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Abstract

We consider the problem of estimating, in the presence of model uncertainties, a random vector x
that is observed through a linear transformation H and corrupted by additive noise. We first assume that
both the covariance matrix of x and the transformation H are not completely specified, and develop the
linear estimator that minimizes the worst-case mean-squared error (MSE) across all possible covariance
matrices and transformations H in the region of uncertainty. Although the minimax approach has enjoyed
widespread use in the design of robust methods, we show that its performance is often unsatisfactory. To
improve the performance over the minimax MSE estimator, we develop a competitive minimax approach,
for the case where H is known but the covariance of x is subject to uncertainties, and seek the linear
estimator that minimizes the worst-case regret, namely, the worst-case difference between the MSE at-
tainable using a linear estimator, ignorant of the signal covariance, and the optimal MSE attained using
a linear estimator that knows the signal covariance. The linear minimax regret estimator is shown to
be equal to a minimum MSE (MMSE) estimator corresponding to a certain choice of signal covariance,
that depends explicitly on the uncertainty region. We demonstrate, through examples, that the minimax
regret approach can improve the performance over both the minimax MSE approach and a “plug in” ap-
proach, in which the estimator is chosen to be equal to the MMSE estimator with an estimated covariance
matrix replacing the true unknown covariance. We then show that although the optimal minimax regret
estimator in the case in which the signal and noise are jointly Gaussian is nonlinear, we often do not loose

much by restricting attention to linear estimators.
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The theory of estimation in linear models has been studied extensively in the past century, following the
classical works of Wiener [1] and Kolmogorov [2]. A fundamental problem considered by Wiener and
Kolmogorov is that of estimating a stationary random signal in additive stationary noise, where the signal
may be filtered by a linear time invariant (LTI) channel. The desired signal is estimated using a linear
estimator which is obtained by filtering the received signal with an LTT estimation filter. When the signal
and noise spectral densities as well as the channel are completely specified, the estimation filter minimizing
the mean-squared error (MSE) is the well-known Wiener filter.

In practice, the actual spectral densities and the channel may not be known exactly. If the spectral
densities and the channel deviate from the ones assumed, then the performance of the Wiener filter matched
to the assumed spectral densities and channel can deteriorate considerably [3]. In such cases, it is desirable
to design a robust filter whose performance is reasonably good across all possible spectral densities and
channels, in the region of uncertainty.

The most common approach for designing robust estimation filters is in the spirit of the minimax MSE
approach, initiated by Huber [4, 5], in which the estimation filter is chosen to minimize the worst-case MSE
over an appropriately chosen class of spectral densities [6, 7, 8, 3, 9] where the channel is assumed to be
known. A similar approach has also been used to develop a robust estimator for the case in which the
spectral densities are known and the channel is subject to uncertainties [10]. The minimax approach, in
which the goal is to optimize the worst-case performance, is one of the major techniques for designing robust
systems with respect to modelling uncertainties, and has been applied to many problems in detection and
estimation [11, 12, 13].

In this paper, we consider a finite-dimensional analogue of the classical Wiener filtering problem, so that
we consider estimating a finite number of parameters from finitely many observations, where the motivation
is to obtain non-asymptotic results. Specifically, we treat the problem of estimating a random vector x that
is observed through a linear transformation H and corrupted by additive noise w. If the signal and noise
covariance matrices as well as the transformation H are completely specified, then the linear minimum MSE
(MMSE) estimator of x for this problem is well known [14].

In many practical applications the covariance matrix of the noise can be assumed known in the sense that
it can be estimated within high accuracy. This is especially true if the noise components are uncorrelated
and identically distributed, which is often the case in practice. The signal, on the other hand, will typically
have a broader correlation function, so that estimating this correlation from the data with high accuracy
often necessitates a larger sample size than is available. Therefore, in this paper, we develop methods for
designing robust estimators in the case in which the covariance of the noise is known precisely, but the
covariance of the desired signal x and the model matrix H are not completely specified.

Following the popular minimax approach, in Section 3 we consider the case in which H is known, and
seek the linear estimator that minimizes the worst case MSE over all possible covariance matrices. As we
show, the resulting estimator, referred to as the minimax MSE estimator, is an MMSE estimator matched to
the worst possible choice of covariance matrix. In Section 4, we develop a minimax estimator that minimizes
the worst-case MSE when both the covariance matrix and the model matrix H are subject to uncertainties.

In this case, we show that the optimal estimator can be found by solving a semidefinite programming (SDP)



interior point methods [17, 18].

Although the minimax approach has enjoyed widespread use in the design of robust methods for signal
processing and communication [11, 13], its performance is often unsatisfactory. The main limitation of this
approach is that it tends to be overly conservative since it optimizes the performance for the worst possible
choice of unknowns. As we show in the context of concrete examples in Section 6, this can often lead to
degraded performance.

To improve the performance of the minimax MSE estimator, in Section 5, we propose a new competitive
approach to robust estimation for the case where H is known, and seek a linear estimator whose performance
is as close as possible to that of the optimal estimator for all possible values of the covariance matrix.
Specifically, we seek the estimator that minimizes the worst-case regret, which is the difference between the
MSE of the estimator, ignorant of the signal covariance, and the smallest attainable MSE with a linear
estimator that knows the signal covariance. By considering the difference between the MSE and the optimal
MSE rather than the MSE directly, we can counterbalance the conservative character of the minimax
approach, as is evident in the examples we consider in Section 6. It would also be desirable to develop
the minimax estimator that minimizes the worst-case regret when both H and the covariance matrix are
subject to uncertainties. However, since this problem is very difficult, for analytical tractability, we restrict
our attention to the case in which H is known.

The minimax regret concept has recently been used to develop a linear estimator for the unknowns x
in the same linear model considered in this paper, where it is assumed that x is deterministic but unknown
[19]. Similar competitive approaches have been used in a variety of other contexts, for example, universal
source coding [20], hypothesis testing [21, 22], and prediction (see [23] for a survey and references therein).

For analytical tractability, in our development we restrict attention to the class of linear estimators. In
some cases, there is also theoretical justification for this restriction. As is well known [14], if x and w are
jointly Gaussian vectors with known covariance matrices, then the estimator that minimizes the MSE, among
all linear and nonlinear estimators, is the linear MMSE estimator. In Section 7, we show that this property
does not hold when minimizing the worst-case regret with covariance uncertainties, even in the Gaussian
case. Nevertheless, we demonstrate that in many cases we do not loose much by confining ourselves to linear
estimators. In particular, we develop a lower bound on the smallest possible worst-case regret attainable
with a third-order (cubic) nonlinear estimator, when estimating a Gaussian random variable contaminated
by independent Gaussian noise, and show that the linear minimax regret estimator often nearly achieves
this bound, particularly at high SNR. This provides additional justification for the restriction to linear
estimators in the context of minimax regret estimation.

Before proceeding to the detailed development, in Section 2, we provide an overview of our problem.

