Fast DCT Domain Filtering
Using the DCT and the DST™

Renato Kresch'
Hewlett-Packard Laboratories — Israel
Technion City, Haifa 32000, Israel
and
Neri Merhav?
Department of Electrical Engineering,

Technion, Haifa, 32000, Israel.

Abstract

A method for efficient spatial domain filtering, directly in the DCT domain, is developed
and proposed. It consists of using the discrete sine transform (DST) and the discrete cosine
transform (DCT) for transform-domain processing on the basis of recently derived convolution-
multiplication properties of discrete trigonometric transforms. The proposed scheme requires
neither zero padding of the input data nor kernel symmetry. It is demonstrated that, in typical
applications, the proposed algorithm is significantly more efficient than the conventional spatial
domain and earlier proposed DCT domain methods. The proposed method is applicable to any

DCT-based image compression standard, such as JPEG, MPEG, and H.261.

Permission to publish this abstract separately is granted.

Keywords: DCT-domain filtering, discrete sine transform, image compression, convolution-

multiplication properties, trigonometric transforms, compressed-domain processing.

“Suitable EDICS categories: 1.2, 1.12, or 1.13.

fCorresponding author. Tel: +972-4-823-1237, fax: +972-4-822-0407, e-mail: renato®hp.technion.ac.il.
¥This work was partially done while N. Merhav was on sabbatical leave at Hewlett-Packard Laboratories, 1501

Page Mill Road, Palo Alto, CA 94304, USA. N. Merhav is also with Hewlett-Packard Laboratories — Israel. E-mail:

merhav@hp.technion.ac.il.

This work addresses the problem of efficient 2-D linear filtering in the discrete cosine transform
(DCT) domain, which is an important problem in the area of processing and manipulation of images
and video streams compressed in DCT-based methods, such as JPEG, MPEG, H.261, and others
(see, e.g., [1-7]). More specifically, suppose that an input image is given in the format of a sequence
of sets of DCT coefficients of 2-D blocks. We assume the DCT to be of type II-e (according to the
classification in [4]), which is the type used in JPEG/MPEG/H.261 applications. We are interested
in calculating efficiently a filtered image, in the same format, that corresponds to spatial domain
convolution between the input image and a given filter.

The straightforward spatial-domain approach consists of calculating the inverse DCT (IDCT) of
each block, performing the convolution in the spatial domain, and then transforming the resulting
image back to the DCT domain (see Fig. 1(a)). Our aim is to operate directly in the DCT domain,
avoiding explicit transformations from the DCT domain to the spatial domain and vice versa (see
Fig. 1(b)).

One approach to this problem is to use a convolution-multiplication property (CMP) for the
DCT. Like CMP’s for the discrete Fourier transform (DFT), the aim of using a CMP for the DCT
is to turn the filtering operation into a simple element-by-element multiplication in the transform
domain. Chen and Fralick [1] derived one such CMP, and Ngan and Clarke [2] have used it for low-
pass filtering of images. Later, Chitprasert and Rao [3] derived a simpler CMP. A thorough study
of CMP’s was performed by Martucci [4], who derived CMP’s for all types of DCT’s and DST’s
(discrete sine transforms), including the previously mentioned CMP’s as special cases. Sanchez
et al. [6] rewrote part of the CMP’s (some of those involving DCT’s only) in the form of matrix
diagonalization properties, and studied their asymptotic behavior. The problem with almost all the
schemes proposed in the above mentioned works is that they do not implement linear convolution,
but rather a “folded” type of convolution, called symmetric convolution. An exception is the
linear convolution scheme proposed by Martucci [4, 5], who showed that one can obtain linear
convolutions from symmetric convolutions through appropriate zero-padding in the spatial domain.
Unfortunately, in our application, the data are already provided in the transform domain without
prior zero-padding, and therefore Matucci’s scheme cannot be used directly. Another disadvantage
of the above methods is that they are limited to symmetric and antisymmetric filters.

The works of Lee and Lee [7], Chang and Messerschmitt [8], and Neri et al. [9] provide an

alternative to the CMP approach. They propose to precompute the product of the operator ma-

operator matrix directly in the DCT domain. The efficiency of this approach depends heavily on
the sparseness of the DCT data; processing of non-sparse DCT blocks can be of high computational
complexity. Merhav and Bhaskaran [14] improved this approach by using certain butterflies on the
input data, prior to the filtering operation. Their approach is significantly more efficient than its
predecessors.

In this work, we follow the CMP approach, and propose an efficient filtering scheme of the
DCT data, that does not require spatial domain zero-padding, and that is suitable for, symmetric,
antisymmetric, and non-symmetric filtering. The proposed scheme uses the DCT and the DST
coefficients of the data, based on the DCT/DST CMP’s derived in [4]. Since the DST coefficients
are not available in advance, they have to be computed from the given DCT data. To this end,
we develop fast algorithms that directly transform from the DCT to the DST (denoted CST)
and vice-versa (SCT). Incorporating these algorithms in the filtering scheme, we obtain an overall
complexity that is substantially smaller than those of the spatial domain approach, Lee and Lee’s,
and Merhav and Bhaskaran’s schemes in several relevant situations.

For sake of simplicity, and due to the practical usefulness of separable 2-D filters, we confine
our attention, in this paper, to separable filters only. Since the DCT/DST CMP’s can be easily
extended to 2-D signals, the extension of the proposed filtering scheme to nonseparable filters is
fairly straightforward.

The outline of this paper is as follows. Section 2 provides the theoretical background for this
work. In Section 3, the relevant CMP’s are converted to a matrix form to be used in the derivation
of the filtering scheme, which is presented in Section 4 for the 1-D case. Section 5 extends the
algorithm to 2-D images, and separable kernels. In Section 6, a comparative complexity analysis is

provided. Finally, Section 7 concludes the paper.

2 Background

2.1 Convolution-Multiplication Properties of DTT’s

There are 8 types of DCT’s and 8 types of DST’s defined by Wang, which are generically called
discrete trigonometric transforms (DTT’s) [4]. From the family of DTT’s, we are particularly
interested in the DCT of type 2e, denoted DCT-IIe, since it is useful in image coding standards
JPEG, MPEG, and others.

However, each DTT appears in the literature in several different forms, which differ only by scaling
factors. I.e., the operator matrix of each DTT in one form can be converted to another form by pre-
and post-multiplication by non-singular diagonal matrices. In [10], the transforms are presented in
an orthogonal form, where the corresponding operator matrices are unitary. Martucci proposed a
convolution form in [4], which is more appropriate for presenting the DTT CMP’s because it avoids
the need for additional scaling or weighting in the CMP formulze.

