Fast Inverse Motion Compensation Algorithms for
MPEG-2 and for Partial DCT Information

Neri Merhav
Computer Systems Laboratory and HP-ISC*

and

Vasudev Bhaskaran
Computer Systems Laboratory'

Keywords: video compression, MPEG, video browsing, compressed domain processing,
motion vector, MPEG-2.

Abstract

In prior work, we developed a fast inverse motion compensation method that can
be implemented directly on the DCT domain representation derived from the com-
pressed bitstreams conforming to MPEG, H.261 and H.263 standards. That work was
restricted to compressed-domain representations wherein the motion-vectors have inte-
ger pel accuracy. Here, we extend this work to sub-pel accurate motion-vectors. Here
we also extend the prior work to speedup the inverse motion compensation process
in the DCT domain by explicitly exploiting the sparseness of the DCT domain rep-
resentation. Using partial DCT information we show that the DCT domain method
has substantially lower operation count than the conventional spatial domain approach
which requires decompression followed by inverse motion-compensation.

*On sabbatical leave at HP Laboratories. Current address: Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto,
CA 94304, U.S.A. Email: merhav@hpl.hp.com. Permanent address: HP Israel Science Center, Technion City, Haifa 32000,
Israel. E-mail: merhav@hp.technion.ac.il

T Address: Hewlett-Packard T.aboratories, 1501 Page Mill Road, Palo Alto, CA 94304, U.S.A. E-mail: bhaskara@hpl.hp.com

1 Introduction

While standard image and video compression schemes like JPEG, MPEG, H.261 and H.263
reduce dramatically the required amount of storage and transmission bandwidth without
sacrificing much quality, the compressed domain does not always lend itself to easy image
processing and manipulation. Indeed, the last few years have witnessed a rapidly growing
interest in developing sophisticated fast algorithms for manipulating compressed images and
video streams directly in the compressed domain, namely, the discrete cosine transform
(DCT) domain, without explicit transformation back to the uncompressed domain, which is
computationally expensive.

In this work, we focus on compressed-domain based algorithms for two different problems
associated with fast reconstruction of a video sequence from an MPEG-compressed sequence:
inverse motion compensation for fractional motion vectors, and inverse motion compensation
using partial DCT information.

The first problem that is treated in this paper is that of extending the fast inverse motion
compensation algorithm developed in [4] so as to deal with motion vectors whose components
are not necessarily integers. In MPEG, the components of each motion vector are integer
multiples of 0.5, e.g., 5.5, 7, 14.5, etc., where the interpretation is that of averaging the
neighboring pixel intensities. If only one component of the motion vector is noninteger, then
there are two neighboring pixels to be averaged, and if both are noninteger, then the four
nearest neighbors with integer coordinates are averaged.

We show that the algorithm proposed in [4] extends easily to this setting of fractional motion
vectors and the additional computational complexity is relatively small.

In the second problem, by “partial DC'T information” we mean, in particular, only very few
DCT coefficients of each block. The underlying motivation is in accelerating the process
of decompression for quick browsing applications, where the viewer is interested merely in
rough information of the present scene, and the current location within the movie or the
video clip. The method proposed here can also be used as the front-end of a video database
query system. In [2] (see also [1], [3]) Yeo and Liu have developed exact and approximate
algorithms for fast reconstruction of subsampled images for two possible levels of partial
DCT information: The first level uses the DC component only, and the second uses the first
three DCT coefficients, i.e., the DC, the (0,1), and the (1,0) DCT coefficients. This set of
DCT coefficients will be henceforth referred to as DC + 2AC.

Sometimes DC-only images are sufficient for quick browsing applications, and this is a great
advantage since the DC information is given almost free. However, DC-only images tend to
be very blocky and are not useful as-are for browsing or for video scene analysis. In [2], it is
shown that such images have to be subsampled in order to facilitate scene analysis. When
the scene includes important text or other fine but critical information, the DC component
alone might not suffice. In these cases, more DCT coefficients have to be used. For a small
group of pictures (GOP) setting in MPEG-1 or MPEG-2 (e.g., GOP < 4), DC +2AC turns
out to be typically a good compromise between speed of decompression on one hand, and
acceptable quality of the browsed scene on the other hand. For a typical GOP setting (e.g.
GOP = 12 - 16), based on simulations reported here, the DC + 2AC' choice may not be
acceptable for most video browsing applications; we need around 6 DCT coefficients in order
to get acceptable quality. The 6 DCT coefficients that were found to provide good quality
are: DC, (0,1), (0,2), (1,0), (1,1) and (2,0) - these are the first six coefficients obtained

from zigzag ordering within the 8 x 8 DCT matrix; henceforth we will refer to this as the
3 —2—1 case.

We develop and propose a fast algorithm for inverse motion compensation in the DCT domain
for the 3—2-—1 case. Unlike the algorithm in [2], our algorithm produces images in the original
size, and not a down-sampled version. This guarantees that first, the output stream complies
with the original semantics in terms of display resolution, and second, it also allows the viewer
to browse on a bigger and more detailed image sequence. Our development will focus on the
bottleneck of the decoding process, which is the inverse motion compensation part, whose
derivation is a further development on [4]. We also demonstrate that the operations count,
can be further reduced by using a multiplication-free approximate version of our algorithm,
without significant additional degradation in quality. In this paper, we include simulation
results for the 3 — 2 — 1 case and other cases of interest.