2 Problem Formulation

In the sequel, we denote vectors in C™ by boldface lowercase letters and matrices in C**™ by boldface
uppercase letters. The matrix I denotes the identity matrix of the appropriate dimension, (-)* denotes
the Hermitian conjugate of the corresponding matrix, and (A) denotes an estimated vector or matrix. The

cross-covariance matrix between the random vectors x and y is denoted by C,,, and the covariance matrix



Consider the problem of estimating the unknown parameters x in the linear model
y=Hx+w, (1)

where H is an n X m matrix with rank m, x is a zero-mean, length-m random vector with covariance matrix
C, and w is a zero-mean, length-n random vector with positive definite covariance C,,, uncorrelated with
x. We assume that C,, is known completely but that we may only have partial information about the
covariance C,; and the model matrix H.

We seek to estimate x using a linear estimator so that x = Gy for some m X n matrix G. We would

like to design an estimator x of x to minimize the MSE, which is given by

E(lx—x|*) = Tr(Cy)+ Tr(Cz) — 2Tx(Cyq)
= Tr(C;)+ Tr(G(HC,H" + C,)G") — 2Tr(C,H*"G")
= Tr(GC,G*)+ Tr(C,(I- GH)*(I- GH)). (2)

If H and C, are known and C, is positive definite, then the linear estimator minimizing (2) is the MMSE
estimator [14]
x = C,H*(HC,H* + C,) ly. (3)

An alternative form for %, that is sometimes more convenient, can be obtained by applying the matrix

inversion lemma [24] to (HC,H* 4+ C,,)~! resulting in
(HC,H*+C,) '=¢C,!' - C, 'HH'C,'H+ ) 'H'C, . (4)
Substituting (4) into (3), the MMSE estimator X can be expressed as

x = C,(I-H'C,/HH'C,/'H+C,') ')H'C,'y
= (H'C,'H+C;')"'H'C,ly. (5)

If C, or H are unknown, then we cannot implement the MMSE estimator (3). Instead, we may seek
the estimator that minimizes the worst-case MSE over all possible choices of C, and H that are consistent
with our prior information on these unknowns. In Section 3 and Sections 57, we consider the case in which
H is a known n X m matrix with rank m, and C, is not completely specified. In Section 4, we consider the
case in which both C, and H are subject to uncertainties.

To reflect the uncertainty in our knowledge of the true covariance matrix, we consider two different
models of uncertainty which resemble the “band model” widely used in the continuous-time case [7, 25, 26, 3].
Although these models are similar in nature, depending on the optimality criteria, a particular model may

be mathematically more convenient. In the first model, we assume that C, and H*C_'H have the same



l; <6 <wiy, 1<i<m, (6)

where [; > 0 and u; are known.

The assumption that C, and H*C,,'H have the same eigenvector matrix is made for analytical tractabil-
ity. If x is a stationary random vector and H represents convolution of x with some filter, then both C, and
H will be Toeplitz matrices and are therefore approximately diagonalized by a Fourier transform matrix, so
that in this general case C, and H*C,'H approximately have the same eigenvector matrix [27].

In our development, we explicitly assume that the joint eigenvector matrix of C, and H*C,'H is given.
In practice, if the eigenvalues of H*C,'H have geometric multiplicity one, then we choose the eigenvector
matrix of C,, to be equal to the eigenvector matrix of H*C,'H. In the case in which the eigenvector matrix
of H*C,'H is not uniquely specified, e.g., in the case in which H*C,'H is proportional to I, as in one of
the examples in Section 6, we may resolve this ambiguity by estimating the eigenvector matrix of C; from
the data.

The model (6) is reasonable when the covariance is estimated from the data. Specifically, denoting by

Gi=(ui +1;)/2,¢; = (u; —1;)/2 for 1 < i < m, the conditions (6) can equivalently be expressed as
Si=C+e, e<e, 1<i<m, (7)

so that each of the eigenvalues of C; lies in an interval of length 2¢; around some nominal value (; which
we can think of as an estimate of the ith eigenvalue of C, from the data vector y. The interval specified by
€; may be regarded as a confidence interval around our estimate (; and can be chosen to be proportional to
the standard deviation of the estimate (;.
In the second model,
C, = Cy +0C,, [|6C,| <, (8)

where C, is known, || - || denotes the matrix spectral norm [24], i.e., the largest singular value of the
corresponding matrix, and € is chosen such that C, + §C, > 0 for all [|6C,|| < e. In this model, C,
is not assumed to have the same eigenvector matrix as H*C,'H. As a consequence, we can no longer
constraint each of the eigenvalues of C, as we did in the first model, but rather we can only restrict the
largest eigenvalue, or equivalently, the spectral norm. If C, is constrained to have the same eigenvector
matrix as H*C_'H for all §C,, then the uncertainty model (8) is equivalent to the uncertainty model (7)
with {¢;,1 <4 < m} equal to the eigenvalues of (~3$ and ¢; = ¢,1 <5< m.

Given {¢;} in the first model or C, in the second model, a straightforward approach to estimating x is
to use an MMSE estimate corresponding to the estimated covariance. However, as we demonstrate through
examples in Section 6, by taking an uncertainty interval around (; into account, and seeking a competitive
minimax estimator in this interval, we can further improve the estimation performance.

In Section 3, we develop the minimax estimators that minimize the worst case MSE over all covariance

matrices {C,} that satisfy each of the two uncertainty models (6) and (8). As we show, the resulting

'If the eigenvalues of H*C, H and C, have geometric multiplicity 1, then H*C,'H and C, have the same eigenvector
matrix if and only if they commute[24].



model and C, = 6$+eI in the second model. Since these estimators are matched to the worst possible choice
of parameters, in general they tend to be overly conservative, which can often lead to degraded performance,
as is evident in the examples in Section 6. In these examples, the minimax MSE estimator performs worse
than the “plug in” estimator, which is the MMSE estimator matched to the estimated covariance matrix.
In Section 4, we consider the case in which the model matrix H is also subject to uncertainties, and
develop a minimax MSE estimator that minimizes the worst case MSE over all possible covariance matrices
C, and model matrices H. We assume that both C, and H obey an uncertainty model of the form (8).
To improve the performance of the minimax estimators, in Section 5 we consider a competitive approach
in which we seek the linear estimator that minimizes the worst-case regret. In this case, for analytical
tractability, we consider only the first uncertainty model (6). As we show, the resulting estimator can also
be interpreted as an MMSE estimator matched to a covariance matrix which depends on the nominal value
¢; and the uncertainty interval ¢;, as well as on the eigenvalues of H*C_'H. In the examples in Section 6,
we demonstrate that the minimax regret estimator can improve the performance over both the minimax

MSE estimator and the MMSE estimator matched to the estimated covariance matrix.

3 Minimax MSE For Known H

We first consider the case in which the model matrix H is known, and seek the linear estimator that minimizes
the worst-case MSE over all possible values of C,, that have the same eigenvector matrix as H*C_,'H, and

with eigenvalues §; satisfying (6). Thus, let H*C_,'H have an eigendecomposition
H*'C,'H=VAV*, 9)

where V is a unitary matrix and A is a diagonal matrix with strictly positive diagonal elements {);}. Then
C; has the form
C, =VAV™, (10)

where A is a diagonal matrix with strictly positive diagonal elements {§;}, with [; < §; < u;,1 < i < m.
Note, that we assume that the diagonalizing matrix V is known.

