
Fast Inverse Motion Compensation Algorithms forMPEG-2 and for Partial DCT InformationNeri MerhavComputer Systems Laboratory and HP-ISC�andVasudev BhaskaranComputer Systems Laboratoryy
Keywords: video compression, MPEG, video browsing, compressed domain processing,motion vector, MPEG-2.AbstractIn prior work, we developed a fast inverse motion compensation method that canbe implemented directly on the DCT domain representation derived from the com-pressed bitstreams conforming to MPEG, H.261 and H.263 standards. That work wasrestricted to compressed-domain representations wherein the motion-vectors have inte-ger pel accuracy. Here, we extend this work to sub-pel accurate motion-vectors. Herewe also extend the prior work to speedup the inverse motion compensation processin the DCT domain by explicitly exploiting the sparseness of the DCT domain rep-resentation. Using partial DCT information we show that the DCT domain methodhas substantially lower operation count than the conventional spatial domain approachwhich requires decompression followed by inverse motion-compensation.
�On sabbatical leave at HP Laboratories. Current address: Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto,CA 94304, U.S.A. Email: merhav@hpl.hp.com. Permanent address: HP Israel Science Center, Technion City, Haifa 32000,Israel. E-mail: merhav@hp.technion.ac.ilyAddress: Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, CA 94304, U.S.A. E-mail: bhaskara@hpl.hp.com

1 IntroductionWhile standard image and video compression schemes like JPEG, MPEG, H.261 and H.263reduce dramatically the required amount of storage and transmission bandwidth withoutsacri�cing much quality, the compressed domain does not always lend itself to easy imageprocessing and manipulation. Indeed, the last few years have witnessed a rapidly growinginterest in developing sophisticated fast algorithms for manipulating compressed images andvideo streams directly in the compressed domain, namely, the discrete cosine transform(DCT) domain, without explicit transformation back to the uncompressed domain, which iscomputationally expensive.In this work, we focus on compressed-domain based algorithms for two di�erent problemsassociated with fast reconstruction of a video sequence from an MPEG-compressed sequence:inverse motion compensation for fractional motion vectors, and inverse motion compensationusing partial DCT information.The �rst problem that is treated in this paper is that of extending the fast inverse motioncompensation algorithm developed in [4] so as to deal with motion vectors whose componentsare not necessarily integers. In MPEG, the components of each motion vector are integermultiples of 0:5, e.g., 5:5, 7, 14:5, etc., where the interpretation is that of averaging theneighboring pixel intensities. If only one component of the motion vector is noninteger, thenthere are two neighboring pixels to be averaged, and if both are noninteger, then the fournearest neighbors with integer coordinates are averaged.We show that the algorithm proposed in [4] extends easily to this setting of fractional motionvectors and the additional computational complexity is relatively small.In the second problem, by \partial DCT information" we mean, in particular, only very fewDCT coe�cients of each block. The underlying motivation is in accelerating the processof decompression for quick browsing applications, where the viewer is interested merely inrough information of the present scene, and the current location within the movie or thevideo clip. The method proposed here can also be used as the front-end of a video databasequery system. In [2] (see also [1], [3]) Yeo and Liu have developed exact and approximatealgorithms for fast reconstruction of subsampled images for two possible levels of partialDCT information: The �rst level uses the DC component only, and the second uses the �rstthree DCT coe�cients, i.e., the DC, the (0; 1), and the (1; 0) DCT coe�cients. This set ofDCT coe�cients will be henceforth referred to as DC + 2AC.Sometimes DC-only images are su�cient for quick browsing applications, and this is a greatadvantage since the DC information is given almost free. However, DC-only images tend tobe very blocky and are not useful as-are for browsing or for video scene analysis. In [2], it isshown that such images have to be subsampled in order to facilitate scene analysis. Whenthe scene includes important text or other �ne but critical information, the DC componentalone might not su�ce. In these cases, more DCT coe�cients have to be used. For a smallgroup of pictures (GOP) setting in MPEG-1 or MPEG-2 (e.g., GOP � 4), DC +2AC turnsout to be typically a good compromise between speed of decompression on one hand, andacceptable quality of the browsed scene on the other hand. For a typical GOP setting (e.g.GOP = 12 - 16), based on simulations reported here, the DC + 2AC choice may not beacceptable for most video browsing applications; we need around 6 DCT coe�cients in orderto get acceptable quality. The 6 DCT coe�cients that were found to provide good qualityare: DC, (0; 1), (0; 2), (1; 0), (1; 1) and (2; 0) - these are the �rst six coe�cients obtained1

