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This work addresses the problem of e�cient 2-D linear �ltering in the discrete cosine transform

(DCT) domain, which is an important problem in the area of processing and manipulation of images

and video streams compressed in DCT-based methods, such as JPEG, MPEG, H.261, and others

(see, e.g., [1-7]). More speci�cally, suppose that an input image is given in the format of a sequence

of sets of DCT coe�cients of 2-D blocks. We assume the DCT to be of type II-e (according to the

classi�cation in [4]), which is the type used in JPEG/MPEG/H.261 applications. We are interested

in calculating e�ciently a �ltered image, in the same format, that corresponds to spatial domain

convolution between the input image and a given �lter.

The straightforward spatial-domain approach consists of calculating the inverse DCT (IDCT) of

each block, performing the convolution in the spatial domain, and then transforming the resulting

image back to the DCT domain (see Fig. 1(a)). Our aim is to operate directly in the DCT domain,

avoiding explicit transformations from the DCT domain to the spatial domain and vice versa (see

Fig. 1(b)).

One approach to this problem is to use a convolution-multiplication property (CMP) for the

DCT. Like CMP's for the discrete Fourier transform (DFT), the aim of using a CMP for the DCT

is to turn the �ltering operation into a simple element-by-element multiplication in the transform

domain. Chen and Fralick [1] derived one such CMP, and Ngan and Clarke [2] have used it for low-

pass �ltering of images. Later, Chitprasert and Rao [3] derived a simpler CMP. A thorough study

of CMP's was performed by Martucci [4], who derived CMP's for all types of DCT's and DST's

(discrete sine transforms), including the previously mentioned CMP's as special cases. S�anchez

et al. [6] rewrote part of the CMP's (some of those involving DCT's only) in the form of matrix

diagonalization properties, and studied their asymptotic behavior. The problem with almost all the

schemes proposed in the above mentioned works is that they do not implement linear convolution,

but rather a \folded" type of convolution, called symmetric convolution. An exception is the

linear convolution scheme proposed by Martucci [4, 5], who showed that one can obtain linear

convolutions from symmetric convolutions through appropriate zero-padding in the spatial domain.

Unfortunately, in our application, the data are already provided in the transform domain without

prior zero-padding, and therefore Matucci's scheme cannot be used directly. Another disadvantage

of the above methods is that they are limited to symmetric and antisymmetric �lters.

The works of Lee and Lee [7], Chang and Messerschmitt [8], and Neri et al. [9] provide an

alternative to the CMP approach. They propose to precompute the product of the operator ma-
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operator matrix directly in the DCT domain. The e�ciency of this approach depends heavily on

the sparseness of the DCT data; processing of non-sparse DCT blocks can be of high computational

complexity. Merhav and Bhaskaran [14] improved this approach by using certain butter
ies on the

input data, prior to the �ltering operation. Their approach is signi�cantly more e�cient than its

predecessors.

In this work, we follow the CMP approach, and propose an e�cient �ltering scheme of the

DCT data, that does not require spatial domain zero-padding, and that is suitable for, symmetric,

antisymmetric, and non-symmetric �ltering. The proposed scheme uses the DCT and the DST

coe�cients of the data, based on the DCT/DST CMP's derived in [4]. Since the DST coe�cients

are not available in advance, they have to be computed from the given DCT data. To this end,

we develop fast algorithms that directly transform from the DCT to the DST (denoted CST)

and vice-versa (SCT). Incorporating these algorithms in the �ltering scheme, we obtain an overall

complexity that is substantially smaller than those of the spatial domain approach, Lee and Lee's,

and Merhav and Bhaskaran's schemes in several relevant situations.

For sake of simplicity, and due to the practical usefulness of separable 2-D �lters, we con�ne

our attention, in this paper, to separable �lters only. Since the DCT/DST CMP's can be easily

extended to 2-D signals, the extension of the proposed �ltering scheme to nonseparable �lters is

fairly straightforward.

The outline of this paper is as follows. Section 2 provides the theoretical background for this

work. In Section 3, the relevant CMP's are converted to a matrix form to be used in the derivation

of the �ltering scheme, which is presented in Section 4 for the 1-D case. Section 5 extends the

algorithm to 2-D images, and separable kernels. In Section 6, a comparative complexity analysis is

provided. Finally, Section 7 concludes the paper.

2 Background

2.1 Convolution-Multiplication Properties of DTT's

There are 8 types of DCT's and 8 types of DST's de�ned by Wang, which are generically called

discrete trigonometric transforms (DTT's) [4]. From the family of DTT's, we are particularly

interested in the DCT of type 2e, denoted DCT-IIe, since it is useful in image coding standards

JPEG, MPEG, and others.
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However, each DTT appears in the literature in several di�erent forms, which di�er only by scaling

factors. I.e., the operator matrix of each DTT in one form can be converted to another form by pre-

and post-multiplication by non-singular diagonal matrices. In [10], the transforms are presented in

an orthogonal form, where the corresponding operator matrices are unitary. Martucci proposed a

convolution form in [4], which is more appropriate for presenting the DTT CMP's because it avoids

the need for additional scaling or weighting in the CMP formul�.

Martucci has summarized all the CMP's related to the DTT's in [4, Tables VI and VII]. They

are grouped in families of three or four CMP's that share the same input and output DTT types.

Since we wish to produce a �ltering scheme having DCT-2e blocks as input and output, we are

particularly interested on the CMP family for which one of the forward DTT's and the inverse

DTT are of type 2e. These are CMP's 4-7 in Table VI of [4], which involve also the DST of the

same type, DST-IIe, and the DCT and DST of type 1e, denoted DCT-Ie and DST-Ie, respectively.

We review here these CMP's.

The N th order transform matrices of DCT-Ie, DST-Ie, DCT-IIe, and DST-IIe in convolution

form are denoted C1e, S1e, C2e, and S2e, respectively, and are de�ned by [4]:

[C1e]mn = 2kn cos
�
mn�
N

�
; m; n = 0; 1; : : : ; N (1)

[S1e]mn = 2 sin
�
mn�
N

�
; m; n = 1; 2; : : : ; N � 1 (2)

[C2e]mn = 2 cos

�
m(n+ 1

2)�
N

�
; m; n = 0; 1; : : : ; N � 1 (3)

[S2e]mn = 2 sin

�
m(n+ 1

2)�
N

�
;

8><
>:

n = 0; : : : ; N � 1;

m = 1; : : : ; N
(4)

where ki = 1, for 1 � i � N � 1, and k0 = kN = 1=2.