2 Preliminaries and Problem Description

The 8 x 8 2D-DCT transforms a block {x(n,m)}’ . in the spatial domain into a matrix
of frequency components {X (k,1)}],_, according to the following equation

T 2n + 1 2m + 1
X (k1) T)(TZ > x(n,m) cos(nlg_ - k) cos(mx
m=0

n=0

i), (1)

where ¢(0) = 1/4/2 and ¢(k) = 1 for k > 0. The inverse transform is given by

). 2)

In a matrix form, let & = {z(n,m)}] ,_, and X = {X(k,1)}],_,- Define the 8-point DCT
matrix S = {s(k,n)}; ,_,, where

~(k 2n+1
s(k,n) = (‘(2) cos(nlg_ - k). (3)
Then,
X = Szs"' (4)

where the superscript ¢t denotes matrix transposition. Similarly, let the superscript —¢ denote
transposition of the inverse. Then,

r=5"'XS"=8'XS (5)
where the second equality follows from the unitarity of S.

Motion compensation of compressed video [5], [6] (see also [7]) means predicting each 8 x 8
spatial domain block @ of the current frame by a corresponding reference block @ from a
previous frame ' and encoding the resulting prediction error block e = & — & by using the

n some of the frames (B-frames) blocks are estimated from both past and future reference blocks. For the sake of simplicity,
we shall assume here that only the past is used (P-frames). The extension to B-frames is straightforward.

DCT. The best matching reference block & may not be aligned to the original 8 x 8 blocks
of the reference frame. In general, the reference block may intersect with four neighboring
spatial domain blocks, henceforth denoted x;, €, 3, and x4, that together form a 16 x 16
square, where @, corresponds to northwest, s to northeast, &3 to southwest and x, to
southeast. This is illustrated in Fig. 1.

In the first problem our goal is to compute the DCT X of the current block = & + e given
its motion-vector relative to a region in a previous frame, the current block’s interframe DCT
E = SeS" and the intraframe DCT’s X, ..., X4 of the previous frame which is referenced
by the motion-vector. Here, the motion-vector is given at subpixel accuracy. We develop
the algorithm in Section 4.

The goal of the second problem is nearly identical to that of the first problem; however, the
key difference is that here we need to compute X using partial DCT information for E and
X1,..., X, In Fig. 2, we show several cases of interest for the partial DCT information.

We provide a detailed algorithm for computing & = & + e using only 6 DCT coefficients (we
refer to this choice of DCT coefficients as the 3—2—1 case) for E and X, ..., X 4. Specifically
our goal for the 3—2 —1 case is to compute the DCT X of the current block = & + e from
the 3 —2 — 1 part of the DCT E = SeS"’, that is, E(0,0), E(0,1), E(0,2), E(1,0), E(1,1),
E(2,0) and the 3 — 2 — 1 parts of the DCT’s X, ..., X4 of &y, ..., x4, respectively. Since
X = X + E, X being the DCT of &, the main problem that remains is that of calculating
X directly from the 3—2 — 1 parts of X1, ..., X4, i.e., X;(0,0), X;(0,1), X;(0,2), X,(1,0),
X,(1,1) and X;(2,0),7 =1,2,3,4. Inverse motion compensation for other settings of partial
DCT information, e.g., DC'+2AC case can be performed in a similar manner. The algorithm
and simulation results are provided in Section 3.

For both problems, the common goal is to perform inverse motion compensation in the
DCT domain given the inter and intraframe DCT information. Referring to Fig. 1, let the
intersection of the reference block @ with &; form a h x w rectangle (i.e., h rows and w
columns), where 1 < h < 8 and 1 < w < 8. This means that the intersections of & with x5,
x3, and x, are rectangles of sizes h x (8 —w), (8 —h) x w, and (8 —h) x (8 —w), respectively.
Following Chang and Messerschmitt [8], [9] (see also [2], [4]), it is readily seen that & can be
expressed as a superposition of appropriate windowed and shifted versions of x4, ...x4. For
integer pel accurate motion vectors, we can express & as

Tr = Uhﬂ?]Lw + UhmgUgfw + L8,h$3Lw + L87hm4U87wa (6)

where forn =1,2,..., 8,
A (0 I,

LA() o) ®)

I,, being the n x n identity matrix. Note that the general form for & given in eq. (6) needs
to be modified when h and w posess fractional pel accuracy. We develop this modification
in Section 4.

and

Since the input blocks are given in the DCT domain, we shall rewrite eq. (6) as

T = UhStXISLw + UhStXQSUE%fw + L87hStX3SLw + L87h,StX4SU87w- (9)

In Section 3, we will develop the algorithms for fast DCT-domain based inverse motion
compensation for partial DCT information, specifically the 3 — 2 — 1 case. In Section 4, we
will use eq. (6) as the starting point to develop the algorithm for DCT-domain based inverse
motion compensation for subpixel accurate motion-vectors.

3 Partial DCT Information

In this section, we develop an algorithm for DCT domain inverse motion compensation when
only partial DCT information is used in the inverse motion compensation process. The
algorithm is based on modifying the basic equation in eq. (6). The algorithm development
here is based on the assumption that the motion-vectors are specified at only integer pel
accuracy. The same concepts developed here extend easily to motion-vectors with fractional
pel accuracy as is the case in MPEG-1 and MPEG-2. A brief description of the approach
that can be adopted for DCT-domain inverse-motion compensation for fractional pel accurate
motion-vectors is given in Section 4.