from zigzag ordering within the 8 � 8 DCT matrix; henceforth we will refer to this as the3� 2� 1 case.We develop and propose a fast algorithm for inverse motion compensation in the DCT domainfor the 3�2�1 case. Unlike the algorithm in [2], our algorithm produces images in the originalsize, and not a down-sampled version. This guarantees that �rst, the output stream complieswith the original semantics in terms of display resolution, and second, it also allows the viewerto browse on a bigger and more detailed image sequence. Our development will focus on thebottleneck of the decoding process, which is the inverse motion compensation part, whosederivation is a further development on [4]. We also demonstrate that the operations count,can be further reduced by using a multiplication-free approximate version of our algorithm,without signi�cant additional degradation in quality. In this paper, we include simulationresults for the 3� 2� 1 case and other cases of interest.2 Preliminaries and Problem DescriptionThe 8 � 8 2D-DCT transforms a block fx(n;m)g7n;m=0 in the spatial domain into a matrixof frequency components fX(k; l)g7k;l=0 according to the following equationX(k; l) = c(k)2 c(l)2 7Xn=0 7Xm=0 x(n;m) cos(2n+ 116 � k�) cos(2m + 116 � l�); (1)where c(0) = 1=p2 and c(k) = 1 for k > 0. The inverse transform is given byx(n;m) = 7Xk=0 7Xl=0 c(k)2 c(l)2 X(k; l) cos(2n+ 116 � k�) cos(2m+ 116 � l�): (2)In a matrix form, let x = fx(n;m)g7n;m=0 and X = fX(k; l)g7k;l=0. De�ne the 8-point DCTmatrix S = fs(k; n)g7k;n=0, wheres(k; n) = c(k)2 cos(2n+ 116 � k�): (3)Then, X = SxSt (4)where the superscript t denotes matrix transposition. Similarly, let the superscript �t denotetransposition of the inverse. Then,x = S�1XS�t = StXS (5)where the second equality follows from the unitarity of S.Motion compensation of compressed video [5], [6] (see also [7]) means predicting each 8� 8spatial domain block x of the current frame by a corresponding reference block x̂ from aprevious frame 1 and encoding the resulting prediction error block e = x� x̂ by using the1In some of the frames (B-frames) blocks are estimated from both past and future reference blocks. For the sake of simplicity,we shall assume here that only the past is used (P -frames). The extension to B-frames is straightforward.2

DCT. The best matching reference block x̂ may not be aligned to the original 8� 8 blocksof the reference frame. In general, the reference block may intersect with four neighboringspatial domain blocks, henceforth denoted x1;x2;x3, and x4, that together form a 16� 16square, where x1 corresponds to northwest, x2 to northeast, x3 to southwest and x4 tosoutheast. This is illustrated in Fig. 1.In the �rst problem our goal is to compute the DCT X of the current block x = x̂+e givenits motion-vector relative to a region in a previous frame, the current block's interframe DCTE = SeSt and the intraframe DCT's X1; :::;X4 of the previous frame which is referencedby the motion-vector. Here, the motion-vector is given at subpixel accuracy. We developthe algorithm in Section 4.The goal of the second problem is nearly identical to that of the �rst problem; however, thekey di�erence is that here we need to compute X using partial DCT information for E andX1; :::;X4. In Fig. 2, we show several cases of interest for the partial DCT information.We provide a detailed algorithm for computing x = x̂+e using only 6 DCT coe�cients (werefer to this choice of DCT coe�cients as the 3�2�1 case) forE andX1; :::;X4. Speci�callyour goal for the 3�2�1 case is to compute the DCT X of the current block x = x̂+e fromthe 3� 2� 1 part of the DCT E = SeSt, that is, E(0; 0), E(0; 1), E(0; 2), E(1; 0), E(1; 1),E(2; 0) and the 3 � 2 � 1 parts of the DCT's X1; :::;X4 of x1; :::;x4, respectively. SinceX = X̂ +E, X̂ being the DCT of x̂, the main problem that remains is that of calculatingX̂ directly from the 3� 2� 1 parts of X1; :::;X4, i.e., X i(0; 0), X i(0; 1), X i(0; 2), X i(1; 0),X i(1; 1) andX i(2; 0), i = 1; 2; 3; 4. Inverse motion compensation for other settings of partialDCT information, e.g., DC+2AC case can be performed in a similar manner. The algorithmand simulation results are provided in Section 3.For both problems, the common goal is to perform inverse motion compensation in theDCT domain given the inter and intraframe DCT information. Referring to Fig. 1, let theintersection of the reference block x̂ with x1 form a h � w rectangle (i.e., h rows and wcolumns), where 1 � h � 8 and 1 � w � 8. This means that the intersections of x̂ with x2,x3, and x4 are rectangles of sizes h� (8�w), (8�h)�w, and (8�h)� (8�w), respectively.Following Chang and Messerschmitt [8], [9] (see also [2], [4]), it is readily seen that x̂ can beexpressed as a superposition of appropriate windowed and shifted versions of x1; :::x4. Forinteger pel accurate motion vectors, we can express x̂ asx̂ = Uhx1Lw + Uhx2U8�w + L8�hx3Lw + L8�hx4U8�w; (6)where for n = 1; 2; :::; 8, Un �= 0 In0 0 ! (7)and Ln �= 0 0In 0 ! ; (8)In being the n� n identity matrix. Note that the general form for x̂ given in eq. (6) needsto be modi�ed when h and w posess fractional pel accuracy. We develop this modi�cationin Section 4.Since the input blocks are given in the DCT domain, we shall rewrite eq. (6) asx̂ = UhStX1SLw + UhStX2SU8�w + L8�hStX3SLw + L8�hStX4SU8�w: (9)3

In Section 3, we will develop the algorithms for fast DCT-domain based inverse motioncompensation for partial DCT information, speci�cally the 3� 2� 1 case. In Section 4, wewill use eq. (6) as the starting point to develop the algorithm for DCT-domain based inversemotion compensation for subpixel accurate motion-vectors.3 Partial DCT InformationIn this section, we develop an algorithm for DCT domain inverse motion compensation whenonly partial DCT information is used in the inverse motion compensation process. Thealgorithm is based on modifying the basic equation in eq. (6). The algorithm developmenthere is based on the assumption that the motion-vectors are speci�ed at only integer pelaccuracy. The same concepts developed here extend easily to motion-vectors with fractionalpel accuracy as is the case in MPEG-1 and MPEG-2. A brief description of the approachthat can be adopted for DCT-domain inverse-motion compensation for fractional pel accuratemotion-vectors is given in Section 4.3.1 Mathematical DerivationIn [4], we developed an algorithm to e�ciently implement eq. (9). Now, since only the3� 2� 1 part of each X i is assumed non-zero (see Fig. 2), eq. (9) is equivalent tox̂ = UhStTX1TSLw +UhStTX2TSU8�w +L8�hStTX3TSLw+L8�hStTX4TSU8�w; (10)where T �= I3 00 0 ! : (11)DCT-domain inverse motion compensation for the 3 � 2 � 1 case can be performed bystraightforward application of the algorithm for eq. (9) as described in [4]. However, eq.(10), suggests that a faster algorithm might be possible by combining the operation of T withthese of the DCT and the window and shift operation in one of two di�erent approaches.One approach, which is preferrable when Un or Ln are associated with a relatively small n,is simply to precompute the �xed products UnStT , LnStT , TSUn, and TSLn for all n, andto use these in a straightforward manner. The second approach, to be used if n is relativelylarge, is to embed T into a sparse matrix factorization of S. Speci�cally, similarly as in [4],we shall use a factorization of S that corresponds to the 8-point Winograd DCT due to Arai,Agui, and Nakajima [10] (see also [11]). According to this factorization, S is represented asfollows. S = DPB1B2MA1A2A3 (12)where D is a diagonal matrix given byD = diagf0:3536; 0:2549; 0:2706; 0:3007; 0:3536; 0:4500; 0:6533; 1:2814g; (13)
4

