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1 IntroductionThis work addresses the problem of e�cient 2D linear �ltering in the discrete cosine trans-form (DCT) domain, which is an important problem in the area of processing and manip-ulation of images and video streams compressed in DCT-based methods, such as JPEG,MPEG, H.261, and others (see, e.g., [1-9]).Most of the previously reported work on DCT domain processing in general, and 2D�ltering in particular, focuses on exact algorithms, that provide the precise desired results.In [10] Bhaskaran et al. proposed a method for sharpening scanned text and picture imagesby multiplying the DCT coe�cients of the image by �xed multipliers that were designedusing statistical considerations. Speci�cally, these multipliers were designed so as to matchthe variances of the DCT coe�cients of the scanned image to desirable reference variancescorresponding to a computer-generated synthetic image. Clearly, DCT domain element-by-element multiplication does not exactly correspond to spatial domain convolution (see, e.g.,[1], [2], [3], and [4] for convolution-multiplication properties of the DCT), but the motivationfor this approximate �ltering approach is clear: Once a set of DCT coe�cient multipliersis available, the DCT domain element-by-element multiplication is easy to implement oncompressed streams of DCT-based compression methods with no additional computationalcost. One simply uses a decoding quantization table that is di�erent from the encodingquantization table, so that the dequantization table includes the appropriate gains.In this work, we further study the idea of using DCT domain coe�cient multipliersin order to mimic a certain image enhancement operation. Unlike the variance matchingapproach of Bhaskaran et al., however, we aim at approximating a given convolution kernel.Speci�cally, the problem we address is the following: Given a 2D separable, symmetricconvolution kernel in the spatial domain, we seek a set of DCT coe�cient multipliers thatbest approximate the operation of �ltering by the given kernel in the least squares sense. Weprovide two variants of the solution to this problem, and demonstrate their performance.The DCT domain multiplication approach is useful in several applications where a stillimage is distorted by a certain mechanism before being compressed and stored, and onewould like to embed the multipliers in the decoding quantization table in order to com-pensate for this distortion. One example is a color scanner which su�ers from limitedmodulation transfer function (MTF) and misregistration problems [10]. Another exam-1



ple is the digital camera whose CCD sensors typically su�er from several sources of noise:photo-electric Poisson noise due to photon-electron conversion, electronic circuitry noise,and quantization noise of the digitization phase. The reconstruction process of digital pic-tures also su�ers from artifacts due to the fact that every pixel carries one color only. Otherimage and video recording media are subjected to various types of distortion and noise aswell due to technological limitations. As mentioned earlier, another potential applicationarea is in processing video streams which are compessed using DCT-based methods. Sincethe �ltering operation is linear, it could be applied to the reference block and the predic-tion residual block separately. For symmetric and anti-symmetric �lter kernels it would bereasonable to assume that the motion vectors remain unchanged because such �lters do notcause any translation. However, this topic requires further investiagtion.The outline of this paper is as follows. In Section 2, we provide the formulation ofthe problem. Section 3 contains the mathematical derivation of two methods for designingthe DCT domain coe�cient multipliers. Section 4 provides an implementation example.In Section 5, we demonstrate the performance and discuss the properties of these designmethods. Finally, in Section 6, several conclusions are drawn along with directions forfurther research.2 Preliminaries and Problem DescriptionThe 8-point 2D DCT transforms an 8� 8 block fx(n;m)g7n;m=0 in the spatial domain intoa matrix of DCT coe�cients fX(k; l)g7k;l=0, according to the following equation [12]:X(k; l) = c(k)2 c(l)2 7Xn=0 7Xm=0 x(n;m) cos(2n+ 116 � k�) cos(2m+ 116 � l�); (1)where c(0) = 1=p2 and c(i) = 1 for i > 0. The inverse transform is given by:x(n;m) = 7Xk=0 7Xl=0 c(k)2 c(l)2 X(k; l) cos(2n+ 116 � k�) cos(2m+ 116 � l�): (2)In a matrix form, let x = fx(n;m)g7n;m=0 andX = fX(k; l)g7k;l=0, and de�ne the 8-pointDCT matrix S = fS(k; n)g7k;n=0, whereS(k; n) = c(k)2 cos(2n+ 116 � k�): (3)We then have X = SxSt (4)2



