one representative member

k̂n of each type class T 0
QK

⊂ T δ
K using the mechanism described above. Now, consider the
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set of all permutations from k̂n to every other member of T 0
QK

. The auxiliary codebook

and the stegotext codebooks for every other key sequence, kn ∈ T 0
QK

will be obtained by

permuting all (auxiliary and stegotext) codewords of those corresponding to k̂n according

to the same permutation that leads from k̂n to kn (thus preserving all the necessary joint

typicality properties). Now, in the union of all stegotext codebooks, corresponding to all

typical key sequences, each codeword will appear at least (n + 1)−|K|·|Y| · 2n[(1−δ)H(K|Y )−δ]

times, which is a lower bound to the number of permutations of k̂n which leave a given

stegotext codeword yn unaltered. The total number of stegotext codewords, NY , in all

codebooks of all δ–typical key sequences (including repetitions) is upper bounded by

NY = |T δ
K | · Nc

≤ 2n[(1+δ)H(K)+δ] · 2n[λRU (D′)+I(X;Y,V |K)+ε1+ε2+2δ]

= 2n[H(K)+λRU (D′)+I(X;Y,V |K)+ε1+ε2+δ(H(K)+3)]. (67)

Let C denote the union of all stegotext codebooks, namely, the set of all distinct stegotext

vectors across all codebooks corresponding to all kn ∈ T δ
K , and let N(yn) denote the number

of occurrences of a given vector yn ∈ Yn in all stegotext codebooks. Then, in view of the

above combinatorial consideration, we have

NY =
∑

yn∈C

N(yn) ≥ |C| · (n + 1)−|K|·|Y| · 2n[(1−δ)H(K|Y )−δ]. (68)

Combining eqs. (67) and (68), we have

log |C| ≤ n[λRU (D′) + I(X;Y, V |K) + I(K;Y ) + δ′], (69)

where

δ′ = ε1 + ε2 + δ(H(K) + H(K|Y ) + 4) + |K| · |Y| ·
log(n + 1)

n
, (70)

which is arbitrarily small provided that δ is sufficiently small and n is sufficiently large.

Thus, the rate required for public compression of Y n (without the key), which is (log |C|)/n,

is arbitrarily close to [λRU (D1)+ I(X;Y, V |K)+ I(K;Y )], which in turn is upper bounded

by Rc, by condition (d) of Theorem 4.

Before we proceed to evaluate the equivocation levels, an important comment is in

order in the context of public compression (and a similar comment will apply to private

compression): Note that a straightforward (and not necessary optimal) method for public
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compression of Y n is simply according to its index within T δ
Y , which requires about nH(Y )

bits. On the other hand, the converse theorem tells us that the compressed representation

of Y n cannot be much shorter than n[λRU (D′) + I(X;Y, V |K) + I(K;Y )] bits (cf. the

necessity of condition (d) of Theorem 4). Thus, contradiction between these two facts is

avoided only if

λRU (D′) + I(X;Y, V |K) + I(K;Y ) ≤ H(Y ), (71)

or, equivalently,

λRU (D′) + I(X;Y, V |K) ≤ H(Y |K). (72)

This means that any achievable point (D,D′, Rc, R
′
c, h, h′) corresponds to a choice of random

variables (K,X, Y, V ) that must inherently satisfy eq. (72). This observation will now help

us also in estimating the equivocation levels.

Consider first the equivocation w.r.t. the reproduction, for which we have the following

chain of inequalities:

Nh′ ≤ nH(K|Y ) (73)

= nH(K) − nI(K;Y )

= H(Kn) − nI(K;Y ) (74)

= H(Kn|Y n, Zn) + I(Kn;Y n, Zn) − nI(K;Y )

= H(Kn|Y n, Zn) + I(Kn;Y n) − nI(K;Y ) (75)

= H(Kn|Y n, Zn) + H(Y n) − H(Y n|Kn) − nI(K;Y )

≤ H(Kn|Y n, Zn) + n[λRU (D′) + I(X;Y, V |K) + I(K;Y ) + ε] −

−n[λRU(D′ + ε) + I(X;Y, V |K) − ε] − nI(K;Y ) (76)