Another basic concept in the theory of DTT's is that of symmetric-extension. It consists of

replicating a given input sequence in order to produce a symmetric output sequence. There are 16

types of symmetric-extension operators de�ned in [4], four of which are of interest to us, denoted

by HSHS, HAHA, WSWS, WAWA, according to the position of the symmetry point (`H' and `W'

meaning `Half sample' and `Whole sample', respectively), and the symmetric/antisymmetric nature

of the replication (`S' and `A' meaning `symmetric' and `antisymmetric', respectively). They are

given by the following rules [4]:

HSHS(x1; : : : ; xn) = R(x1; : : : ; xn; xn; : : : ; x2);
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WSWS(x1; : : : ; xn) = R(x1; : : : ; xn�1; xn; xn�1; : : : ; x2);

WAWA(x1; : : : ; xn) = R(0; x2; : : : ; xn�1; 0;�xn�1; : : : ;�x2);

where R performs periodic replication.

The four CMP's associated with the above operators and transforms assume the following form

[4]:

wn = "afxng �
 "bfyng = T �1
c fTafxng � Tbfyngg; (5)

where fxng and fyng are two input sequences of �nite length, and fwng is the output convolved
sequence. In the above expression, "a and "b are two symmetric extension operators, and �
 denotes

circular convolution. The operators Ta, Tb, and T �1
c are, respectively, two forward and one inverse

DTT's in convolution form, appropriately selected among the above speci�c DTT's, and � denotes

element-by-element multiplication. Table 1 lists the speci�c values for the four CMP's.

Equation (5) tells us that symmetric convolution (which means circular convolution between

symmetrically-extended versions of the operands) can be obtained by transforming the input sig-

nals by DTT's, multiplying the results element-by-element, and then performing an inverse DTT.

Equation (5) is a simpli�ed version of the equation provided in [4], adapted to the speci�c four

DTT's considered here.

When using the DTT's in the CMP's, one has to pay particular attention to the input (n) and

output (m) index ranges de�ned within the DTT's de�nitions (eqs. (1)-(4)). They characterize the

elements of the input sequence that should be operated upon, and the index of the transformed-

sequence elements. For instance, the input index range of S1e is n = 1; : : : ; N � 1, which means

that only the input elements with these indices are used in the transform, whereas the elements x0

and xN are disregarded. Moreover, its output range is also m = 1; : : : ; N � 1, which means that

the elements obtained from the transformation should be indexed accordingly, while the values of

the transform elements with indices 0 and N should be set to 0. The range of the input sequences

and the output range of the convolved sequence in Table 1 are directly related to the input and

output ranges of the transforms involved in the CMP's.

4



Some of the CMP's of DTT's presented in [4] (in particular, most of the CMP's involving DCT's

only) were converted into matrix form in [6], where they assume the following structure:

[Ya] = [Ca]�1[D ([Cb]y)][Ca]: (6)

In (6), [Ya] is a matrix that performs one of the sixteen types of symmetric convolution of an input

signal by the signal y, [D(x)] is a diagonal matrix whose diagonal elements are the corresponding

elements of x, and [Ca] and [Cb] are the operator matrices of two DCT's in convolution form. Note

that the inverse transform is an IDCT of the same type as one of the forward DCT's, a property

which is not necessarily extended for similar matrix formulation for the rest of the DTT CMP's.

The meaning of (6) is that the symmetric convolution matrix [Ya] is diagonalized by [Ca], where the
eigenvalues are the coe�cients of the transform of y by Cb. This is analogous to circular convolution
matrices that are diagonalized by the DFT matrix, with eigenvalues given by the DFT coe�cients

of the kernel. In [6], the above matrix formulation for DCT matrices in convolution form was

modi�ed for DCT matrices in orthogonal form as well, where scaled and weighted versions of [Ya]
are the matrices which are diagonalized.

It was also noted in [6] that the symmetric convolution matrices [Ya] can be decomposed as

a sum of a symmetric Toeplitz matrix and a Hankel or a nearly Hankel matrix. The latter term

corresponds to the \folding" e�ect caused by the symmetric convolution operation. One can observe

in [6] that the Hankel-matrix component is also symmetric or close to symmetric w.r.t. the second

main diagonal.

3 Conversion of the CMP's to Matrix Form

The �ltering derivation in the paper is done in a matrix form. For this purpose, we need to have

all four CMP's of interest in that form. Since only the �rst of them involves DCT's only, this is the

only one that has already been converted to the matrix form in [6]. The conversion of the other

three CMP's is performed in this section.

3.1 Conversion

The conversion can be done with the same derivation steps as those used in [6] for the CMP's

involving DCT's only, but with the following three considerations. First, the forward and inverse
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(6).

The second consideration refers to the symmetric convolution matrices. Associated with each

one of the four CMP's of interest here, there is a di�erent type of symmetric convolution as listed in

Table 1, namely, HSHS �
WSWS, HSHS �
WAWA, HAHA �
WSWS, and HAHA �
WAWA. There-

fore, we symbolize the symmetric convolution matrices by [Ya;b], where the indices a and b assume

the values a 2 fHS;HAg and b 2 fWS;WAg, covering the above four cases. Following the same

derivation steps as in [6], one can show that, similarly as before, the above matrices can all be

decomposed into sums of Toeplitz and Hankel matrices. However, they can be either symmetric

or anti-symmetric, rather than symmetric only. In order to represent all these di�erent cases, we

further decompose the corresponding Toeplitz and Hankel matrices into the following triangular

matrices:

Y1
�
=

0
BBBBBBBBBBB@

y0
2 0 � � � 0 0

y1
y0
2

. . .
. . . 0

...
. . .

. . .
. . .

...

yN�2
. . .

. . . y0
2 0

yN�1 yN�2
. . . y1

y0
2

1
CCCCCCCCCCCA

; Y2
�
=

0
BBBBBBBBBBB@

y1 y2 � � � yN�1
yN
2

y2 y3 � � � yN
2 0

... � � � � � � � � � ...

yN�1
yN
2 � � � � � � 0

yN
2 0 � � � 0 0

1
CCCCCCCCCCCA

; (7)

Y3
�
=

0
BBBBBBBBBBB@

y0
2 y1 � � � yN�2 yN�1

0 y0
2

. . .
. . . yN�2

...
. . .

. . .
. . .

...

0
. . .

. . . y0
2 y1

0 0
. . . 0 y0

2

1
CCCCCCCCCCCA

; Y4
�
=

0
BBBBBBBBBBB@

0 0 � � � 0 yN
2

0 0 � � � yN
2 yN�1

... � � � � � � � � � ...

