Fast Algorithms for DCT-Domain Image Down-Sampling and
for Inverse Motion Compensation

Neri Merhav* Vasudev Bhaskaran!

Abstract

Straightforward techniques for spatial domain processing of compressed video via
decompression and re-compression are computationally expensive. We describe an al-
ternative approach wherein the compressed stream is processed in the compressed, DCT
domain without explicit decompression and spatial domain processing, so that the out-
put compressed stream corresponds to the output image and it conforms to the standard
syntax of 8 x 8 blocks. We propose computation schemes for down-sampling and for in-
verse motion compensation, that are applicable to any DCT-based compression method.
Worst-case estimates of computation savings vary between 37% and 50% depending on
the task. For typically sparse DCT blocks, the reduction in computations is more dra-
matic. A byproduct of the proposed approach is improvement in arithmetic precision.

*N. Merhav is with the Department of Electrical Engineering and HP Israel Science Center, Technion
City, Haifa 32000, Israel. He is currently on Sabbatical leave at HP Laboratories, 1501 Page Mill Road, Palo
Alto CA 94304, USA.

V. Bhaskaran is with the Visual Computing Department, HP Laboratories, 1501 Page Mill Road, Palo
Alto, CA 94304, USA.

1 Introduction

Many video compression methods, like MPEG and H.261, use transform domain techniques,
in particular, the discrete cosine transform (DCT). Certain applications require real time
manipulation of digital video in order to implement image composition and special effects,
e.g., down-sampling, modifying contrast and brightness, translating, filtering, masking, ro-
tation, inverse motion compensation, etc. There are two major difficulties encountered in
this class of tasks: the computational complexity of image compression and decompression,
and the high rates of the data to be manipulated. These difficulties rule out the possibility
of running, on currently existing workstations, the traditional algorithms that first decom-
press the data, then perform one of these manipulations in the decompressed domain, and
finally, compress again if necessary. For this reason there has been a great effort in recent
years to develop fast algorithms that perform these tasks directly in the transform domain
(see e.g., [?], [?], [?] and references therein) and thereby avoid the need of decompression
or at least its computational bottleneck - the inverse DCT (IDCT) which requires 38.7% of
the execution time on a typical workstation|?].

As an example, consider a video conferencing session of several parties, where each one
of them can see everybody else in a separate window on his screen. Every user would like
to have the flexibility to resize windows, move them from one location on the screen to
another, and so on. Since each workstation is capable of handling one video stream only,
the server must compose the streams from all parties to a single stream whose architecture
depends on the user’s requests. If one user wishes, say, to scale down by a factor of 2
a window corresponding to another user and move it to a different place on the screen,
this might affect the entire image. This simple operation requires at least two processing
functions to be carried out, one is the down-sampling operation and the other is inverse
motion compensation, which removes dependency between successively encoded frames and
hence enables the composition of two or more digital video streams. It should be pointed out
that the operation of inverse motion compensation is useful not only in compositing video
streams, but might have other applications as well, such as video editing (e.g., trimming)
and transcoding from MPEG to JPEG.!

The traditional and expensive approach would be that all compressed video streams are

'In this case, the system depicted in Fig. ??(c) would have to be applied to all frames prior to the new
start frame, back to the last intra-coded frame.

first fully decompressed at the server, then the desired change is translated into a suitable
arithmetic operation on the decompressed video streams with the appropriate composition
into a single stream, and finally, the composite stream is compressed again and sent to the
user. A great deal of the computational load is in the DCT and IDCT operations and this
drives us to seek fast algorithms that perform the desired modifications directly in the DCT
domain (see Fig. 77).

In this work, we focus on speeding up two types of processing operations and compare
to the traditional approach. The first is down-sampling and the second is inverse motion
compensation. Since both kinds of operations are linear, the overall effect in the DCT
domain is linear as well and hence the basic operation can be represented as multiplication
by a fixed matrix. Fast multiplication by a fixed matrix is possible if it can be factorized
into a product of sparse matrices whose entries are mostly 0, 1 and —1. We will demon-
strate that this can be done efficiently for both tasks of down-sampling and inverse motion
compensation by taking advantage of the factorizations of the DCT and IDCT operation
matrices that correspond to the fast 8-point Winograd DCT/IDCT due to Arai, Agui, and
Nakajima [?] (see also [?]).