Martucci has summarized all the CMP’s related to the DTT’s in [4, Tables VI and VII]. They
are grouped in families of three or four CMP’s that share the same input and output DTT types.
Since we wish to produce a filtering scheme having DCT-2e blocks as input and output, we are
particularly interested on the CMP family for which one of the forward DTT’s and the inverse
DTT are of type 2e. These are CMP’s 4-7 in Table VI of [4], which involve also the DST of the
same type, DST-Ile, and the DCT and DST of type le, denoted DCT-Ie and DST-Ie, respectively.
We review here these CMP’s.

The N order transform matrices of DCT-Ie, DST-Ie, DCT-IIe, and DST-IIe in convolution

form are denoted Cie, Sie, Coe, and Sy, respectively, and are defined by [4]:

Cielmn = 2k, cos (Z25), m,n=0,1,...,N (1)
[Stelmn = 2sin(ZE), mn=1,2,...,N—1 (2)
l
[C2e]mn = 2CO< N)7 mn:0717 7N_]- (3)
n=0,...,N—1,
(Socl, = 28m<))
m=1,...,N

where k; =1, for 1 <i < N —1, and kg = kny = 1/2.

Another basic concept in the theory of DTT’s is that of symmetric-extension. It consists of
replicating a given input sequence in order to produce a symmetric output sequence. There are 16
types of symmetric-extension operators defined in [4], four of which are of interest to us, denoted
by HSHS, HAHA, WSWS, WAWA, according to the position of the symmetry point (‘H’ and ‘W’
meaning ‘Half sample’ and ‘Whole sample’, respectively), and the symmetric/antisymmetric nature
of the replication (‘S’ and ‘A’ meaning ‘symmetric’ and ‘antisymmetric’, respectively). They are

given by the following rules [4]:

HSHS(z1,...,2n) = R(Z1,.- Tny Ty, T2),

WSWS(z1,...,2,) = R(T1,- -, Tn—1,Tn,Tn-1,---,L2),

WAWA(z1,...,2,) = R(0,z2,...,24-1,0,—Zp_1,...,—T2),

where R performs periodic replication.
The four CMP’s associated with the above operators and transforms assume the following form
[4]:
wn = ea{tn} ® eofyn} = T {Ta{wn} X To{yn}}, (5)

where {z,} and {y,} are two input sequences of finite length, and {w,} is the output convolved
sequence. In the above expression, €, and ¢, are two symmetric extension operators, and () denotes
circular convolution. The operators T, Tp, and 7, ! are, respectively, two forward and one inverse
DTT’s in convolution form, appropriately selected among the above specific DTT’s, and x denotes
element-by-element multiplication. Table 1 lists the specific values for the four CMP’s.

Equation (5) tells us that symmetric convolution (which means circular convolution between
symmetrically-extended versions of the operands) can be obtained by transforming the input sig-
nals by DTT’s, multiplying the results element-by-element, and then performing an inverse DTT.
Equation (5) is a simplified version of the equation provided in [4], adapted to the specific four
DTT’s considered here.

When using the DTT’s in the CMP’s, one has to pay particular attention to the input (n) and
output (m) index ranges defined within the DTT’s definitions (egs. (1)-(4)). They characterize the
elements of the input sequence that should be operated upon, and the index of the transformed-
sequence elements. For instance, the input index range of S1, isn = 1,..., N — 1, which means
that only the input elements with these indices are used in the transform, whereas the elements 1z
and zy are disregarded. Moreover, its output range is also m = 1,..., N — 1, which means that
the elements obtained from the transformation should be indexed accordingly, while the values of
the transform elements with indices 0 and N should be set to 0. The range of the input sequences
and the output range of the convolved sequence in Table 1 are directly related to the input and

output ranges of the transforms involved in the CMP’s.

Some of the CMP’s of DT'T’s presented in [4] (in particular, most of the CMP’s involving DCT’s

only) were converted into matrix form in [6], where they assume the following structure:

V] = [Ca] D ([Coly)][Cal- (6)

In (6), [V?] is a matrix that performs one of the sixteen types of symmetric convolution of an input
signal by the signal y, [D(«)] is a diagonal matrix whose diagonal elements are the corresponding
elements of &, and [C,] and [Cp] are the operator matrices of two DCT’s in convolution form. Note
that the inverse transform is an IDCT of the same type as one of the forward DCT’s, a property
which is not necessarily extended for similar matrix formulation for the rest of the DTT CMP’s.
The meaning of (6) is that the symmetric convolution matrix [Y*] is diagonalized by [C,], where the
eigenvalues are the coeflicients of the transform of y by Cy. This is analogous to circular convolution
matrices that are diagonalized by the DFT matrix, with eigenvalues given by the DFT coefficients
of the kernel. In [6], the above matrix formulation for DCT matrices in convolution form was
modified for DCT matrices in orthogonal form as well, where scaled and weighted versions of [V]
are the matrices which are diagonalized.

It was also noted in [6] that the symmetric convolution matrices [Y] can be decomposed as
a sum of a symmetric Toeplitz matrix and a Hankel or a nearly Hankel matrix. The latter term
corresponds to the “folding” effect caused by the symmetric convolution operation. One can observe
in [6] that the Hankel-matrix component is also symmetric or close to symmetric w.r.t. the second

main diagonal.

3 Conversion of the CMP’s to Matrix Form

The filtering derivation in the paper is done in a matrix form. For this purpose, we need to have
all four CMP’s of interest in that form. Since only the first of them involves DCT’s only, this is the
only one that has already been converted to the matrix form in [6]. The conversion of the other

three CMP’s is performed in this section.

3.1 Conversion

The conversion can be done with the same derivation steps as those used in [6] for the CMP’s

involving DCT’s only, but with the following three considerations. First, the forward and inverse

(6).

The second consideration refers to the symmetric convolution matrices. Associated with each
one of the four CMP’s of interest here, there is a different type of symmetric convolution as listed in
Table 1, namely, HSHS ®WSWS, HSHS (0WAWA, HAHA ()WSWS, and HAHA (®)WAWA. There-
fore, we symbolize the symmetric convolution matrices by [Y®?], where the indices a and b assume
the values ¢ € {HS,HA} and b € {WS, WA}, covering the above four cases. Following the same
derivation steps as in [6], one can show that, similarly as before, the above matrices can all be
decomposed into sums of Toeplitz and Hankel matrices. However, they can be either symmetric
or anti-symmetric, rather than symmetric only. In order to represent all these different cases, we

further decompose the corresponding Toeplitz and Hankel matrices into the following triangular

matrices:

7 0 0 0 T yn1 4
v 0 Y2 Y3 g0

viel o+, ™A],
YN_2 L2 0 yn—1 4 0
YN—1 Yn—2 - y1 B 50 0 0
2 0 YN-2 YN-1 0 0 0 i
2 YN-—2 0 0 oyn_1