P is a permutation matrix given by
P = 0BBBBBBBBBBBBB@

1 0 0 0 0 0 0 00 0 0 0 0 1 0 00 0 1 0 0 0 0 00 0 0 0 0 0 0 10 1 0 0 0 0 0 00 0 0 0 1 0 0 00 0 0 1 0 0 0 00 0 0 0 0 0 1 0
1CCCCCCCCCCCCCA (14)

and the remaining matrices are de�ned as follows:
B1 =

0BBBBBBBBBBBBB@
1 0 0 0 0 0 0 00 1 0 0 0 0 0 00 0 1 0 0 0 0 00 0 0 1 0 0 0 00 0 0 0 1 0 0 10 0 0 0 0 1 1 00 0 0 0 0 1 �1 00 0 0 0 �1 0 0 1

1CCCCCCCCCCCCCA ; B2 =
0BBBBBBBBBBBBB@

1 0 0 0 0 0 0 00 1 0 0 0 0 0 00 0 1 1 0 0 0 00 0 �1 1 0 0 0 00 0 0 0 1 0 0 00 0 0 0 0 1 0 10 0 0 0 0 0 1 00 0 0 0 0 �1 0 1
1CCCCCCCCCCCCCA ; (15)

M = 0BBBBBBBBBBBBB@
1 0 0 0 0 0 0 00 1 0 0 0 0 0 00 0 0:7071 0 0 0 0 00 0 0 1 0 0 0 00 0 0 0 �0:9239 0 �0:3827 00 0 0 0 0 0:7071 0 00 0 0 0 �0:3827 0 0:9239 00 0 0 0 0 0 0 1

1CCCCCCCCCCCCCA ; (16)
A1 =

0BBBBBBBBBBBBB@
1 1 0 0 0 0 0 01 �1 0 0 0 0 0 00 0 1 1 0 0 0 00 0 0 1 0 0 0 00 0 0 0 1 0 0 00 0 0 0 0 1 0 00 0 0 0 0 0 1 00 0 0 0 0 0 0 1

1CCCCCCCCCCCCCA ; (17)
5

A2 =
0BBBBBBBBBBBBB@

1 0 0 1 0 0 0 00 1 1 0 0 0 0 00 1 �1 0 0 0 0 01 0 0 �1 0 0 0 00 0 0 0 �1 �1 0 00 0 0 0 0 1 1 00 0 0 0 0 0 1 10 0 0 0 0 0 0 1
1CCCCCCCCCCCCCA ; (18)

and
A3 =

0BBBBBBBBBBBBB@
1 0 0 0 0 0 0 10 1 0 0 0 0 1 00 0 1 0 0 1 0 00 0 0 1 1 0 0 00 0 0 1 �1 0 0 00 0 1 0 0 �1 0 00 1 0 0 0 0 �1 01 0 0 0 0 0 0 �1

1CCCCCCCCCCCCCA : (19)
It is easy to see that pre-multiplication by T causes the factors of S to degenerate to evensparser matrices. Speci�cally,TS = TDPB1B2(MA1A2A3) = D̂P̂ B̂1B̂2G; (20)where D̂ = diagf0:3536; 0:2549; 0:2706; 0; 0; 0; 0; 0g; (21)

P̂ = 0BBBBBBBBBBBBB@
1 0 0 0 0 0 0 00 0 0 0 0 1 0 00 0 1 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 0

1CCCCCCCCCCCCCA ; (22)
B̂1 =

0BBBBBBBBBBBBB@
1 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 1 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 1 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 0

1CCCCCCCCCCCCCA ; B̂2 =
0BBBBBBBBBBBBB@

1 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 1 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 1 1 00 0 0 0 0 0 0 00 0 0 0 0 0 0 0
1CCCCCCCCCCCCCA ; (23)