We now consider the problem

. N 2 _ . %
win, max, B(1Gy - x°) = njn { T(GCLG) + wx 0(C.)}. i

where from (2),
Q(Cy) = Tr(C.(I - GH)*(I- GH)). (12)

To find the maximum value of Q(C,), we rely on the following lemma.
Lemma 1. Let W, T and M be nonnegative definite matrices with W < T. Then Tr(MW) < Tr(MT).

Proof. Since M > 0 and T — W > 0 we can define the nonnegative symmetric square-roots M!/2 and



Tr(M(T — W)) = Tr(MY?(T — W)¥2(T — W)/2M/2?) = Tr(A*A) > 0, (13)
since Tr(Z) > 0 for any Z > 0. Thus, Tr(MT) > Tr(MW). O
Let C, be an arbitrary matrix of the form (10) with eigenvalues [; < d; < u;. Then,
C, <VZV™, (14)
where Z is a diagonal matrix with diagonal elements u;. This then implies from Lemma 1 that
Tr(C,(I- GH)"(I- GH)) < Tr (VZV*(I - GH)*(I - GH)) (15)

with equality if C, = VZV™, so that Q(C,) is maximized for the worst possible choice of eigenvalues i.e.,
d; = u; for all 5. The problem of (11), therefore, reduces to minimizing the MSE of (2) where we substitute
C,; = VZV*. The optimal estimator is then the linear MMSE estimator of (3) or (5) with C, = VZV™.

Using the eigendecomposition of H*C,,'H given by (9), we can express % of (5) as
x=H'C'H* + C;))"'H*Cly=V(A+Z )" 'V*H*C,'y = VQV*H*C_'y, (16)

where Q is an m X m diagonal matrix with diagonal elements

U

- uid; +1°

4 (17)

We now seek the linear estimator that minimizes the worst-case MSE over all covariance matrices {Cg}

of the form (8). Thus, we consider the problem

: _ 2 — . *
win e B(IGy —xI?) = min { TH(GCLG") + max Q(6C:)}. (18)
where
Q(5C,) = Tr ((éw +0C,) (I — GH)*(I — GH)) . (19)

Since the condition ||[§C;|| < € is equivalent to the condition 6C,; < €I, we can use Lemma 1 to conclude
that
Q(6C,) = Tr ((ém +6C,)I — GH)*(I - GH)> < Tr ((ém +eI)(I— GH)*(I — GH)) . (20)

with equality for §C, = €eI. Therefore, the problem (18) reduces to minimizing the MSE of (2) where we
substitute C, = €I, and the optimal estimator is the linear MMSE estimator with C, = (~3w + el.

We summarize our results on minimax MSE estimation with known H in the following theorem.

Theorem 1 (Minimax MSE estimators). Letx denote the unknown parameters in the modely = Hx+
w, where H is a known n X m matriz with rank m, X is a zero-mean random vector uncorrelated with w
with covariance C, and w is a zero-mean random vector with covariance C,,. Let H*C;IH = VAV™* where

V is a unitary matriz and A is an m x m diagonal matriz with diagonal elements \; > 0, let S1 denote the

7



and let So denote the set of matrices C, = (Njw + 6C, where éw is known and ||6Cy|| < €. Here € is chosen

such that Cq + 6Cy > 0 for all ||6C,|| < e. Then,

1. The solution to the problem ming_gy maxc,cs, E(||x — x||?) is an MMSE estimator matched to the
covariance Cy = VZV™ where Z is an m X m diagonal matriz with diagonal elements u;, and can be

expressed as
X = VQV*H*C,ly,

where Q is an m X m diagonal matriz with diagonal elements

4= uid; + 17
2. The solution to the problem ming_gy maxc,cs, E(||X — x||*) is an MMSE estimator matched to the

covariance C; = C, + €l.

4 Minimax MSE For Unknown H

In the previous section, we developed the minimax MSE estimator under the assumption that the model
matrix H is known exactly. In many engineering applications, the model matrix H is also subject to uncer-
tainties. For example, the matrix H may be estimated from noisy data in which case H is an approximation
to some nominal underlying matrix. If the actual data matrix is H + 6H for some unknown matrix 0H,
then an estimator designed based on H alone may perform poorly.

To explicitly take uncertainties in H into account, we now consider a robust estimator that minimizes
the worst-case MSE over all possible covariance and model matrices. Specifically, suppose now that the

model matrix H is not known exactly, but is rather given by
H=H+6H, |[H|<p, (21)

where H is known. Similarly, the covariance matrix C, is given by (8). We then seek the linear estimator

that is the solution to the problem

min max E(|x —x||?) =
X=Gy [|0Cq||<e,||0H||<p

— ming max| 5o, |<e/|5H||<p {Tf ((635 +6C,)(I— G(H + 6H))(I — G(H + 6H))*) + ﬁ(Gch*)} . (22)

In Theorem 2 below, we show that the problem (22) can be formulated as a convex semidefinite program-
ming (SDP) problem [15, 16, 17], which is the problem of minimizing a linear functional subject to linear
matrix inequalities (LMIs), i.e., matrix inequalities in which the matrices depend linearly on the unknowns.
(Note that even though the matrices are linear in the unknowns, the inequalities are nonlinear since a
positive semidefinite constraint on a matrix reduces to nonlinear constraints on the matrix elements.) The
main advantage of the SDP formulation is that it readily lends itself to efficient computational methods.

Specifically, by exploiting the many well known algorithms for solving SDPs [16, 15], e.g., interior point



computed very efficiently in polynomial time. The SDP formulation can also be used to derive necessary

and sufficient conditions for optimality.

Theorem 2. Let x denote the unknown parameters in the model y = (ﬁ + 0H)x + w, where H is a
known n x m matriz and §H is an unknown matriz satisfying ||0H|| < p, x is a zero-mean random vector
uncorrelated with w with covariance (~3;lc + 6C, where éw is a known m X m matriz and 6C is an unknown
matriz satisfying ||6Cy| < € with € chosen such that Cy + 6Cy > 0 for all ||§Cy| < €, and w is a zero-mean

random vector with covariance C,,. Then the problem

min max E(||§c—x||2)
=Gy [|6Ca||<¢,||0H[|<p

1s equivalent to the semidefinite programming problem
min ¢
t,G,\,X,Y

subject to

Tr((Cy + eD)X) + Tr(Y) < t

Y G
>0
G* C!
X-A (I-GH)* o0
I-GH I —pG | >0.
0 —pG* AI
Proof. We begin by noting that
min max E (|x —x|*) = min ¢ (23)
%=Gy [|6Cs ||<6,||0H[|<p tG,T
subject to
Tr(GC,G*) +7 <t (24)

Tr (((NJz +0C,)(I - G(H + 6H))(I - G(H + 5H))*) <71, V0Cy,: ||0Cs| < &,V6H : |6H| < p. (25)

To simplify the constraint (25), we rely on the following proposition, the proof of which is provided in

Appendix A.

Proposition 1. Let G(A) and Q(B) be nonnegative matrices which are functions of the matrices A and B

respectively. Then the problem
min T (26)

*Interior point methods are iterative algorithms that terminate once a pre-specified accuracy has been reached. A worst case
analysis of interior point methods shows that the effort required to solve an SDP to a given accuracy grows no faster than a
polynomial of the problem size. In practice, the algorithms behave much better than predicted by the worst case analysis, and
in fact in many cases the number of iterations is almost constant in the size of the problem.