O T R (8)
0o . -, % U1 0 ?JTN Yo
o 0 . 0 ¥ oy 2 om

Note that Y3 = Y{, and that Yj can be viewed as a transposition of Y3, but w.r.t. the other main
diagonal. Therefore, Y7 + Y3 is symmetric Toeplitz, Y7 — Y3 is antisymmetric Toeplitz, Yo + Yy is
symmetric Hankel, and Yy — Y} is antisymmetric Hankel, where symmetry in the two latter cases
is w.r.t. to the secondary diagonal. The corresponding convolution matrices can now be written as

a combination of the above triangular matrices as follows:

(Y] (Y1 4+ Y3) + (Y2 + Ya),
VT = (Y1 = Y3) + (Y2 — Y2),
VI = (V1 +Y3) — (Y2 + Ya),
[PESMA] = - (V1 = Y3) — (Y2 — Ya). (9)

and output ranges involved in the four CMP’s of interest, which forces us to be careful with
index determination in the matrix format. To make it simpler to deal with this issue, we first
extend the above DT'T’s operator matrices by zero padding, in order to intrinsically adjust index
manipulations. Later on, in Section 3.2, the zeros are dropped from the final formulze. Thus, we
produce the following four extended matrices, by simply extending input/output index ranges in

the DTT’s definitions:

0 10...0] 0
0 0
Cic] 2 [Cic], S1) £ Do [Sie] | ;
0 0
0 10...0] 0
(Y B0 N ET Y (L (10)
0...0 [Soe]

Notice that [Ci¢] and [S;.] are both of size (N + 1) x (N + 1), whereas [Ca.] and [Sy.] are both of
size (N + 1) x N. Moreover, we define:

0 0

I
@
S
L
I
i
|

[6726]_1 [CQe]_l (1].)

0 0
These matrices are both of size N x (N + 1).

Taking into account the above considerations, the four CMP’s of interest can now be written

in the matrix form as follows:

D}HS,WS] = [C_Ze]_l[D([éle]y)][C’TQe]a

YTV = [Sae] D ([Stely)][Coel,
IR = [Sae] T D(Crely)][S2el,
PHATA] = —[Coc] D ([S1e]y)][S2e], (12)

where y = {yo,y1,-..,yN—1,UN }-

We now perform two modifications in the above formula in order to obtain the final equations
that are used for the derivation of the filtering algorithm in the next sections. First, we convert
the type-2e transforms to the orthogonal form. This is done for simplicity of the derivation, and
because this form is closer to the one used in compression standards. The DCT-IIe and DST-IIe in
orthogonal form are denoted in [4] by Crr. and Sire, respectively. Here, however, we simplify the

notation by referring to them as C and S, respectively. They are defined as follows [10]:
Dyr
CECr = o/ Zhm cos <%> myn=0,1,....N —1 (13)
)y
S 2 S, = 2 iy sin (%) , mn=12...N. (14)

Notice that both matrices are of size N x N. Since the above matrices are in orthogonal form, their
inverses are given by transposition, that is, C~' = C* and S~! = §".
The relationships between the extended 2e-type transform matrices in convolution and orthog-

onal forms are given by:

[Coe] ' =C'R7Y, [S5] ' =S8R, (15)

where C, S, C~', and S~! are obtained from C, S, C~!, and S~! with the same zero-padding
as above for [Cae], [S2e], [C2¢] !, and [Sae] !, respectively, and R is a (N + 1) x (N + 1) diagonal
matrix, with diagonal elements given by r; = V2N, fori =1,...,N —1, and rg = rny = 2V/N.

Notice that upon substituting (15) into (12), the matrix R is canceled out. Therefore, all
instances of [Cac), [S2e], [Coe] ™!, and [Sze] ™! in the CMP’s can be replaced by C, S, C~!, and S~1,
respectively.

The second modification is to remove the padded zeros from the CMP’s, producing more efficient
formulze.

The above two modifications together with (9) lead to the following final form of the desired

four diagonalization properties:

YISV Y4 vs e+ Yy = O [D({ty)] € (16)
VISV Y Y+ Y-, = S [1)1 (Sle {y}{v’l)] C, (17)
VIAWS =Y+ Y3 Yo Yy = S [D ({Cley}iv)] S, (18)
VAN =Y Y- Yo+ s = ~C'[Doy (Si fu)i)] 8, (19)

input vector, and {x}% denotes the sequence {x,,...,@;}. These relations are the basis of the

filtering scheme developed in the next sections.

4 The 1-D Filtering Scheme

In this section, we develop the DCT-domain filtering scheme for the 1-D case. This is done in two
steps, detailed in the following subsections: First, in Subsection 4.1, the resulting matrix equations
are combined to obtain an efficient spatial domain filtering scheme. Then, in Subsection 4.2, the

spatial domain scheme is converted into a DCT-domain scheme.

4.1 Filtering in the Spatial Domain

Suppose that a 1-D signal z(n) is given, and we wish to perform linear filtering by a kernel h(n),
obtaining the output signal w(n) = z(n) * h(n). Suppose also that z(n) is given as a set of vectors
{z;}, consisting of non-overlapping N-point segments of the input signal, and that we wish to
obtain the output w(n) in the same format, i.e., N-point segments {w;}. Let us assume that
the support of the filter h(n) is within the interval [—N, N], and use the notation h,, 2 h(n), for
|n| < N. In this case, only the segments x;_1, @;, and x;11, are needed in the calculation of the

output segment w;. Specifically, one can express the filtering operation as follows:

i1 i1
w; = H 2 + + - 5 (20)
i = z | =| HS (H+H) H ;
Lit+1 Tit1
= Hj:ni,lthf’mi—i—Hfa:mLHg_wiﬂ, (21)

where H,", Hy, H, , and H; are defined as follows.

hny hy—1 -+ ho h1 - hg 0 0 0
0 hy o T ho hi «a-hy . 0
Hf = , Hf = . (22)
0 "~ . hy hn— hy—2 - . a-hg 0
0 0 .0 hn hny1 hy o . hi «a-hg

!The ¢t* off-diagonal of a square matrix A = {A;;} consists of the elements for which j =i + £.

H = , (23)
0 B-hy h_y
0 0 0 B ho
h_n 0 0 0
hovony hon 0

Hy = : (24)
h_o h_n 0
hoy ho o hon-1y honw

where « is an arbitrary real number, and g 21—« In the general case considered herein, the
choice of « is immaterial from the aspects of computational efficiency. In certain special cases that
will be studied later, however, the choice of « will be important.

Note that, if we set y; = h; in (7), for s = 1,...,N — 1, yo = 2ahg, and yy = 2hy, then we
obtain Y1 = H; and Y, = H; ®, where @ is a “fipping matrix”, given by:

o o0 --- 0 1
o 0 -~ 1 0
d = (25)
o 1 - 0 0
1 0 - 0 0

It is easy to verify that post-multiplying a matrix by ® reverses the order of its columns, and
pre-multiplying a column vector by ® reverses the order of its elements.