6

and
G = 0BBBBBBBBBBBBB@

1 1 1 1 1 1 1 10 0 0 0 0 0 0 0(1 + a) a �a (�1� a) (�1� a) �a a (1 + a)0 0 0 0 0 0 0 00 0 0 0 0 0 0 01 a a 0 0 �a �a �1c c b b �b �b �c �c0 0 0 0 0 0 0 0
1CCCCCCCCCCCCCA ; (24)

where a = 0:7071, b = 0:9239, and c = 0:3827. Now, the idea is that post-multiplicationby P̂ , B̂1, and B̂2, are all computationally costless. Since the multiplication by D̂ canbe absorbed in the de-quantization step, the computational bottleneck remains merely inthe multiplication by Jn = GLn and Kn = GUn, which are very structured, and can beimplemented similarly as in [4, Sect. 4].For n � 3, multiplication by Jn (Kn) costs more than multiplication by the entire precom-puted operator matrix TSLn (TSUn), which takes n multiplications and n additions per one8-vector (again, by taking advantage of the de-quantizer). Thus, for these values of n, a fullprecomputation will be preferrable. For n � 4, the factorization approach is more e�cient,and gives the following �gures per one column vector: For n = 4: 4 multiplications and10 additions, n = 5: 4 multiplications and 11 additions, n = 6: 4 multiplications and 13additions, n = 7: 4 multiplications and 14 additions, and n = 8: 4 multiplications and 15additions. The same is true for pre-multiplication by the transposed matrices UnStT andLnStT . Now, similarly, as in [4], if the above factorization of S is incorporated into eq. (10),we obtain x̂ = J thB̂t2B̂t1P̂ tD̂(X1D̂P̂ B̂1B̂2Jw +X2D̂P̂ B̂1B̂2K8�w) +Kt8�hB̂t2B̂t1P̂ tD̂(X3D̂P̂ B̂1B̂2Jw +X4D̂P̂ B̂1B̂2K8�w); (25)or, equivalently,̂x = (J thB̂t2B̂t1P̂ tD̂X1 +Kt8�hB̂t2B̂t1P̂ tD̂X3)D̂P̂ B̂1B̂2Jw +(J thB̂t2B̂t1P̂ tD̂X2 +Kt8�hB̂t2B̂t1P̂ tD̂X4)D̂P̂ B̂1B̂2K8�w: (26)The heart of the proposed inverse motion compensation algorithm lies in the implementationof either eq. (25) or (26), whichever requires less computations for the given w and h. Again,as explained above, the products of the factors are precomputed when Ln and Un correspondto n � 3. For applications that require a compressed domain output (e.g., when eq. (25)or eq. (26) is carried out by the server), the resultant x̂ has to be transformed back to theDCT domain.3.2 The AlgorithmBoth eqs. (25) and (26) are structured in the sense that they are formed by repetitions ofa basic set of operations associated with multiplying one matrix by Jn, another matrix by7

K8�n, and then adding the results. (The latter addition is trivial since the summands arenonzero on disjoint subsets of entries.) We shall refer to such a computational set as ann-set. Since eq. (25) contains two w-sets and one h-set, while eq. (26) has one w-set andtwo h-sets, the choice between the two equations depends on whether an h-set or a w-setrequires less computations. For the 3 � 2 � 1 case, the matrix that multiplies with Jn orK8�n has three types of vectors. We denote the number of multiplications and additions pervector as min and ain (the superscript denotes the vector type and takes on values 1,2 and3). The multiplication and addition cost per vector is:� For vector type 3, we have m30 = m38 = 4, m31 = m37 = 6, m32 = m36 = 7, m33 = m34 =m35 = 8 and a30 = a38 = 15, a31 = a32 = a36 = a37 = 17, a33 = a35 = 19 and a34 = 20.� For vector type 2, we have m20 = m28 = 3, m21 = m27 = 4, m22 = m26 = 5, m23 = m24 =m25 = 6 and a20 = a21 = a24 = a27 = a28 = 10, and a22 = a23 = a25 = a26 = 9.� For vector type 1, no multiplications and additions are needed.Thus, for example if the cost of a multiplication is equivalent to that of � additions, then if�miw + aiw � �mih + aih implement eq. (25), else implement eq. (26).The computation algorithm is then summarized as follows: (In parenthesis we provide theoperations count in the form of an expression mM +aA, which means m multiplications anda additions)1. Decide on whether eq. (25) or eq. (26) is implemented. In the former case, performsteps 2-8 and terminate. In the latter case, go to 9.2. Post-multiply the �rst row ofX1 by D̂P̂ B̂1B̂2Jw and the �rst row ofX2 by D̂P̂ B̂1B̂2K8�w.(m3wM + a3wA)3. Post-multiply the �rst row ofX3 by D̂P̂ B̂1B̂2Jw and the �rst row ofX4 by D̂P̂ B̂1B̂2K8�w.(m3wM + a3wA)4. Post-multiply the second row of X1 by D̂P̂ B̂1B̂2Jw and the second row of X2 byD̂P̂ B̂1B̂2K8�w. (m2wM + a2wA)5. Post-multiply the second row of X3 by D̂P̂ B̂1B̂2Jw and the second row of X4 byD̂P̂ B̂1B̂2K8�w. (m2wM + a2wA)6. Post-multiply the third row ofX1 by D̂P̂ B̂1B̂2Jw and the third row ofX2 by D̂P̂ B̂1B̂2K8�w.(0M + 0A)7. Post-multiply the third row ofX3 by D̂P̂ B̂1B̂2Jw and the third row ofX4 by D̂P̂ B̂1B̂2K8�w.(0M + 0A)8. Pre-multiply the result of 2, 4 and 6 by J thB̂t2B̂t1P̂ tD̂, and the result of 3, 5 and 7 byKt8�hB̂t2B̂t1P̂ tD̂. (8m3hM + 8a3hA) 8