where the superscript t denotes matrix transposition, and sox = S�1XS = StXS; (5)where the second equality follows from the unitarity of S.Filtering, or convolution, of an input image fI(i; j)g, (where i and j are integers takingon values in ranges that correspond to the size of the image), by a �lter with impulseresponse ff(i; j)g (also called kernel), results in an output image fJ(i; j)g given by:J(i; j) =Xi0 Xj0 f(i0; j0)I(i� i0; j � j0) (6)where the range of summation over i0 and j0 is, of course, according to the support of theimpulse response ff(i; j)g. In this work, we assume that the �lter ff(i; j)g is separable,that is, f(i; j) can be factorized as f(i; j) = vihj ; (7)for some one-dimensional sequences fvig and fhjg. The supports of fvig and fhjg are�M �i �M and�N � j � N , respectively, meaning that f(i; j) = 0 outside a (2M+1)�(2N+1)rectangle.Incorporating the separability assumption into eq. (6), we getJ(i; j) = MXi0=�M vi0 NXj0=�N hj0I(i� i0; j � j0); (8)namely, one can �rst perform a one-dimensional convolution on each row with the hori-zontal �lter component (HFC) fhjg, and then another one-dimensional convolution on eachresulting column with the vertical �lter component (VFC) fvig. Of course, the order canbe interchanged and the vertical convolutions can be carried out �rst without a�ecting the�nal result.An important special case, assumed frequently in previously reported work (see, e.g.,[1, 3, 8]) as well as in this work, is that of symmetric �lter components, namely, vi = v�iand hi = h�i for all i.The input image fI(i; j)g is given in the compressed domain, that is, we are given asequence of 8� 8 matrices X1;X2; ::: of DCT coe�cients corresponding to spatial domain8 � 8 spatial domain blocks x1;x2; ::: that together form the input image fI(i; j)g. Ourtask is to calculate a good approximation of the sequence of 8 � 8 matrices Y 1;Y 2; ::: of3



DCT coe�cients of the spatial domain blocks y1;y2; ::: associated with the �ltered imagefJ(i; j)g, directly from X1;X2; :::, without going via the spatial domain and performingspatial domain convolution. We further assume that M and N do not exceed 8 (that is,the �lter size is always smaller than 17� 17), so that every DCT block of the �ltered imagefJ(i; j)g depends on the corresponding DCT block of the input image fI(i; j)g and theeight immediate neighbors of X.Speci�cally, letV = 0BBBBBBB@ v8 v7 � � � v1 v0 v1 � � � v7 v8 0 � � � 00 v8 v7 � � � v1 v0 v1 � � � v7 v8 0 � � 0���0 � � � 0 v8 v7 � � � v1 v0 v1 � � � v7 v8
1CCCCCCCA (9)andH = 0BBBBBBB@ h8 h7 � � � h1 h0 h1 � � � h7 h8 0 � � � 00 h8 h7 � � � h1 h0 h1 � � � h7 h8 0 � � 0���0 � � � 0 h8 h7 � � � h1 h0 h1 � � � h7 h8
1CCCCCCCA (10)Let x denote a spatial domain input block of size 24� 24, subdivided into nine 8� 8 blocksas follows: x = 0B@ x11 x12 x13x21 x22 x23x31 x32 x33 1CA (11)The 8� 8 output block y that corresponds to the central input block x22 is given byy = V xHt: (12)Our problem is the following: Given H and V , we seek a �xed 8 � 8 matrix G of DCTdomain multipliers such that element-by-element multiplication of G by X22 (the DCTof x22), henceforth denoted by Ŷ = G �X22, would have an IDCT ŷ that is as close aspossible to y, namely, the error e = y � ŷ is \small" in some reasonable sense. The mostcommon measure of the error magnitude is its energy �2 = jej2, i.e., the sum of squaresof the elements of e. Since �2 = �2(x) depends also on the input x, and we wish that Gwould be �xed and independent of x, there are two possible approaches at this point. Oneapproach, henceforth referred to as the minimum mean squared error (MMSE) approach, is4