The above relationships between Y; and H f’ , and between Y5 and H; enable us to use egs.
(16)-(19) to rewrite H;” and H; in terms of the DCT-IIe and DST-IIe transforms. Specifically, note
that Yy = (VWS 4 PHSWA _ PHAWS _ PHAWA) /4 and Y; = (PSS 4 PISWA 4 YHAWS | YHAWA) /g

and therefore:

Hf = (C'HC+S'H!C-S'HIS+CHLS)®, (26)

Hf = C'H/C+S'H[C+S'H!S-CHLS, (27)

where the specific values of the filtering kernels H ;,“ , p € {ce, ss,cs, sc}, are given in the left side of

Table 2.

10

Y3 = H{ and Yy = H; ®, and by using the relations Yy = (YW — YHSWA _ PHAWS 4 PHAWA) /4
and Yy = (YFsWs — PHS,WA | YHAWS _ yHA,WA)/4’ we get:

H; = (C'H_.C-S'H,.C-S'H,,S—C'H_S)®, (28)

H = C'H,C-SH,_,C+S'H,S+C'H_S, (29)

where the values of H, , are shown in Table 2 as well.
A filtering scheme is then obtained on substituting eqs. (26)-(29) into eq. (21), and re-arranging

the terms:

w; = ok [H;C(a:z + CI):ci_l) — HjsS(wl — CI):ci_l) +
H&C((I}l + <I>a:z-+1) + H&S((I}l - <I>a:z-+1)] +
St HTS(x; — @z 1) + HIL.C(z; + ;1) +

HS_SS(ZBl - <I>a:z-+1) — H;C((I}z + (I)ZIZZ'+1)] . (30)

The implementation steps of the above scheme according to (30) are as follows. First, calculate
z,+Px; 1, ;i +Px;y1, x; — Px; 1, and x; — Px;4 1, which consist of “folding” the adjacent spatial
segments x;_; and x;41 onto the current one, ;. Notice that the order of the elements in the
adjacent vectors is reversed in that operation. Next, calculate the DCT-II of the positively folded
data, and the DST-II of the negatively folded data. Then, operate upon the transformed data by
appropriately multiplying it by the kernel matrices. Notice that this consists of element-by-element
multiplications between the input data and the significant diagonals of the kernels matrices. Finally,

calculate the inverse DCT-II and inverse DST-II of some combinations of the multiplied data.

4.2 Conversion to the DCT Domain

The algorithm derived in Subsection 4.1 is suitable for applications where the input data is given
in the spatial (or time) domain. However, in our application, the data is given in the DCT-IIe
domain in the form of segments (vectors) X§ = Cx;, and therefore this algorithm, in its present
form, is not suitable here. In this section, we modify the above algorithm to apply directly in the
DCT domain.

We pre-multiply both sides of eq. (30) by C, in order to obtain the output in the DCT-IIe

domain. Then, we use the linearity of matrix multiplication to write C'(x; + ®x;_1) = X{+CPx;_1,

11

proved: C® = ¥(C and S® = ¥S, where

m=0

EY)) ({(—1)m N—l) . (31)
After incorporating all the above steps in (30), we obtain the following DCT-domain scheme:

Wi = HL(X{+ X[) - HL(X] - $X]) +
H, (X{+UX{)+ H_ (X;—¥X)+
T'H(X; -®X;)+ H (X +®X§)+

H (X} -9X},) - H (X{+¥X},,)], (32)

where T 2 SC is interpreted as the 1-D cosine to sine transform (CST) operator matrix (hence T
is the sine to cosine (SCT) operator matrix), and {X}} are the set of DST-IIe coefficients of the
input data, i.e., X = Sz;, for all s.

Equation (32) represents the proposed filtering scheme in the 1-D case. The implementation

of the scheme consists of the following steps. For every i, first, the DST segments X; ;, X7, and

i
X, must be calculated from the corresponding input DCT segments. Actually, one can assume
that the values of X;_; and X have already been calculated and stored while processing previous
blocks (¢ — 1) and (i — 2). Therefore, only X7, ; has to be actually calculated (and stored for the
next two iterations). This is done by pre-multiplying X ¢ ; by T. The second step is to create the
“butterflies” corresponding to the expressions in the parentheses in (32). These correspond to the
spatial domain “folding” in eq. (30). Note that reversing the order of elements in the spatial domain
corresponds, in both the DCT and the DST domains, to a simple modulation (pre-multiplication
by ¥). Next, the appropriate diagonal kernel filters operate upon the butterflies, and finally, part
of the results is converted from the DST domain to the DCT domain using pre-multiplication by
T!, while the other part of the data is already in the DCT domain. Finally, these two parts are
summed.

Equation (32) yields an efficient filtering scheme provided that the SCT can be implemented
efficiently. This is true because all the H-matrices in (32) are diagonal. Note that multiplication
by W is costless. Nevertheless, unlike the DCT coefficients, the DST coefficients are not available

in advance, and hence must be calculated. Therefore, a fast CST, in addition to a fast SCT, is

required. Fast routines for both transforms are derived in Section 4.4.

12

Of particular importance are special cases where the kernel is either symmetric/antisymmetric,
causal/anticausal, or a combination of both.

In the symmetric case, h_,, = hy,, for n = 1,...,8. Here, by setting « = 3 = 1/2 in (22) and
(23), we obtain H;r = H, , for p € {cc, ss,cs,sc}. Therefore, by defining H), = H;{, for all p, the

scheme in (32) is reduced to:

Wi = H. [2X;"+¥(X{_| + X[)]+ H ¥ (X]_; —X7)+

)

T'{H[2X7 - ®(X)+ X)) + Ho o ®(XT - X7)} (33)

Fig. 2(a) shows the flow graph of the above scheme.

By comparing (33) with (32), one observes that about half of the computations are saved when
using a symmetric kernel. In the antisymmetric case, i.e., h_p, = —hy, n =1,...,8, hp = 0, a
similar scheme is obtained, with some sign changes.

In the causal case, defined by h, = 0 for n < 0, setting § =1 —«a = 0 in (22) and (23), gives
H, _=H_ =H, = H, =0, where 0 is the 8 x 8 null matrix. Incorporating this fact into the

filtering equation (32), one obtains

Wi = H(X{+¥X],)-H,(X]-¥X])+

)

T'[H(X] - $X])+ H(X]+®X7)], (34)

which is also a significant simplification. Fig. 2(b) shows the flow graph of the scheme. Notice that,
in this case, X7, ;, p € {c¢,s}, are not needed in the computation, but only X? and X% ;. The
anticausal filtering scheme, where h,, = 0, for n > 0, is obtained similarly, by setting the H-type
matrices to zero, instead of the H ™ -type ones.