0 yN
2 � � � � � � y2

yN
2 yN�1 � � � y2 y1

1
CCCCCCCCCCCA

: (8)

Note that Y3 = Y t
1 , and that Y4 can be viewed as a transposition of Y2, but w.r.t. the other main

diagonal. Therefore, Y1 + Y3 is symmetric Toeplitz, Y1 � Y3 is antisymmetric Toeplitz, Y2 + Y4 is

symmetric Hankel, and Y2 � Y4 is antisymmetric Hankel, where symmetry in the two latter cases

is w.r.t. to the secondary diagonal. The corresponding convolution matrices can now be written as

a combination of the above triangular matrices as follows:

[YHS,WS] = (Y1 + Y3) + (Y2 + Y4);

[YHS,WA] = (Y1 � Y3) + (Y2 � Y4);

[YHA,WS] = (Y1 + Y3)� (Y2 + Y4);

[YHA,WA] = (Y1 � Y3)� (Y2 � Y4): (9)
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and output ranges involved in the four CMP's of interest, which forces us to be careful with

index determination in the matrix format. To make it simpler to deal with this issue, we �rst

extend the above DTT's operator matrices by zero padding, in order to intrinsically adjust index

manipulations. Later on, in Section 3.2, the zeros are dropped from the �nal formul�. Thus, we

produce the following four extended matrices, by simply extending input/output index ranges in

the DTT's de�nitions:

[ �C1e] �= [C1e]; [ �S1e] �=

0
BBBBBBBBBBB@

0 0 : : : 0 0

0
...

0

[S1e]
0
...

0

0 0 : : : 0 0

1
CCCCCCCCCCCA

;

[ �C2e] �=
0
B@ [C2e]

0 : : : 0

1
CA ; [ �S2e] �=

0
B@ 0 : : : 0

[S2e]

1
CA : (10)

Notice that [ �C1e] and [ �S1e] are both of size (N + 1) � (N + 1), whereas [ �C2e] and [ �S2e] are both of

size (N + 1)�N . Moreover, we de�ne:

[ �C2e]�1 �
=

0
BBBB@ [C2e]�1

0
...

0

1
CCCCA ; [ �S2e]�1 �

=

0
BBBB@

0
...

0

[S2e]�1

1
CCCCA : (11)

These matrices are both of size N � (N + 1).

Taking into account the above considerations, the four CMP's of interest can now be written

in the matrix form as follows:

[YHS;WS] = [ �C2e]�1[D([ �C1e]y)][ �C2e];

[YHS;WA] = [ �S2e]�1[D([ �S1e]y)][ �C2e];

[YHA;WS ] = [ �S2e]�1[D([ �C1e]y)][ �S2e];

[YHA;WA] = �[ �C2e]�1[D([ �S1e]y)][ �S2e]; (12)

where y = fy0; y1; : : : ; yN�1; yNg.
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We now perform two modi�cations in the above formul� in order to obtain the �nal equations

that are used for the derivation of the �ltering algorithm in the next sections. First, we convert

the type-2e transforms to the orthogonal form. This is done for simplicity of the derivation, and

because this form is closer to the one used in compression standards. The DCT-IIe and DST-IIe in

orthogonal form are denoted in [4] by CIIe and SIIe, respectively. Here, however, we simplify the

notation by referring to them as C and S, respectively. They are de�ned as follows [10]:

C
�
= [CIIe]mn =

q
2
N
km cos

�
m(n+ 1

2)�
N

�
; m; n = 0; 1; : : : ; N � 1 (13)

S
�
= [SIIe]mn =

q
2
N
km sin

�
m(n� 1

2)�
N

�
; m; n = 1; 2; : : : ; N: (14)

Notice that both matrices are of size N�N . Since the above matrices are in orthogonal form, their

inverses are given by transposition, that is, C�1 = Ct and S�1 = St.

The relationships between the extended 2e-type transform matrices in convolution and orthog-

onal forms are given by:

�
�C2e
�
= R �C;

�
�S2e
�
= R �S;

�
�C2e
��1

= �C�1R�1;
�
�S2e
��1

= �S�1R�1; (15)

where �C, �S, �C�1, and �S�1 are obtained from C, S, C�1, and S�1 with the same zero-padding

as above for [ �C2e], [ �S2e], [ �C2e]�1, and [ �S2e]�1, respectively, and R is a (N + 1) � (N + 1) diagonal

matrix, with diagonal elements given by ri =
p
2N , for i = 1; : : : ; N � 1, and r0 = rN = 2

p
N .

Notice that upon substituting (15) into (12), the matrix R is canceled out. Therefore, all

instances of [ �C2e], [ �S2e], [ �C2e]�1, and [ �S2e]�1 in the CMP's can be replaced by �C, �S, �C�1, and �S�1,

respectively.

The second modi�cation is to remove the padded zeros from the CMP's, producing more e�cient

formul�.

The above two modi�cations together with (9) lead to the following �nal form of the desired

four diagonalization properties:

[YHS;WS] = Y1 + Y3 + Y2 + Y4 = Ct
h
D
�
fC1eygN�1

0

�i
C; (16)

[YHS;WA] = Y1 � Y3 + Y2 � Y4 = St
h
D1

�
S1e fygN�1

1

�i
C; (17)

[YHA;WS] = Y1 + Y3 � Y2 � Y4 = St
h
D
�
fC1eygN1

�i
S; (18)

[YHA;WA] = Y1 � Y3 � Y2 + Y4 = �Ct
h
D�1

�
S1e fygN�1

1

�i
S; (19)
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input vector, and fxgba denotes the sequence fxa; : : : ;xbg. These relations are the basis of the

�ltering scheme developed in the next sections.

4 The 1-D Filtering Scheme

In this section, we develop the DCT-domain �ltering scheme for the 1-D case. This is done in two

steps, detailed in the following subsections: First, in Subsection 4.1, the resulting matrix equations

are combined to obtain an e�cient spatial domain �ltering scheme. Then, in Subsection 4.2, the

spatial domain scheme is converted into a DCT-domain scheme.

4.1 Filtering in the Spatial Domain

Suppose that a 1-D signal x(n) is given, and we wish to perform linear �ltering by a kernel h(n),

obtaining the output signal w(n) = x(n) � h(n). Suppose also that x(n) is given as a set of vectors

fxig, consisting of non-overlapping N -point segments of the input signal, and that we wish to

obtain the output w(n) in the same format, i.e., N -point segments fwig. Let us assume that

the support of the �lter h(n) is within the interval [�N;N ], and use the notation hn
�
= h(n), for

jnj � N . In this case, only the segments xi�1, xi, and xi+1, are needed in the calculation of the

output segment wi. Speci�cally, one can express the �ltering operation as follows:

wi = H

2
66664
xi�1

xi

xi+1

3
77775

�
=

�
H+
2

�
H+
1 +H�

1

�
H�
2

�
2
66664
xi�1

xi

xi+1

3
77775 (20)

= H+
2 xi�1 +H+

1 xi +H�
1 xi +H�

2 xi+1; (21)

where H+
1 , H

+
2 , H

�
2 , and H

�
1 are de�ned as follows.

H+
2 =

0
BBBBBBBBBBB@

hN hN�1 � � � h2 h1

0 hN
. . .

. . . h2
...

. . .
. . .

. . .
...

0
. . .

. . . hN hN�1

0 0
. . . 0 hN

1
CCCCCCCCCCCA

; H+
1 =

0
BBBBBBBBBBB@

� � h0 0 � � � 0 0

h1 � � h0 . . .
. . . 0

...
. . .