The resulting schemes for down-sampling save about 37% of the operations? for a down-
sampling factor of 2, 39% for down-sampling by 3, 50% for a factor of 4, and 47% for
inverse motion compensation. These are ‘worst-case’ estimates in the sense that nothing is
assumed on sparseness in the DCT domain. Typically, in a considerably large percentage
of the DCT blocks all the DCT coefficients are zero except for the upper left 4 x 4 quadrant
that corresponds to low frequencies in both vertical and horizontal directions. If this fact
is taken into account, then computation reductions can reach about 70-80%.

Another advantage of the proposed method is that it improves the precision of the
computations as compared to the traditional approach. The reason for this will become
apparent later on when we describe the method in detail. The degree of improvement in
precision varies between 1.5-3dB.

The outline of the paper is as follows. In Section 2 we provide some preliminaries and
describe the problems of down-sampling and inverse motion compensation. In Section 3,

we provide a detailed derivation of the down-sampling method by a factor of 2, first, in

?Here the term “operation” corresponds to the basic arithmetic operation of a typical processor which is
either “shift”, “add”, “shift-one-and-add” (SH1ADD), “shift-two-and-add” (SH2ADD), and “shift-three-and
add” (SH3ADD).

the one-dimensional case and then in the two dimensional case. We also demonstrate how
our method improves both computational complexity and arithmetic precision. In Section
4, we derive the inverse motion compensation algorithm and evaluate its computational

complexity.

2 Preliminaries and Problem Description

The 8 x 8 2D-DCT transforms a block {z(n, m)};’m:0 in the spatial domain into a matrix

of frequency components {X (k, l)}lz,lzo according to the following equation

c(k) e(l) ~ & 2n+1 2m + 1
X(k,1) = =55 EZ: EZ:) cos(T k) cos(

L) (1)

where ¢(0) = 1/v/2 and ¢(k) = 1 for k > 0. The inverse transform is given by

k) c(l 2 1 2 1
Lc—)X(k,l)cos(nt - k) cos(mt

~—

(
5 5). (2)

M~
M~

z(n,m) =
k

I
<)
—
Il
<)

In a matrix form, let = {z(n,m)}] ,_

o and X = {X(k, 1)} ;o Define the 8-point DCT

matrix S = {S(ka”)}z,n:m where

c(k) 2n+1

s(k,n) = cos(T:

k). (3)

Then,
X = SzSt (4)

where the superscript ¢ denotes matrix transposition. Similarly, let the superscript —t

denote transposition of the inverse. Then,
x=S5'XSt=5XS (5)

where the second equality follows from the unitarity of S. We next give a formal description
of the problems of down-sampling and inverse motion compensation.

Down-sampling: Suppose we are given four adjacent 8 x 8 spatial domain data blocks
1,9, x3, and x4 that together form a 16 x 16 square, where 2 corresponds to northwest,
@2 to northeast, 3 to southwest and x4 to southeast. Down-sampling (decimation) by a
factor of 2 in each dimension means that every non-overlapping group of 4 pixels forming

a small 2 x 2 block is replaced by one pixel whose intensity is the average of the 4 original

pixels.? As a result, the original blocks @1, ..., x4 are replaced by a single 8 x 8 output block
x corresponding to the decimation of xq,...,x4. Our task is to calculate efficiently X, the
DCT of @, directly from the given DCT’s of the original blocks X1, X9, X3, and X4. (See
Figs ??(b) and ?77.)