3.1 Mathematical Derivation

In [4], we developed an algorithm to efficiently implement eq. (9). Now, since only the
3 —2 — 1 part of each X; is assumed non-zero (see Fig. 2), eq. (9) is equivalent to

& =U,S"TX \TSLy+U,S'TX,TSUs o+ Lg 4, S"TX3TSLy + Ly 1, ST X TSUg ,, (10)

Té(ﬁ‘g> (11)

DCT-domain inverse motion compensation for the 3 — 2 — 1 case can be performed by
straightforward application of the algorithm for eq. (9) as described in [4]. However, eq.
(10), suggests that a faster algorithm might be possible by combining the operation of 7" with
these of the DCT and the window and shift operation in one of two different approaches.
One approach, which is preferrable when U,, or L, are associated with a relatively small n,
is simply to precompute the fixed products U,S'T, L,S'T, TSU,, and T'SL,, for all n, and
to use these in a straightforward manner. The second approach, to be used if n is relatively
large, is to embed T into a sparse matrix factorization of S. Specifically, similarly as in [4],
we shall use a factorization of S that corresponds to the 8-point Winograd DCT due to Arai,
Agui, and Nakajima [10] (see also [11]). According to this factorization, S is represented as

follows.

where D is a diagonal matrix given by

D = diag{0.3536, 0.2549, 0.2706, 0.3007, 0.3536, 0.4500, 0.6533, 1.2814}, (13)

P is a permutation matrix given by

(14)

100 000O0O00O

000O0O0OT1TT 0O

00100000

0000O0O0O0T1

01000000

000O01O0O0O0

0001O0O0O0O0

0000O0O0T10O0

P

and the remaining matrices are defined as follows:

(15)

0 0
0 0

-1 10 0
0 0

0 0
0

000 -1 01

0

0

0 0
0 0
0
0
0
1
01
—1

0
0
1

1000
0100

0010

0
0

0000
0000
0 00O
0 00O

00 01

0

0

-1

0

0

B]:

(16)

3

0 0 0.7071 0

0
0

—0.3827 0

0
0

0 0.7071

—0.9239
—0.3827

0 0

0
0

0
0.9239 0

0
0 0

0

0

0

(17)

Y

1 000000
-1 00 0 0 0 O

1
1
0
0
0
0
0
0

01 1000O0
0010000
0001000
000O01QO0PO0
000O0O0OT1PO0
0 00O0O0O01

A]:

(18)

Y

0
0
0

-1

01

0
-1 0 0

0 -1 0
0 0 -1

0
0

1

0

Ay

and

(19)

0
0
0

1 000
0100

0010

1
-1

0001
0001

—1

0
0
0

0 010

0100
1 000

A3:

= — — — —~
<)] — [N gl
s N o~ N ~
e N—r SN— SN— N—r
o
—
j<B}
=
= -
=
< coocoocoocococo
<)
< cocoocoooc—~oc o
S cocoocooc—~oc o
m - o coocoocoococoo
= 83
- T = coocoocoocococo
S o =3 coco—~occocco
Q < O’
& AW OaOOOOOOOO cococ oo oo
<5} -
= I 5 OO0 CCOoO0S mcooccoco oo
= S
" - ~ oo cocooo
% < g I
Z 2 ©S cocoococcooo
< = e
© < 3 oococcocooo B;
E~ N
o = S eco—-cocooo
2 — . coocoocoocococo
= A © ococoocoocococoo
3 s R ccoococococo
= Q M T oocoocococoo
= 8 coocooc—~coc o
: =
o, = w% Il cocoooc oo o
o o=
+=
== < & ccoocoococcoco
== Il
8% W co~ooc o oo
NS T AD
=
B2 coocoocoocococo
- <
==t — o o0 oc o oo
= N
Lll.
v 2
g < I
)
%= —
= <
S5 Q
=
g =
<< w
w = o
o= (g h
—_

and

1 1 1 1 1 1 1 1
00 O 0 0O 0 0 0
(1+a) a —a (-1—a) (-1—a) —a a (1+a)
00 O 0 0 0 O 0
G = 00 O 0 0 0 O 0|’ (24)
1 a a 0 0 —a —a —1
c c b b -b —-b —c —c
00 O 0 0 0 O 0

where a = 0.7071, b = 0.9239, and ¢ = 0.3827. Now, the idea is that post- mul’rlphca‘rlon

by P B], and BQ, are all computationally costless. Since the multiplication by D can
be abqorbed in the de-quantization step, the computational bottleneck remains merely in
the multiplication by .J, = GL, and K, = GU,, which are very structured, and can be
implemented similarly as in [4, Sect. 4].