. . .
. . .

...

hN�2
. . .

. . . � � h0 0

hN�1 hN�2
. . . h1 � � h0

1
CCCCCCCCCCCA

; (22)

1The `th o�-diagonal of a square matrix A = fAijg consists of the elements for which j = i+ `.
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H�
1 =

0
BBBBBBBBBBB@

� h0 h�1 h�(N�2) h�(N�1)

0 � � h0 . . .
. . . h�(N�2)

...
. . .

. . .
. . .

...

0
. . .

. . . � � h0 h�1

0 0
. . . 0 � � h0

1
CCCCCCCCCCCA

; (23)

H�
2 =

0
BBBBBBBBBBB@

h�N 0 � � � 0 0

h�(N�1) h�N
. . .

. . . 0
...

. . .
. . .

. . .
...

h�2
. . .

. . . h�N 0

h�1 h�2
. . . h�(N�1) h�N

1
CCCCCCCCCCCA

; (24)

where � is an arbitrary real number, and �
�
= 1 � �. In the general case considered herein, the

choice of � is immaterial from the aspects of computational e�ciency. In certain special cases that

will be studied later, however, the choice of � will be important.

Note that, if we set yi = hi in (7), for i = 1; : : : ; N � 1, y0 = 2�h0, and yN = 2hN , then we

obtain Y1 = H+
1 and Y2 = H+

2 �, where � is a \
ipping matrix", given by:

� =

0
BBBBBBBBBBB@

0 0 � � � 0 1

0 0 � � � 1 0
... � � � � � � � � � ...

0 1 � � � 0 0

1 0 � � � 0 0

1
CCCCCCCCCCCA

: (25)

It is easy to verify that post-multiplying a matrix by � reverses the order of its columns, and

pre-multiplying a column vector by � reverses the order of its elements.

The above relationships between Y1 and H+
1 , and between Y2 and H+

2 enable us to use eqs.

(16)-(19) to rewrite H+
1 and H+

2 in terms of the DCT-IIe and DST-IIe transforms. Speci�cally, note

that Y2 = (YHS,WS+YHS,WA�YHA,WS�YHA,WA)=4, and Y1 = (YHS,WS+YHS,WA+YHA,WS+YHA,WA)=4,

and therefore:

H+
2 = (CtH+

ccC + StH+
scC � StH+

ssS + CtH+
csS)�; (26)

H+
1 = CtH+

ccC + StH+
scC + StH+

ssS � CtH+
csS; (27)

where the speci�c values of the �ltering kernels H+
p , p 2 fcc; ss; cs; scg, are given in the left side of

Table 2.
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Y3 = H�
1 and Y4 = H�

2 �, and by using the relations Y4 = (YHS,WS � YHS,WA � YHA,WS + YHA,WA)=4

and Y3 = (YHS,WS � YHS,WA + YHA,WS �YHA,WA)=4, we get:

H�
2 = (CtH�

ccC � StH�
scC � StH�

ssS � CtH�
csS)�; (28)

H�
1 = CtH�

ccC � StH�
scC + StH�

ssS + CtH�
csS; (29)

where the values of H�
p , are shown in Table 2 as well.

A �ltering scheme is then obtained on substituting eqs. (26)-(29) into eq. (21), and re-arranging

the terms:

wi = Ct
�
H+

ccC(xi +�xi�1)�H+
csS(xi � �xi�1) +

H�
ccC(xi +�xi+1) +H

�
csS(xi � �xi+1)

�
+

St
�
H+

ssS(xi � �xi�1) +H
+
scC(xi +�xi�1) +

H�
ssS(xi � �xi+1)�H�

scC(xi +�xi+1)
�
: (30)

The implementation steps of the above scheme according to (30) are as follows. First, calculate

xi+�xi�1, xi+�xi+1, xi��xi�1, and xi��xi+1, which consist of \folding" the adjacent spatial
segments xi�1 and xi+1 onto the current one, xi. Notice that the order of the elements in the

adjacent vectors is reversed in that operation. Next, calculate the DCT-II of the positively folded

data, and the DST-II of the negatively folded data. Then, operate upon the transformed data by

appropriately multiplying it by the kernel matrices. Notice that this consists of element-by-element

multiplications between the input data and the signi�cant diagonals of the kernels matrices. Finally,

calculate the inverse DCT-II and inverse DST-II of some combinations of the multiplied data.

4.2 Conversion to the DCT Domain

The algorithm derived in Subsection 4.1 is suitable for applications where the input data is given

in the spatial (or time) domain. However, in our application, the data is given in the DCT-IIe

domain in the form of segments (vectors) Xc
i = Cxi, and therefore this algorithm, in its present

form, is not suitable here. In this section, we modify the above algorithm to apply directly in the

DCT domain.

We pre-multiply both sides of eq. (30) by C, in order to obtain the output in the DCT-IIe

domain. Then, we use the linearity of matrix multiplication to write C(xi+�xi�1) = Xc
i +C�xi�1,

11



proved: C� = 	C and S� = 	S, where

	
�
= D

�
f(�1)mgN�1

m=0

�
: (31)

After incorporating all the above steps in (30), we obtain the following DCT-domain scheme:

W c
i = H+

cc(X
c
i +	Xc

i�1)�H+
cs(X

s
i �	Xs

i�1) +

H�
cc(X

c
i +	Xc

i+1) +H
�
cs(X

s
i �	Xs

i+1) +

T t
�
H+

ss(X
s
i �	Xs

i�1) +H
+
sc(X

c
i +	Xc

i�1) +

H�
ss(X

s
i �	Xs

i+1)�H�
sc(X

c
i +	Xc

i+1)
�
; (32)

where T
�
= SCt is interpreted as the 1-D cosine to sine transform (CST) operator matrix (hence T t

is the sine to cosine (SCT) operator matrix), and fXs
ig are the set of DST-IIe coe�cients of the

input data, i.e., Xs
i = Sxi, for all i.

Equation (32) represents the proposed �ltering scheme in the 1-D case. The implementation

of the scheme consists of the following steps. For every i, �rst, the DST segments Xs
i�1, X

s
i , and

Xs
i+1 must be calculated from the corresponding input DCT segments. Actually, one can assume

that the values of Xs
i�1 and X

s
i have already been calculated and stored while processing previous

blocks (i � 1) and (i � 2). Therefore, only Xs
i+1 has to be actually calculated (and stored for the

next two iterations). This is done by pre-multiplying Xc
i+1 by T . The second step is to create the

\butter
ies" corresponding to the expressions in the parentheses in (32). These correspond to the

spatial domain \folding" in eq. (30). Note that reversing the order of elements in the spatial domain

corresponds, in both the DCT and the DST domains, to a simple modulation (pre-multiplication

by 	). Next, the appropriate diagonal kernel �lters operate upon the butter
ies, and �nally, part

of the results is converted from the DST domain to the DCT domain using pre-multiplication by

T t, while the other part of the data is already in the DCT domain. Finally, these two parts are

summed.