The best special case of the proposed scheme, in terms of complexity, is obtained with a 4-pixel
delayed causal-symmetric filter, for which both the causality and the symmetry properties can be
used to save computations. A k-pixel delayed causal symmetric filter will be defined as a causal
filter {h,, }2* , with h,, = hog_, for all 0 < n < 2k. Obviously, a causal symmetric filter is a delayed
version of a non-causal filter that is symmetric about the origin. In the causal symmetric case, when
k = 4, on the top of the simplification due to causality for « = 1, we also have the even elements
of the sequences Cic [2hg, h1,...,hy_1, 2hN]t and Si¢ [h, ha, . .. ,hN,l]t equal to zero. Therefore,
according to their definitions (see Table 2), the matrices H ;,“ , p € {cec,ss,cs,sc}, have only 4

nonzero elements each. This case can be of much interest for fast symmetric convolution with a

13

(see Discussion in Section 6.3).

4.4 Efficient CST and SCT Algorithms

In this subsection, we devise efficient CST and SCT algorithms, i.e., fast multiplication by 7" and
T!. We will assume N = 8, which is the case in JPEG/MPEG applications, but the algorithm
derivations can be extended to any value of N.

The main idea is to factorize T into a product of sparse matrices. First, we shall use the

following property relating the DST matrix to the DCT matrix:
S =007, (35)

where ® and ¥ are defined in (25) and (31), respectively. This relation holds for any value of N.
Next, we consider the factorization of C' that corresponds to the Winograd DCT, which is the
fastest existing algorithm for 8-point DCT due to Arai, Agui, and Nakajima [11] (see also [12]).

According to this factorization, C' is represented as follows [12, pages 53-57]:
C =DPB1BsMA;As A3, (36)

where operation by By, Bo, A1, Ao, and As requires a total of 26 additions, operation by M requires

5 multiplications and 3 additions, P is a permutation matrix, and D is a diagonal matrix given by:
D = D{0.3536,0.2549,0.2706,0.3007, 0.3536, 0.4500, 0.6533, 1.2814}. (37)
Thus, we have
T =SC"=0C¥C' = ®DPB BoM A Ay A3 T ALAL AL MY BYBE P! D. (38)
The proposed CST algorithm is based on the observation that the product

A

G = -MA Ay A3 WAL AL AL M (39)

1
2

14

0o 0 00 0 0 0°1
0 0 00 —a 0 b1
0 0 00 0 -10c

G:000030g1’
0 —a 05 0 000
0 0 -10 0 000
0O b 0% 0 000
1 1 ¢1 0 000

where a = 2.6132, b = 1.0824, and ¢ = 0.7071.

Therefore, a fast CST is obtained by following the decomposition:
T = D(®7)(2D), (40)

where D 2 ®D® is a diagonal matrix with the same diagonal elements as D but in reversed order,
and:

T = PB,B,GBLB!P". (41)

A flow graph of an efficient implementation of 7 is shown in Fig. 3. One can observe that it requires
8 multiplications, 28 additions, and 2 right-shifts (multiplications by 1/2). The complete CST
algorithm requires 16 more multiplications, corresponding to the multiplications by the diagonal
matrices D and (2D). The SCT operation is expressed by T = (2D)(7®)D, and requires the
same number of operations as the CST. Notice that the straightforward implementation of T' by
performing IDCT followed by DST (®C®¥) requires 26 multiplications and 58 additions, which is
2 multiplications and 30 additions more than the proposed algorithm.

The authors of the fast DCT algorithm pondered [11] that, if the output coefficients are to be
quantized (like in a JPEG or MPEG coding process), then the scaling matrix D can be combined
with the quantization table, thus saving multiplications. Similar manipulations can be done regard-
ing the above fast CST and SCT algorithms. In Section 5.1 below, we describe how to combine the
matrices D and 2D with the quantization and dequantization tables, as well as with the filtering
kernels, so that only the unscaled transforms ®7 and 7® have to be performed in place of the

complete CST and SCT, respectively.

15

The 1-D scheme derived in Section 4 is extended here to 2-D signals. The purpose of this extension
is to apply the scheme to DCT blocks obtained during the decoding of JPEG or MPEG bitstreams.
Therefore, we suppose now that the input and output data are sets of 8 x § DCT blocks, which we
denote by {X7 ;} and {W7 ;}, respectively.

We will consider here the case where the 2-D filter kernel is separable, i.e., the corresponding

spatial filtering operation can be written in the form:

Li—1,j—1 Li—1,j7 Li—1,4+1
wij=V| ®j; 1 x,; xijna |H, (42)
LTit1,j—1 Lit1l,j Litl,5+1
where {x; ;} and {w; ;} are, respectively, the input and output signals in the spatial domain, H is
a 8 x 24 filter matrix, defined as in (20)-(24) for a given sequence {hy}, and V is similarly defined
for a given {v,}. Thus, we assume that the filter support is of size up to 17 x 17 pixels.

In this case, the 2-D filtering can be implemented by means of the proposed 1-D scheme,
by simply applying the latter first to the input DCT block columns, and then to the rows of the
resulting blocks. Specifically, the first pass (column processing) corresponds to the following spatial
processing:

Ti-1,5

A
Z4,5 = \%4 T j) (43)

Lit1,5

and the second pass (row processing) corresponds to:

Z?,jq
w; ;= |H Zaj . (44)

Zg,j+1
The above column and row passes are performed in the DCT/DST domains using the transform
domain versions of the V' and H kernels. Therefore, the column processing produces {Z fyj}, which
are the 2-D DCT version of the blocks {2;;}, while the row processing produces the output {W7 ;}.

Although straightforward, a few comments regarding the separable 2-D extension of the 1-D

scheme are in order:

1. The 8 x 8 input blocks { X7 ;} are assumed to be given in a raster-scan order (i.e., left-to-right

and top-to-bottom in respect to the image frame). Therefore, at the step of the algorithm

16

5.1

o

blocks W¢

uws for w <, or u =4 and v < j, have already been calculated.

. Because of the above, during the column pass corresponding to the step (i, j) of the algorithm,

Zf,j and Zf,j_l do not have to be calculated, since they have been previously computed (and
assumed stored) in the two previous steps (i —1,7) and (i — 2, j). Therefore, only Z7 ;,, has

to be calculated.

. The 2-D DST coeflicients of the input blocks are never calculated during the algorithm.

During the column pass, we obtain a 2-D mixed DST/DCT domain block X75 2 TX i

which corresponds to the DCT of the spatial rows and to the DST of the columns. Similarly,
during the row processing, the algorithm operates on 2-D mixed DCT/DST domain blocks

A
cs c t
ZZ,J —_ ZZ,_]T .

