
A Large–Deviations Notion of Perfect Secrecy

Neri Merhav∗

March 2, 2011

Abstract

We consider the Shannon cipher system with a variable key rate, and study the
necessary and sufficient conditions for perfect secrecy in the sense that the exponential
rate of the probability of breaking into the system would not be improved by observing
the cryptogram. For a memoryless plaintext source, we derive achievable lower bounds
on the number of key bits needed for almost every plaintext sequence in every type class.
The corresponding minimum achievable average key rate turns out to be the negative
logarithm of the probability of the most likely plaintext letter, which is in general,
smaller than the entropy.

Index Terms: Shannon cipher system, cryptography, cryptanalysis.
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1 Introduction

In the classical Shannon-theoretic approach to cryptology [5], the security of cipher systems

is traditionally measured in terms of the equivocation, that is, the conditional entropy of the

plaintext (or the key) given the cryptogram. As is well known (see, e.g., [3]), this conditional

entropy can be at most as large as the rate of the purely random key stream. Thus, perfect

theoretical secrecy is attainable if and only if the key rate is at least as large as the message

rate. Other, less pessimistic, information–theoretic notions of security were also proposed.

For example, Hellman [2] proposed to measure the degree of security of a cryptosystem in

terms of the expected number of spurious messages, i.e., the expected number of plaintext-

key combinations that may explain the given cryptogram. The assumption in [2] is that

the number of meaningful messages of a given length n within the language of the source,

is very small compared to the total number of possible n-vectors. Another interesting

definition is Maurer’s conditionally–perfect security as well as his construction of a low

key-rate randomized cipher [4], which is secure (in Shannon’s sense) provided that a certain

event occurs whose probablity is high unless the cryptanalyzer performs a computationally

infeasible task.

In this correspondence, we propose to define secrecy in a large–deviations sense: A

cryptosystem will be considered secure if the presence of the cryptogram does not improve

the exponential rate of the probability of breaking into the system, namely, deciphering the

correct message without access to the key. More specifically, we consider Shannon’s model

of a secrecy system [5], where a plaintext message X = (X1, . . . , Xn), emitted by a discrete

memoryless source P , is to be communicated as securely as possible from a transmitter to a

legitimate receiver. The transmitter and receiver have access to a common key string U of

purely random bits, whose length K = K(X) may depend on X. The transmitter generates

a cryptogram

Y = φ(X,U)

and sends it over a public channel to the receiver. The cryptogram Y is a string (possibly,

of variable length) over an alphabet that is not necessarily the same as the source alphabet.

The encryption function is invertible given the key in the sense that there exists an inverse

decryption function

X = φ−1(Y,U)
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to be used by the legitimate receiver who observes both Y and U. An enemy wiretapper,

who knows the encryption function φ (and hence also the decryption function φ−1) and

the statistics of the plaintext source, but not the key itself, aims at decrypting X from the

observed cryptogram Y only.

Clearly, the probability of correctly guessing the plaintext, based only on knowing the

probability mass function P , but without the cryptogram, is given by

max
x

P (x) = [max
x

P (x)]n = 2−nΓS ,

where x is a single plaintext symbol, x is a plaintext string of length n, and

ΓS
4
= − log max

x
P (x).

The question we address is then the following: How many key bits, K(X), should be used

to encrypt every X so as to guarantee that the probability PC of correctly deciphering X

by an eavesdropper who observes Y (but not U), will continue to decay at the exponential

rate of 2−nΓS?

Our main result is that a necessary condition for this to be the case is that for almost

every sequence X in every type class TQ (where Q is the empirical probability mass function

of single letters associated with X), K(X) must be essentially at least as large as

n[ΓS −D(Q‖P )]+,

where [u]+
4
= max{u, 0}. On the other hand, it is easy to show that there exists a simple

cipher system with K(X) ≈ n[ΓS−D(Q‖P )]+ for all X, which satisfies the above–mentioned

security requirement, namely, PC ∼ 2−nΓS . Therefore, essentially the same condition is

sufficient as well.

An immediate consequence of this result is that the needed key rate R(X) = K(X)/n

for each X essentially never exceeds ΓS , which is in turn less than or equal to the entropy

of the source HS (with equality when all letters are equally likely). Therefore, this notion

of secrecy is less pessimistic than Shannon’s notion of equivocation.