Motion compensation of compressed video [?], [?] (see also [?]) means predicting each 8 x 8
spatial domain block x of the current frame by a corresponding reference block & from a
previous frame and encoding the resulting prediction error block e = & — & by using the
DCT. The best matching reference block & may not be aligned to the original 8 x 8 blocks
of the reference frame (see Figs 77(c) and ??). In general, the reference block may intersect
with four neighboring spatial domain blocks, henceforth denoted 1,2, 3, and x4, that
together form a 16 x 16 square, where x; corresponds to northwest, x5 to northeast, xs to
southwest and x4 to southeast.

Our goal here is to compute the DCT X of the current block @ = & + e from the given
DCT E of the prediction error e of the block in the current frame, and the DCT’s X1, ..., X4
of the corresponding previous frame blocks, @1, ..., ¢4, respectively. Since X = X + E, X
being the DCT of &, the main problem that remains is that of calculating X directly from
Xq,...,X4.

Let the intersection of the reference block & with x; form a h x w rectangle (i.e., h rows
and w columns), where 1 < h < 8 and 1 < w < 8. This means that the intersections of &
with @ ,x3, and x4 are rectangles of sizes h x (8 —w), (8 — h) x w, and (8 — h) x (8 — w),
respectively. Following Chang and Messerschmitt [?], it is readily seen that & can be

expressed as a superposition of appropriate windowed and shifted versions of x1,...x4, i.e.,
4

&= camicio, (6)
i=1

where ¢;;, i = 1,...,4, j = 1,2, are sparse 8 x 8 matrices of zeroes and ones that perform
window and shift operations accordingly. The basic idea behind the the work of Chang

and Messerschmitt [?] is to use the distributive property of matrix multiplication w.r.t. the

®This simple averaging corresponds to a commonly used antialiasing filter. Other specific filters can be
considered as well using the same methods that we present below. It is not guaranteed, however, that every
reasonable anti-aliasing filter implemented by these methods would give a smaller complexity in the DCT
domain than in the spatial domain.

*In some of the frames (B-frames) blocks are estimated from both past and future reference blocks. For
the sake of simplicity, we shall assume here that only the past is used (P-frames). The extension to B-frames
is straightforward.

DCT. Specifically, since SS = I, eq. (??) may be rewritten as
4
= ZcilstSJ}iStSCig. (7)
i=1
Next, by pre-multiplying both sides of (??) by S, and post-multiplying by S*, one obtains
R 4
X =) CuX,Cp. (8)
i=1
where Cj; is the DCT of ¢;;. Chang and Messerscmitt [?] proposed to precompute the
fixed matrices C;; for every possible combination of w and h, and to compute X directly
in the DCT domain using eq. (??). Although most of the matrices Cj; are not sparse,
computations can still be saved on the basis of typical sparseness of {X;}, and due to the
fact the reference block might be aligned in one direction (either w = 8 or h = 8), which
means that the right-hand side of eq. (?7?) contains two terms only, or in both directions
(w = h = 8), in which case £ = x; and hence no computations at all are needed. In

Section 4, we develop an algorithm that is efficient even when the sparseness or alignment

constraints are not satisfied.

3 Down-sampling

3.1 The Basic Idea

For the sake of simplicity, let us confine attention first to the one dimensional case and a
down-sampling factor of 2. The two dimensional case will be a repeated application for every
row and then for every column of each block. In this case, we are given two 8-dimensional
vectors X1 and X9 of DCT coefficients corresponding to adjacent time domain vectors of
length 8, 2y = S~1X; and x5 = S~ ' X5, and we wish to calculate X, the DCT of the 8-
dimensional vector &, whose each component is the average of the two appropriate adjacent
components in &; or xs.

It is convenient to describe the decimation operation in a matrix form as follows.