Equation (32) yields an e�cient �ltering scheme provided that the SCT can be implemented

e�ciently. This is true because all the H-matrices in (32) are diagonal. Note that multiplication

by 	 is costless. Nevertheless, unlike the DCT coe�cients, the DST coe�cients are not available

in advance, and hence must be calculated. Therefore, a fast CST, in addition to a fast SCT, is

required. Fast routines for both transforms are derived in Section 4.4.
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Of particular importance are special cases where the kernel is either symmetric/antisymmetric,

causal/anticausal, or a combination of both.

In the symmetric case, h�n = hn, for n = 1; : : : ; 8. Here, by setting � = � = 1=2 in (22) and

(23), we obtain H+
p =H�

p , for p 2 fcc; ss; cs; scg. Therefore, by de�ning Hp
�
=H+

p , for all p, the

scheme in (32) is reduced to:

W c
i = Hcc[2X i

c +	(Xc
i�1 +X

c
i+1)] +Hcs	(Xs

i�1 �Xs
i+1) +

T t
�
Hss[2X

s
i �	(Xs

i�1 +X
s
i+1)] +Hsc	(Xc

i�1 �Xc
i+1)

	
: (33)

Fig. 2(a) shows the 
ow graph of the above scheme.

By comparing (33) with (32), one observes that about half of the computations are saved when

using a symmetric kernel. In the antisymmetric case, i.e., h�n = �hn, n = 1; : : : ; 8, h0 = 0, a

similar scheme is obtained, with some sign changes.

In the causal case, de�ned by hn = 0 for n < 0, setting � = 1 � � = 0 in (22) and (23), gives

H�
cc = H

�
cs = H

�
ss = H

�
sc = 0, where 0 is the 8 � 8 null matrix. Incorporating this fact into the

�ltering equation (32), one obtains

W c
i = H+

cc(X
c
i +	Xc

i�1)�H+
cs(X

s
i �	Xs

i�1) +

T t
�
H+

ss(X
s
i �	Xs

i�1) +H
+
sc(X

c
i +	Xc

i�1)
�
; (34)

which is also a signi�cant simpli�cation. Fig. 2(b) shows the 
ow graph of the scheme. Notice that,

in this case, Xp
i+1, p 2 fc; sg, are not needed in the computation, but only Xp

i and Xp
i�1. The

anticausal �ltering scheme, where hn = 0, for n > 0, is obtained similarly, by setting the H+-type

matrices to zero, instead of the H�-type ones.

The best special case of the proposed scheme, in terms of complexity, is obtained with a 4-pixel

delayed causal-symmetric �lter, for which both the causality and the symmetry properties can be

used to save computations. A k-pixel delayed causal symmetric �lter will be de�ned as a causal

�lter fhng2kn=0 with hn = h2k�n for all 0 � n � 2k. Obviously, a causal symmetric �lter is a delayed

version of a non-causal �lter that is symmetric about the origin. In the causal symmetric case, when

k = 4, on the top of the simpli�cation due to causality for � = 1, we also have the even elements

of the sequences C1e [2h0; h1; : : : ; hN�1; 2hN ]
t and S1e [h1; h2; : : : ; hN�1]

t equal to zero. Therefore,

according to their de�nitions (see Table 2), the matrices H+
p , p 2 fcc; ss; cs; scg, have only 4

nonzero elements each. This case can be of much interest for fast symmetric convolution with a
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(see Discussion in Section 6.3).

4.4 E�cient CST and SCT Algorithms

In this subsection, we devise e�cient CST and SCT algorithms, i.e., fast multiplication by T and

T t. We will assume N = 8, which is the case in JPEG/MPEG applications, but the algorithm

derivations can be extended to any value of N .

The main idea is to factorize T into a product of sparse matrices. First, we shall use the

following property relating the DST matrix to the DCT matrix:

S = �C	; (35)

where � and 	 are de�ned in (25) and (31), respectively. This relation holds for any value of N .

Next, we consider the factorization of C that corresponds to the Winograd DCT, which is the

fastest existing algorithm for 8-point DCT due to Arai, Agui, and Nakajima [11] (see also [12]).

According to this factorization, C is represented as follows [12, pages 53-57]:

C = DPB1B2MA1A2A3; (36)

where operation by B1, B2, A1, A2, and A3 requires a total of 26 additions, operation byM requires

5 multiplications and 3 additions, P is a permutation matrix, and D is a diagonal matrix given by:

D = Df0:3536; 0:2549; 0:2706; 0:3007; 0:3536; 0:4500; 0:6533; 1:2814g: (37)

Thus, we have

T = SCt = �C	Ct = �DPB1B2MA1A2A3	A
t
3A

t
2A

t
1M

tBt
2B

t
1P

tD: (38)

The proposed CST algorithm is based on the observation that the product

G
�
=

1

2
MA1A2A3	A

t
3A

t
2A

t
1M

t (39)
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G =

0
BBBBBBBBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 1

0 0 0 0 �a 0 b 1

0 0 0 0 0 �1 0 c

0 0 0 0 b
2 0 a

2 1

0 �a 0 b
2 0 0 0 0

0 0 �1 0 0 0 0 0

0 b 0 a
2 0 0 0 0

1 1 c 1 0 0 0 0

1
CCCCCCCCCCCCCCCCCCCCCA

;

where a = 2:6132, b = 1:0824, and c = 0:7071.

Therefore, a fast CST is obtained by following the decomposition:

T = D̂(�� )(2D); (40)

where D̂
�
= �D� is a diagonal matrix with the same diagonal elements as D but in reversed order,

and:

� = PB1B2GB
t
2B

t
1P

t: (41)

A 
ow graph of an e�cient implementation of � is shown in Fig. 3. One can observe that it requires

8 multiplications, 28 additions, and 2 right-shifts (multiplications by 1/2). The complete CST

algorithm requires 16 more multiplications, corresponding to the multiplications by the diagonal

matrices D̂ and (2D). The SCT operation is expressed by T t = (2D)(��)D̂, and requires the

same number of operations as the CST. Notice that the straightforward implementation of T by

performing IDCT followed by DST (�C	) requires 26 multiplications and 58 additions, which is

2 multiplications and 30 additions more than the proposed algorithm.

The authors of the fast DCT algorithm pondered [11] that, if the output coe�cients are to be

quantized (like in a JPEG or MPEG coding process), then the scaling matrix D can be combined

with the quantization table, thus saving multiplications. Similar manipulations can be done regard-

ing the above fast CST and SCT algorithms. In Section 5.1 below, we describe how to combine the

matrices D̂ and 2D with the quantization and dequantization tables, as well as with the �ltering

kernels, so that only the unscaled transforms �� and �� have to be performed in place of the

complete CST and SCT, respectively.