. Similarly to the situation in item 2 above, at a given step (i,7), only the mixed DST/DCT

block X7¢; ;11 needs to be calculated at the beginning of the first pass, since X75,; and
X3¢, j41 were previously calculated and are assumed to be stored. In the same way, Z7*; and
Z7%_y are also available, so only the 2-D mixed DCT/DST block Z{% has to be calculated

)

at the beginning of the row pass.

. The 2-D mixed DST/DCT (resp. DCT/DST) coefficients can be calculated using the same

1-D CST algorithm as before by applying the latter to each separate column (resp. row) of
the input 2-D DCT block. Similarly, the same 1-D SCT algorithm as before can be used

within the filtering process.

Combining the Scaling Matrices with the Kernels and Quantizers

Typically, the input DCT blocks are obtained from the dequantization step of a JPEG decoding

procedure, whereas the output is fed to the quantizer of a JPEG encoder (as seen in Fig. 1(b)). In

this case, substantial savings in multiplications can be obtained by absorbing the scaling matrices

D and 2D in the kernel matrices Vi and H}, i € {cc,ss,cs,sct and r € {+,—}, and in the

quantization/dequantization look-up tables.

We assume, therefore, that each input block X¥ is the result of element-by-element multiplica-

tion of a certain quantized block by a dequantization matrix Q?. Moreover, the output W7 serves

as an input to a quantizer that divides it by a quantization matrix Q? (usually identical to Q%)

element-by-element.

17

dures, corresponding to the multiplication by 7' and T?, respectively, by their unscaled versions,
corresponding to the multiplication by @7 and 7@, respectively.

By extending eq. (32) to the 2-D separable case considered above, and using the relationship
between T and 7 (eq. (40)), one can show that the following further modifications should be

performed in order to preserve the validity of the algorithm.

e One has to alter the quantization/dequantization tables in the following way:
QY+ 4DQD, Q7+« D 'Q'D '/4. (45)

Note that, given the same quantized input data as before, the dequantized input blocks are
now given by 4DX{D, instead of X§. Similarly, assuming that the the same quantized output
data is produced as before, the output filtered blocks are now given by D~'W¢D~! /4.

e The kernel matrices must be modified as follows:

A, D TA, D 1/4, A, +— D 1'A.D/2,

Ay + DAD, Ay < DA,D™'/2, (46)
where A denotes any of the symbols: {V*, V- H" H }.

The modified algorithm is significantly more efficient than the original one since it avoids the scaling

steps involving the matrices D and D without any degradation at the output.

6 Complexity Analysis

In this section, we compare the proposed filtering scheme and previously reported schemes in
terms of computational complexity. Two sets of results will be presented: Theoretical complexity,
expressed in terms of the number of multiplications m and additions a, required for processing
of each 8 x 8 output block, and actual running times in computer simulations with real grayscale

images.

6.1 Data Sparseness

An important factor to be taken into account in the implementation is that of typical sparseness

of the quantized DCT input data blocks. We define a DCT coefficient block as sparse if only its

18

elements. A very high percentage of the DCT blocks usually satisfy this requirement, which is fairly
easy to check directly in the compressed format.

Incorporating the sparseness above defined assumption into the modified CST algorithm, pro-
posed in section 4.4, results in 7 multiplications and 17 additions, as opposed to 8 multiplications
and 28 additions in the general case. On the top of this advantage, sparseness also saves multi-
plications and additions during the DCT-domain filtering process itself, since null coefficients need
not be processed.

Unfortunately, DCT-domain block sparseness is not generally preserved after conversion to the
DST domain. On the other hand, mixed DCT/DST and DCT/DST blocks have half the “amount
of sparseness” of that of sparse DCT blocks. Specifically, if the corresponding DCT block is sparse,
then the last 4 rows (resp. columns) of the mixed DCT/DST (resp. DST/DCT) block are null.

These facts are accounted for in the following efficiency analysis.

6.2 Computational Efficiency and Comparison to Other Approaches
6.2.1 Theoretical Analysis

In the complexity analysis presented here, the filtering cases are given in terms of kernel type
and data sparseness. The kernel type is either general, symmetric, causal, or causal-symmetric,
where each type is related to a different implementation of the proposed algorithm, as detailed in

Section 4.3. For causal or causal-symmetric kernels, non-sparse data refers to the case where at

C

upr © —1 < u,v < i, is not sparse, whereas sparse data

least one of the 4 causal input blocks X
means that all the 4 blocks are sparse. For general or symmetric kernels, these definitions are the
same, but w.r.t. the nine input blocks 7+ — 1 < u,v <7+ 1.

The computational complexity of the proposed 2-D separable filtering scheme has been calcu-
lated for the different filtering cases, and are presented in Table 3. Computation and implementa-
tion details for the causal-symmetric case can be found in Table 4. The other cases have similar

derivations, which can be found in [13].

Let us compare the complexity of the proposed scheme to that of three other approaches:

1. The spatial domain approach, where the input DCT blocks are first transformed to the
spatial domain, then spatial convolution is applied, and finally, the result is re-transformed to

the DCT domain. We will assume here that the same fast DCT and IDCT algorithms as the

19

algorithms require 5 multiplications and 29 additions each, assuming that the scaling matrix
D is combined with the quantization/dequantization tables. For non-symmetric filtering, the
spatial domain approach requires (128L + 160) multiplications and (128L + 800) additions
per 8 x 8 output block, where L x L is the size in pixels of the region of support of the kernel.
For symmetric filtering, (64L + 224) multiplications and (128L + 800) additions are required.

These results hold regardless of the amount of sparseness in the data.

2. The Pipeline approach by Lee and Lee, presented in [7]. In this approach, the product
of the operator matrices corresponding to the IDCT, the convolution, and the DCT is pre-
computed, and the resulting combined matrix is then applied directly in the DCT domain.
In this operation, the contributions of the neighboring blocks are incorporated similarly as in

(20). Complexity results for this approach are given in Table 5.

3. The Butterfly approach presented by Merhav and Bhaskaran in [14]. This approach is
similar to the Pipeline approach, but certain butterflies are created on the input data, prior to
the DCT domain filtering. This was shown [14] to cause the filtering kernels to become much
sparser than in the Pipeline approach, which leads to savings in complexity. The butterfly
approach was developed for symmetric kernels only, in which case careful implementation
leads to a complexity of 1152m + 1536a, for non-sparse data, and 432m + 528a, for sparse
data, for any filter size up to 17 x 17 pixels.