to minimize the expectation of �2(x) w.r.t x, which requires some estimates or assumptionsabout the second order statistics of x. The second approach, which will be referred to asthe minimax approach, minimizes maxx �2(x) subject to a constraint on the energy of x.The latter approach is somewhat more pessimistic but it to avoids the dependence uponthe second order statistics of x. Both approaches will be discussed in the next section.3 Mathematical DerivationBy Parseval's theorem and the unitarity of the DCT, the spatial domain error energy�2 remains unchanged under the DCT, i.e., e and its DCT E = SeSt have the sameenergy. Therefore, we can seek the best multiplier matrix G directly in the DCT domainby minimizing the energy of E.To this end, let us partition the matrix V into three 8 � 8 matrices V = [V1; V2; V3],where V1 = 0BBBBBBBBBBBB@
v8 v7 v6 v5 v4 v3 v2 v10 v8 v7 v6 v5 v4 v3 v20 0 v8 v7 v6 v5 v4 v30 0 0 v8 v7 v6 v5 v40 0 0 0 v8 v7 v6 v50 0 0 0 0 v8 v7 v60 0 0 0 0 0 v8 v70 0 0 0 0 0 0 v8

1CCCCCCCCCCCCA (13)
V2 = 0BBBBBBBBBBBB@

v0 v1 v2 v3 v4 v5 v6 v7v1 v0 v1 v2 v3 v4 v5 v6v2 v1 v0 v1 v2 v3 v4 v5v3 v2 v1 v0 v1 v2 v3 v4v4 v3 v2 v1 v0 v1 v2 v3v5 v4 v3 v2 v1 v0 v1 v2v6 v5 v4 v3 v2 v1 v0 v1v7 v6 v5 v4 v3 v2 v1 v0
1CCCCCCCCCCCCA (14)

and V3 = V t1 . In the same fashion, H is partitioned into [H1;H2;H3] with similar de�nitionsof H1, H2, and H3.The ideal convolution can now be expressed asy = 3Xi=1 3Xj=1VixijHtj : (15)Since the DCT is unitary, it is distributive w.r.t matrix multiplication, and so the lastequation can be written in the DCT domain asY = 3Xi=1 3Xj=1V iXijH tj ; (16)5



where Y , V i,Xij , andHj are the 2D-DCT's of y, Vi, xij , andHj, respectively, i; j = 1; 2; 3.Now, let E = Y � Ŷ = 3Xi=1 3Xj=1V iXijH tj �G �X22: (17)In order to express the element-by-element multiplication G � X22 in terms of ordinaryalgebraic matrix multiplication, it will be convenient to represent the data fX ijg in aone-dimensional representation by column stacking [11, Sections 5.3-5.4]. The column-stacked version �Z of an m � n matrix Z is a (mn)-dimensional column vector formed byconcatenating the columns of Z from left to right. The basic fact that will be used hereafterwith regard to column stacking is that if W = AZBt where Z is as above, and A and B arematrices of dimensions k�m and l� n, respectively, then �W = (B 
A) �Z, where B 
A isthe Kroenecker tensor product of B and A, de�ned asB 
A = 0BBB@ b11A b12A � � � b1nAb21A b22A � � � b2nA� � � � � �bl1A bl2A � � � blnA 1CCCA : (18)Returning to the approximate �ltering problem, we can now rewrite eq. (17) in the column-stacked representation as follows:�E = 3Xi=1 3Xj=1Fij �Xij �D �X22 (19)where Fij =Hj 
 V i, i; j = 1; 2; 3, and D = diagf �Gg.3.1 The MMSE ApproachIn this approach, we would like to minimize the expectation of �2 = �Et �E = trf �E �Etg overD (or, equivalently G). Let Rij;kl = Ef �X ij �Xtklg. Then,E�2 = Etr24( 3Xi=1 3Xj=1Fij �Xij �D �X22)( 3Xk=1 3Xl=1 Fkl �Xkl �D �X22)t35= tr0@ 3Xi=1 3Xj=1 3Xk=1 3Xl=1 FijRij;klF tkl �D 3Xk=1 3Xl=1R22;klF tkl� 3Xi=1 3Xj=1FijRij;22D +DR22;22D1A : (20)By taking partial derivatives w.r.t the diagonal elements fdig64i=1 and setting to zero, oneobtains a set of 64 decoupled linear equations with 64 unknowns whose solutions are given6