9. Pre-multiply the �rst column of X1 by J thB̂t2B̂t1P̂ tD̂ and the �rst column of X3 byKt8�hB̂t2B̂t1P̂ tD̂. (m3hM + a3hA)10. Pre-multiply the �rst column of X2 by J thB̂t2B̂t1P̂ tD̂ and the �rst column of X4 byKt8�hB̂t2B̂t1P̂ tD̂. (m3hM + a3hA)11. Pre-multiply the second column of X1 by J thB̂t2B̂t1P̂ tD̂ and the second column of X3by Kt8�hB̂t2B̂t1P̂ tD̂. (m2hM + a2hA)12. Pre-multiply the second column of X2 by J thB̂t2B̂t1P̂ tD̂ and the second column of X4by Kt8�hB̂t2B̂t1P̂ tD̂. (m2hM + a2hA)13. Pre-multiply the third column of X1 by J thB̂t2B̂t1P̂ tD̂ and the third column of X3 byKt8�hB̂t2B̂t1P̂ tD̂. (0M + 0A)14. Pre-multiply the third column of X2 by J thB̂t2B̂t1P̂ tD̂ and the third column of X4 byKt8�hB̂t2B̂t1P̂ tD̂. (0M + 0A)15. Post-multiply the result of 9, 11 and 13 by D̂P̂ B̂1B̂2Jw, and the result of 10, 12 and14 by D̂P̂ B̂1B̂2K8�w. (8m3wM + 8a3wA)The computations associated with steps 6, 7, 13, and 14 are not counted since each oneof them involves only one multiplication by a �xed number, which can be absorbed in thede-quantization stage. The total number of computations is then (8m3h + 2m3w + 2m2w)multiplications and (8a3h + 2a3w + 2a2w) additions if steps 2-7 are performed, and (8m3w +2m3h + 2m2h) multiplications and (8a3w + 2a3h + 2a2h) additions if steps 7-11 are performed.In case of perfect alignment of the motion vector in one dimension, e.g., h = 8, only twoterms in eqs. (25) and (26) remain nonzero, and the total number of computations is(8m38 +m3w) multiplications and (8a38 + a3w + a2w) additions. If both w = 8 and h = 8, thenonly one term remains and then 9m38 multiplications and 9a38 additions are needed. Averagingwith respect to a uniform distribution over w and h, gives 72:83 multiplications and 186:95additions. Note that for the DC + 2AC case, a similar analysis yields 41:95 multiplicationsand 93:01 additions. The uniform distribution is however, a conservative assumption. Fromthe simulations for a video test sequence of 150 frames taken from a test set used by theMPEG standards committee, the actual joint probability distribution of w and h has thepro�le shown in Fig. 3. Note that the distribution is more peaked at the corners, i.e. nearh = 8 or w = 8. Referring to Fig. 1, h = 8 or w = 8 implies that for a large number of x̂,only one or at most two of X1;X2;X3;X4 in eq. (25) or eq. (26) are used which in turnleads to fewer multiplies and adds than the numbers stated here.The DCT domain approach developed here for the 3 � 2 � 1 case has signi�cantly loweroperations count than a naive spatial-domain approach wherein four full inverse DCT op-erations requiring 320 multiplications and 1856 additions (one full inverse DCT based onthe Arai and Agui approach[10] requires 80 multiplications and 464 additions) have to beperformed. A sophisticated spatial-domain approach can exploit the fact that a full inverseDCT need not be performed for the 3 � 2 � 1 case. The complexity for such an approach9

is 128 multiplications and 632 additions. This has signi�cantly higher computational costcompared with the proposed DCT-domain approach.If the desired output is in the DCT domain, then as mentioned earlier, one has to performDCT on the resulting x̂, which requires 80 more multiplications and 464 more additions ingeneral. If, however, X̂ is approximated in the 3� 2� 1 form as well, then using the sametechnique, the complexity of the DCT stage can be reduced to 55 multiplications and 198additions, which overall gives 127.83 multiplications and 384.95 additions on the averageover all motion vectors. For the DC + 2AC case, the overall cost is 71.95 multiplicationsand 273 additions.A more detailed comparison of the proposed DCT-domain approach and the naive spatial-domain approach as well as the sophisticated spatial-domain approach is provided in Section3.4.4.3.3 An Approximate Multiplication-Free AlgorithmAn approximate multiplication-free version of our algorithm is associated with quantizationof the entries a, b and c of the matrix G. According to this approximation, a, b and c, arereplaced by â, b̂, and ĉ, respectively, given by â = 0:75, b̂ = 1, and ĉ = 0:375, whose multipli-cations can be implemented by one SHIFT & ADD operation on some general purpose CPUswith multimedia-enhanced instruction sets [13]. For the 3�2�1 case, the cost of computingx̂ according to eq. (25) or (26) using the quantized G is approximately 260 additions. Forthe DC + 2AC case, we require 170 additions.To roughly assess the worst case SNR associated with this approximation, let Ŝ = S + �denote the approximated DCT operator matrix associated with â, b̂, and ĉ in place of a, b,and c, respectively. Every term in eq. (25) and (26) is a shifted and windowed version ofStTX iTS, i = 1; 2; 3; 4, which when replaced by ŜtTX iT Ŝ, givesŜtTXiT Ŝ = StTX iTS + StTX iT�+�tTX iTS +�tTXiT�; (27)where the �rst term is the desired term and the three other terms are error terms. Transform-ing the last equation to a column stacked form [12, Sections 5.3-5.4], the desired term is givenby UXcsi , while the error term is given by V Xcsi , where Xcsi is the column-stacked versionof X i (that is, a 64-dimensional column vector formed by concatenating the columns of X ifrom left to right), U = (StT)
 (StT), V = (�tT)
 (StT)+(StT)
 (�tT)+(�tT)
 (�tT),and
 denotes the Kroenecker tensor product. By a simple numerical analysis, we �nd thatthe worst case SNR given by 10 log10[tr(U tU)=tr(V tV)] is about 24dB. This means that theadditional distortion due to this quantization is typically small compared to the distortioninduced by the 3� 2� 1 structure and the quantization error due to the lossy compression.This worst case SNR estimation applies only to one-step prediction, i.e. when only frameis inverse motion-compensated. In practice all video coding standards employ multi-stepprediction within a group of 12-16 pictures and in this context, each frame within this groupis predicted from a previously reconstructed frame which is also within this group. Thus therewill be error buildup since each frame is reconstructed inaccurately due to the quantizationof G and the worst case SNR will be lower than 24dB. However, due to the use of partialDCT information in each X i, i = 1; 2; 3; 4, the error buildup will not cause the SNR todegrade signi�cantly. We will demonstrate this in the simulations described in Section 3.4.3.10