15



g

The 1-D scheme derived in Section 4 is extended here to 2-D signals. The purpose of this extension

is to apply the scheme to DCT blocks obtained during the decoding of JPEG or MPEG bitstreams.

Therefore, we suppose now that the input and output data are sets of 8� 8 DCT blocks, which we

denote by fXc
i;jg and fW c

i;jg, respectively.
We will consider here the case where the 2-D �lter kernel is separable, i.e., the corresponding

spatial �ltering operation can be written in the form:

wi;j = V

2
66664
xi�1;j�1 xi�1;j xi�1;j+1

xi;j�1 xi;j xi;j+1

xi+1;j�1 xi+1;j xi+1;j+1

3
77775H

t; (42)

where fxi;jg and fwi;jg are, respectively, the input and output signals in the spatial domain, H is

a 8� 24 �lter matrix, de�ned as in (20)-(24) for a given sequence fhng, and V is similarly de�ned

for a given fvng. Thus, we assume that the �lter support is of size up to 17� 17 pixels.

In this case, the 2-D �ltering can be implemented by means of the proposed 1-D scheme,

by simply applying the latter �rst to the input DCT block columns, and then to the rows of the

resulting blocks. Speci�cally, the �rst pass (column processing) corresponds to the following spatial

processing:

zi;j
�
= V

2
66664
xi�1;j

xi;j

xi+1;j

3
77775 ; (43)

and the second pass (row processing) corresponds to:

wi;j =

0
BBBB@H

2
66664
zti;j�1

zti;j

zti;j+1

3
77775

1
CCCCA

t

: (44)

The above column and row passes are performed in the DCT/DST domains using the transform

domain versions of the V and H kernels. Therefore, the column processing produces fZc
i;jg, which

are the 2-D DCT version of the blocks fzi;jg, while the row processing produces the output fW c
i;jg.

Although straightforward, a few comments regarding the separable 2-D extension of the 1-D

scheme are in order:

1. The 8�8 input blocks fXc
i;jg are assumed to be given in a raster-scan order (i.e., left-to-right

and top-to-bottom in respect to the image frame). Therefore, at the step of the algorithm
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i;j

blocks W c
u;v, for u < i, or u = i and v < j, have already been calculated.

2. Because of the above, during the column pass corresponding to the step (i; j) of the algorithm,

Zc
i;j and Z

c
i;j�1 do not have to be calculated, since they have been previously computed (and

assumed stored) in the two previous steps (i� 1; j) and (i� 2; j). Therefore, only Zc
i;j+1 has

to be calculated.

3. The 2-D DST coe�cients of the input blocks are never calculated during the algorithm.

During the column pass, we obtain a 2-D mixed DST/DCT domain block Xsc
i;j

�
= TXc

i;j,

which corresponds to the DCT of the spatial rows and to the DST of the columns. Similarly,

during the row processing, the algorithm operates on 2-D mixed DCT/DST domain blocks

Zcs
i;j

�
= Zc

i;jT
t.

4. Similarly to the situation in item 2 above, at a given step (i; j), only the mixed DST/DCT

block Xsc
i+1;j+1 needs to be calculated at the beginning of the �rst pass, since Xsc

i;j+1 and

Xsc
i�1;j+1 were previously calculated and are assumed to be stored. In the same way, Zcs

i;j and

Zcs
i;j�1 are also available, so only the 2-D mixed DCT/DST block Zcs

i;j+1 has to be calculated

at the beginning of the row pass.

5. The 2-D mixed DST/DCT (resp. DCT/DST) coe�cients can be calculated using the same

1-D CST algorithm as before by applying the latter to each separate column (resp. row) of

the input 2-D DCT block. Similarly, the same 1-D SCT algorithm as before can be used

within the �ltering process.

5.1 Combining the Scaling Matrices with the Kernels and Quantizers

Typically, the input DCT blocks are obtained from the dequantization step of a JPEG decoding

procedure, whereas the output is fed to the quantizer of a JPEG encoder (as seen in Fig. 1(b)). In

this case, substantial savings in multiplications can be obtained by absorbing the scaling matrices

D̂ and 2D in the kernel matrices V r
i and Hr

i , i 2 fcc; ss; cs; scg and r 2 f+;�g, and in the

quantization/dequantization look-up tables.

We assume, therefore, that each input block Xc
i is the result of element-by-element multiplica-

tion of a certain quantized block by a dequantization matrix Qd. Moreover, the outputW c
i serves

as an input to a quantizer that divides it by a quantization matrix Qq (usually identical to Qd)

element-by-element.
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dures, corresponding to the multiplication by T and T t, respectively, by their unscaled versions,

corresponding to the multiplication by �� and ��, respectively.

By extending eq. (32) to the 2-D separable case considered above, and using the relationship

between T and � (eq. (40)), one can show that the following further modi�cations should be

performed in order to preserve the validity of the algorithm.

� One has to alter the quantization/dequantization tables in the following way:

Qd  4DQdD; Qq  D�1QqD�1=4: (45)

Note that, given the same quantized input data as before, the dequantized input blocks are

now given by 4DXc
iD, instead ofXc

i . Similarly, assuming that the the same quantized output

data is produced as before, the output �ltered blocks are now given by D�1W c
iD

�1=4.

� The kernel matrices must be modi�ed as follows:

Acc  D�1AccD
�1=4; Acs  D�1AcsD̂=2;

Ass  D̂AssD̂; Asc  D̂AscD
�1=2; (46)

where A denotes any of the symbols: fV +;V �;H+;H�g.

The modi�ed algorithm is signi�cantly more e�cient than the original one since it avoids the scaling

steps involving the matrices D̂ and D without any degradation at the output.

6 Complexity Analysis

In this section, we compare the proposed �ltering scheme and previously reported schemes in

terms of computational complexity. Two sets of results will be presented: Theoretical complexity,

expressed in terms of the number of multiplications m and additions a, required for processing

of each 8 � 8 output block, and actual running times in computer simulations with real grayscale

images.

6.1 Data Sparseness

An important factor to be taken into account in the implementation is that of typical sparseness

of the quantized DCT input data blocks. We de�ne a DCT coe�cient block as sparse if only its
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elements. A very high percentage of the DCT blocks usually satisfy this requirement, which is fairly

easy to check directly in the compressed format.

Incorporating the sparseness above de�ned assumption into the modi�ed CST algorithm, pro-

posed in section 4.4, results in 7 multiplications and 17 additions, as opposed to 8 multiplications

and 28 additions in the general case. On the top of this advantage, sparseness also saves multi-

plications and additions during the DCT-domain �ltering process itself, since null coe�cients need

not be processed.