by d�k = P3i=1P3j=1(FijRij;22)(k; k)R22;22(k; k) ; (21)where A(i; j) is understood as the ijth element of a matrix A. Therefore, the optimal DCTdomain gain factor gij = G(i; j), i; j = 1; :::; 8 is given by d�k, where k = 8(j � 1) + i, whichcorresponds to the column stacking order.As can be seen, the optimal solution depends not only on the given convolution kernel(via fFijg), but also on the covariance matrices fRij;22g of the DCT domain data. Therefore,in order to use this solution, one must estimate these covariance matrices from sampleimages, or to assume a certain form. We will adopt the second approach.Before doing that, we note that by substituting eq. (21) into eq. (20), we get thefollowing expression for the MMSE.(E�2)min = tr0@ 3Xi=1 3Xj=1 3Xk=1 3Xl=1 FijRij;klF tkl1A� 64Xm=1 [P3i=1P3j=1(FijRij;22)(m;m)]2R22;22(m;m) : (22)This expression, that provides a measure of the goodness of �t, gives a guideline aboutthe conditions under which a given �lter can be well approximated by DCT coe�cientmultipliers. The ratio between the �rst term of eq. (22) and (E�2)min is the signal-to-noiseratio corresponding to the approximation. As expected, when H2 and V 2 and hence alsoF22 are diagonally dominant, the MMSE is relatively small.For the sake of simplicity in implementing eq. (21), we shall adopt a spatial domain,separable, �rst order Markov model [11, Sect. 5.6]. According to this model, the spatialdomain covariance between two pixel intensities x(n1;m1) and x(n2;m2) is given byr(n1;m1; n2;m2) �= E[x(n1;m1)x(n2;m2)] = �2�jn1�n2j+jm1�m2j; (23)where � is a parameter in the range (�1; 1), and �2 is a scaling factor whose value isimmaterial for eq. (21) and hence will be assumed unity. The covariance matrices fRij;22gin this case, are obtained as follows. Let r0 and r1 be 8 � 8 Toeplitz matrices whose ijthelements are �ji�jj and �j8+j�ij, respectively. Let R0 and R1 denote the 2D-DCT's of r0and r1, respectively, i.e., R0 = Sr0St and R1 = Sr1St. Then,Rij;22 = Rj 
Ri; (24)where Ri = 8><>: R1 if i = 1R0 if i = 2Rt1 if i = 3 (25)7



Thus, the numerator of eq. (21) degenerates to3Xi=1 3Xj=1FijRij;22 = 3Xi=1 3Xj=1(Hj 
 V i)(Rj 
Ri)= 3Xi=1 3Xj=1(HjRj)
 (V iRi)= ( 3Xl=1H lRl)
 ( 3Xl=1 V lRl)�= HR 
 V R: (26)Hence, for k = 8(j � 1) + i, we getd�k = gij = V R(i; i)R0(i; i) � HR(j; j)R0(j; j) : (27)In other words, the matrix G in this case is just the outer product of two vectors formed bythe diagonals of V R, HR, and R0, which means that the optimum two dimensional MMSEsolution separates into the combination of the two optimum one dimensional solutions cor-responding to the horizontal convolution and the vertical convolution. In the special casewhere � = 0, i.e., R0 = r0 = I and R1 = r1 = 0, we simply get gij = V 2(i; i)H2(j; j).Incorporating the Quantization ErrorSince this work is primarily motivated by embedding the multipliers in the quantizationtables, as explained in the Introduction, a natural re�nement of this method would be toincorporate the e�ect of quantization errors, and to optimize the DCT-domain gains soas to minimize the combined e�ect of approximation error and quantization error. In thissubsection, we examine the e�ect of quantization error on the design of the multipliers.If we consider the JPEG algorithm, then at the encoder, every DCT coe�cientX22(i; j)is �rst divided by the encoding step-size �e(i; j), and then rounded to the closest integer.At the decoder, the resultant integer is multiplied by the decoding step-size �d(i; j) (whichis traditionally identical to �e(i; j)), and so the decoded DCT coe�cient is given byX̂22(i; j) = �d(i; j)�e(i; j) �X22(i; j) + �d(i; j)Q(i; j) (28)where �0:5 � Q(i; j) < 0:5 is the roundo� error at the encoder. If we identify the ratio�d(i; j)=�e(i; j) as gij , then the �rst term is the desired term and the second is an error term.Thus, we rewrite eq. (28) asX̂22(i; j) = gijX22(i; j) + gij�e(i; j)Q(i; j): (29)8