One might argue, on the other hand, that this may be even overly optimistic, because

if the eavsdropper deciphers correctly as many as 99% of the plaintext symbols (but not

the remaining 1%), this is considered as a failure from the viewpoint of breaking into the

system. In some applications, this assumption is indeed well–justified, for example, when
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X is a secret personal verification message, like a password of a computer account or a bank

account number accessed via the Internet. In other applications, a more plausible approach

would be to adopt a criterion that provides better protection even when the eavesdropper’s

estimate X̂ is only close to the true message under some fidelity criterion ρ(X, X̂) (see, e.g.,

[6]). For example, instead of maintaining the exponential rate of PC as proposed above,

one might be interested to maintain the exponential rate of the probability of the event

ρ(X, X̂) ≤ nD (for a given D) at the same level as in the absence of a cryptogram. We

have not pursued this direction in this work.

2 Definitions and Notation Conventions

Throughout this correspondence, scalar random variables will be denoted by capital letters

while their sample values will be denoted by the respective lower case letters. A similar

convention will apply to random vectors and their sample values, which will be denoted

by boldface letters. Thus, for example, if X denotes a random vector (X1, ..., Xn), then

x = (x1, ..., xn) would designate a specific realization of X.

The plaintext message will be assumed to be drawn from a discrete memoryless source

(DMS) with a finite alphabet X and probability mass function (PMF) P = {P (x), x ∈ X}.

The probability of a vector x, will be denoted P (x), which is given by
∏n

i=1 P (xi). The nth

order Cartesian power of X , that is, the space of all n-vectors over X , will be denoted by

X n. The probability of an event A ⊆ X n will be denoted by P (A) or Pr{A}. We shall use

the letter Q to denote a generic DMS over the alphabet X , and use the same notational

conventions as for P .

For a DMS Q, we recall that the Shannon entropy is given by

H(Q) = −
∑
x∈X

Q(x) log Q(x), (1)

where logarithms throughout the sequel are taken to the base 2. The relative entropy

between Q and P is defined as

D(Q‖P ) =
∑
x∈X

Q(x) log
Q(x)
P (x)

. (2)

For a given source vector x ∈ X n, the empirical probability mass function (EPMF)

is the vector Qx = {Qx(a), a ∈ X}, where Qx(a) = nx(a)/n, nx(a) being the number of

occurrences of the letter a in the vector x. The set of all EPMF’s of vectors in X n, that is,
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rational PMF’s with denominator n, will be denoted by Qn. The type class Tx of a vector

x is the set of all vectors x′ ∈ X n such that Qx′ = Qx. When we need to attribute a type

class to a certain rational PMF Q ∈ Qn rather than to a sequence in X n, we shall use the

notation TQ. It is well-known [1] that the number of type classes of n-vectors is bounded

by (n + 1)|X |−1, where |X | denotes the cardinality of X . The standard reference about the

method of types is the book by Csiszár and Körner [1]. Finally, throughout the sequel,

O(n) desginates a quantity that grows asymptotically linearly with n, i.e., O(n)/n tends to

a constant.

3 Main Results

For a given cipher system φ, let P (y|x) denote the induced conditional probability of the

cryptogram y given the plaintext x. Similarly, let P (x,y) = P (x)P (y|x) denote the joint

probability mass function, and let P (x|y) and P (y) be the induced conditional probability

of x given y and the marginal of y, respectively.

Since the best estimator of x given y (in the sense of maximizing PC) is given by

x̂ = argmaxxP (x|y),

then the probability of optimum correct decryption of X in the presence of the cryptogram

is clearly given by

PC =
∑
y

P (y) max
x

P (x|y) =
∑
y

max
x

P (x,y). (3)

Our first result tells that for PC to decay as fast as 2−nE , almost all sequences within

every type class, TQ, must be encrypted using essentially at least n[E−D(Q‖P )]+ random

bits. Perfect security then corresponds to the special case where E = ΓS .

