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Abstract

We develop a method for designing DCT coefficient multipliers in order to approxi-
mate the operation of 2D convolution of an image with a given kernel. The method is
easy to implement on compressed formats of DCT-based compression methods (JPEG,
MPEG, H.261) by using decoding quantization tables that are different from the en-
coding quantization tables.
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1 Introduction

This work addresses the problem of efficient 2D linear filtering in the discrete cosine trans-
form (DCT) domain, which is an important problem in the area of processing and manip-
ulation of images and video streams compressed in DCT-based methods, such as JPEG,
MPEG, H.261, and others (see, e.g., [1-9]).

Most of the previously reported work on DCT domain processing in general, and 2D
filtering in particular, focuses on exact algorithms, that provide the precise desired results.
In [10] Bhaskaran et al. proposed a method for sharpening scanned text and picture images
by multiplying the DCT coefficients of the image by fixed multipliers that were designed
using statistical considerations. Specifically, these multipliers were designed so as to match
the variances of the DCT coefficients of the scanned image to desirable reference variances
corresponding to a computer-generated synthetic image. Clearly, DCT domain element-by-
element multiplication does not exactly correspond to spatial domain convolution (see, e.g.,
[1], 2], [3], and [4] for convolution-multiplication properties of the DCT), but the motivation
for this approximate filtering approach is clear: Once a set of DCT coefficient multipliers
is available, the DCT domain element-by-element multiplication is easy to implement on
compressed streams of DCT-based compression methods with no additional computational
cost. One simply uses a decoding quantization table that is different from the encoding
quantization table, so that the dequantization table includes the appropriate gains.

In this work, we further study the idea of using DCT domain coefficient multipliers
in order to mimic a certain image enhancement operation. Unlike the variance matching
approach of Bhaskaran et al., however, we aim at approximating a given convolution kernel.
Specifically, the problem we address is the following: Given a 2D separable, symmetric
convolution kernel in the spatial domain, we seek a set of DCT coefficient multipliers that
best approximate the operation of filtering by the given kernel in the least squares sense. We
provide two variants of the solution to this problem, and demonstrate their performance.

The DCT domain multiplication approach is useful in several applications where a still
image is distorted by a certain mechanism before being compressed and stored, and one
would like to embed the multipliers in the decoding quantization table in order to com-
pensate for this distortion. One example is a color scanner which suffers from limited

modulation transfer function (MTF) and misregistration problems [10]. Another exam-



ple is the digital camera whose CCD sensors typically suffer from several sources of noise:
photo-electric Poisson noise due to photon-electron conversion, electronic circuitry noise,
and quantization noise of the digitization phase. The reconstruction process of digital pic-
tures also suffers from artifacts due to the fact that every pixel carries one color only. Other
image and video recording media are subjected to various types of distortion and noise as
well due to technological limitations. As mentioned earlier, another potential application
area is in processing video streams which are compessed using DCT-based methods. Since
the filtering operation is linear, it could be applied to the reference block and the predic-
tion residual block separately. For symmetric and anti-symmetric filter kernels it would be
reasonable to assume that the motion vectors remain unchanged because such filters do not
cause any translation. However, this topic requires further investiagtion.

The outline of this paper is as follows. In Section 2, we provide the formulation of
the problem. Section 3 contains the mathematical derivation of two methods for designing
the DCT domain coefficient multipliers. Section 4 provides an implementation example.
In Section 5, we demonstrate the performance and discuss the properties of these design
methods. Finally, in Section 6, several conclusions are drawn along with directions for

further research.

2 Preliminaries and Problem Description

The 8-point 2D DCT transforms an 8 x 8 block {z(n,m)}! ,,_ in the spatial domain into

a matrix of DCT coefficients {X (k,1)}] ,_,, according to the following equation [12]:

(k) e(l) <~ < 2n+1 2m + 1
Sl WP : . 1
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where ¢(0) = 1/v/2 and ¢(i) = 1 for i > 0. The inverse transform is given by:
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In a matrix form, let & = {z(n,m)}] ,,_o and X = {X (k, l)}lz,l:m and define the 8-point
DCT matrix S = {S(k,n)}] . _,, where

om+1
S(k,n) = “’(2"7) cos( "1‘6F k). (3)
We then have
X = SzSt (4)



where the superscript ¢ denotes matrix transposition, and so
z=51X5=5XS8, (5)

where the second equality follows from the unitarity of S.
Filtering, or convolution, of an input image {I(i,7)}, (where 7 and j are integers taking
on values in ranges that correspond to the size of the image), by a filter with impulse

response { f(i,7)} (also called kernel), results in an output image {.J(4,7)} given by:
YONEDSDINIGFDUEIFESY (6)
il g

where the range of summation over 7' and j' is, of course, according to the support of the
impulse response {f(i,7)}. In this work, we assume that the filter {f(i,7)} is separable,

that is, f(i,7) can be factorized as
fi,5) = vihj, (7)

for some one-dimensional sequences {v; } and {h;}. The supports of {v;} and {h;} are —M <
i < M and —N < j < N, respectively, meaning that f(i,j) = 0 outside a (2M +1)x (2N +1)
rectangle.

Incorporating the separability assumption into eq. (6), we get

M N

Ji,5)= > g Y hpl(i—i'j—j), (8)
i'= j'=—N

-M

namely, one can first perform a one-dimensional convolution on each row with the hori-
zontal filter component (HFC) {h;}, and then another one-dimensional convolution on each
resulting column with the vertical filter component (VFC) {v;}. Of course, the order can
be interchanged and the vertical convolutions can be carried out first without affecting the
final result.

An important special case, assumed frequently in previously reported work (see, e.g.,
[1, 3, 8]) as well as in this work, is that of symmetric filter components, namely, v; = v_;
and h; = h_; for all 1.

The input image {I(¢,7)} is given in the compressed domain, that is, we are given a
sequence of 8 x 8 matrices X1, X, ... of DCT coefficients corresponding to spatial domain
8 x 8 spatial domain blocks @1, xs,... that together form the input image {I(7,7)}. Our

task is to calculate a good approximation of the sequence of 8 x 8 matrices Y1,Y o, ... of



DCT coefficients of the spatial domain blocks y,,y,, ... associated with the filtered image
{J(i,7)}, directly from X, X, ..., without going via the spatial domain and performing
spatial domain convolution. We further assume that M and N do not exceed 8 (that is,
the filter size is always smaller than 17 x 17), so that every DCT block of the filtered image
{J(i,7)} depends on the corresponding DCT block of the input image {I(i,7)} and the
eight immediate neighbors of X.

Specifically, let

IUS 'U7 . . . U1 /UO U1 . . . 'U? IUS 0 . . . 0
0 wg wg - - - w1 w9 v - - - vy ovg 0 - -0
V= (9)
0 . ' -0 v U7t ' ' VU1 Vg V1 . . © VU7 Vg
and
hgs hy - - - hy hg h - - - hy hg O - - - 0
O hg hy - - - hy hy hy - - - hy hg 0 - - O
H=| (10)
0 - - - 0 hg hy - -« hy hg hi - - - h; hg

Let & denote a spatial domain input block of size 24 x 24, subdivided into nine 8 x 8 blocks

as follows:
Tl T2 T13
To1 T2 T3 (11)

8
Il

31 I32 L33

The 8 x 8 output block y that corresponds to the central input block x4, is given by
y=VzH' (12)

Our problem is the following: Given H and V, we seek a fixed 8 x 8 matrix G of DCT
domain multipliers such that element-by-element multiplication of G by X9 (the DCT
of xy7), henceforth denoted by Y = G e X9, would have an IDCT ¢ that is as close as
possible to y, namely, the error e = y — ¢ is “small” in some reasonable sense. The most
common measure of the error magnitude is its energy €2 = |e|?, i.e., the sum of squares
of the elements of e. Since €2 = €?(z) depends also on the input z, and we wish that G

would be fixed and independent of x, there are two possible approaches at this point. One

approach, henceforth referred to as the minimum mean squared error (MMSE) approach, is



to minimize the expectation of €?(z) w.r.t &, which requires some estimates or assumptions
about the second order statistics of . The second approach, which will be referred to as
the minimaz approach, minimizes maxg €?(x) subject to a constraint on the energy of z.
The latter approach is somewhat more pessimistic but it to avoids the dependence upon

the second order statistics of . Both approaches will be discussed in the next section.