Assuming that the encoding quantization table �e = f�e(i; j)g is �xed and only the decodingtable �d = f�d(i; j)g absorbs the multipliers (so as to avoid any e�ects on the compressibil-ity), then eq. (19) is now rewritten as�E = 3Xi=1 3Xj=1Fij �Xij �D �X22 +D�e �Q (30)where �e = diagf��eg, and �Q is the column stacked version of the roundo� error matrixQ = fQ(i; j)g. The error signal now has two components. The �rst component is theapproximation error, which is given by the �rst two terms as before. The second componentis the quantization error given by the third term. If we assume that these two componentsare uncorrelated (which is a reasonable assumption when f�e(i; j)g are fairly small), thensimilarly as in (20), we obtainE�2 = tr24 3Xi=1 3Xj=1 3Xk=1 3Xl=1 FijRij;klF tkl �D 3Xk=1 3Xl=1R22;klF tkl� 3Xi=1 3Xj=1FijRij;22D +D(R22;22 +�eRQ�e)D35 ; (31)where RQ is the covariance matrix of �Q. If we further assume that RQ is diagonal (i.e., theroundo� errors are uncorrelated), then the optimal gains are as in eq. (21) except that thedenominator is replaced by R22;22(k; k) + ��2e (k)RQ(k; k). This means that the gain factorsare reduced by a factor of R22;22(k; k)=[R22;22(k; k) + ��2e (k)RQ(k; k)], which (similarly asin the Wiener solution), is the best compromise between the desired response and noisesuppression.In order to obtain a rough assessment on the order of magnitude of this attenua-tion factor, let us assume that each Q(i; j) is uniformly distributed in [�0:5; 0:5), andso RQ(k; k) = 1=12 for all k. Now, for the recommended JPEG quantization table (cf.Section 4 below), the step-sizes �e(i; j) for the low (and typically important) frequencycomponents (say, i+ j � 5) are all less than or equal to 16. Thus, ��2e (k)RQ(k; k) does notexceed 162=12 = 21:333. On the other hand, the variances of these low frequency DCTcoe�cients R22;22(k; k) are typically of the order of magnitude of 103 or 104, namely, atleast 2 or 3 orders of magnitude larger than the quantization error term. Thus, at leastfor the important frequency components, we do not expect the gain factors to be a�ectedsigni�cantly by the quantization error. 9



3.2 The Minimax ApproachAs an alternative to the MMSE approach, one might consider the more conservative mini-max approach, where instead of minimizing E�2(x), one minimizes the maximum of �2(x)where the input x has a given energy.To this end, we will rewrite eq. (19) in a slightly di�erent manner. Let �X denote the576-dimensional column vector formed by the concatenation of �X11; �X12; :::; �X33 in a blockcolumn stacking order. Let V = [V 1;V 2;V 3], H = [H1;H2;H3], and letD = [O O O O D O O O O]; (32)where O is the 8� 8 all-zero matrix and D is as above. Then, eq. (19), can be rewritten asE = [(H 
 V )�D] �X (33)and therefore �2( �X) = EtE = �Xt[(H 
 V )�D]t[(H 
 V )�D] �X: (34)Minimizing over D the maximum of �2( �X) subject to an input energy constraint �Xt �X � Ais equivalent to minimizing the largest eigenvalue of the matrix [(H
V )�D]t[(H
V )�D],which is a 576� 576 matrix. This in turn is equivalent to minimizing the largest eigenvalueof the 64�64 matrix [(H
V )�D][(H 
V )�D]t, which is still a large matrix dimensionfor any iterative search for the optimum D.To alleviate this di�culty, we adopt a suboptimal solution that separates the two di-mensional problem into two one-dimensional problems of the vertical convolution and thehorizontal convolution. For the one-dimensional vertical convolution, consider three 8-dimensional column vectors of 1D-DCT coe�cients X1, X2, and X3. The desired convo-lution result corresponding to X2 is given byY = V 1X1 + V 2X2 + V 3X3 (35)and the approximation is given by Ŷ = DvX2, where Dv is a diagonal matrix correspondingto the VFC. The error is given by E = [V 1;V 2 � Dv;V 3]X, where X denotes the 24-dimensional column vector formed by concatenating X1, X2, and X3. Therefore, theone-dimensional minimax problem is that of minimizing w.r.t Dv the largest eigenvalue ofthe 8� 8 matrix W (Dv) = V 1V t1 + (V 2 �Dv)2 + V 3V t3 (36)10