= H(Kn|Y n, Zn) + nλ[RU (D′) − RU (D′ + ε)] + nε

∆
= H(Kn|Y n, Zn) + nε′

= I(Kn; ÛN |Y n, Zn) + H(Kn|Y n, Zn, ÛN ) + nε′

≤ H(ÛN |Y n, Zn) + H(Kn|Y n, Zn, ÛN ) + nε′ (77)

where (73) is based on condition (b), (74) is due to the memorylessness of Kn, (75) follows

from the fact that Kn → Y n → Zn is a Markov chain, (76) is due to the sufficiency of

condition (d) (that we have just proved) and the necessity of condition (e), and ε′ vanishes

as ε → 0 due to the continuity of RU (·). Comparing the left–most side and the right–most
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side of the above chain of inequalities, we see that to prove that H(ÛN |Y n, Zn) is essentially

at least as large as Nh′, it remains to show that H(Kn|Y n, Zn, ÛN ) is small, say,

H(Kn|Y n, Zn, ÛN ) ≤ nε′ (78)

for large n. We next focus then on the proof of eq. (78).

First, consider the following chain of inequalities:

H(Kn|Y n, Zn, ÛN ) ≤ H(Kn, SJ(Kn)|Y n, Zn, ÛN )

= H(SJ(Kn)|Y n, Zn, ÛN ) + H(Kn|SJ(Kn), Y n, Zn, ÛN )

≤ H(SJ(Kn)|Y n, ÛN ,W L) + H(Kn|SJ(Kn), Y n), (79)

where the second inequality follows from the fact that W L is function of ÛN and the fact

that conditioning reduces entropy. As for the second term of the right–most side, we have

by Fano’s inequality

H(Kn|SJ(Kn), Y n) ≤ 1 + Perr · n log |K| ≤ nε′/2 for large enough n, (80)

as Perr → 0 is the probability of error associated with the Slepian–Wolf decoder that

estimates Kn from its compressed version, SJ(Kn), and the “side information,” Y n. As for

the first term of the right–most side of (79), we have

H(SJ(Kn)|Y n, ÛN ,W L) = H(W L ⊕ W̃ L|Y n, ÛN ,W L)

≤ H(W̃ L|Y n). (81)

It remains to show that H(W̃ L|Y n) ≤ nε′/2 as well. In order to show this, we have to

demonstrate that for a good code, once Y n is given, there is very little uncertainty with

regard to W̃ L, which is the index of the bin.

To this end, let us suppose that the inequality in (72) is strict (otherwise, we can

slightly increase the allowable distortion level D′ and thus reduce RU (D′)). As we prove in

the Appendix, for any given (arbitrarily small) γ > 0,

Pr{∃ yn in the code of k̂n that appears in more than 2nγ bins} ≤ |Y|n2−(nγ−log e)2nγ

, (82)

that is, a double–exponential decay. The probability of the union of these events across all

representatives {k̂n} of all T 0
QK

⊂ T δ
K will just be multiplied by the number of {T 0

QK
} in
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T δ
K , which is polynomial, and hence will continue to decay double–exponentially. Let us

define then the event

{∃ yn in the stego–codebook of some k̂n that appears in more than 2nγ bins}

as yet another error event (like the error events 1–5) that occurs with very small probability.

Assume then, that the randomly selected codebook is “good” in the sense that no stegovector

appears in more than 2nγ bins, for any of the representatives {k̂n}. Now, given yn, how many

candidate bins (corresponding to encrypted messages {w̃L}) can be expected at most? For

a given yn, let us confine attention to the δ–conditional type class T δ
K|Y (yn) (key sequences

outside this set cannot have yn in their codebooks, as they are not jointly δ–typical with yn).