3.4 Experimental ResultsSeveral simulations were performed to assess the image quality for DCT-domain based inversemotion compensation approach. The primary objective of the simulations was to investigatethe tradeo�s between the operations count and image �delity.For the simulations, the basic steps employed in MPEG coding were used to generate theintraframe and interframe DCT information. The encoder used in the simulations is as shownin Fig. 4 and performs the functions of an MPEG encoding scheme. We have, however,simpli�ed the coder by using a single quantizer characteristic for all blocks in the frame andthe motion-estimation strategy restricts the motion-vectors to integer pixel accuracy.3.4.1 Two-frame SimulationsThe encoder of Fig. 4 was used to encode a group of two frames. The two frames used inthis set are shown in Fig. 5. Note that the encoder outputs only the DCT information forthe I frame and the motion-compensated prediction residual for the P frame.For the frame tensif.66 coded as a P frame in Fig. 5, the corresponding reconstructed I framerepresentation is shown in Fig. 6. Here, we show the I frame reconstruction for various cases:1. ten8x8.exact: all 64 coe�cients of the four blocks X1;X2;X3;X4 are used,2. ten4x4.exact: 4� 4 case,3. ten321.exact: 3� 2� 1 case,4. ten2x2.exact: 2� 2 case,5. ten2x1.exact: the DC + 2AC case, and6. tendc.exact: the DC only case.For the 3 � 2 � 1 case, the intraframe reconstruction was based on eq. (25) or eq. (26).Similar algorithms can be devised for the 4� 4, 2� 2 and the DC + 2AC case.This simulation suggests that theDC+2AC case may be acceptable in browsing applications.3.4.2 Error Propagation Due To Partial DCT InformationThe simulation of Fig. 6 is not realistic since we have used a simple two frame IP se-quence, whereas, in most MPEG coding systems, a group of pictures might consist of oneintraframe and perhaps 12-15 P or B frames. Since the intraframe reconstructions of previ-ous interframes is used in the reconstructions of subsequent frames, there is a potential forerror propagation. The error propagation e�ect will be more pronounced when partial DCTinformation is used in the inverse motion compensation process.In order to assess the quality of image reconstructions due to error propagation when partialDCT information is used, we used a group of 16 frames and applied the encoding procedureof Fig. 4. The coding type for this group was set to IBBPBBPBBPBBPBBP, i.e. 2 B frames11

for each P frame. For this group of 16 frames, erroneous reconstruction of each P frame dueto partial DCT information will cause the largest error buildup in the 14th and 15th frame.In Fig. 7, we show the image reconstruction for the 14th frame. The original frame (inputto the encoder of Fig. 4) is tensif.66 shown in Fig. 5.This simulation suggests that in a multiframe setting for MPEG coding, the DC + 2ACcase may not be adequate even for browsing applications when browsing is done at theoriginal spatial resolution. If the reconstructed image is further down-sampled by a factorof two in each direction [2] ((see also [1], [3]), the DC +2AC may be an adequate choice forbrowsing. For browsing while maintaining the original spatial resolution, the 3� 2� 1 case(ten321p.exact in Fig. 7) is needed for acceptable image quality.We have repeated these experiments for the approximate multiplication-free algorithm de-scribed in section 3.3. The simulation results are shown in Fig. 8 and Fig. 9.Note that the only di�erence between Fig. 6 and Fig. 8 is that in the latter, a quantized Gmatrix is used in eq. (25) or eq. (26); comparing the image reconstruction results indicatesno additional degradations due to the use of the approximate multiplication-free method.We can make the same observation when comparing Fig. 7 and Fig. 9. Thus, in low-cost hardware or software-only implementations, the proposed multiplication-free method ispreferable.3.4.3 Signal-to-Noise Ratio ResultsThe results of these experiments are summarized in Fig. 10 wherein, we show the PSNR(peak-to-peak signal-to-noise ratio) for various cases: full/partial DCT information, exactDCT or the approximate multiplication-free method, two-frame IP sequence as well as the16 frame IBBP,...P sequence.Note that there is signi�cant PSNR degradations when partial DCT information is used; forinstance, using a two frame packet and the exact representation for the matrix G, the 8� 8case has a PSNR of 35.63dB whereas the 3�2�1 case has a PSNR of 22.89dB. Thus, partialDCT information based processing is usable only for browsing applications or for classifyingimages for the purposes of scene change detection. From this �gure, we also observe that thePSNR degradations using the approximate multiplication-free method leads to little or noPSNR degradations when partial DCT information is used for inverse motion-compensation.The PSNR degradation due to error propagation is around 2dB for the DC + 2AC relativeto the 3�2�1 case; perceived image quality degradation is quite substantial for 2dB loss inPSNR. The PSNR numbers also suggest that in many applications wherein multiple framesare used in a group of pictures during encoding, inverse motion compensation using around6 DCT coe�cients such as the 3 � 2 � 1 case may be preferable to the 3 DCT coe�cientsthat is used in the DC + 2AC case.We have also compared the performance of our method against the proposed DC only schemeof Yeo and Liu [2] and [3]. For a two-frame IP sequence, our approach yields better qualityimages and has a 0.5dB better PSNR. Furthermore, in our work, we have considered thee�ects of error propagation due to image reconstruction from partial DCT information; in [2]and [3], there is no discussion of error propagation e�ects in their scheme and we believe thatif error propagation e�ects were taken into account in the work in [2] and [3], the conclusionsregarding the e�ectiveness of a DC only reconstruction scheme may be di�erent than thatreported by Yeo and Liu. 12