In order to compare the above approaches, we consider the overall number of operations required
by each approach. To this end, we will assume a processor for which each multiplication is roughly
equivalent to 3 additions on the average (e.g., PA-RISC processor). For this case, the number of
operations for the different approaches is summarized in the graphs shown in Figure 4. In these
graphs, six schemes are compared for each kernel type: The spatial domain scheme for small,
medium, and large size kernels, the Pipeline, the proposed, and the Butterfly schemes. For general
and symmetric kernels, the terms small, medium, and large size kernels refer to kernels of sizes
3x3,9x%x9, and 17 x 17, respectively. For causal or causal-symmetric kernels, they refer to the
sizes 3 X 3, 5 x 5, and 9 x 9. Notice that the complexity of the spatial domain scheme does not
depend on data sparseness, whereas that of the other schemes do not depend on the kernel size.
Notice also that the Butterfly scheme is considered only for symmetric kernels.

From the above graphs, one can conclude the following;:

20

causal or causal-symmetric filtering (see discussion below), then the proposed scheme is the
best option in terms of complexity: In the causal case, it saves 17-61% of the number of oper-
ations required by any other scheme, depending on the kernel size. In the causal-symmetric

case, the range becomes 35-64%.

e For sparse data and general kernel, the proposed scheme is the best one for medium-size and

large kernels.

e [fthe data is not sparse, then the proposed scheme is the most efficient DCT-domain approach.
It is also more efficient than the spatial domain approach for large kernels, and also for medium

kernels in the symmetric and causal-symmetric cases.

6.2.2 Real-Data Simulations

The causal-symmetric version of the proposed algorithm and the spatial domain approach were
implemented in C, and applied to several 512 x 512 grayscale images on an HP J-200 workstation.
Sharpening filters were used, with sizes 3 x 3, 5 x 5, and 9 x 9. The algorithm addresses each
input block as if it is non-sparse, but eventual sparseness contributes to complexity reduction since
multiplications and additions by zero usually have low computation cost. The scaling matrices were
embedded in quantization/dequantization in both schemes. The results are given in Table 6, and

one can see that they roughly agree with the theoretical analysis.

6.3 Causal Versus Noncausal Kernels

The proposed approach is much more efficient in the causal (resp. causal-symmetric) case than in
the general (resp. symmetric) case, as seen in Figure 4. Also, the causal versions use half of the
memory that is used in the noncausal versions of the approach.

However, causal kernels are seldom encountered in image processing applications, while the use
of symmetric kernels is fairly common. How could one take advantage of the efficiency of the causal
versions of the algorithm to implement a noncausal filtering?

If a given symmetric 2-D filter is not longer than 9 taps in each dimension, then it can always
be trivially transformed into a causal-symmetric kernel, simply by applying a 4-pixel shift (in each
dimension) to its spatial coefficients. In this case, the use of this causal-symmetric version of an

original symmetric kernel, instead of the symmetric kernel itself, results in a 4-pixel shift of the

21

those involving human visualization. On the other hand, as mentioned above, it leads to great
savings in computations (about 36%) and in memory requirements (50%).

Similar considerations apply also for using causal kernels instead of general kernels. In this case,
on the other hand, the shift is not restricted to 4 pixels; the smallest number of pixels that turns

the kernel into a causal kernel can be used.

7 Conclusion

In this work, we propose an efficient filtering scheme, to be applied directly to DCT data blocks given
in JPEG/MPEG applications. The scheme also outputs the filtered data in the same DCT format.
It is based on the convolution-multiplication properties of the discrete trigonometric transforms, and
it requires the calculation of DST coefficients, which are used together with the DCT coefficients
in the filtering process. A fast CST (cosine to sine transform) was thus derived, to reduce the
computational overhead of this operation. No zero-padding of the input data is required or assumed.
Four versions of the approach are proposed: For general, symmetric, causal, and causal-symmetric
kernels.

The 2-D separable version of the proposed algorithm is compared to previous DCT-domain
approaches and the straightforward approach of converting back to the pixel domain, convolving,
and re-transforming to the DCT domain. It was demonstrated that, by taking into account the
typical sparseness of the input DCT-data, the proposed algorithm provides the best results for
symmetric filtering, if a 4-pixel translation of the image in both directions is allowed (causal-
symmetric filtering). In this case, 35-64% of the computations are saved, depending on the kernel
size. The approach is also typically the most efficient for long or medium-length, non-symmetric,
kernels. Twice as much memory is required by the proposed algorithm in comparison to the others,
since DCT and DST coefficients are to be temporarily stored, instead of only the spatial data (as
in the straightforward approach) or only the DCT coefficients (as in the DCT-domain schemes).

A nonseparable version of the algorithm was also derived, and is now under study. It is based
on a direct extension of the DTT CMP’s to 2-D signals. The proposed scheme is expected to be
even more efficient (relatively to the spatial domain approach) in the nonseparable case than in the

separable one.

22

[1]

[10]

[11]

[12]

[13]

[14]

W. H. Chen and S. C. Fralick, “Image enhancement using cosine transform filtering,” Image
Sci. Math. Symp., Monterey, CA, November 1976.

K. N. Ngan and R. J. Clarke, “Lowpass filtering in the cosine transform domain,” Int. Conf.
on Commun., Seattle, WA, pp. 37.7.1-37.7.5, June 1980.

B. Chitprasert and K. R. Rao, “Discrete cosine transform filtering,” Signal Processing, Vol.
19, pp. 233-245, 1990.

S. A. Martucci, “Symmetric convolution and discrete sine and cosine transforms,” IEEFE Trans.
on Signal Processing, Vol. SP-42, no. 5, pp. 1038-1051, May 1994.

S. A. Martucci, “Digital filtering of images using the discrete sine or cosine transform,” Optical
Engineering, Vol. 35, no. 1, pp. 119-127, January 1996.

V. Sanchez, P. Garcia, A.M. Peinado, J.C. Segura, and A.J. Rubio, “Diagonalizing Properties
of the Discrete Cosine Transforms,” IEEE Trans. on Signal Processing, Vol. 43, no. 11, pp.
2631-2641, November 1995.

J. B. Lee and B. G. Lee, “Transform domain filtering based on pipelining structure,” IEEFE
Trans. on Signal Processing, Vol. SP-40, no. 8, pp. 2061-2064, August 1992.

S.-F. Chang and D. G. Messerschmitt, “Manipulation and compositing of MC-DCT compressed
video,” IEEFE J. Selected Areas in Communications, Vol. 13, no. 1, pp. 1-11, January 1995.

A. Neri, G. Russo, and P. Talone, “Inter-block filtering and downsampling in DCT domain,”
Signal Processing: Image Communication, Vol. 6, pp. 303-317, 1994.

K. R. Rao, and P. Yip, Discrete Cosine Transform: Algorithms, Advantages, Applications,
Academic Press 1990.

Y. Arai, T. Agui, and M. Nakajima, “A Fast DCT-SQ Scheme for Images,” Trans. of the
IEICE, E 71(11):1095, November 1988.

W. B. Pennebaker and J. L. Mitchell, JPEG Still Image Data Compression Standard, Van
Nostrand Reinhold, 1993.

R. Kresch and N. Merhav, “Fast DCT domain filtering using the DCT and the DST,” HPL
Technical Report #HPL-95-140, December 1995.