The conditional δ–type class T δ
K|Y (yn) can be partitioned into conditional 0–type classes

{T 0
QK|Y

(yn)}, where QK|Y exhausts the allowed δ–tolerance in the conditional distribution

around PK|Y , in the same spirit as before. Now, take an arbitrary representative k̃n from

a given T 0
QK|Y

(yn), and consider the set of all permutations that lead from k̃n to all other

members {kn} of T 0
QK|Y

(yn). Obviously, the stego–codebooks of all those {kn} have exactly

the same configuration of occurrences of yn as that of k̃n (since these permutations leave

yn unaltered), therefore they belong to exactly the same bins as in the codebook of k̃n, the

number of which is at most 2γn, by the hypothesis that we are using a good code. In other

words, as kn scans T 0
QK|Y

(yn), there will be no new bins that contain yn relative to those

that are already in the codebook of k̃n. New bins that contain yn can be seen then only

by scanning the other conditional 0–types {T 0
QK|Y

(yn)} within T δ
K|Y (yn), but the number

such conditional 0–types does not exceed the total number of conditional 0–types, which is

upper bounded, in turn, by (n + 1)|K|·|Y| [4]. Thus, the totality of stego–codebooks, for all

relevant {kn} cannot give more than (n + 1)|K|·|Y| · 2nγ distinct bins altogether. In other

words, for a good codebook:

H(W̃ L|Y n) ≤ log[(n + 1)|K|·|Y| · 2nγ ] = n

[

γ + |K| · |Y| ·
log(n + 1)

n

]

(83)

which is less than nε′/2 for an appropriate choice of γ and for large enough n.
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Finally, for the equivocation w.r.t. the original message source, we have the following:

H(UN |Y n, Zn) = H(ÛN |Y n, Zn) + H(UN |Y n, Zn) − H(ÛN |Y n, Zn)

≥ nH(K|Y ) − 2nε′ + H(UN |Y n, Zn) − H(ÛN |Y n, Zn)

= nH(K|Y ) + H(UN ) − I(UN ; ÛN ) − I(UN ;Y n, Zn) −

H(ÛN |UN ) + I(ÛN ;Y n, Zn) − 2nε′

≥ nH(K|Y ) + H(UN ) − H(ÛN ) − I(UN ;Y n, Zn) −

H(ÛN |UN ) + I(ÛN ;Y n, Zn) − 2nε′

≥ nH(K|Y ) + NH(U) − NRU (D′) − 2ε′] −

[I(UN ;Y n, Zn) + H(ÛN |UN ) − I(ÛN ;Y n, Zn)], (84)

where first inequality is due to the fact that H(ÛN |Y n, Zn) ≥ n[H(K|Y ) − 2ε′], that we

have just shown, and the third is due to the memorylessness of {Ui} and the fact that the

rate–distortion codebook size is 2NRU (D′) and so, H(ÛN ) ≤ NRU (D′). Now, the second

bracketed expression on the right–most side is the same as in eq. (33), where in the case

of this specific scheme, both inequalities in (33) become equalities, i.e., this expression

vanishes. This is because in our scheme, UN → ÛN → (Y n, Zn) is a Markov chain (and so,

the first inequality of (33) is tight) and because H(ÛN |UN , Y n, Zn) ≤ H(ÛN |UN ) = 0 (as

ÛN is a deterministic function of UN ), which makes the second inequality of (33) tight. As

a result, we have

H(UN |Y n, Zn) ≥ N [H(K|Y )/λ + H(U) − RU (D′) − 2ε′/λ]

≥ N [h + RU (D′) − H(U) + H(U) − RU (D′) − 2ε/λ]

= N(h − 2ε′/λ), (85)

where we have used condition (a). This completes the proof of the direct part.

7 Conclusion and Future Research

We have analyzed optimum tradeoffs between several figures of merit pertaining to the

performance of a system that combines watermarking, compression and encryption. We

have also characterized the (high–level) structure of codes that asymptotically achieve the

performance limits under various degrees of generality of the underlying assumptions.
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To summarize, the main ideas that were developed in this work, both in the general

level and in the technical level, are the following:

1. The separation priniciple falls apart once an attack channel is introduced. In partic-

ular, the fact that the cryptographic key plays the additional role of side information

is intesresting phenomenom. Moreover, as more generalilty is added into the model,

the separation principle ‘collapses’ in steps: First, the encryption and the embedding

become coupled, but the rate–distortion compression is still separate, and then, in

another step of enhancing the generality, the rate–distortion code becomes coupled as

well with the other parts of the encoder.