For n < 3, multiplication by J, (K,) costs more than multiplication by the entire precom-
puted operator matrix T'SL,, (T'SU,,), which takes n multiplications and n additions per one
8-vector (again, by taking advantage of the de-quantizer). Thus, for these values of n, a full
precomputation will be preferrable. For n > 4, the factorization approach is more efficient,
and gives the following figures per one column vector: For n = 4: 4 multiplications and
10 additions, n = 5: 4 multiplications and 11 additions, n = 6: 4 multiplications and 13
additions, n = 7: 4 multiplications and 14 additions, and n = 8: 4 multiplications and 15
additions. The same is true for pre-multiplication by the transposed matrices U, S'T and
L,S'T. Now, similarly, as in [4], if the above factorization of S is incorporated into eq. (10),
we obtain

& = J'B'B'P'D(X,DPB,B,J,+ X,DPBB,Ks_,) +
K. ,B'B'P'D(X3DPB,B,.J, + X,DPB,B,Kj_,), (25)

or, equivalently,

~

& = (JBLB'P'DX, + K. ,B.B!P'DX3)DPB,B,.J,, +
(JIB!B'P'DX, + K! , BiB!P'DX,)DPB,ByKg_,,. (26)

The heart of the proposed inverse motion compensation algorithm lies in the implementation
of either eq. (25) or (26), whichever requires less computations for the given w and h. Again,
as explained above, the products of the factors are precomputed when L,, and U,, correspond
to n < 3. For applications that require a compressed domain output (e.g., when eq. (25)
or eq. (26) is carried out by the server), the resultant & has to be transformed back to the
DCT domain.

3.2 The Algorithm

Both eqs. (25) and (26) are structured in the sense that they are formed by repetitions of
a basic set of operations associated with multiplying one matrix by .J,, another matrix by

Kg ,, and then adding the results. (The latter addition is trivial since the summands are
nonzero on disjoint subsets of entries.) We shall refer to such a computational set as an
n-set. Since eq. (25) contains two w-sets and one h-set, while eq. (26) has one w-set and
two h-sets, the choice between the two equations depends on whether an h-set or a w-set
requires less computations. For the 3 — 2 — 1 case, the matrix that multiplies with .J,, or
Ky, has three types of vectors. We denote the number of multiplications and additions per
vector as m!, and a!, (the superscript denotes the vector type and takes on values 1,2 and
3). The multiplication and addition cost per vector is:

e For vector type 3, we have mj = mi =4, m? =m3 =6, m3 =m} =7, m} =m} =

3 _ 3 _ 3 _ 3_ 3 _ .3 _ 3 _ 3 _ .3 _ 3 _
m; = 8 and ay = ag = 15, a7 = a; = ag = a; = 17, a3 = a; = 19 and a; = 20.
e For vector type 2, we have m2 = m2 = 3, m? = m2 =4, m5 = mi =5, m3 =mj; =
2 _ 2 _ 2 _ 2 2 9 2 _ 2 2 = 9
mz =6 and aj = a] = a; = a7 = ag = 10, and a5 = a3 = a; = a5 = 9.

e For vector type 1, no multiplications and additions are needed.

Thus, for example if the cost of a multiplication is equivalent to that of o additions, then if

am? +al < aml + ab implement eq. (25), else implement eq. (26).

The computation algorithm is then summarized as follows: (In parenthesis we provide the
operations count in the form of an expression mM + aA, which means m multiplications and
a additions)

1. Decide on whether eq. (25) or eq. (26) is implemented. In the former case, perform
steps 2-8 and terminate. In the latter case, go to 9.

2. Post-multiply the first row of X1 by 15153132.1“, and the first row of X5 by 15153132K8,w.
(m3 M + a2 A)

3. Post-multiply the first row of X 3 by 15153132.1“, and the first row of X 4 by 15153132K8,w.
(m3 M + a3 A)

4. Post-multiply the second row of X by 15153132.]“, and the second row of X, by
DPBlBQKgfw. (mfuM +CL2 A)

w

D. Pio§t:m1}ltiply the second row of X3 by 15]531 BQJU, and the second row of X, by
DPB]BQKg,w. (mfuM + 02 A)

‘w

6. Post-multiply the third row of X by ﬁPB] BQJw and the third row of X5 by 15]51%1 BgKg,w.
(OM +0A4)

7. Post-multiply the third row of X3 by ﬁPB] BQJw and the third row of X4 by ﬁPB1 BgKg,w.
(0M +0A)

8. Pre-multiply the result of 2, 4 and 6 by JiB.!B!P'D, and the result of 3, 5 and 7 by
KL, BLB'P'D. (8m3M + 8a} A)

9. Pre-multiply the first column of X, by J!B.LB!P'D and the first column of X3 by
K. ,BLBIP'D. (m;M + a; A)

10. Pre-multiply the first column of X, by JEBLB!P'D and the first column of X, by
KL, BLBIP'D. (m3M + a A)

11. Pre-multiply the second column of X by J!BLB!P'D and the second column of X
by K¢ ,BYBIP'D. (miM + aiA)

12. Pre-multiply the second column of X, by J!BLB!P'D and the second column of X,
by K¢ ,BYBIP'D. (miM + aiA)

13. Pre-multiply the third column of X by J!BLB!P'D and the third column of X3 by
KL, BLBIP'D. (0M + 0A)

14. Pre-multiply the third column of X, by JiBLB!P'D and the third column of X4 by
K. ,BIB!P'D. (0M + 0A)

15. Post-multiply the result of 9, 11 and 13 by DPB, Bng, and the result of 10, 12 and
14 by DPB]BQKg,w. (87773 M + 8(13 A)