3 Mathematical Derivation

By Parseval’s theorem and the unitarity of the DCT, the spatial domain error energy
€2 remains unchanged under the DCT, i.e., e and its DCT E = SeS’ have the same
energy. Therefore, we can seek the best multiplier matrix G directly in the DCT domain
by minimizing the energy of E.

To this end, let us partition the matrix V into three 8 x 8 matrices V = [V;, V3, V3],

where

Vg V7 Vg Vg Vg V3 Vo VU1
0 wg w7 wg V5 V4 V3 Uy
0 0 wg wy wg w5 wg U3
0 0 0 wg vy wvg ws w4

V) = (13)
0 0 0 0 wg vy wg ws
0O 0 0 0 0 wvg wr wg
0O 0 0 0 0 0 wg wy
0O 0 0 0 0 0 0 wg
Vg U1 V2 V3 V4 Uy Vg U7
V1 Vg V1 V2 V3 Vg Vs Vg
V2 U1 Vg V1 V2 V3 V4 Uy

L@ _ V3 V9 V1 Vg V1 V2 V3 V4 (14)
V4 V3 V2 V1 Vy VU1 V2 U3
Vs Vg V3 V2 V1 UYUy V1 V2
Vg Vs Vg4 V3 V2 VU1 Vg VU1

Vy Vg Uy Vg4 V3 V2 V1 Y

and V3 = V{'. In the same fashion, H is partitioned into [Hy, Hy, H3] with similar definitions
of Hl, HQ, and H3.
The ideal convolution can now be expressed as

3 3
y=>Y > VizHj. (15)

i=1j=1

Since the DCT is unitary, it is distributive w.r.t matrix multiplication, and so the last

equation can be written in the DCT domain as

3 3
Y =) Y V. X;H, (16)

i=1j=1



where Y, V;, X;;, and H; are the 2D-DCT’s of y, V;, z;;, and Hj, respectively, 7,5 = 1,2, 3.

Now, let
3 3

E:Y—Y:ZZVZ‘XZ']'H;—G.XQQ. (17)
i=1j=1

In order to express the element-by-element multiplication G e X5 in terms of ordinary
algebraic matrix multiplication, it will be convenient to represent the data {X;;} in a
one-dimensional representation by column stacking [11, Sections 5.3-5.4]. The column-
stacked version Z of an m x n matrix Z is a (mn)-dimensional column vector formed by
concatenating the columns of Z from left to right. The basic fact that will be used hereafter
with regard to column stacking is that if W = AZ B! where Z is as above, and A and B are
matrices of dimensions k x m and | x n, respectively, then W = (B ® A)Z, where B® A is

the Kroenecker tensor product of B and A, defined as

b“A b[2A - A

Returning to the approximate filtering problem, we can now rewrite eq. (17) in the column-

stacked representation as follows:

3 3
E=>3 > FjXij—DXn (19)
i=1j=1
where Fj; = H; ® V;, i,j = 1,2,3, and D = diag{G}.
3.1 The MMSE Approach

In this approach, we would like to minimize the expectation of € = E'E = tr{EEt} over
D (or, equivalently G). Let R;j;x = E{XUX',;Z}. Then,

3 3 33
Ec® = Etr {(Z ZFUXU — DX 9)( Z Z FuXp — DX ) }

i=1j5=1 k=11=1

3 3 3 3 3 3

= tr (Z Y > D FyRijmFy DY Y Ronky
i=1j=1k=11-1 k=11=1
3
—ZZFURU 22D + D Ry 22D) (20)
i=17=1

By taking partial derivatives w.r.t the diagonal elements {d;}%!, and setting to zero, one

obtains a set of 64 decoupled linear equations with 64 unknowns whose solutions are given



by 3 3
% Zli:] 3:] (E]RUvQQ)(k?k)
Ro2.99(k, k)

where A(i, 7) is understood as the ijth element of a matrix A. Therefore, the optimal DCT

domain gain factor g;; = G(4,7), 4,5 = 1,...,8 is given by dj, where k = 8(j — 1) + 4, which
corresponds to the column stacking order.