Theorem 1 For a given E > 0, if PC ≤ 2−nE, then for every type class TQ, the following

holds: For every ε > 0,

|TQ ∩ {x : K(x) ≤ n([E −D(Q‖P )]+ − ε)}| ≤ 2O(log n)−nε|TQ|. (4)

Proof. First observe that for type classes {TQ} where D(Q‖P ) ≥ E, the assertion of the

theorem is trivial since the set {x : K(x) < 0} is empty. Consider then an arbitrary type

class for which D(Q‖P ) < E, in which case, the operation [·]+ is neutral. By the same
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token, if ε > E −D(Q‖P ), the assertion of the theorem is again trivial. Assume then that

0 < ε ≤ E −D(Q‖P ).

For a given cipher system φ, let φ−1(y) denote the set of all x for which there exists

a key string u = (u1, . . . , uK(x)) such that y = φ(x,u). Also, for a non–negative integer

s ∈ {0, 1, . . . , dn log |X |e}, let

T s
Q = TQ ∩ {x : K(x) = s}.

Note that the number of distinct sets {T s
Q} is upper bounded by

Mn
4
= |Qn| · (dn log |X |e+ 1) ≤ (n log |X |+ 2) · (n + 1)|X |−1,

which is a polynomial in n. Now,

PC =
∑
y

P (y) max
x∈φ−1(y)

P (x|y)

=
∑
y

P (y) max
x∈φ−1(y)

P (x, T s
Q|y)

=
∑
y

P (y) max
T s

Q

max
x∈φ−1(y)

P (x, T s
Q|y)

=
∑
y

P (y) max
T s

Q

max
x∈φ−1(y)∩T s

Q

P (T s
Q|y)P (x|T s

Q,y)

=
∑
y

P (y) max
T s

Q

P (T s
Q|y) · max

x∈φ−1(y)∩T s
Q

P (x|T s
Q,y)

≥ 1
Mn

∑
y

P (y)
∑

T s
Q: P (T s

Q|y)>0

P (T s
Q|y) · max

x∈φ−1(y)∩T s
Q

P (x|T s
Q,y)

=
1

Mn

∑
y

∑
T s

Q: P (T s
Q|y)>0

max
x∈φ−1(y)∩T s

Q

P (T s
Q)P (x|T s

Q)P (y|x)

=
1

Mn

∑
y

∑
T s

Q: P (T s
Q|y)>0

max
x∈φ−1(y)∩T s

Q

P (T s
Q) · 1

|T s
Q|

· 2−s

=
1

Mn

∑
y

∑
T s

Q: P (T s
Q|y)>0

P (T s
Q)

|T s
Q|

· 2−s

=
1

Mn

∑
T s

Q

∑
y: P (T s

Q|y)>0

P (T s
Q)

|T s
Q|

· 2−s

=
1

Mn

∑
T s

Q

|{y : P (T s
Q|y) > 0}| ·

P (T s
Q)

|T s
Q|

· 2−s

≥ 1
Mn

∑
T s

Q

|T s
Q| ·

P (T s
Q)

|T s
Q|

· 2−s

≥ 1
Mn

max
T s

Q

P (T s
Q) · 2−s, (5)
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where in the second to the last inequality we have used the fact that the set {y : P (T s
Q|y) >

0} is actually identical to the set {y = φ(x,u) : u ∈ {0, 1}K(x), x ∈ T s
Q}, whose cardinality

cannot be smaller than |T s
Q| since φ must be invertible given u. It now follows from the

hypothesis of the theorem that for every Q and s

2−nE ≥ 1
Mn

P (T s
Q) · 2−s ≥ 1

M2
n

·
|T s

Q|
|TQ|

· 2−nD(Q‖P )−s (6)

or, equivalently,

|T s
Q| ≤ 2sM2

n|TQ| · 2−n[E−D(Q‖P )]. (7)

Thus, for every non-negative z,

|TQ ∩ {x : K(x) ≤ z}| =
bzc∑
s=0

|T s
Q|

≤ M2
n · |TQ| · 2−n[E−D(Q‖P )] ·

bzc∑
s=0

2s

≤ 2M2
n · |TQ| · 2−n[E−D(Q‖P )] · 2z, (8)

and the proof is completed by setting z = n[E − D(Q‖P ) − ε] and using the fact that

log Mn = O(log n). 2

We next demonstrate a conceptually simple cipher system for which

K(x) ≤ n[ΓS −D(Qx‖P )]+

for all x, while keeping PC no larger than the exponential order of 2−nΓS .