‘w “w

The computations associated with steps 6, 7, 13, and 14 are not counted since each one
of them involves only one multiplication by a fixed number, which can be absorbed in the
de-quantization stage. The total number of computations is then (8mj + 2m} + 2m?)
multiplications and (8a3 + 2a3 + 2a?) additions if steps 2-7 are performed, and (8m3 +
2mj + 2mj) multiplications and (8a}, + 2a} + 2a7) additions if steps 7-11 are performed.
In case of perfect alignment of the motion vector in one dimension, e.g., h = 8, only two
terms in eqs. (25) and (26) remain nonzero, and the total number of computations is
(8m3 4+ m3) multiplications and (8a3 + al, + a2,) additions. If both w = 8 and h = 8, then
only one term remains and then 9m3 multiplications and 9aj additions are needed. Averaging
with respect to a uniform distribution over w and h, gives 72.83 multiplications and 186.95
additions. Note that for the DC' + 2AC case, a similar analysis yields 41.95 multiplications
and 93.01 additions. The uniform distribution is however, a conservative assumption. From
the simulations for a video test sequence of 150 frames taken from a test set used by the
MPEG standards committee, the actual joint probability distribution of w and h has the
profile shown in Fig. 3. Note that the distribution is more peaked at the corners, i.e. near
h = 8 or w = 8. Referring to Fig. 1, h = 8 or w = 8 implies that for a large number of x,
only one or at most two of X1, X5, X3, X, in eq. (25) or eq. (26) are used which in turn
leads to fewer multiplies and adds than the numbers stated here.

The DCT domain approach developed here for the 3 — 2 — 1 case has significantly lower
operations count than a naive spatial-domain approach wherein four full inverse DCT op-
erations requiring 320 multiplications and 1856 additions (one full inverse DCT based on
the Arai and Agui approach[10] requires 80 multiplications and 464 additions) have to be
performed. A sophisticated spatial-domain approach can exploit the fact that a full inverse
DCT need not be performed for the 3 — 2 — 1 case. The complexity for such an approach

is 128 multiplications and 632 additions. This has significantly higher computational cost
compared with the proposed DCT-domain approach.

If the desired output is in the DCT domain, then as mentioned earlier, one has to perform
DCT on the resulting &, which requires 80 more multiplications and 464 more additions in

general. If, however, X is approximated in the 3 —2 — 1 form as well, then using the same
technique, the complexity of the DCT stage can be reduced to 55 multiplications and 198
additions, which overall gives 127.83 multiplications and 384.95 additions on the average
over all motion vectors. For the DC + 2AC case, the overall cost is 71.95 multiplications
and 273 additions.

A more detailed comparison of the proposed DCT-domain approach and the naive spatial-
domain approach as well as the sophisticated spatial-domain approach is provided in Section
3.4.4.

3.3 An Approximate Multiplication-Free Algorithm

An approximate multiplication-free version of our algorithm is associated with quantization
of the entries a, b and ¢ of the matrix G. According to this approximation, a, b and ¢, are

replaced by a, b and ¢, respectively, given by a = 0.75, b= 1, and ¢ = 0.375, whose multipli-
cations can be 1mplemen’red by one SHIFT & ADD opera’rlon on some general purpose CPUs
with multimedia-enhanced instruction sets [13]. For the 3—2—1 case, the cost of computing
% according to eq. (25) or (26) using the quantized G is approximately 260 additions. For
the DC + 2AC case, we require 170 additions.

To roughly assess the worst case SNR associated with this approximation, let S=5+A

denote the approximated DCT operator matrix associated with a, I;, and ¢ in place of a, b,
and ¢, respectively. Every term in eq. (25) and (26) is a shifted and windowed version of

S'TX,TS, i=1,2,3,4, which when replaced by S'TX,TS, gives
S'TX,TS = S'TX, TS + S'TX,TA + A'TX, TS + A'TX,;TA, (27)

where the first term is the desired term and the three other terms are error terms. Transform-
ing the last equation to a column stacked form [12, Sections 5.3-5.4], the desired term is given
by UX/*, while the error term is given by VX/*, where X/* is the column-stacked version
of X; (that is, a 64-dimensional column vector formed by concatenating the columns of X;
from left to right), U = (S'T) @ (S'T), V = (A'T)® (S'T) + (S'T) @ (A'T) + (A'T) @ (A'T),
and ® denotes the Kroenecker tensor product. By a simple numerical analysis, we find that
the worst case SNR given by 10log,,[tr(U'U)/tr(V*V)] is about 24dB. This means that the
additional distortion due to this quantization is typically small compared to the distortion
induced by the 3 — 2 — 1 structure and the quantization error due to the lossy compression.

This worst case SNR estimation applies only to one-step prediction, i.e. when only frame
is inverse motion-compensated. In practice all video coding standards employ multi-step
prediction within a group of 12-16 pictures and in this context, each frame within this group
is predicted from a previously reconstructed frame which is also within this group. Thus there
will be error buildup since each frame is reconstructed inaccurately due to the quantization
of G and the worst case SNR will be lower than 24dB. However, due to the use of partial
DCT information in each X;, 1 = 1,2,3,4, the error buildup will not cause the SNR to
degrade significantly. We will demonstrate this in the simulations described in Section 3.4.3.

10

3.4 Experimental Results

Several simulations were performed to assess the image quality for DCT-domain based inverse
motion compensation approach. The primary objective of the simulations was to investigate
the tradeoffs between the operations count and image fidelity.

For the simulations, the basic steps employed in MPEG coding were used to generate the
intraframe and interframe DCT information. The encoder used in the simulations is as shown
in Fig. 4 and performs the functions of an MPEG encoding scheme. We have, however,
simplified the coder by using a single quantizer characteristic for all blocks in the frame and
the motion-estimation strategy restricts the motion-vectors to integer pixel accuracy.