2. In many problems where the separation theorem fails (e.g., in network situations, or

when there is dependence between the source and the channel), there are no closed–

form single–letter expressions for the achievable region, and optimal coding schemes

are not known. The situation in this paper is different: even when separation fails,

still, single–letter expressions are available (cf. Theorems 3, 4) and asymptotically

optimum coding schemes are offerred (at least in the random coding sense).

3. There are interesting tradeoffs with regard to the desired degree of statistical depen-

dency between the key and the stegotext.

4. A Slepian–Wolf encoder is harnessed in order to extract purely random bits for en-

cryption, which are independent of Y n, in order to circumvent the problem that Y n

is not yet available in the encryption stage.

5. The security of ÛN is taken into account as an additional criterion.

6. The security of ÛN is enhanced by using extra key bits to control the choice of

the rate–distortion code, by using the fact that there are about 2NH(Û |U) distinct

codebooks.

7. The random selection of a codebook is carried out for only one “representative” k̂n

in each type class, and then the codebook for every other kn in the same type class

is constructed by permuting the codevectors according to the permutations that lead

from k̂n to kn. This idea proves useful both in estabilishing the achievability of the

public compression rate and in proving the achievability of the desired security.
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A few leftover problems, to be considered in future work, are the following:

1. In view of the findings of this work, it would be desirable to conduct a more thorough

investigation and to gain understanding with regard to conditions under which the

separation principle holds here, and in more general frameworks. In particular, it

would be interesting to identify all the factors in the system that affect the validity

of the separation principle. In this paper, we identified only one such factor – the

presence of a non–trivial (memoryless) attack channel.

2. Replacing the present secrecy metric by a stronger one (referring to the discussion in

the Introduction).

3. Relaxing the assumption that the channel from Xn to Kn is memoryless.

4. Taking into account requirements on the secrecy of the covertext (in addition or

instead of the secrecy of the watermark and its reconstruction).
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Appendix

Proof of eq. (82). The probability of obtaining yn in a single random selection within the

codebook of k̂n is given by

Pr{Y n(j′, V n(m, j, k̂n), k̂n) = yn} =
|T δ

V |KY
(kn, yn)|

|T δ
V |K(kn)|

·
1

|T δ
Y |KV

(kn, vn)|
(A.1)

≤
2n(1+δ)H(V |K,Y )

2n[(1−δ)H(V |K)−δ]
·

1

2n[(1−δ)H(Y |K,V )−δ]

= 2−n[H(Y |K)−δ′′], (A.2)

where the first factor in the right–hand side of (A.1) is the probability of having a V n(m, j, k̂n) =

vn that is typical with yn and k̂n (a necessary condition for this vn to generate the given

yn), the second factor is the probability of selecting a given yn in the random selection of

the steogtext code, and where

δ′′ = δ[H(V |K,Y ) + H(V |K) + H(Y |K,V ) + 2]. (A.3)
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It now follows that the probability q for at least one occurrence of yn among the stegowords

corresponding to a certain bin, in the codebook of k̂n, is upper bounded (using the union

bound) by

q ≤ M2 · M3 · 2
−n[H(Y |K)−δ′′]

= 2−n[H(Y |K)−I(X;V |K)−I(X;Y |V,K)−δ′′−2δ−ε1−ε2]

= 2−n[H(Y |K)−I(X;V,Y |K)−δ′′−2δ−ε1−ε2]

∆
= 2−n[H(Y |K)−I(X;Y,V |K)−δ1]. (A.4)

We are interested to upper bound the probability that a given yn appears as a stegoword

in more than 2nγ bins in the codebook of k̂n, for a given γ > 0. For i = 1, . . . ,MU , let

Ai ∈ {0, 1} be the indicator function of the event

{ynappears as a stegoword in bin no. i at least once}.