Unfortunately, DCT-domain block sparseness is not generally preserved after conversion to the

DST domain. On the other hand, mixed DCT/DST and DCT/DST blocks have half the \amount

of sparseness" of that of sparse DCT blocks. Speci�cally, if the corresponding DCT block is sparse,

then the last 4 rows (resp. columns) of the mixed DCT/DST (resp. DST/DCT) block are null.

These facts are accounted for in the following e�ciency analysis.

6.2 Computational E�ciency and Comparison to Other Approaches

6.2.1 Theoretical Analysis

In the complexity analysis presented here, the �ltering cases are given in terms of kernel type

and data sparseness. The kernel type is either general, symmetric, causal, or causal-symmetric,

where each type is related to a di�erent implementation of the proposed algorithm, as detailed in

Section 4.3. For causal or causal-symmetric kernels, non-sparse data refers to the case where at

least one of the 4 causal input blocks Xc
u;v, i � 1 � u; v � i, is not sparse, whereas sparse data

means that all the 4 blocks are sparse. For general or symmetric kernels, these de�nitions are the

same, but w.r.t. the nine input blocks i� 1 � u; v � i+ 1.

The computational complexity of the proposed 2-D separable �ltering scheme has been calcu-

lated for the di�erent �ltering cases, and are presented in Table 3. Computation and implementa-

tion details for the causal-symmetric case can be found in Table 4. The other cases have similar

derivations, which can be found in [13].

Let us compare the complexity of the proposed scheme to that of three other approaches:

1. The spatial domain approach, where the input DCT blocks are �rst transformed to the

spatial domain, then spatial convolution is applied, and �nally, the result is re-transformed to

the DCT domain. We will assume here that the same fast DCT and IDCT algorithms as the
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algorithms require 5 multiplications and 29 additions each, assuming that the scaling matrix

D is combined with the quantization/dequantization tables. For non-symmetric �ltering, the

spatial domain approach requires (128L + 160) multiplications and (128L + 800) additions

per 8�8 output block, where L�L is the size in pixels of the region of support of the kernel.

For symmetric �ltering, (64L+224) multiplications and (128L+800) additions are required.

These results hold regardless of the amount of sparseness in the data.

2. The Pipeline approach by Lee and Lee, presented in [7]. In this approach, the product

of the operator matrices corresponding to the IDCT, the convolution, and the DCT is pre-

computed, and the resulting combined matrix is then applied directly in the DCT domain.

In this operation, the contributions of the neighboring blocks are incorporated similarly as in

(20). Complexity results for this approach are given in Table 5.

3. The Butter
y approach presented by Merhav and Bhaskaran in [14]. This approach is

similar to the Pipeline approach, but certain butter
ies are created on the input data, prior to

the DCT domain �ltering. This was shown [14] to cause the �ltering kernels to become much

sparser than in the Pipeline approach, which leads to savings in complexity. The butter
y

approach was developed for symmetric kernels only, in which case careful implementation

leads to a complexity of 1152m + 1536a, for non-sparse data, and 432m + 528a, for sparse

data, for any �lter size up to 17� 17 pixels.

In order to compare the above approaches, we consider the overall number of operations required

by each approach. To this end, we will assume a processor for which each multiplication is roughly

equivalent to 3 additions on the average (e.g., PA-RISC processor). For this case, the number of

operations for the di�erent approaches is summarized in the graphs shown in Figure 4. In these

graphs, six schemes are compared for each kernel type: The spatial domain scheme for small,

medium, and large size kernels, the Pipeline, the proposed, and the Butter
y schemes. For general

and symmetric kernels, the terms small, medium, and large size kernels refer to kernels of sizes

3 � 3, 9 � 9, and 17 � 17, respectively. For causal or causal-symmetric kernels, they refer to the

sizes 3 � 3, 5 � 5, and 9 � 9. Notice that the complexity of the spatial domain scheme does not

depend on data sparseness, whereas that of the other schemes do not depend on the kernel size.

Notice also that the Butter
y scheme is considered only for symmetric kernels.

From the above graphs, one can conclude the following:
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causal or causal-symmetric �ltering (see discussion below), then the proposed scheme is the

best option in terms of complexity: In the causal case, it saves 17-61% of the number of oper-

ations required by any other scheme, depending on the kernel size. In the causal-symmetric

case, the range becomes 35-64%.

� For sparse data and general kernel, the proposed scheme is the best one for medium-size and

large kernels.

� If the data is not sparse, then the proposed scheme is the most e�cient DCT-domain approach.

It is also more e�cient than the spatial domain approach for large kernels, and also for medium

kernels in the symmetric and causal-symmetric cases.

6.2.2 Real-Data Simulations

The causal-symmetric version of the proposed algorithm and the spatial domain approach were

implemented in C, and applied to several 512� 512 grayscale images on an HP J-200 workstation.

Sharpening �lters were used, with sizes 3 � 3, 5 � 5, and 9 � 9. The algorithm addresses each

input block as if it is non-sparse, but eventual sparseness contributes to complexity reduction since

multiplications and additions by zero usually have low computation cost. The scaling matrices were

embedded in quantization/dequantization in both schemes. The results are given in Table 6, and

one can see that they roughly agree with the theoretical analysis.

6.3 Causal Versus Noncausal Kernels

The proposed approach is much more e�cient in the causal (resp. causal-symmetric) case than in

the general (resp. symmetric) case, as seen in Figure 4. Also, the causal versions use half of the

memory that is used in the noncausal versions of the approach.

However, causal kernels are seldom encountered in image processing applications, while the use

of symmetric kernels is fairly common. How could one take advantage of the e�ciency of the causal

versions of the algorithm to implement a noncausal �ltering?

If a given symmetric 2-D �lter is not longer than 9 taps in each dimension, then it can always

be trivially transformed into a causal-symmetric kernel, simply by applying a 4-pixel shift (in each

dimension) to its spatial coe�cients. In this case, the use of this causal-symmetric version of an

original symmetric kernel, instead of the symmetric kernel itself, results in a 4-pixel shift of the
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those involving human visualization. On the other hand, as mentioned above, it leads to great

savings in computations (about 36%) and in memory requirements (50%).

Similar considerations apply also for using causal kernels instead of general kernels. In this case,

on the other hand, the shift is not restricted to 4 pixels; the smallest number of pixels that turns

the kernel into a causal kernel can be used.

7 Conclusion

In this work, we propose an e�cient �ltering scheme, to be applied directly to DCT data blocks given

in JPEG/MPEG applications. The scheme also outputs the �ltered data in the same DCT format.

It is based on the convolution-multiplication properties of the discrete trigonometric transforms, and

it requires the calculation of DST coe�cients, which are used together with the DCT coe�cients

in the �ltering process. A fast CST (cosine to sine transform) was thus derived, to reduce the

computational overhead of this operation. No zero-padding of the input data is required or assumed.

Four versions of the approach are proposed: For general, symmetric, causal, and causal-symmetric

kernels.