Tr(G(A)Q(B)) <7, VA:|A|<a,VB:|B| <p (27)
is equivalent to the problem of (26) subject to

THG(A)X) <7, VA:|A] <a (28)
Q(B) <X, VB:|B| <g. (29)

Using Proposition 1, we can express the constraint (25) as

Tr((Cr +6C5)X) <7, V6Cy : [[0C,| < ¢; (30)
(I—G(H+/H))(I- G(H+H))* <X, V6H:||6H| < p. (31)

From Lemma 1 and the fact that (31) implies that X > 0,

deg;ﬁﬁﬁm(éz +6C,)X) = Tr((Cy + e)X), (32)

so that (30) reduces to

Tr((Cy + eD)X) < 7. (33)
Since we would like to minimize 7, the optimal choice is 7 = Tr((Cy + €I)X).
To treat the constraint (31), we rely on the following lemma [24, p. 472]:
Lemma 2. Let
A B*
B C

M =

be a Hermitian matriz. Then with C > 0, M > 0 if and only if Ac > 0, where Ac is the Schur complement
of C in M and is given by
Ac=A-B*C™'B.

From Lemma 2 it follows that (31) is equivalent to the condition

X I— G(H + JH))*
X (= GET S o vom . jom) <, (34)
I-G(H+/H) I
which can be expressed as
A(X,G) > B*(G)/HC + C*{H*B(G), VéH: ||/H| < p, (35)
where
X I- GH)*
AX,G) = ~ ( ) ;
I-GH I

B(G):[o G*];
c=[10] (36)
10



Proposition 2. Given matrices P, Q, A with A = A*,
A>P'ZQ+Q'Z'P, VZ:|Z|<p
if and only if there exists a A > 0 such that

A-2Q'Q —pP*
—pP AL

> 0.

From Proposition 2, it follows that (35) is satisfied if and only if there exists a A > 0 such that

X—-A (I-GH)* 0
I- GH I —pG | >0, (37)
0 —pG* A

so that (25) is equivalent to (33) and (37) which are both LMIs.

Finally, the constraint (24) can be expressed as

Tr(Y) <t-—m, (38)
GC,G* <Y, (39)
which, using Lemma 2, is equivalent to
Y G
>0, (40)
G* C,}
completing the proof of the theorem. O

5 Minimax Regret

To improve the performance over the minimax MSE approach, we now consider a competitive approach in
which we seek a linear estimator whose performance is as close as possible to that of the optimal estimator
for all possible values of C, satisfying (6), where we assume, as in Section 3, that H is completely specified.
Thus, instead of choosing a linear estimator to minimize the worst case MSE, we now seek the linear estimator
% that minimizes the worst-case regret, so that we partially compensate for the conservative character of
the minimax approach.

The regret R(C,, G) is defined as the difference between the MSE using an estimator x = Gy and
the smallest possible MSE attainable with an estimator of the form x = G(C;)y when the covariance C,
is known, which we denote by MSE°. If C, is known, then the MMSE estimator is given by (3) and the
resulting optimal MSE is

MSE® = Tr(C,; — C1yC, ' Cye) = Tr(Cy) — Tr(C,H*(HC,H* + Cy) 'HC,). (41)

3This proof is due to A. Nemirovski.

11



written in the equivalent form,
MSE’ = Tr ((I - (H*C,'H + C;!)'H*C,'H) C,) = Tr (H*C,'H+ C; 1)), (42)

which will be more convenient for our derivations.

Thus, we seek the matrix G that is the solution to the problem

min max R(C;, G), (43)
G 1;<6;<u;

where C, has an eigendecomposition of the form (10), and

R(Cs,G) = E(|Gy —x|*) — MSE°
= Tr(GC,G*) + Tr (C,(I- GH)*(I- GH)) - Tr (H*C,'H+ C;1)™'). (44)

The linear estimator that minimizes the worst-case regret is given by the following theorem.

Theorem 3 (Minimax regret estimator). Let x denote the unknown parameters in the model y = Hx+
w, where H is a known n X m matriz with rank m, X is a zero-mean random vector uncorrelated with w with
covariance C, and w is a zero-mean random vector with covariance C,,. Let H*C;lH = VAV* where V
18 a unitary matriz and A is an m x m diagonal matriz with diagonal elements \; > 0 and let C, = VAV*
where A is an m X m diagonal matriz with diagonal elements 0 < I; < §; < u;. Then the solution to the
problem
anin o B~ —_min B(1% 1)
18
%= VCV*H*C,y,

where C is an m X m diagonal matriz with diagonal elements

G = (ui +1;)/2 and ¢; = (u; — 1;)/2.

Proof. The proof of Theorem 3 is comprised of three parts. First, we show that the optimal G minimizing
the worst-case regret has the form
G = VDA'V*H*C,', (46)

for some m X m matrix D. We then show that D must be a diagonal matrix. Finally, we show that the
diagonal elements c; of C = DA~! are given by (45).

We begin by showing that the optimal G has the form given by (46). To this end, note that the regret
R(C;, G) of (44) depends on G only through GH and Tr(GC,G*). Now, for any choice of G,

Tr(GC,G*) = Tr(GCY?PCL/2G*) + Tr(GCY*(I - P)CY2G*) > Tr(GCL/?PCL/2G¥) (47)

12



P = C;'/?H(H*C;'H)"'H*C;!/? (48)

is the orthogonal projection onto the range space of C;UZH. In addition, GH = GC}U/QPC;UQH since
PC,'/’H = C,,'/*H. Thus, to minimize Tr(GC,,G*) it is sufficient to consider matrices G that satisfy

GCl/? = gCl/?p. (49)
Substituting (48) into (49), we have
G = GCY/?PC,'? = GH(H*C,'H)'H*C;! = B(H'C'H)"'H*C,!, (50)

for some m x m matrix B. Denoting B = VDV* and using the fact that H*C;'H = VAV*, (50) reduces
to (46).

We now show that D must be a diagonal matrix. Substituting C; = VAV* and G of (50) into (44), we
can express R(C,, G) as

R(Cy, G) =
= Tr(D*DV*(H*C,H) 'V) + Tr (V*C,V(I-D)*I-D)) - Tr (H*C,'H+C, ) 1)
= Tr(D*DA™ Y+ Tr(A@-D)*(I-D)) - Tr (A +A™H™). (51)

We conclude that the problem (43) reduces to finding D that minimizes

¢g(D) = ,max L(D,A) (52)
where
L(D,A) = Tr(D*'DA™) + Tr (A@-D)*@I-D)) - Tr (A+AH)7H). (53)

Clearly, £(D) is strictly convex in D. Therefore, for any 0 < a < 1,

G(aD1 + (1 —a)Dy) = , max L(aD1 + (1 —a)D2,A)
max {aL(D1,8) + (1 - @)£(Ds, A))
< o max L(D1,A)+(1—0)  ax L(Ds,A)
= ag(D1) + (1 - a)G(Dy), (54)

so that G(D) is also strictly convex in D, and consequently has a unique global minimum. Let J be any

diagonal matrix with diagonal elements equal to 1. Then

G(IDJ) = l}g{lsaécu_{Tr(JD*DJA_l)+Tr(A(I—JDJ)*(I—JDJ))—T‘r((A+A‘1)_1)}

— max {Ti(D*DIA'3) +Tx(JAII-D)*I-D)) - Tr (A + A7) ")}

=, max {Tx(D'DA™) + Tr(A@-D)*(1-D)) - Tr (A + A7) 7))

= §(D), (55)

13



minimizer, we conclude that the matrix D that minimizes G(D) satisfies D = JDJ for any diagonal matrix
J with diagonal elements equal to +1, which in turn implies that D must be a diagonal matrix.