3.4.1 Two-frame Simulations

The encoder of Fig. 4 was used to encode a group of two frames. The two frames used in
this set are shown in Fig. 5. Note that the encoder outputs only the DCT information for
the I frame and the motion-compensated prediction residual for the P frame.

For the frame tensif.66 coded as a P frame in Fig. 5, the corresponding reconstructed I frame

representation is shown in Fig. 6. Here, we show the I frame reconstruction for various cases:
1. ten8x8.exact: all 64 coefficients of the four blocks X, X, X3, X4 are used,

tendx4.exact: 4 x 4 case,

ten321.exact: 3 —2 — 1 case,

ten2x2.exact: 2 X 2 case,

ten2x1.exact: the DC' + 2AC case, and

AN el

tendc.exact: the DC only case.

For the 3 — 2 — 1 case, the intraframe reconstruction was based on eq. (25) or eq. (26).
Similar algorithms can be devised for the 4 x 4, 2 x 2 and the DC' 4 2AC case.

This simulation suggests that the DC'+2AC case may be acceptable in browsing applications.
3.4.2 Error Propagation Due To Partial DCT Information

The simulation of Fig. 6 is not realistic since we have used a simple two frame [P se-
quence, whereas, in most MPEG coding systems, a group of pictures might consist of one
intraframe and perhaps 12-15 P or B frames. Since the intraframe reconstructions of previ-
ous interframes is used in the reconstructions of subsequent frames, there is a potential for
error propagation. The error propagation effect will be more pronounced when partial DCT
information is used in the inverse motion compensation process.

In order to assess the quality of image reconstructions due to error propagation when partial
DCT information is used, we used a group of 16 frames and applied the encoding procedure
of Fig. 4. The coding type for this group was set to IBBPBBPBBPBBPBBP, i.e. 2 B frames

11

for each P frame. For this group of 16 frames, erroneous reconstruction of each P frame due
to partial DCT information will cause the largest error buildup in the 14" and 15" frame.
In Fig. 7, we show the image reconstruction for the 14" frame. The original frame (input
to the encoder of Fig. 4) is tensif.66 shown in Fig. 5.

This simulation suggests that in a multiframe setting for MPEG coding, the DC + 2AC
case may not be adequate even for browsing applications when browsing is done at the
original spatial resolution. If the reconstructed image is further down-sampled by a factor
of two in each direction [2] ((see also [1], [3]), the DC' + 2AC may be an adequate choice for
browsing. For browsing while maintaining the original spatial resolution, the 3 —2 — 1 case
(ten321p.exact in Fig. 7) is needed for acceptable image quality.

We have repeated these experiments for the approximate multiplication-free algorithm de-
scribed in section 3.3. The simulation results are shown in Fig. 8 and Fig. 9.

Note that the only difference between Fig. 6 and Fig. 8 is that in the latter, a quantized G
matrix is used in eq. (25) or eq. (26); comparing the image reconstruction results indicates
no additional degradations due to the use of the approximate multiplication-free method.
We can make the same observation when comparing Fig. 7 and Fig. 9. Thus, in low-
cost hardware or software-only implementations, the proposed multiplication-free method is
preferable.

3.4.3 Signal-to-Noise Ratio Results

The results of these experiments are summarized in Fig. 10 wherein, we show the PSNR
(peak-to-peak signal-to-noise ratio) for various cases: full/partial DCT information, exact
DCT or the approximate multiplication-free method, two-frame IP sequence as well as the
16 frame IBBP,...P sequence.

Note that there is significant PSNR, degradations when partial DCT information is used; for
instance, using a two frame packet and the exact representation for the matrix G, the 8 x 8
case has a PSNR of 35.63dB whereas the 3—2—1 case has a PSNR of 22.89dB. Thus, partial
DCT information based processing is usable only for browsing applications or for classifying
images for the purposes of scene change detection. From this figure, we also observe that the
PSNR degradations using the approximate multiplication-free method leads to little or no
PSNR degradations when partial DCT information is used for inverse motion-compensation.
The PSNR degradation due to error propagation is around 2dB for the DC + 2AC relative
to the 3 — 2 — 1 case; perceived image quality degradation is quite substantial for 2dB loss in
PSNR. The PSNR numbers also suggest that in many applications wherein multiple frames
are used in a group of pictures during encoding, inverse motion compensation using around
6 DCT coefficients such as the 3 — 2 — 1 case may be preferable to the 3 DCT coefficients
that is used in the DC + 2AC case.

We have also compared the performance of our method against the proposed DC only scheme
of Yeo and Liu [2] and [3]. For a two-frame IP sequence, our approach yields better quality
images and has a 0.5dB better PSNR. Furthermore, in our work, we have considered the
effects of error propagation due to image reconstruction from partial DCT information; in [2]
and [3], there is no discussion of error propagation effects in their scheme and we believe that
if error propagation effects were taken into account in the work in [2] and [3], the conclusions
regarding the effectiveness of a DC only reconstruction scheme may be different than that
reported by Yeo and Liu.

12

3.4.4 Computation Complexity

JFrom an image quality viewpoint, the experimental results we have described so far suggests
that the DC + 2AC case is barely acceptable for many applications and in fact the 3—2—1
case might be a better choice. The computation complexity associated with each choice of
the partial DCT information setting (full, 4x4, 2x2, etc.) is shown in Table 1.