The 2-D separable version of the proposed algorithm is compared to previous DCT-domain

approaches and the straightforward approach of converting back to the pixel domain, convolving,

and re-transforming to the DCT domain. It was demonstrated that, by taking into account the

typical sparseness of the input DCT-data, the proposed algorithm provides the best results for

symmetric �ltering, if a 4-pixel translation of the image in both directions is allowed (causal-

symmetric �ltering). In this case, 35-64% of the computations are saved, depending on the kernel

size. The approach is also typically the most e�cient for long or medium-length, non-symmetric,

kernels. Twice as much memory is required by the proposed algorithm in comparison to the others,

since DCT and DST coe�cients are to be temporarily stored, instead of only the spatial data (as

in the straightforward approach) or only the DCT coe�cients (as in the DCT-domain schemes).

A nonseparable version of the algorithm was also derived, and is now under study. It is based

on a direct extension of the DTT CMP's to 2-D signals. The proposed scheme is expected to be

even more e�cient (relatively to the spatial domain approach) in the nonseparable case than in the

separable one.
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input index ranges output
"a "b x(n) y(n) index range Ta Tb Tc

HSHS WSWS 0! N � 1 0! N 0! N � 1 C2e C1e C2e
HAHA WSWS 0! N � 1 0! N 0! N � 1 S2e C1e S2e
HSHS WAWA 0! N � 1 1! N � 1 0! N � 1 C2e S1e S2e
HAHA WAWA 0! N � 1 1! N � 1 0! N � 1 S2e S1e �C2e
Table 1: Convolution-multiplication properties of DCT and DST of types Ie and IIe.

p H+
p H�

p

cc 1
4D

�
fC1e[2�h0; h1; : : : ; hN�1; 2hN ]gN�1

0

�
1
4D

�
fC1e[2�h0; h�1; : : : ; h�(N�1); 2h�N ]gN�1

0

�
ss 1

4D
�
fC1e[2�h0; h1; : : : ; hN�1; 2hN ]gN1

�
1
4D

�
fC1e[2�h0; h�1; : : : ; h�(N�1); 2h�N ]gN1

�
cs 1

4D�1 (S1e[h1; : : : ; hN�1])
1
4D�1

�
S1e[h�1; : : : ; h�(N�1)]

�
sc 1

4D1 (S1e[h1; : : : ; hN�1])
1
4D1

�
S1e[h�1; : : : ; h�(N�1)]

�

Table 2: Filter kernels.

Complexity of the Proposed Scheme

Data Type
Non-Sparse Sparse

Kernel Type m a m a

General 1216 2688 716 1516
Symmetric 736 1984 448 1124
Causal 736 1728 448 980
Causal-Symmetric 512 1280 296 688

Table 3: Computational e�ciency of the proposed 2-D separable scheme (according to data and kernel
types) in terms of number of multiplications and additions required for processing each 8� 8 output block.

24



JPEG decoding

Spatial filter

Huffman
decoding

Dequantize IDCT
Input
image

in JPEG
format

JPEG encoding

Huffman
encoding

Quantize DCTimage
in JPEG
format

Filtered

(a)

Huffman
decoding

Dequantize

filter

Input
image

in JPEG
format

Huffman
encoding

Quantizeimage
in JPEG
format

Filtered

DCT domain

(b)

Figure 1: Spatial �ltering of compressed images: (a) Straightforward spatial approach, and (b)
direct DCT-domain approach.
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Figure 2: Flow graph of the proposed �ltering scheme for (a) symmetric kernels and (b) causal kernels. The
lines in the graph refer to N -point vectors, the bullets to element-by-element addition, the small triangles
to element-by-element multiplication, the large triangles to matrix multiplication, and the \D" boxes to a
1-step delay.
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F (n), n = 0; : : : ; 7, denote the input and output vectors, respectively.
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processing each 8 � 8 output block. Number of operations is calculated here assuming each multiplication
to be equivalent to three additions, i.e., op = 3m+ a.
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Loop commands Complexity
for each \step (i; j)" Non-sparse Sparse

data data

Xsc
i�1;j  Xsc

i;j

Zc
i;j�1  Zc

i;j

Zcs
i;j�1  Zcs

i;j

Xsc
i;j  Column-UCST(Xc

i;j) 8� (8m+ 28a) = 4� (7m+ 17a) =

64m+ 224a 28m+ 68a

E1  Xc
i;j +	Xc

i�1;j 64a 16a

E2  Xsc
i;j �	Xsc

i�1;j 64a 32a

Odd rows of B  �V +
scE1 32m 8m

Even rows of B  V +
ssE2 32m 16m

B  Column-USCT(B) 8� (8m+ 28a) = 4� (8m+ 28a) =
64m+ 224a 32m+ 112a

Odd rows of Zc
i;j  V +

ccE1 +Odd rows of B 32m+ 32a 8m+ 8a

Even rows of Zc
i;j  V +

csE2 + Even rows of B 32m+ 32a 16m+ 16a

Zcs
i;j  Row-UCST(Zc

i;j) 8� (8m+ 28a) = 8� (7m+ 17a) =

64m+ 224a 28m+ 68a

E1  Zc
i;j +Z

c
i;j�1	 64a 32a

E2  Zcs
i;j �Zcs

i;j�1	 64a 64a

Odd columns of B  �E1(H
+
sc)

t 32m 16m

Even columns of B  E2H
+
ss 32m 32m

B  Row-USCT(B) 8� (8m+ 28a) = 8� (8m+ 28a) =
64m+ 224a 64m+ 224a

Odd columns of W c
i;j  E1H

+
cc +Odd columns of B 32m+ 32a 16m+ 16a

Even columns of W c
i;j  E2(H

+
cs)

t + Even columns of B 32m+ 32a 32m+ 32a

Total 512m + 1280a 296m+ 688a

Table 4: Implementation of the proposed scheme for causal-symmetric �ltering. Embedding of
scaling matrices in quantization/dequantization tables and �ltering kernels is assumed. Column-
UCST (resp. USCT) means performing 1-D unscaled CST, �� (resp. 1-D unscaled SCT, ��) of
each separate column of the input block. Similarly for Row-UCST and Row-USCT. E1, E2, and B
denote 8� 8 bu�ers. Even and odd columns/rows refer to the indexing f1; : : : ; 8g.

Complexity of the Pipeline Scheme

Data Type
Non-Sparse Sparse

Kernel Type m a m a

General 3072 2944 1152 1088
Symmetric 2560 2432 960 896
Causal 2048 1920 768 704
Causal-Symmetric 1664 1536 624 560

Table 5: Computational e�ciency of the Pipeline scheme, proposed in [7].
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Spatial domain scheme Proposed scheme
3� 3 5� 5 9� 9

Average running time (secs.) 2.55 2.74 3.18 2.35

Table 6: Simulation results on 512 � 512 grayscale images. The running times correspond to
processing only; I/O procedures were not considered.
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