Denote by d;, A; and ¢; the diagonal elements of D, A and A, respectively. Then we can express G(D) as

2
GgDb) = llgs%uz{; (i +6;(1 — d;)? — 8 )}

]

Aid; +
T (Nilds — 1)8; + d;)?
m{Z( 3O+ T

& (Ni(d; —1)6; + d;)?
— ;;2;%{ O+ T . (56)

The problem of minimizing G(D) can now be formulated as

subject to

ax (Aild; — 1)6; + d;)?
Li<6i<u; Ai(Xidi +1)

}gti, 1<i<m, (58)

which can be separated into m independent problems of the form

ngiint (59)
subject to ,
(Ni(d—1)d; + d)
<t 60
li;%?%(ui { Ai(Aid; +1) - (60)

or, equivalently,
(i(d — 1)8; + d)? y
i (A,-(Si + 1) -7

Vo; 2 1 <60 < . (61)

To develop a solution to (57) and (58), we thus consider the problem of (59) and (61), where for brevity, we
omit the index 3.

Let 6 = ¢ + e where ¢ = (u +)/2. Then the condition [ < § < u is equivalent to the condition e? < €
where € = (u —1)/2, so that (61) can be written as

Ad=1)(CH+e)+d)? <tANC +e€) +1), Ve:e? <é, (62)
which in turn is equivalent to the following implication:

P(e)ée2 —e?>0=Q(e) >0, (63)

Qe) = tAA(C +e)+1) — (A(d—1)(C +e) + d)?

14
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We now rely on the following lemma [28, p. 23]:

Lemma 3. [S-procedure] Let P(z) = z*Az+2u*z+v and Q(z) = z*Bz+2x*z+y be two quadratic functions

of z, where A and B are symmetric and there exists a zo satisfying P(zo) > 0. Then the implication
P(z) > 0= Q(z) >0

holds true if and only if there exists an a > 0 such that

B — aA x—au]
> 0.

x*—au* y—av
Combining (63) with Lemma 3, it follows immediately that the condition (61) is equivalent to the condition

a—22(d—1)2 B2 L A1 —d) (d(XC+1) — XC)

\ > 0. (65)
B+ A1 —d) (A +1) = A) AN+ 1) — (A +1) — X0)? — ae?

Note that if (65) is satisfied, then a — A\?(d — 1)? > 0, which implies that a > 0. Therefore, the problem of
(59) and (61) is equivalent to minimizing ¢ subject to (65).
To satisfy (65), we must have that

AL+ AC) > (A +1) — X)) + ae?, (66)
from which it follows that ¢ > 0. If t = 0, then from (66), « = 0 and d = A{/(A{ + 1). But then
a-XNd-1?2<0 (67)

which violates (65) so that ¢t > 0. Defining 8 = a/t, our problem reduces to

g}ii,gt (68)
subject to
18— N(d— 1)? B A -d) @O+ -2 (69)
B2 4 AL —d) (A +1) = A TARE +1) = (dAC + 1) — AQ)? — 1

which can be expressed as

tA —bb* >0, (70)
where ,
A2
A= )\ﬁ2 2 , (71)
A1+ AC) — Be?

15



Ad—-1
b= ( ) . (72)
d(14+ M) — X
Suppose there exists a t such that
tA — bb* = 0. (73)

Then, as we now show, ¢ minimizes (68) subject to (70). Since £ > 0, and from, (73) £A > 0, if follows that
A>0.If0<t<t thent—t>0so that (£ —t)A > 0, which implies that

tA <iA = bb*, (74)
or
tA — bb* < 0. (75)

Thus, either we have tA = bb* or at least one of the eigenvalues of tA — bb* is negative, which violates the

constraint (70). Therefore, if there exists , 3 and d that solve (73), or equivalently, the equations

i6 = A2(1 — d)%
E(A 420 = Be) = (d(1+20) — A%
ix=2(d—1) (&(1 ) — )\C) : (76)

then the optimal value of ¢ must also satisfy (76) for some 8 and d. It can be shown that (76) has a unique

solution:
i ) .
d=1 (14A0)2—AZe2

A A3
B= ;

2(VI+A)?T- 02— 1-X()

2( (1+Ag)2—A2e2—1—Ag)

t= MN{AFI)Z—XZeZ) ’ (77)

which is therefore the solution to the problem of (59) and (61).

The linear minimax estimator is therefore given by
% = VDA-'V*H*C;'y = VCV*H*C}ly, (78)

where C = DA™ is the diagonal matrix with diagonal elements d; /i and

n 1
di=1-— , 1<i<m, (79)
V(L XG)2 — X2
which completes the proof of the theorem. O

As we now show, we can interpret the estimator of Theorem 3 as an MMSE estimator matched to a
covariance matrix

C, = VXV*, (80)
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xp:%(¢u+AmP—A&}—0. (81)

i
Note that if ¢; = 0 so that the ith eigenvalue of the true covariance of C, is equal to (; then, as we expect,

z; = G-

From (5), the MMSE estimate of x with covariance C, given by (80) and H*C,'H = VAV* is
%= (H'C;'H+C;)'H*Cly = V (A + X 1) ' V*H*C ly. (82)

Since
1 T; 1 1

— = — ]. -
: ~ :
XNitg mhtl oA \/(1 + Xii)? — Nee?

= ¢, (83)

the estimator % of (82) is equivalent to the estimator given by Theorem 3. We thus have the following

corollary to Theorem 3.

Corollary 1. Let x denote the unknown parameters in the model y = Hx+w. Then, under the assumptions

of Theorem 38, the solution to the problem

B(lx - IP)}

min max {E(||)%—x||2)— min
x=Gy [;<§; <u; x=G(x)y

is an MMSE estimator matched to the covariance C, = VXV™*, where X is a diagonal matriz with diagonal

1
T; = )\—z (\/(1 + A,-Q)Q — )\?612 — 1)

with (; = (UZ + lz)/2 and €; = ('U'z — ZZ)/Q

elements

Since the minimax regret estimator minimizes the regret for C, = VXV*, we may view the covariance
C, = VXV™* as the “least-favorable” covariance in the regret sense.

It is interesting to note that while the minimax MSE estimator of Theorem 1 for the model (6) is matched
to a covariance matrix with eigenvalues u; > (;, the minimax regret estimator of Theorem 3 is matched to

a covariance matrix with eigenvalues z; < (;. Indeed, from (81) we have that

(NG +1)2-1

z; < N = Gi- (84)
Expressing z; as
) WA e 1) = L@+ ae)ve 1) (85)
T, = — -C: - = — -Cs —a; — ,
3 )\Z 151 (1+>\ZCZ)2 )\Z AY] 7

where 22
“e”

a; = —1—= <1, 86

(I NG)? (86)
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2
Az 62'

T &G — m (87)

Thus, the correction to the nominal covariance (; is approximately \;e2/(2(1 + A;¢;)), which is quadratic in
the length of the uncertainty interval ¢;.