3.4.4 Computation Complexity>From an image quality viewpoint, the experimental results we have described so far suggeststhat the DC +2AC case is barely acceptable for many applications and in fact the 3� 2� 1case might be a better choice. The computation complexity associated with each choice ofthe partial DCT information setting (full, 4x4, 2x2, etc.) is shown in Table 1.DCT Computation CostInformation Domain x̂m x̂a em ea (x̂ + e)m (x̂ + e)a Total8� 8 DCT 2364.5[4]spatial(1) 320 1856 80 464 400 2384 4384spatial(2) 320 1856 80 464 400 2384 43844� 4 DCT 1091.2[4]spatial(1) 240 984 60 246 300 1230 1830spatial(2) 320 1856 80 464 400 2384 43843� 2� 1 DCT 72.83 186.95 40 165 112.83 351.95 577.61spatial(1) 128 632 40 165 168 861 1197spatial(2) 320 1856 80 464 400 2384 43842� 2 DCT 72 160 30 120 102 344 548spatial(1) 120 480 30 120 150 664 964spatial(2) 320 1856 80 464 400 2384 4384DC + 2AC DCT 41.95 93.01 28 108 69.95 265.01 480.01spatial(1) 112 432 28 108 140 604 884spatial(2) 320 1856 80 464 400 2384 4384DC only DCT 17spatial(1) 4 1 5 4 14spatial(2) 320 1856 80 464 400 2384 4384Table 1: Operations count for DCT-domain and spatial-domain inverse motion compensation usingfull(8�8) or partial DCT information. The subscript m refers to multiplication count and thesubscript a refers to add count. The column labelled Total re
ects the operations count when anapproximate multiplication-free method is used in the inverse DCT calculations.Note that the spatial approach requires calculating four inverse DCTs for the blocks X i,i = 1; ::; 4 before performing inverse motion compensation. A naive approach in the spatialdomain (referred to as spatial(2) in Table 1) will not make any sparseness assumptions onthe contents of X i, i = 1; ::; 4. If sparseness of X i, i = 1; ::; 4 is exploited during the inverseDCT calculations for the spatial-domain approach (referred to as spatial(1) in Table 1) thecomputation complexity relative to the naive approach is substantially reduced. In all butthe DC only case, the DCT domain approach for inverse motion-compensation has lowercomplexity compared with the spatial domain approaches.>From an operations count viewpoint, the 3-2-1 case has nearly eight-fold reduction in compu-13

tation complexity relative to the naive spatial-domain inverse motion-compensation methodfor the full 8 � 8 DCT case. The DC + 2AC case has nine-fold reduction in computationcomplexity compared with the full 8 � 8 DCT case; however, the resulting image qualitymay be acceptable only for a limited set of applications. Since the image quality resultingfrom the 3�2�1 case is better than the DC+2AC case and the computation savings usingDC +2AC is not signi�cant, the 3� 2� 1 case may be preferred for most applications. Theresults of Table 1 are depicted in Fig. 11.The simulation results presented in Fig. 9, Fig. 10 and the operations count in Fig. 11can be used to make a careful tradeo� between the computation complexity and the desiredimage quality for the speci�c application.4 Noninteger Motion VectorsAs explained earlier in Section 1, MPEG encoding can generate noninteger motion vectors,more precisely, vectors whose components are integer multiples of 1=2. If both componentsare nonintegers, this mean that each pixel in the reference macroblock is the average of thefour nearest neighbor pixels of integer-valued coordinates. If only one component of themotion vector is noninteger, then the average of only two nearest neighbor pixels is taken.In this section, we show a simple way to modify the inverse motion compensation algorithmdeveloped earlier so as to deal with noninteger motion vectors. If the motion vectors are suchthat the intersection of the reference block (see Fig. 1) with x̂1 has parameters h+ 1=2 andw+1=2 (h and w integers), then x̂ is given by the average of four contributions correspondingto the pairs (h; w), (h+ 1; w), (h; w+1) and (h+ 1; w+ 1). Speci�cally, eq. (9) is rewrittenas x̂ = 14[UhStX1SLw + UhStX2SU8�w + L8�hStX3SLw + L8�hStX4SU8�w +Uh+1StX1SLw + Uh+1StX2SU8�w + L7�hStX3SLw + L7�hStX4SU8�w +UhStX1SLw+1 + UhStX2SU7�w + L8�hStX3SLw+1 + L8�hStX4SU7�w +Uh+1StX1SLw+1 + Uh+1StX2SU7�w + L7�hStX3SLw+1 + L7�hStX4SU7�w= 14[(Uh + Uh+1)StX1S(Lw + Lw+1) + (Uh + Uh+1)StX2S(U8�w + U7�w) +(L8�h + L7�h)StX3S(Lw + Lw+1) + (L8�h + L7�h)StX4S(U8�w + U7�w)]= 14[(I8 + U7)Uh+1StX1SLw+1(I8 + L7) + (I8 + U7)Uh+1StX2SU8�w(I8 + U7) +(I8 + L7)L8�hStX3SLw+1(I8 + L7) + (I8 + L7)L8�hStX4SU8�h(I8 + U7)]= 14f(I8 + U7)J th+1Bt2Bt1P tD[X1DPB1B2Jw+1(I8 + L7) +X2DPB1B2K8�w(I8 + U7)] +(I8 + L7)Kt8�hBt2Bt1P tD[X3DPB1B2Jw+1(I8 + L7) +X4DPB1B2K8�w(I8 + U7)]g (28)or, equivalently,̂x = 14f[(I8 + U7)J th+1Bt2Bt1P tDX1 +14