where we have used the symmetry of V 2 and Dv. A natural initial guess for an iterativesearch for the optimum Dv would be to set the diagonal elements of Dv to be the sameas the corresponding diagonal elements of V 2. If jv0j is considerably larger than all jvijfor all i 6= 0, then V 2 is diagonally dominant, and this initial guess is already fairly closeto the optimum solution. (Note also that this is equivalent to the MMSE solution for� = 0 as described above.) The iterative optimization algorithm that we have used was theNedler-Meade simplex search for unconstrained optimization, which is implemented by theMATLAB library function fmins.The proposed sub-optimum minimax procedure is to �nd the optimum diagonal matrixD�v for vertical convolution, and similarly, the optimum diagonal matrix D�h for horizontalconvolution, and then to approximate Y as D�vX22D�h. This means that gij is given by theproduct of the iith element of D�v and the jjth element of D�h.4 An Implementation ExampleLet us demonstrate an example of quantization and dequantization tables corresponding toa lowpass, noise-cleaning �lter given by h0 = v0 = 0:5, h1 = v1 = 0:25, and hi = vi = 0for all i > 1. The minimax-optimal DCT-domain multipliers (calculated as described inSection 3.2) for this �lter are given by
G = 0BBBBBBBBBBBB@

0:5774 0:5399 0:4883 0:3344 0:1972 0:0436 �0:0451 0:05300:5399 0:5048 0:4566 0:3126 0:1844 0:0408 �0:0422 0:04960:4883 0:4566 0:4129 0:2827 0:1668 0:0369 �0:0381 0:04490:3344 0:3126 0:2827 0:1936 0:1142 0:0253 �0:0261 0:03070:1972 0:1844 0:1668 0:1142 0:0674 0:0149 �0:0154 0:01810:0436 0:0408 0:0369 0:0253 0:0149 0:0033 �0:0034 0:0040�0:0451 �0:0422 �0:0381 �0:0261 �0:0154 �0:0034 0:0035 �0:00410:0530 0:0496 0:0449 0:0307 0:0181 0:0040 �0:0041 0:0049
1CCCCCCCCCCCCA(37)Let us suppose that the JPEG default quantization table for luminance [13] is used, i.e.,

�e = 0BBBBBBBBBBBB@
16 11 10 16 24 40 51 6112 12 14 19 26 58 60 5514 13 16 24 40 57 69 5614 17 22 29 51 87 80 6218 22 37 56 68 109 103 7724 35 55 64 81 104 113 9249 64 78 87 103 121 120 10172 92 95 98 112 100 103 99

1CCCCCCCCCCCCA : (38)
11



Then, the de-quantization table �d that results from rounding (G � �e) is given by
�d = 0BBBBBBBBBBBB@

9 6 5 5 5 2 �2 36 6 6 6 5 2 �3 37 6 7 7 7 2 �3 35 5 6 6 6 2 �2 24 4 6 6 5 2 �2 11 1 2 2 1 0 0 0�2 �3 �3 �2 �2 0 0 04 5 4 3 2 0 0 0
1CCCCCCCCCCCCA : (39)