The minimax estimators for the uncertainty model (7) often lie in a different class than the estimator
matched to the nominal covariance matrix. For example, suppose that \; = A\, 1 <i<mand §; =4§,1 <7 <
m so that both H*C_'H and the nominal covariance matrix of x are proportional to the identity. In this
case, the MMSE estimator matched to the nominal covariance matrix is X = ay for some constant a so that
x is simply a scaled version of y. This property also holds for the minimax MSE estimator of Theorem 1
with covariance uncertainty given by (8). However, for the minimax regret estimator and the minimax MSE
estimator with covariance uncertainty given by (7), this property no longer holds in general. In particular,

if €; # €; for some 4 and j, then the optimal estimators will no longer be a scaled version of y.

6 Example of the Minimax Regret Estimator

We now consider examples illustrating the minimax regret estimator of Theorem 3. The purpose of these
examples is to demonstrate the performance advantage in using the minimax regret estimator, and to outline
the steps in implementing the estimator, rather than a detailed practical application, which is beyond the
scope of the paper.

Consider the estimation problem in which
y=x+w, (88)
where x is a length-n segment of a zero-mean stationary first order AR process with components x; so that
BE(ziz;) = pli=il (89)

for some parameter p, and w is a zero-mean random vector uncorrelated with x with known covariance
C, = 0’I. We assume that we know the model (88) and that x is a segment of a stationary process,
however, its covariance C; is unknown.

To estimate x, we may first estimate C, from the observations y. A natural estimate of C, is given by
C; = [Cy - Cw]+ = [Cy - 02I]+’ (90)

where
n—|j—il

~ 1
Cy(Z,J)ZE Z YkYk+|j—i| (91)
k=1

is an estimate of the covariance of y and [A]; denotes the matrix in which the negative eigenvalues of A
are replaced by 0. Thus, if A has an eigendecomposition A = USU™! where ¥ is a diagonal matrix with

diagonal elements o;, then [A]; = U[X], U ! where [X]; is a diagonal matrix with ith diagonal element
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spectrum estimate based on the spectral subtraction method for infinite-length processes [29, 30].

Given ém, we may estimate x using an MMSE estimate matched to éz, which we refer to as a plug in
estimator. However, as can be seen below in Fig. 1, we can further improve the estimation performance by
using the minimax regret estimator of Theorem 3.

To compute the minimax regret estimator, we choose V to be equal to the eigenvector matrix of the
estimated covariance matrix ém, and (; = o; where o; are the eigenvalues of am We would then like to
choose ¢; to reflect the uncertainty in our estimate (;. Since computing the standard deviation of (; is
difficult, we choose ¢; to be proportional to the standard deviation of an estimator &2 of the variance o2 of

x where

Q

1 n
2l (92
=1

We further assume that x and w are uncorrelated Gaussian random vectors. The variance of 52 is given by

n 2 n
p{t-o}=pd (10 -ck-ad) =% 3 p) 0

i=1 ij=1

2 2 2y _ 2 4 2
W — 03 Since E(y;) = oy, + 03,

where t; = y? — o
2 2 24/, 2 2 2 2,2 2 242
BE(tit;) = (yi — 0w — 02)(Yj — 0w — 03) = E(yiy;) — (o0 +07)". (94)
If x and w are Gaussian, then so is y so that

E(yiy}) = 2E*(yiy;) + E(y})E(y5) = 2(C4 (4, 5) + 008i5)° + (00, + 02)?, (95)

where C,(3, 7) is the ijth element of C,. Combining (93), (94) and (95), we have

n

E{(ag_ogf} _2 ((o§+02)2+§20§(1,i)). (96)
=2

Since 02 and C,(1,4) are unknown, we substitute their estimates aw(l,i), 1 < ¢ < m. Finally, to ensure

that ¢; < (;, we choose

& = min | ¢, A4 %((63<1,1)+o2)2+

where A is a proportionality factor.

In Fig. 1, we plot the MSE of the minimax regret estimator averaged over 1000 noise realizations as a
function of the SNR defined by —10logo? for p = 0.8, n = 10 and A = 4. The performance of the “plug
in” MMSE estimator matched to the estimated covariance matrix 655 and the minimax MSE estimator
are plotted for comparison. As can be seen from the figure, the minimax regret estimator can increase
the estimation performance particularly at low to intermediate SNR values. It is also interesting to note

that the popular minimax MSE approach is useless in these examples, since it leads to an estimator whose
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Figure 1: MSE in estimating x as a function of SNR using the minimax regret estimator, the minimax MSE
estimator and the plug in MMSE estimator matched to the estimated covariance matrix.

We repeated the simulations for different values of p, A and n. The values of p and n had only a very
minor impact on the results. As A decreased, the performance of the minimax regret estimator approached
that of the plug in estimator, since a decreasing A results in a smaller uncertainty level. Increasing A
beyond a certain limit did not influence the results, since from (97), for large values of A the uncertainty
level €; = (; regardless of the choice of A. In general, the performance of the minimax regret estimator
reaches an optimal value as a function of A, which in our example was approximately A = 4.

We next consider the case in which the vector x is filtered with an LTI filter with length-4 impulse
response given by

h[0] =1, h[l] =04, h[2] =0.2, h[3] =0.1. (98)

In Fig. 2, we plot the MSE of the minimax regret, plug in and minimax estimators averaged over 1000 noise
realizations as a function of the SNR, for p = 0.8, n = 10 and A = 4. As can be seen, the performance is

similar to the previous example.

7 Nonlinear Minimax Regret Estimation

In the previous sections, we developed linear estimators for estimating the unknown vector x in the linear
model (1) when the covariance C is not known precisely. The restriction to linear estimators was made for
analytical tractability since developing the optimal nonlinear estimator is a difficult problem. If x and w are
jointly Gaussian vectors with known covariance matrices, then the estimator that minimizes the MSE among
all linear and nonlinear estimators is the linear MMSE estimator, which provides theoretical justification

for restricting attention to the class of linear estimators. As we now demonstrate, this property of the
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Figure 2: MSE in estimating x from a noisy filtered version as a function of SNR using the minimax
regret estimator, the minimax MSE estimator and the plug in MMSE estimator matched to the estimated
covariance matrix.

optimal estimator is no longer true when we consider minimizing the worst-case regret with covariance
uncertainties, even if x and w are Gaussian. Nonetheless, we will demonstrate that when estimating a
Gaussian random variable contaminated by independent Gaussian noise, the performance of the linear
minimax regret estimator is close to that of the optimal nonlinear third-order estimator that minimizes the
worst-case regret, so that at least in this case, we do not loose much by restricting our attention to linear
estimators.

For the sake of simplicity, we now consider the problem of estimating the scalar z in the linear model
Y=+ w, (99)

where z ~ N'(0,02), w ~ N(0,02) and z and w are independent. We seek the possibly nonlinear estimator
# of z that minimizes the worst-case regret over all variances o2 satisfying | < 02 < u for some 0 < [ < u.