(I8 + L7)Kt8�hBt2Bt1P tDX3]DPB1B2Jw+1(I8 + L7) +[(I8 + U7)J th+1Bt2Bt1P tDX2 +(I8 + L7)Kt8�hBt2Bt1P tDX4]DPB1B2K8�w(I8 + U7)g; (29)where the choice between the two forms depends again on the overall number of computationsassociated with its implementation for the given pair (h; w). Note that the computationalcompexity associated with the implementation of each one of these equations is only slightlylarger than the algorithm in [4] as multiplication by (I8 + U7) or (I8 + L7) involves at mostonly 7 additions per vector, and no extra multiplications at all.In a similarmanner, ifw is integer and only h is noninteger, then the corresponding expressionfor x̂ will involve only premultiplications by (I8+U7) and (I8+L7), and if only w is nonintegerthen only post-multiplications by these matrices are needed.

15

7 References[1] M. M. Yeung, B.-L. Yeo, W. Wolf, and B. Liu, \Video browsing clustering and scenetransitions on compressed sequences," preprint 1995.[2] B.-L. Yeo and B. Liu, \Reconstruction of spatially subsampled sequences from MPEGcompressed video," submitted to IEEE Trans. on Image Processing.[3] B.-L. Yeo and B. Liu, \Rapid scene analysis on compressed video," IEEE Trans. onCircuits and Systems for Video Technology, Vol. 5, no. 6, pp. 533-544, Dec. 1995.[4] N. Merhav and V. Bhaskaran, \A Fast Algorithm for DCT-Domain Inverse MotionCompensation," Proc. ICASSP `96, pp. IV.2307-2310, Atlanta, May 1996.[5] Coding of Moving and Associated Audio. Committee Draft of Standard ISO11172:ISO/MPEG 90/176, December 1990.[6] Video Codec for Audio Visual Services at px64 Kbits/s. CCITT Recommendation H.261,1990.[7] D. le Gall, \MPEG: A Video Compression Standard for Multimedia Applications,"Commun. of the ACM, Vol. 34, No. 4, pp. 47-58, April 1991.[8] S.-F. Chang and D. G. Messerschmitt, \A New Approach to Decoding and Composit-ing Motion-Compensated DCT Based Images," Proc. ICASSP `93, pp. V.421-V.424,Minneapolis, April 1993.[9] S.-F. Chang and D. G. Messerschmitt, \Manipulation and compositing of MC-DCTcompressed video," IEEE J. Selected Areas in Communications, Vol. 13, no. 1, pp.1-11, January 1995.[10] Y. Arai, T. Agui, and M. Nakajima, \A Fast DCT-SQ Scheme for Images," Trans. ofthe IEICE, E 71(11):1095, November 1988.[11] W. B. Pennebaker and J. L. Mitchell, JPEG Still Image Data Compression Standard,Van Nostrand Reinhold, 1993.[12] W. K. Pratt, Digital Image Processing, John Wiley & Sons, second edition, 1991.[13] V. Bhaskaran, and K. Konstantinides, Image and Video Compression Standards: Algo-rithms and Architectures, Chapter 15, Kluwer Academic Publishers, , Sept. 1995.

16

Figure 1: DCT domain based inverse motion compensation.17

Figure 2: Partial DCT information. x refers to locations in the 8 � 8 DCT matrix wherein theDCT coe�cients can take on nonzero values. DCT coe�cients are assumed to be zero-valued inlocations not marked with an x.
18

Figure 3: Probability distribution for h;w.19

Figure 4: Video encoder structure used in the simulations.20

Figure 5: Test video frames used in a two frame simulation. Frame tensif.65 is coded as anintra (I) frame. Frame tensif.66 is coded as a predictive (P) frame and its motion-compensatedprediction residual is shown in Frame tensif65 66.di�. For motion-compensated prediction residual,a reconstructed version tensif 65.rec of Frame tensif.65 is used.
21

Figure 6: DCT domain inverse motion compensated reconstruction using full or partial DCTinformation for the two frame IP sequence shown in Fig. 5. The original version of the reconstructedframe is tensif.66 shown in Fig. 5.
22

Figure 7: DCT domain inverse motion compensated reconstruction for a 16 frame IBBP...P sequenceand using full or partial DCT information. The results shown are for the 14th frame of the sequence.The original version of this frame is tensif.66 shown in Fig. 5.
23

Figure 8: DCT domain inverse motion compensated reconstruction for the two frame IP sequenceusing the approximate multiplication-free method. The original version of the reconstructed frameis tensif.66 shown in Fig. 5.
24

Figure 9: DCT domain inverse motion compensated reconstruction for the 16 frame IBBP...Psequence using the approximate multiplication-free method. The results shown are for the 14thframe. The original version of this frame is tensif.66 in Fig. 5. The DCT domain reconstruction isshown for the case of full and partial DCT information.
25

Figure 10: PSNR versus full or partial DCT information for the DCT domain based inverse motioncompensation method. In this �gure, Exact referes to the use of an exact representation for matrixG whereas Quantized refers to the use of the approximate multiplication-free method. Also I,Prefers to the use of a two frame IP sequence and the PSNR is for the 2nd frame. I,P,..P refers tothe use of a 16 frame IBBP...P sequence and in this case the PSNR for the 14th frame is shown.
26

Figure 11: Computation complexity for DCT-domain and spatial-domain inverse motion compen-sation using full or partial DCT information. Spatial(2) refers to a naive spatial-domain approachwhereas Spatial(1) refers to a spatial-domain approach wherein the DCT sparseness is exploited inthe inverse DCT computation.
27