As can be seen, the optimal solution depends not only on the given convolution kernel
(via {Fj;}), but also on the covariance matrices { R;; 22} of the DCT domain data. Therefore,
in order to use this solution, one must estimate these covariance matrices from sample
images, or to assume a certain form. We will adopt the second approach.

Before doing that, we note that by substituting eq. (21) into eq. (20), we get the
following expression for the MMSE.

3 3 3 64 [ 37 3.7 (F:'R:'QQ)(m’m)]Q
(E{Q)min = tr Z Z Z Z E]Rl],le]:l _ Z =1 j=1 LY AV D)

i=1j=1k=11=1 m=1

Ry3 99(m, m) (22)

This expression, that provides a measure of the goodness of fit, gives a guideline about
the conditions under which a given filter can be well approximated by DCT coefficient
multipliers. The ratio between the first term of eq. (22) and (Ee?)yin is the signal-to-noise
ratio corresponding to the approximation. As expected, when Hy and V5 and hence also
Fyy are diagonally dominant, the MMSE is relatively small.

For the sake of simplicity in implementing eq. (21), we shall adopt a spatial domain,
separable, first order Markov model [11, Sect. 5.6]. According to this model, the spatial

domain covariance between two pixel intensities x(nq, m1) and x(ng,ms) is given by

1>

r(n1,my, ng,my) 2 Bla(ny, my)z(ng, mg)] = o?plmi-m2ltimimml, (23)

where p is a parameter in the range (—1,1), and o? is a scaling factor whose value is
immaterial for eq. (21) and hence will be assumed unity. The covariance matrices {R;; 22}
in this case, are obtained as follows. Let ry and r; be 8 x 8 Toeplitz matrices whose ijth
elements are pl'~7 and pl®t7-l respectively. Let Ry and R; denote the 2D-DCT’s of g

and 1, respectively, i.e., Ry = SrS* and Ry = SryS'. Then,

Rij2 = R; ® R;, (24)
where
R, ifi=1
Ri={ Ry ifi=2 (25)
Rl ifi=3



Thus, the numerator of eq. (21) degenerates to

3

3 3
> FijRije = Y ) (H;®V)(R;® Ry)

i=1j=1 i

3 3
= O_HR)®()_ VIR
=1 =1
A
= Hrp®Vg. (26)
Hence, for k = 8(j — 1) + 14, we get
« Vr(i,i) Hg(j,j
dk = gij = R( ) . R(7 7) (27)

Ro(i,i)  Ro(j,7)
In other words, the matrix G in this case is just the outer product of two vectors formed by
the diagonals of V g, H g, and Ry, which means that the optimum two dimensional MMSE
solution separates into the combination of the two optimum one dimensional solutions cor-
responding to the horizontal convolution and the vertical convolution. In the special case

where p =0, i.e., Rg =79 = I and Ry = = 0, we simply get g;; = V2(i, 1) H2(J. j).
Incorporating the Quantization Error

Since this work is primarily motivated by embedding the multipliers in the quantization
tables, as explained in the Introduction, a natural refinement of this method would be to
incorporate the effect of quantization errors, and to optimize the DCT-domain gains so
as to minimize the combined effect of approximation error and quantization error. In this
subsection, we examine the effect of quantization error on the design of the multipliers.

If we consider the JPEG algorithm, then at the encoder, every DCT coefficient X 99 (3, j)
is first divided by the encoding step-size d.(7,j), and then rounded to the closest integer.
At the decoder, the resultant integer is multiplied by the decoding step-size d,4(i,7) (which

is traditionally identical to d.(i, 7)), and so the decoded DCT coefficient is given by

Xanlis ) = ST Xl ) + 6t 3)Q00 ) 29

where —0.5 < Q(i,7) < 0.5 is the roundoff error at the encoder. If we identify the ratio

da(i,7)/de(i, ) as gij, then the first term is the desired term and the second is an error term.