In the case of model (99), the linear MMSE estimator is given by

; % (100)
2=—2—y=ay,
o2+ a?uy 4
where )
O.CU
=__T 101
@ o+ a2’ (101)
and the optimal MSE is
MSE® = E(ay — 7)2 = 0204 (102)
o2+ 02
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2 2
R = min max {E(:?:—x)2 M} (103)

z I<o2<u O'% +0’120

Since z and w are jointly Gaussian, E(z|y) = ay with a given by (101), so that (103) can be expressed

0.20.2 [e9) 00
B@—oP— 7% = [ pw)dy [ paylaly) (@ -2 - (g = 2)*) do
= /Oo py(y) (&° — 22E(zly) + 20y E(zly) — o*y®) dy
- [ nwG-wra, (104

where p,(z) and p,(y) denote the probability density functions (pdfs) of z and y respectively, with z ~
N(0,02) and y ~ N(0,02 + 02). Since there is a one-to-one correspondence between o2 and «, instead of

maximizing (104) over | < 02 < u, we may maximize it over I, < a < u, where

la = : ;
[+ o2,
Yo = ﬁ (105)
with u, < 1. Thus, -
R=min max [  Pyalyle) (&~ o)’ dy. (106)

Here

VI= O (1 oy /(202
Pylalyle) = Voo e~ (1-a)y?/(207),

is the pdf of y given the value of . We now note that instead of maximizing the objective in (106) over a,

(107)

we can imagine that « is a random variable with pdf p,(a) which has support on the interval Z = [l, uq],
and maximize the objective over all possible pdfs p,(«) with support on Z. This follows from the fact that
the objective will be maximized for the pdf p,(a) = d(ap) where oy € Z maximizes the objective over
lo < a< uy. We then have that

U %)
R = min max/l pa(a)da/ Pyla(yla) (& — ay)? dy. (108)
o o0

z pa(') —

Since the objective in (108) is convex in the minimization argument & and concave (linear) in the maximiza-

tion argument p,(-), we can exchange the order of the minimization and maximization [31] so that

R = maxmjn/ pa(a)da/ Pyla(yla) (& —ay)?dy
lo

pa() & —00
— wax{ [ pywaymin ([ paptel) - a?aa) | (109)

where p,,(aly) is the conditional probability of a given y induced by pa(«).

Differentiating the second integral with respect to £ and equating to 0, the optimal Z that minimizes
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& = yE(aly), (110)

where py,a(ya CM) = py|a(y|a)pa (CM) with py|a(y|a) given by (107) and

thmwﬁzﬂmmmww (111)

Pal” — 00

with Var {a|y} denoting the variance of «a given y. Substituting # into (109), the minimax regret is

o0
R = max [y Var (aly} p, (1) (112)

Pa —00

As we now show, (110) implies that the minimax regret estimator must be nonlinear, even though z

2

and w are jointly Gaussian. Therefore, contrary to the MMSE estimator for the Gaussian case where o7 is

2

known, the estimator minimizing the worst-case regret when o

is unknown is nonlinear. Nonetheless, as
we show below, in practice we do not loose much by restricting the estimator to be linear.

To show that (110) implies that # must be nonlinear in y, we note that since

2
—(1—a) ¥
py|a(y‘a) x e R (113)

we can express F(aly) as

d ay?/(202) 4
Blay) = J2Pua(v-0)dar_ [y opa(a)e a—d{m/m@wm%
T

d
B T dz =—1 114
frpyaly,0)de [ po(a)e’/Cohda  dz —Ing(z),  (114)

where zéy2 /(202), ¢(2) is the moment generating function of p,(c), and Z denotes the support of p,(c).

It is immediate from (110) that # is linear if and only if E(a|y) = a for some constant a. This then
implies from (114) that the derivative of In¢(z) must be equal to a constant, independent of z, which in
turn implies that ¢(z) = e®* (since ¢(0) = 1 for any moment generating function). Since p, () is the inverse
Fourier transform of ¢(—jw), in this case py(a) = é(a — a), and Var {a|y} = 0 so that from (112), the
regret R = 0. Clearly, there are other choices of p, () for which R > 0 so that p,(a) = é(a — a) does not
maximize the regret, and E(a|y) cannot be equal to a constant.

In order to obtain an explicit expression for the minimax regret estimator of (110), we need to determine
the optimal pdf py(«), which is a difficult problem. Since E(aly) is the MMSE estimator of a given the
random variable y, we may approximate E(a|y) by a linear estimator of « of the form & = a + by for some

a and b # 0 (we have seen already that F(«al|y) cannot be equal to a constant). With this approximation,

&= ay + by?, (115)
where a and b are the solution to
o 2 2
i ¢ — ay)? dy = mi E ( 3 — ) . 116
min, max /_ . py(y) (& — ay)”dy min, max (% — ay) (116)
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' E(((a— b2))? = mi — a)2E(y?) + b2E(y* 117
min max (((a — @)y + by?)) rg}gllag;agw{(a a)’E(y*) + VE(y")}, (117)

where we used the fact that since y is Gaussian and has zero mean, E(y®) = 0. Now, for any choice of a
and b, (a — a)2E(y?) + b’E(y*) > (a — a)2E(y?) so that

min max {(a—a)’E(y*) +’E(y")} > min max («—a)’E(y?), (118)

ab la<afua a lg<auq

with equality for b = 0. Thus the optimal estimator of the form (115) reduces to a linear estimator, which
cannot be optimal.
Since the second-order approximation (115) results in a linear estimator, we next consider a third-order

approximation of the form

&= ay + by, (119)

where now a and b are the solution to

min max F (((a —a)y+ by3)2) =

ab lo<a<uq
= min max {(a—a)’E(y?) +b*E(y°) +2(a — a)bE(y*)}
a,b lo<a<uqy
— mi (- a)?-T0 4152 P04 6 )bi (120)
T b etecu, 1 Y 1-a (1—ap VT2

Here we used the fact that y is a zero-mean Gaussian random variable so that [14]

B = { 1-3-...-(n—1)oy, n even; (121)

0, n odd,

2
Y

Finding the optimal values of a and b that are the solution to (120) is a difficult problem. Instead of

where 02 = 02 /(1 — «) is the variance of .

solving this problem directly, we develop a lower bound on the minimax regret R achievable with a third-
order nonlinear estimator of the from (119), and show that in many cases it is approximately achieved by
the linear minimax regret estimator of Theorem 3. In particular, we have the following theorem, the proof

of which is provided in Appendix C.

Theorem 4. Let z ~ N(0,02) and y = z +w where w ~ N(0,02) is independent of . Let & = ay+ by> be
a third-order estimator of x where a and b minimize the worst-case regret over all values of a = 02 /(02 +02)

satisfying lo < a < uq for some 0 <l < uq. Then the minimax regret given by

2
—min max F{[(a— b’}
R a,lbnlagaagxua [(a — @)y + by’]

satisfies R > B where B is the solution to the convezr optimization problem

7.2 0.6
B= _mi 60> —2—
ﬂZ(IEll:?:Ta’Y { 1- loz + (1 - la)3 }
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70w 3((a =2 + oy — 1) o (122)
La=2¢+ 1oy —7) 7(1—-¢)— 1 —C)(a—)ow —3bod — e | ~
B+ oy —% ((a—2¢+1)oy + 1) >0 (123)
L (a=2+ou+7) T1=C)+ (1 =)(a—)oy +3bod, — B2 | T
where ( = (uq +14)/2 and € = (uq — 1) /2.
Note that a positive semidefinite constraint of the form
a b
0 4
[+ ]2 -

is equivalent to the three inequalities @ > 0,¢ > 0 and ac — b% > 0.