5 Experimental Results and DiscussionWe have simulated both the MMSE approach and the minimax approach (without quan-tization) and examined their performance on real images in comparison to the true con-volution. As will be seen, the approximate convolution method works well for convolutionkernels where the central coe�cient (h0 or v0) is considerably larger than other coe�cients,(e.g., by a factor of 2 or 3 at least). For kernels that do not have this property, e.g., the5�5 uniform weight averaging kernel, we have witnessed blocky-ness e�ects in the resultingimage, due to error discontinuities at the boundaries between blocks.We �rst examined the design of a lowpass �lter for noise cleaning applications. Thedesired lowpass �lter is given, as in Section 4, by h0 = v0 = 0:5, h1 = v1 = 0:25 andhi = vi = 0 for all i > 1. Fig. ?? illustrates the original image, �g. ?? is a noisy version,�g. ?? is the noisy image after exact convolution with the above �lter, �g. ?? is theresult of DCT domain multiplication, where the multipliers were designed using the MMSEapproach with � = 0:9, and �g. ?? is associated with DCT domain multipliers designedby the minimax approach. As can be seen, the approximate methods give images that arevisually equivalent to that of the exact convolution image. We have also examined theMMSE approach with various values of � in the range [0; 0:99] but since h0 and v0 dominatethe other coe�cients, the resulting multipliers were not very sensitive to � and the resultantimages looked quite the same. (There are merely minor changes in the multiplier valueswhen � varies in that range.)In a second experiment, we examined the design of an approximate highpass �lter foredge sharpening applications. The desired highpass �lter is given by h0 = v0 = 3, h1 =v1 = �1, and hi = vi = 0 for all i > 1. Fig. ?? is an original image of scanned text,�g. ?? is the resulting image after exact convolution with the above �lter, �g. ?? is the12



result of DCT domain multiplication, where the multipliers were designed using the MMSEapproach with � = 0:9, and �g. ?? is associated with the minimax approach. As can beseen, the MMSE approach gives a result similar to that of the exact convolution, that is,sharpening the text at the expense of noticeable background noise. (Again, the results ofthe former were not very sensitive to �.) The minimax approach, on the other hand, alsoenhances the text, but the background is signi�cantly cleaner.In other experiments, with di�erent kernels and di�erent images, we always found thatboth the MMSE and the minimax approach provide results that are perceptually equivalentto that of the exact convolution, where sometimes the minimax approach, which does notdepend on the image statistics, is somewhat better.6 Conclusion and ExtensionsThe principal advantage of DCT domain multiplication is that once the multipliers havebeen designed, approximate �ltering is implementable on-line just by modifying the de-quantization tables, and hence they require no compressed domain computations whatso-ever (beyond those of compression and decompression). We have developed two methodsfor designing DCT domain coe�cient multipliers, the MMSE approach and the minimaxapproach. The advantage of DCT domain multiplication The �rst method depends on thesecond order statistics of the image, or the class of images under consideration. If the co-variance of the image is assumed separable, the two dimensional problem breaks, withoutloss in optimality, into two separate one dimensional problems corresponding to the verticalconvolution and the horizontal convolution. If, in addition, the central kernel coe�cientis considerably large compared to the other coe�cients, then the resulting multipliers arerelatively insensitive to the spatial domain correlation between pixels. The second methoddoes not depend on the statistics of the image. Although we were unable to prove thatthe minimax problem, splits without loss of optimality, into separate row and column prob-lems, we have adopted this approach for reasons of simplicity. Nevertheless, the suboptimalminimax approach provided results which are equivalent or even better than the MMSEapproach in approximating the exact convolution.It should be kept in mind that no matter what is the design criterion, DCT coe�cientmultiplication can e�ciently approximate symmetric kernels only. For example, if the kernelis antisymmetric then V2 and hence also V 2 is an antisymmetric matrix, which means that13



it cannot be diagonally dominant (as the main diagonal is all-zero), and so there is no hopeto approximate V 2 e�ciently by a diagonal matrix D even in the one dimensional case.Separability, however, is not a mandatory condition, as at least the MMSE approach canbe extended to the nonseparable case.Another possible interesting extension is that of using aminimum weighted mean squarederror rather than the ordinary MMSE criterion. The weighting can be attributed eitherto the spatial domain or to the DCT domain. In the former case, one has control of thetradeo� between errors at block boundaries and errors at internal pixels, which might helpin reducing possible blocky-ness e�ects. In the latter case, one may want to assign higherweights to the more important frequency components, e.g., the DC component. A parallelextension is possible for the minimax approach.7 AcknowledgementWe would like to thank Vasudev Bhaskaran for his assistance in the experimental part ofthis work.
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Figure 1: The original image.
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Figure 2: The noisy image.
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Figure 3: Exact convolution with a noise cleaning �lter.
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Figure 4: MMSE approach with � = 0:9.
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Figure 5: The minimax approach.
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Figure 6: The original image.
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Figure 7: Exact convolution.
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Figure 8: The MMSE approach with � = 0:9.
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Figure 9: The minimax approach.
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