Thus, we rewrite eq. (28) as

X?Q(iaj) = gZ]XQQ(Za]) + glyée(zuj)Q(Za]) (29)



Assuming that the encoding quantization table d, = {d.(7, )} is fixed and only the decoding
table d4 = {d4(i,7)} absorbs the multipliers (so as to avoid any effects on the compressibil-

ity), then eq. (19) is now rewritten as
E=) Y F;X;j; — DXy +DA.Q (30)
i=1j=1

where A, = diag{d.}, and Q is the column stacked version of the roundoff error matrix
Q = {Q(i,j)}. The error signal now has two components. The first component is the
approximation error, which is given by the first two terms as before. The second component
is the quantization error given by the third term. If we assume that these two components
are uncorrelated (which is a reasonable assumption when {d.(i,7)} are fairly small), then

similarly as in (20), we obtain

[3333 3 3

E€2 = tr [Z Z Z Finij,lelgl - D Z Z R22,lel§l

i=1j=1k=11=1 k=11=1

— i: i: FijRij20D + D(R23 99 + AERQAe)D-I , (31)

i=1j=1 J
where R is the covariance matrix of Q. If we further assume that R is diagonal (i.e., the
roundoff errors are uncorrelated), then the optimal gains are as in eq. (21) except that the
denominator is replaced by Raos90(k, k) + 02(k)Rg(k, k). This means that the gain factors
are reduced by a factor of Rosoo(k,k)/[Raa.22(k, k) + 02(k)Rg(k, k)], which (similarly as
in the Wiener solution), is the best compromise between the desired response and noise
suppression.

In order to obtain a rough assessment on the order of magnitude of this attenua-
tion factor, let us assume that each Q(7,j) is uniformly distributed in [—0.5,0.5), and
so Rg(k.k) = 1/12 for all k. Now, for the recommended JPEG quantization table (cf.
Section 4 below), the step-sizes d.(i,j) for the low (and typically important) frequency
components (say, i + j < 5) are all less than or equal to 16. Thus, 62(k)Rq(k, k) does not
exceed 162/12 = 21.333. On the other hand, the variances of these low frequency DCT
coefficients Ry 29(k, k) are typically of the order of magnitude of 10% or 10%, namely, at
least 2 or 3 orders of magnitude larger than the quantization error term. Thus, at least
for the important frequency components, we do not expect the gain factors to be affected

significantly by the quantization error.



3.2 The Minimax Approach

As an alternative to the MMSE approach, one might consider the more conservative mini-
max approach, where instead of minimizing Ee?(), one minimizes the maximum of ¢?(z)
where the input & has a given energy.

To this end, we will rewrite eq. (19) in a slightly different manner. Let X denote the
576-dimensional column vector formed by the concatenation of X1, X 12, ..., X 33 in a block

column stacking order. Let V = [V, V9, V3|, H = [H, H9, H3)], and let
D=[0O0OO0OO0ODOO0O0o0j, (32)
where O is the 8 x 8 all-zero matrix and D is as above. Then, eq. (19), can be rewritten as
E=[(H®V)- DX (33)

and therefore

(X)=E'E=X'[H®V)-D|[(H®V)— D]X. (34)

Minimizing over D the maximum of ¢?(X) subject to an input energy constraint x'x <A
is equivalent to minimizing the largest eigenvalue of the matrix [(H®V)—D]'[(H®V)— D],
which is a 576 x 576 matrix. This in turn is equivalent to minimizing the largest eigenvalue
of the 64 x 64 matrix [(H® V) — D][(H ® V) — D]!, which is still a large matrix dimension
for any iterative search for the optimum D.

To alleviate this difficulty, we adopt a suboptimal solution that separates the two di-
mensional problem into two one-dimensional problems of the vertical convolution and the
horizontal convolution. For the one-dimensional vertical convolution, consider three 8-
dimensional column vectors of 1D-DCT coefficients X ;, X5, and X 3. The desired convo-

lution result corresponding to X is given by
Y=V Xi1+V:Xy+V3X; (35)

and the approximation is given by Y = D, X5, where D, is a diagonal matrix corresponding
to the VFC. The error is given by E = [V1,V9 — D,,, V3] X, where X denotes the 24-
dimensional column vector formed by concatenating X, X9, and X 3. Therefore, the
one-dimensional minimax problem is that of minimizing w.r.t D, the largest eigenvalue of
the 8 x 8 matrix