DCT Computation Cost
Information | Domain | z, | z, |en| e |(@+e€),|(@+e),| Total
8 x 8 DCT 9364.5[4]
spatial(1) | 320 1856 | 80 | 464 400 2384 4384
spatial(2) | 320 1856 | 80 | 464 400 2384 4384
4% 4 DCT 1091.2[4]
spatial(1) | 240 984 60 | 246 300 1230 1830
spatial(2) | 320 1856 | 80 | 464 400 2384 4384
3—2—-1 DCT 72.83 | 186.95 | 40 | 165 112.83 351.95 077.61
spatial(1) | 128 632 40 | 165 168 861 1197
spatial(2) | 320 1856 | 80 | 464 400 2384 4384
2% 2 DCT 72 160 30 | 120 102 344 548
spatial(1) | 120 | 480 |30 |120| 150 664 964
spatial(2) | 320 1856 | 80 | 464 400 2384 4384
DC +2AC DCT 41.95 | 93.01 | 28 | 108 69.95 265.01 480.01
spatial(1) | 112 | 432 | 28 | 108 | 140 604 884
spatial(2) | 320 1856 | 80 | 464 400 2384 4384
DC only DOT 17
spatial(1) 4 1 5 4 14
spatial(2) | 320 1856 | 80 | 464 400 2384 4384

Table 1: Operations count for DCT-domain and spatial-domain inverse motion compensation using
full(8x8) or partial DCT information. The subscript m refers to multiplication count and the
subscript a refers to add count. The column labelled Total reflects the operations count when an
approximate multiplication-free method is used in the inverse DCT calculations.

Note that the spatial approach requires calculating four inverse DCTs for the blocks X,
1 = 1,..,4 before performing inverse motion compensation. A naive approach in the spatial
domain (referred to as spatial(2) in Table 1) will not make any sparseness assumptions on
the contents of X;, i = 1,..,4. If sparseness of X;, i = 1,..,4 is exploited during the inverse
DCT calculations for the spatial-domain approach (referred to as spatial(1) in Table 1) the
computation complexity relative to the naive approach is substantially reduced. In all but
the DC only case, the DCT domain approach for inverse motion-compensation has lower
complexity compared with the spatial domain approaches.

. From an operations count viewpoint, the 3-2-1 case has nearly eight-fold reduction in compu-

13

tation complexity relative to the naive spatial-domain inverse motion-compensation method
for the full 8 x 8 DCT case. The DC + 2AC' case has nine-fold reduction in computation
complexity compared with the full 8 x 8 DCT case; however, the resulting image quality
may be acceptable only for a limited set of applications. Since the image quality resulting
from the 3 —2 — 1 case is better than the DC +2AC case and the computation savings using
DC + 2AC is not significant, the 3 —2 — 1 case may be preferred for most applications. The
results of Table 1 are depicted in Fig. 11.

The simulation results presented in Fig. 9, Fig. 10 and the operations count in Fig. 11
can be used to make a careful tradeoff between the computation complexity and the desired
image quality for the specific application.

4 Noninteger Motion Vectors

As explained earlier in Section 1, MPEG encoding can generate noninteger motion vectors,
more precisely, vectors whose components are integer multiples of 1/2. If both components
are nonintegers, this mean that each pixel in the reference macroblock is the average of the
four nearest neighbor pixels of integer-valued coordinates. If only one component of the
motion vector is noninteger, then the average of only two nearest neighbor pixels is taken.

In this section, we show a simple way to modify the inverse motion compensation algorithm
developed earlier so as to deal with noninteger motion vectors. If the motion vectors are such
that the intersection of the reference block (see Fig. 1) with &; has parameters h + 1/2 and
w—+1/2 (h and w integers), then & is given by the average of four contributions corresponding
to the pairs (h,w), (h+ 1,w), (h,w+1) and (h+ 1,w+ 1). Specifically, eq. (9) is rewritten
as

1
T = Z[UhStXISLw + UhStXQSUf%fw + L87h,StXBSLw + L87hStX4SU87w +

Uh-l—lStXlSLw + Uh—!—lStXQSUwa + L77hStXBSLw + L77h,StX4SU87w +
UhStX]SLw+1 + UhStXQSU7,w + Lg,hStX3SLw+1 + Lg,hStX4SU7,w +
Un1S' X 1S Liyy1 + Up1S* X9SU7 oy + Ly 45" X3S Loyyy + L 3,S' X 4SU;
1

= Z[(Uh + Upy1)S* X1S(Ly + Lyps1) + (U + Upy1)S* X oS (Us oy + Uz) +
(L87h, + L77h,)StXBS(Lw + Lw—!—l) + (L87h, + L7fh)StX4S(U87w + U771u)]
1

= Z[(If% + Uz)Up 15" X 1S Ly (Is + L7) + (Is + Uz)Up 415" X 2SUs o (Is + Uz) +
(Ig + L7)L8,hStX3SLw+] (Ig + L7) + (Ig + L7)L8,hStX4SUg,h(Ig + U7)]
1

= Z{([g + U7)J,tl+]BéBfPtD[X1DPB1BQJw+] ([8 + L7) +

X,DPB B, Ky o(Is + U7)] +
(Is + L7)K._, BSB'P'D[X3DP B, By Jys1(Is + Ly) +
X, DPB,ByKs_,(Is + U7)]} (28)

or, equivalently,

N 1
& = AlUs+Up)J, BiBIP'DX +

14

(Is + Ly) Kt , BEB!P'DX3]DPBByJy 1 (Is + L) +
[(Ts + Uz) Jy 41 By B P'D X5 +
(Is + L7)K, ,BEBIP'DX |DPB, By Ks_(Is + Uz)}, (29)

where the choice between the two forms depends again on the overall number of computations
associated with its implementation for the given pair (h,w). Note that the computational
compexity associated with the implementation of each one of these equations is only slightly
larger than the algorithm in [4] as multiplication by (Is + U7) or (Ig + L) involves at most
only 7 additions per vector, and no extra multiplications at all.