Then, clearly {Ai} are i.i.d. with Pr{Ai = 1} = q. Therefore,

Pr

{

MU
∑

i=1

Ai ≥ 2nγ

}

≤ exp2

{

−MUD

(

2nγ

MU
‖q

)}

= exp2

{

−MUD
(

2−n[λRU (D′)−γ]‖q
)}

, (A.5)

where for α, β ∈ [0, 1], the function D(α‖β) designates the binary divergence

D(α‖β) = α log
α

β
+ (1 − α) log

1 − α

1 − β
. (A.6)

Now, referring to eq. (72), suppose that

H(Y |K) ≥ λRU (D′) + I(X;V, Y |K) + δ1 + 2γ. (A.7)

Then, clearly,

2−n[λRU (D′)−γ] > 2−n[H(Y |K)−I(X;Y,V |K)−δ1] ≥ q (A.8)

and so, Pr{
∑MU

i=1 Ai ≥ 2nγ} is further upper bounded by

Pr

{

MU
∑

i=1

Ai ≥ 2nγ

}

≤ exp2

{

−MUD
(

2−n[λRU (D′)−γ]‖2−n[H(Y |K)−I(X;Y,V |K)−δ1]
)}

. (A.9)

To further bound this expression from above, we have to get a lower bound to an expression

of the form D(e−na‖e−nb) for 0 < a < b. Applying the inequality log(1 + x) = − log(1 −
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x
1+x

) ≥ x log e
1+x

, for x > −1, we have:

D(2−na‖2−nb) = 2−na log
2−na

2−nb
+ (1 − 2−na) log

1 − 2−na

1 − 2−nb

= n(b − a)2−na + (1 − 2−na) log

(

1 +
2−nb − 2−na

1 − 2−nb

)

≥ n(b − a)2−na + (2−nb − 2−na) log e

≥ [n(b − a) − log e]2−na. (A.10)

Applying this inequality with a = λRU (D′) − γ and b = H(Y |K) − I(X;Y, V |K) − δ1, we

get

D
(

2−n[λRU (D′)−γ]‖2−n[H(Y |K)−I(X;Y,V |K)−δ1]
)

≥ (nγ − log e)2−n[λRU (D′)−γ] (A.11)

and so,

Pr

{

MU
∑

i=1

Ai ≥ 2nγ

}

≤ 2−(nγ−log e)2nγ

, (A.12)

which decays double–exponentially rapidly with n. While, this inequality holds for a given

yn, the probability that
∑MU

i=1 Ai ≥ 2nγ for some yn ∈ Yn would be upper bounded, using

the union bound, by |Y|n · 2−(nγ−log e)2nγ
, which still decays double–exponentially. Thus,

with very high probability the random selection of stegovectors, for k̂n, is such that no stego

codevector yn appears in more than 2nγ bins.
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List of Figures

1. Fig.1: A generic watermarking/encryption system.

2. Fig 2: The proposed watermarking/encryption scheme (general case).

List of Footnotes

1. This idea of the double role of the secret key has been explored also in [7] in the

context of compression of encrypted data.

2. In fact, the choice of the conditional distribution P (Kn|Xn) is a degree of freedom

that can be optimized subject to the given randomness resources.

3. The assumption of independence between {Kt} and {Xt} is temporary and made now

primarily for the sake of simplicity of the exposition. It will be dropped later on.

4. At the end of Section 4 (after Theorem 4), we discuss the case where this limitation

(or its analogue in lossy reconstruction of UN ) is dropped.
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5. These randomness resources are, in fact, purely random, independent bits, which can

now be redefined as our secret “key”, in the original meaning of this term.

6. Note that now there is a distinction between the required available randomness rate,

which is H(Kn|Xn)/n = H(K|X) [17], and the rate at which the key must be conveyed

to the legitimate decoder, which remains H(K) (as the decoder has no access to Xn).

This is in contrast to the case of independence between Kn and Xn, where these two

parameters coincide.

7. Note that since H(K) is assumed smaller than λRU (D′), then so is H(K|Y ), and

therefore J ≤ L.
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