W(Dy) =V Vi +(Vy—D,)? + V3V (36)

10



where we have used the symmetry of V5 and D,. A natural initial guess for an iterative
search for the optimum D, would be to set the diagonal elements of D, to be the same
as the corresponding diagonal elements of V9. If |vg| is considerably larger than all ||
for all ¢ # 0, then V5 is diagonally dominant, and this initial guess is already fairly close
to the optimum solution. (Note also that this is equivalent to the MMSE solution for
p = 0 as described above.) The iterative optimization algorithm that we have used was the
Nedler-Meade simplex search for unconstrained optimization, which is implemented by the
MATLAB library function fmins.

The proposed sub-optimum minimax procedure is to find the optimum diagonal matrix
Dy for vertical convolution, and similarly, the optimum diagonal matrix D} for horizontal
convolution, and then to approximate Y as Dy X 22D} . This means that g;; is given by the

product of the iith element of D and the jjth element of Dj.

4 An Implementation Example

Let us demonstrate an example of quantization and dequantization tables corresponding to
a lowpass, noise-cleaning filter given by hg = v9 = 0.5, hy = v1 = 0.25, and h; = v; = 0
for all 4+ > 1. The minimax-optimal DCT-domain multipliers (calculated as described in

Section 3.2) for this filter are given by

0.5774 05399  0.4883 0.3344  0.1972  0.0436 —0.0451 0.0530
0.5399  0.5048  0.4566  0.3126  0.1844  0.0408 —0.0422  0.0496
0.4883  0.4566  0.4129  0.2827  0.1668  0.0369 —0.0381 0.0449
0.3344 03126  0.2827  0.1936  0.1142  0.0253 —0.0261 0.0307
0.1972  0.1844  0.1668  0.1142  0.0674  0.0149 —-0.0154  0.0181
0.0436  0.0408  0.0369  0.0253  0.0149  0.0033 —-0.0034  0.0040
—0.0451 —0.0422 —-0.0381 —0.0261 —0.0154 —0.0034  0.0035 —0.0041
0.0530  0.0496  0.0449  0.0307  0.0181 0.0040 —0.0041 0.0049
(37)

Let us suppose that the JPEG default quantization table for luminance [13] is used, i.e.,

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 v8 87 103 121 120 101
72 92 95 98 112 100 103 99

11



Then, the de-quantization table d,4 that results from rounding (G e §,) is given by

9 6 5 5 5 2 -2 3
6 6 6 6 5 2 —3 3
7 6 7 7T 72 -3 3
5 5 6 6 6 2 —2 2
0a = 4 4 6 6 5 2 -2 1 (39)
1 1 2 2 10 00
—2 -3 -3 -2 -2 0 00
4 5 4 3 20 00

5 Experimental Results and Discussion

We have simulated both the MMSE approach and the minimax approach (without quan-
tization) and examined their performance on real images in comparison to the true con-
volution. As will be seen, the approximate convolution method works well for convolution
kernels where the central coefficient (hg or vg) is considerably larger than other coefficients,
(e.g., by a factor of 2 or 3 at least). For kernels that do not have this property, e.g., the
5 x b uniform weight averaging kernel, we have witnessed blocky-ness effects in the resulting
image, due to error discontinuities at the boundaries between blocks.

We first examined the design of a lowpass filter for noise cleaning applications. The
desired lowpass filter is given, as in Section 4, by hg = vy = 0.5, hy = v; = 0.25 and
h; =v; =0 for all 4 > 1. Fig. 7?7 illustrates the original image, fig. ?? is a noisy version,
fig. 77 is the noisy image after exact convolution with the above filter, fig. 7?7 is the
result of DCT domain multiplication, where the multipliers were designed using the MMSE
approach with p = 0.9, and fig. 77 is associated with DCT domain multipliers designed
by the minimax approach. As can be seen, the approximate methods give images that are
visually equivalent to that of the exact convolution image. We have also examined the
MMSE approach with various values of p in the range [0, 0.99] but since hy and vy dominate
the other coefficients, the resulting multipliers were not very sensitive to p and the resultant
images looked quite the same. (There are merely minor changes in the multiplier values
when p varies in that range.)