This cipher system works as follows: First, compress x losslessly into a binary vector of

two fields. The first field encodes the index of the type class Tx using O(log n) bits, and

the second field contains the index of x within Tx using dlog |Tx|e bits. If D(Qx‖P ) < ΓS ,

encrypt the first1 K(x) = n[ΓS−D(Qx‖P )] bits of the second field by applying a bit–by–bit

XOR operation with the same number of key bits. The cryptogram y is then the partially

encrypted binary codevector for x. If D(Qx‖P ) ≥ ΓS , do not encrypt at all and let y be

just the compressed bit string of x.2

To see why this scheme gives the desired behavior of PC , first observe that the contri-

bution of type classes for which D(Q‖P ) > ΓS can be neglected because their probabilities
1It is easy to see that n[ΓS − D(Qx‖P )] never exceeds nH(Qx), which is the approximate size of the

second field.
2While this scheme formally achieves the goal of attaining ΓS , the fact that some plaintexts are not

protected at all, may be objectionable. A simple modification could be to encrypt at least a small fraction
of the compressed bits of every such plaintext anyhow.
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decay faster than the target exponential rate of 2−nΓS . Confining then attention to the

remaining type classes, repeat the chain of equations (5) with the above described scheme

in mind, where in this case, {T s
Q} are all empty except for s = s(Q)

4
= n[ΓS − D(Q‖P )],

as T
s(Q)
Q is populated by the entire type class TQ. Now, the first and the last inequalities

in (5) are always exponentially tight. Thus the only possible cause of lack of exponential

tightness in eqs. (5) might be the second to the last inequality, which is nevertheless tight

as well (according to the explanation that follows (5)) if our scheme satisfies

|{y = φ(x,u) : u ∈ {0, 1}K(x), x ∈ TQ}| = |TQ|.

But this is clearly the case, because the left–hand side corresponds to all |TQ| possible

binary vectors in the second field.

Thus, according to (6), PC is of the exponential order of

max
Q

2−nD(Q‖P )−sQ = max
Q

2−nD(Q‖P )−n[ΓS−D(Q‖P )] = 2−nΓS . (9)

4 Discussion

The last few lines of the proof of Theorem 1 suggest that, in fact, a somewhat more gen-

eral and more refined argument can be made: If PC decays at the exponential order of

2−nE , then for every type class TQ, the fraction of sequences that may be encrypted by no

more than nR random bits (assuming 0 < R < E − D(Q‖P )) essentially cannot exceed

2−n[E−D(Q‖P )−R]. This actually characterizes a bound on the best achievable distribution

of key length assignments within each type class.

Another interesting variant of our problem corresponds to the case where the plaintext

source P is unknown to the encrypter (except for the fact of being memoryless), but we

would like to guarantee that PC continues to decay at the exponential rate of 2−nΓS for

every memoryless P , and even if the cryptanalyzer knows the statistics. It is easy to show

that the derivations above extend straightforwardly and the minimum number of key bits

needed (for most) sequences within each type class TQ is given by

max
P

[ΓS(P )−D(Q‖P )].

8



References

[1] I. Csiszár and J. Körner, Information Theory: Coding Theorems for Discrete Memo-

ryless Systems. New York: Academic, 1981.

[2] M. E. Hellman, “An extension of the Shannon theory approach to cryptography,” IEEE

Trans. Inform. Theory, vol. IT-23, no. 3, pp. 289-294, May 1977.

[3] J. L. Massey, “An introduction to contemporary cryptology,” Proc. IEEE, vol. 26, no.

5, pp. 533-549, May 1988.

[4] U. M. Maurer, “Conditionally-perfect-secrecy and a provably-secure randomized ci-

pher,” J. Cryptology , vol. 5, no. 53–66, 1992.

[5] C. E. Shannon, “Communication theory of secrecy systems,” Bell Syst. Tech. J., vol. 28,

no. 3, pp. 565-715, Oct. 1949.

[6] H. Yamamoto, “Rate-distortion theory for the Shannon cipher system,” IEEE Trans.

Inform. Theory, vol. IT-43, pp. 827-835, May 1997.

9