In Fig. 3, we plot the bound B as a function of the SNR which is defined as 10log(o2 /02 for 02 = u = 50

and [ = 30. For comparison, we also plot the worst-case regret using the linear minimax regret estimator of

Theorem 3. The value of B is computed using the fmincon function on Matlab, which is part of the Matlab

Optimization Toolbox*. As can be seen from the figure, the worst-case regret using the linear minimax

estimator is very close to the bound so that in this case we do not loose in performance by using a linear

estimator instead of a nonlinear third-order estimator. In general, the performance of the linear minimax

10 T T T T T
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Figure 3: Worst-case regret in estimating x as a function of SNR using the linear minimax regret estimator,

and the bound on the smallest worst-case regret attainable using a third-order estimator.

regret estimator is close to the bound for small values of u — [. If u > [, then the performance of the linear

“For documentation, see http://www.mathworks . com/products/optimization/.
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8 Conclusion

We considered the problem of estimating a random vector x in the linear model y = Hx + w, where the
covariance matrix C, of x and possibly also the model matrix H are subject to uncertainties. We developed
the minimax MSE estimators for the case in which C, is subject to uncertainties and the model matrix is
known, and for the case in which both C, and H are not completely specified.

The main contribution of the paper is the development of a competitive minimax approach in which we
seek the linear estimator that minimizes the worst-case regret, which is the difference between the MSE of
the estimator and the best possible MSE attainable with a linear estimator that knows the covariance C,.
As we demonstrated, the competitive minimax approach can increase the performance over the traditional
minimax method, which in some cases turns out to be completely useless.

The minimax regret estimator has the interesting property that it often lies in a different class than the
estimator matched to the nominal covariance matrix. We have seen an example of this property in Section 5
where the nominal estimator is proportional to the observations y, while the linear minimax regret estimator
is no longer equal to a constant times y. Another example was considered in Section 7, where we showed
that the optimal minimax regret estimator for the case in which y and w are jointly Gaussian is nonlinear,
while the nominal estimator is linear.

In our development of the minimax regret, we assumed that H is completely specified and that HC,'H
and C, have the same eigenvector matrix for all possible covariance matrices. An interesting direction for
future research is to develop the minimax regret estimator for more general classes of H as well as in the
presence of uncertainties in H. Tt is also interesting to investigate the loss in performance with respect to

an arbitrary nonlinear minimax regret estimator in the general linear model.
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A Proof of Proposition 1

Let X be an arbitrary matrix satisfying (29). Then from Lemma 1,

IIAIISIg,EILI%IISﬂ A)QB)) < \|A||grg,a|t|)1(3||§g Tr(G(A)X). (125)
Since
Tr(G(A)X) = Tr(G(A)Q(B)) + Tr (G(A)(X — Q(B))), (126)
we have that
a e TOAX) < | max  THGA)QB) +  max  Tr(GA)X-QB)). (127
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TrGAIRAE Tr(G(A)(X - Q(B)) <, 128
e  Tr(GA)O®) + | max T (G(A)(X ~ Q(B)) <7 (128)

and (29). It then follows from (125) and (127) that
71 <79 < T3 (129)

Since G(A) > 0 and X — Q(B) > 0 for all ||A|| < @, ||B|| < g and X satisfying (29), it follows from
Lemma 1 that maxja|<a,B||<s Tr (G(A)(X — Q(B))) > 0. Therefore to minimize the value of 7 in (128),
X is chosen such that max)z|j<q,B|<g Tr (G(A)(X — Q(B))) = 0. But then 73 = 71 so that from (129) we

conclude that 79 = 71, completing the proof of the proposition.

B Proof of Proposition 2

To prove the proposition, we first note that

A>P'ZQ+ QZ'P, VZ:|Z|<p (130)
if and only if for every x,
x*Ax > IImI?X {x*P*"ZQx + x*Q*"Z*"Px} = 2p||Px|| |Qx]|. (131)
Z||<p

Using the Cauchy-Schwarz inequality, we can express (131) as
x"Ax —2py"Px >0, Vx,y:|y| <[Qx|. (132)

Finally, since ||y|| < ||Qx]| is equivalent to x*Q*Qx —y*y > 0, we can use Lemma 3 to conclude that (132)
is satisfied if and only if there exists a A > 0 such that

A-)Q'Q —pP

> 0, (133)
—pP AL
completing the proof.
C Proof of Theorem 4
From (120), it follows that we can express R as
R =min max §(a,b,aq), (134)
ab lo<a<uy
where
2 6 4
_ _\2 Tw 2 Tw o Tw
G(a,b,a) = (a—a) i—a + 15b A—ap +6(a oz)bi(1 o)

27



1— 1— 1—a)?
Since l, < a<uy <1,
1 3bo? > y 0%
G(a.00) > 1 (0= o+ 272 ) o T

so that R > B, where

) 1 3bad 2 5 0
B—Ifll,lbnlaglaagxua{l_la ((a—a)aw—l- ) +6b°—2— &

To compute B we note that (137) can be expressed as

B = mint
a,b,t
subject to
1 303 \> _, of
- ((a—a)aw-l-l_w) +6b ﬁgt, Va:l, < a < ug,

3bod 2 y 05
(a—a)aw-l— —a S(l—la)t—Gb m, Va:lagagua.
Defining
2 (1= 1)t — 68— >
T = ( - a) - (1 — la)z )

we have that

7.2 0.6
B = mi 65> w
Efﬂ?{l—zﬁ (1—za)3}

subject to
3bo3 \°
((a—a)aw+ . Uw) <72 Va:l,<a<u,,
or, equivalently,
3bo3
(a — a)oy + . Ow < 1, Va:l,<a<ugy;
—«
3bo3
(a — a)oy + . Tw > -1, Va:l, <a<u,.
—«

(136)

(137)

(138)

(139)

(140)

(141)

(142)

(143)

(144)

(145)

Consider first the constraint (144). Let @ = ¢ + e where ¢ = (uq +14)/2. Then [, < a < u, is equivalent

to e? < €2 where € = (uq — ly)/2, so that (144) can be expressed as

(1-C¢—e)(a—C¢—e)oy +3bos <T(1—C—¢), Ve:e*<é,
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P(e)ée2 —e2>0=Q(e) >0, (147)
where

Qe)=7(1—¢—e) = (1—(—e)(a—( —e)ow —3boy,
= 0w’ te((la—20+ 1oy —7)+7(1—=¢) = (1 —¢)(a—¢)ow — 3ba,. (148)

From (63) and Lemma 3, it follows that the condition (144) is equivalent to the condition (122), for some
v > 0. If (122) is satisfied, then v > o,, > 0 so that it is not necessary to impose the additional constraint
~ > 0. Similarly, we can show that the condition (145) is equivalent to the condition (123) for some 5 > 0,

completing the proof of the theorem.
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