In a second experiment, we examined the design of an approximate highpass filter for
edge sharpening applications. The desired highpass filter is given by hg = vg = 3, h1 =
v; = —1, and h; = v; = 0 for all 7 > 1. Fig. ?? is an original image of scanned text,

fig. 77 is the resulting image after exact convolution with the above filter, fig. ?7? is the

12



result of DCT domain multiplication, where the multipliers were designed using the MMSE
approach with p = 0.9, and fig. ?7? is associated with the minimax approach. As can be
seen, the MMSE approach gives a result similar to that of the exact convolution, that is,
sharpening the text at the expense of noticeable background noise. (Again, the results of
the former were not very sensitive to p.) The minimax approach, on the other hand, also
enhances the text, but the background is significantly cleaner.

In other experiments, with different kernels and different images, we always found that
both the MMSE and the minimax approach provide results that are perceptually equivalent
to that of the exact convolution, where sometimes the minimax approach, which does not

depend on the image statistics, is somewhat better.

6 Conclusion and Extensions

The principal advantage of DCT domain multiplication is that once the multipliers have
been designed, approximate filtering is implementable on-line just by modifying the de-
quantization tables, and hence they require no compressed domain computations whatso-
ever (beyond those of compression and decompression). We have developed two methods
for designing DCT domain coefficient multipliers, the MMSE approach and the minimax
approach. The advantage of DCT domain multiplication The first method depends on the
second order statistics of the image, or the class of images under consideration. If the co-
variance of the image is assumed separable, the two dimensional problem breaks, without
loss in optimality, into two separate one dimensional problems corresponding to the vertical
convolution and the horizontal convolution. If, in addition, the central kernel coefficient
is considerably large compared to the other coefficients, then the resulting multipliers are
relatively insensitive to the spatial domain correlation between pixels. The second method
does not depend on the statistics of the image. Although we were unable to prove that
the minimax problem, splits without loss of optimality, into separate row and column prob-
lems, we have adopted this approach for reasons of simplicity. Nevertheless, the suboptimal
minimax approach provided results which are equivalent or even better than the MMSE
approach in approximating the exact convolution.

It should be kept in mind that no matter what is the design criterion, DCT coefficient
multiplication can efficiently approximate symmetric kernels only. For example, if the kernel

is antisymmetric then V5 and hence also V5 is an antisymmetric matrix, which means that

13



it cannot be diagonally dominant (as the main diagonal is all-zero), and so there is no hope
to approximate Vo efficiently by a diagonal matrix D even in the one dimensional case.
Separability, however, is not a mandatory condition, as at least the MMSE approach can
be extended to the nonseparable case.

Another possible interesting extension is that of using a minimum weighted mean squared
error rather than the ordinary MMSE criterion. The weighting can be attributed either
to the spatial domain or to the DCT domain. In the former case, one has control of the
tradeoff between errors at block boundaries and errors at internal pixels, which might help
in reducing possible blocky-ness effects. In the latter case, one may want to assign higher
weights to the more important frequency components, e.g., the DC component. A parallel

extension is possible for the minimax approach.
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Figure 1: The original image.
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Figure 2: The noisy image.
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Figure 3: Exact convolution with a noise cleaning filter.
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Figure 4: MMSE approach with p = 0.9.
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Figure 5: The minimax approach.

21



One of the greatest scientific minds of all time, Albert
Einstein is best known for his contributions to the field of
physics. Born in Germany in 1879, Einstein received his
diploma from the Swiss Federal Polytechnic School in
Zurich, where he trained as a teacher in physics and
mathematics. In 1905, he received his Ph.D. and published
four research papers, the most significant being the creation
of the special theory of relativity. He became internationally
famous when he was awarded the Nobel Prize for Physics
in 1922.

The important military implications of the discovery of
the fission of uranium in 1939 led Einstein to appeal to
President Franklin Roosevelt. Einstein's letter to the president
led to the development of the atomic bomb.

Einstein left the field of physics greatly changed
through his brilliant contributions. His discoveries provided
the impetus for future TEBafeH 1hes S dBIEinding the

mysteries of the universe.
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Figure 9: The minimax approach.
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