In a similar manner, if w is integer and only A is noninteger, then the corresponding expression

for & will involve only premultiplications by (Is+U;) and (Ig+ L7), and if only w is noninteger
then only post-multiplications by these matrices are needed.

15

7
1]

[10]

[11]

References

M. M. Yeung, B.-L.. Yeo, W. Wolf, and B. Liu, “Video browsing clustering and scene
transitions on compressed sequences,” preprint 1995.

B.-L. Yeo and B. Liu, “Reconstruction of spatially subsampled sequences from MPEG
compressed video,” submitted to IEEE Trans. on Image Processing.

B.-L. Yeo and B. Liu, “Rapid scene analysis on compressed video,” IEEE Trans. on
Circuits and Systems for Video Technology, Vol. 5, no. 6, pp. 533-544, Dec. 1995.

N. Merhav and V. Bhaskaran, “A Fast Algorithm for DCT-Domain Inverse Motion
Compensation,” Proc. I[CASSP ‘96, pp. 1V.2307-2310, Atlanta, May 1996.

Coding of Moving and Associated Audio. Committee Draft of Standard ISO11172:
ISO/MPEG 90/176, December 1990.

Video Codec for Audio Visual Services at px64 Kbits/s. CCITT Recommendation H.261,
1990.

D. le Gall, “MPEG: A Video Compression Standard for Multimedia Applications,”
Commun. of the ACM, Vol. 34, No. 4, pp. 47-58, April 1991.

S.-F. Chang and D. G. Messerschmitt, “A New Approach to Decoding and Composit-
ing Motion-Compensated DCT Based Images,” Proc. I[CASSP ‘93, pp. V.421-V.424,
Minneapolis, April 1993.

S.-F. Chang and D. G. Messerschmitt, “Manipulation and compositing of MC-DCT
compressed video,” IEEE J. Selected Areas in Communications, Vol. 13, no. 1, pp.
1-11, January 1995.

Y. Arai, T. Agui, and M. Nakajima, “A Fast DCT-SQ Scheme for Images,” Trans. of
the IEICE, E 71(11):1095, November 1988.

W. B. Pennebaker and J. L. Mitchell, JPEG Still Image Data Compression Standard,
Van Nostrand Reinhold, 1993.

W. K. Pratt, Digital Image Processing, John Wiley & Sons, second edition, 1991.

V. Bhaskaran, and K. Konstantinides, Image and Video Compression Standards: Algo-
rithms and Architectures, Chapter 15, Kluwer Academic Publishers, , Sept. 1995.

16

17

Figure 1: DCT domain based inverse motion compensation.

18

Figure 2: Partial DCT information. x refers to locations in the 8 x 8 DCT matrix wherein the
DCT coefficients can take on nonzero values. DCT coefficients are assumed to be zero-valued in
locations not marked with an x.

19

Figure 3: Probability distribution for h, w.

20

Figure 4: Video encoder structure used in the simulations.

21

Figure 5: Test video frames used in a two frame simulation. Frame tensif.65 is coded as an
intra (I) frame. Frame tensif.66 is coded as a predictive (P) frame and its motion-compensated
prediction residual is shown in Frame tensif65_66.diff. For motion-compensated prediction residual,
a reconstructed version tensif_65.rec of Frame tensif.65 is used.

22

Figure 6: DCT domain inverse motion compensated reconstruction using full or partial DCT
information for the two frame IP sequence shown in Fig. 5. The original version of the reconstructed
frame is tensif.66 shown in Fig. 5.

23

Figure 7: DCT domain inverse motion compensated reconstruction for a 16 frame IBBP...P sequence
and using full or partial DCT information. The results shown are for the 14" frame of the sequence.
The original version of this frame is tensif.66 shown in Fig. 5.

24

Figure 8: DCT domain inverse motion compensated reconstruction for the two frame IP sequence
using the approximate multiplication-free method. The original version of the reconstructed frame
is tensif.66 shown in Fig. 5.

25

Figure 9: DCT domain inverse motion compensated reconstruction for the 16 frame IBBP...P
sequence using the approximate multiplication-free method. The results shown are for the 14"
frame. The original version of this frame is tensif.66 in Fig. 5. The DCT domain reconstruction is
shown for the case of full and partial DCT information.

26

Figure 10: PSNR versus full or partial DCT information for the DCT domain based inverse motion
compensation method. In this figure, Exact referes to the use of an exact representation for matrix
G whereas Quantized refers to the use of the approximate multiplication-free method. Also I,P
refers to the use of a two frame IP sequence and the PSNR is for the 2" frame. I,P,..P refers to
the use of a 16 frame IBBP...P sequence and in this case the PSNR for the 14! frame is shown.

27

Figure 11: Computation complexity for DCT-domain and spatial-domain inverse motion compen-
sation using full or partial DCT information. Spatial(2) refers to a naive spatial-domain approach
whereas Spatial(1) refers to a spatial-domain approach wherein the DCT sparseness is exploited in
the inverse DCT computation.