N. Merhav and V. Bhaskaran, “A fast algorithm for DCT domain filtering,” submitted for
publication. Also, HPL Technical Report #HPL-95-56, May 1995.

23

input index ranges output
€a €b z(n) y(n) index range | T, | Ty Te
HSHS WSWS [0 - N —1 0—+ N 0—-N-1 CQ@ Cle Cge
HAHA | WSWS |0 - N -1 00—+ N 0—=>N—-1]|8% | Cie| S2
HSHS | WAWA |0 > N—-1|1—=>N—-1]| 0=>N—-1|Co | Sie | S2
HAHA | WAWA |0 > N—-1|1—>N—-1] 0—->N-1 | Sz | Sie | —Coe

Table 1: Convolution-multiplication properties of DCT and DST of types Ie and Ile.

P H/ H,
co | 1D ({Crel2aho, b, v 1,201) | 4D ({C1e[2Bh0, b1, by 1), 20 NIHD)
ss | 4D ({Crel2aho, hu,o by, 2001) | D ({Crel2Bho, s By o1y, 2hnTHY)

cs 1D_1 (Sie[hts- - hy—1]) 1Dy (Sle[h—la e ah—(N—l)])
: (N—l)])

sc 1D1 (Sie[h, ..., hy-1]) 1D1 (51e[h—1, .

b

Table 2: Filter kernels.

Complexity of the Proposed Scheme
Data Type

Non-Sparse Sparse

Kernel Type m a m a
General 1216 2688 | 716 1516
Symmetric 736 1984 | 448 1124
Causal 736 1728 | 448 980
Causal-Symmetric | 512 1280 | 296 688

Table 3: Computational efficiency of the proposed 2-D separable scheme (according to data and kernel
types) in terms of number of multiplications and additions required for processing each 8 x 8 output block.

24

Input !
Image —— Huffrr?ani Dequantizer—] IDCT
inJPEG | | decoding
format)
| JPEG decoding
Spatial filter
Filtered |
image <—— Huffn?ani Quantize = DCT
in JPEG encoding
format | JPEG encoding
(a)

Input

Image —> HUff"_]a”* Dequantize

in JPEG decoding

format

DCT domain
filter

Filtered

image <— Huffrr-lani Quantize |<———

in JPEG encoding

format

(b)

Figure 1: Spatial filtering of compressed images: (a) Straightforward spatial approach, and (b)
direct DCT-domain approach.

i+1

Figure 2: Flow graph of the proposed filtering scheme for (a) symmetric kernels and (b) causal kernels. The
lines in the graph refer to N-point vectors, the bullets to element-by-element addition, the small triangles
to element-by-element multiplication, the large triangles to matrix multiplication, and the “D” boxes to a

1-step delay.

25

P B1 B G B Bq P

Figure 3: Flow graph of the core operations (7) for the fast CST and SCT. The bullets, black triangles,
and white triangles depict additions, multiplications, and right shifts, respectively. The sequences f(n) and

F(n),n=0,...,7, denote the input and output vectors, respectively.
Nonsparse Data Sparse Data
12000 1 Spatial domain - kernel: small 12000
Spatial domain - kernel: medium
Spatial domain - kernel: large
- Pipeline approach
10000 Proposed scheme 10000
Butterfly approach
@ 8000 u " 8000
c c
g i g i
© <
g 6000 L 6000
° (° H
4000 F 4000 | F
2000 2000
0 N N 0 N N
B‘% 8\“\0 \)6@ 6'&’ Q,’\{\c e‘@ 2,\"\0 \)"9% t‘,@\’ e\i\o
o o 7« o & e PR
[©) 6\‘6\ ¢} [©) %\)((\ < 9*6\

Figure 4: Computational efficiency of the proposed 2-D separable scheme as compared to the spatial domain
and other DCT-domain schemes. The results are given in terms of number of operations op, required for
processing each 8 x 8 output block. Number of operations is calculated here assuming each multiplication
to be equivalent to three additions, i.e., op = 3m + a.

26

Loop commands

Complexity

for each “step (4,7)” Non-sparse Sparse
data data
it < X5;
Z5 ;< Zj
75, 75
X}% « Column-UCST(X7Y) 8 x (8m +28a) = | 4 x (Tm + 17a) =
64m + 224a 28m + 68a
By« X{ +OX¢ 64a 16a
By + X75 -9 Xj° 64a 32a
Odd rows of B «+ -V | E; 32m 8m
Even rows of B + V! E 32m 16m
B + Column-USCT(B) 8 x (8m +28a) = | 4 x (8m + 28a) =
64m + 224a 32m + 112a
Odd rows of Z¢, < V1.E| 4+ Odd rows of B 32m + 32a 8m + 8a
Even rows of Z§,; < V 1 E; + Even rows of B 32m + 32a 16m + 16a
Z7% < Row-UCST(Z5 ;) 8 x (8m+28a) = | 8 x (Tm + 17a) =
64m + 224a 28m + 68a
B\« 25, +25,,% 64a 324
By« 25— 25 W 64a 64a
Odd columns of B + —E; (H},)! 32m 16m
Even columns of B <+ ExH, 32m 32m
B + Row-USCT(B) 8 x (8m + 28a) = | 8 x (8m + 28a) =
64m + 224a 64m + 224a
Odd columns of W¢, « E1H/, + Odd columns of B 32m + 32a 16m + 16a
Even columns of W¥ . < Ey(H /)" + Even columns of B || 32m + 32a 32m + 32a
[Total | 512m 4+ 1280 | 296m + 688a |

Table 4: Implementation of the proposed scheme for causal-symmetric filtering. Embedding of
scaling matrices in quantization/dequantization tables and filtering kernels is assumed. Column-
UCST (resp. USCT) means performing 1-D unscaled CST, ®7 (resp. 1-D unscaled SCT, 7®) of
each separate column of the input block. Similarly for Row-UCST and Row-USCT. Fy, Es, and B

denote 8 x 8 buffers. Even and odd columns/rows refer to the indexing {1,...,8}.

Complexity of the Pipeline Scheme
Data Type

Non-Sparse Sparse

Kernel Type m a m a
General 3072 2944 | 1152 1088
Symmetric 2560 2432 | 960 896
Causal 2048 1920 | 768 704
Causal-Symmetric | 1664 1536 | 624 560

Table 5: Computational efficiency of the Pipeline scheme, proposed in [7].

27

Spatial domain scheme | Proposed scheme
3x3 | 5xd5| 9x9
Average running time (secs.) | 2.55 | 2.74 3.18 2.35

Table 6: Simulation results on 512 x 512 grayscale images. The running times correspond to
processing only; I/O procedures were not considered.

28