T = %(lel + Q22) (9)

where

O
=
I
OO OO OO O -
OO OO OO O -
S O O OO OO
S O O OO O~ Oo
OO O OO = OO
OO O OO = OOo
SO OO RO OO
SO OO =R O OO

and

Q2 =

O O Ok OO oo
O O Ok OO oo
OO = O OO OO
OO = O OO OO
O = OO O o O O
O = OO O o o O
_ o O O O O o O
_ o0 O O O O o O

Therefore,

1
X = 5(sqzlsflx1 +5Q51X5). (10)

We shall now focus on efficient factorizations of the matrices Uy = SQ:S~! and U, =
SQ2S~ . To this end, we shall use a factorization of S that corresponds to the fastest
existing algorithm for 8-point DCT due to Arai, Agui, and Nakajima [?] (see also [?]),
which is based on the Winograd algorithm. According to this factorization S is represented
as follows.

S = DPByByM Ay Ay As (11)

where D is a diagonal matrix given by
D = diag{0.3536,0.2549, 0.2706, 0.3007,0.3536, 0.4500, 0.6533,1.2814 }, (12)

P is a permutation matrix given by

OO O = OO oo
O = OO OO oo
OO =R O OO OO
_ O O O O O o O

OO OO O oo
O O O O O = OO
OO OO OO =O
OO OO = O OO

and the remaining matrices are defined as follows:

0
0
0

0 0
0 0
0 0
0 0
10
01
01
-1

10 00
0100

0 010

0 001

0

0 00O
0 000
0 00O
0 000

1
—1
0

0

0

0 0
00

0
0

0 0

-1 1 0
0

000 -1 01

0

0

By

0 0 07071 O

—0.3827 0

0

—0.9239

0 0

0

0
0.9239 0

0 0.7071
—0.3827

0
0 0

0

0

1000000
-1 0 0 0 0 0 O

1
1

0110000
0 01 00O0GO
0 001O0O0GO
000 01O0O0

0
0
0

0 000O0T1TPO
000 O0O0O0T1

0
0
0

-1

01

0
-1 0 0

0
-1

1
0

— O

1

Ag =

1 o000 0 0 0 1
0100 O 0 1 O
60010 o0 1 0 O
Ay = 0 001 1 0 0 0
0001 -1 0 0 O
0o0o1o0o O0-1 0 O
060100 O 0 -1 0
1000 O 0 0 -1

Thus, for i = 1,2 we have
Ui=SQiS ' = DPB1BsMA Ay A3Q A P AP A M 'B By P'DY (13)
The proposed decimation algorithm is based on the observation that the products
Fi= MA Ay A3Q; Ay P A AT M i=1,2 (14)

are fairly sparse matrices, and most of the corresponding elements are the same, sometimes
with a different sign. This means that their sum Fy = Fj + F5 and their difference F. =

Fy — F5 are even sparser. These matrices are given as follows.

2 0 0 0 0 0 0 0
0 0 2.8285 0 0 0 0 0

0 0 0 0 0 0 0 0

po_ |00 0 0 0 0 0 0
7 loo0 0 0 —0.7071 0 —1.7071 0
0 0 0 0 0 0 0 0

0 0 0 0 02929 0 0.7071 0

0 0 0 0 —0.3827 0 0.9239 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 07653 0 1.8477 0

P 0 0 0 0 —0.7653 0 1.8477 0
- 0.5412 0 0 0 0 0 0 0
0.7071 0 -1 0 0 0 0 0

1.3066 0 0 0 0 0 0 0

0.5000 0 0.7071 0 0 0 0 0

Finally, we use the following simple relation:

1

X = §(U1X1+U2X2)

1

AU+ 02)(X1 + X)) + (Ur = U2) (X1 — X))
1

= ZDPBlBg[FJnglBl’lP’ID’I(X1 + X)) +

F By'B{'P D 7YX, — X)) (15)

Let us count the number of basic arithmetic operations on a typical processor (e.g., PA-
RISC [?]) that are needed to implement the right-most side of (??) and compare it to the
spatial domain approach. As explained earlier, here the term “operation” corresponds to
the elementary arithmetic computation of such a processor which is either either “shift”,
“add”, or “shift and add” (SH1IADD, SH2ADD, and SH3ADD). For example, the compu-
tation z = 1.375z + 1.125y is implemented as follows: First, we compute v = x + 0.5z
(SH1ADD), then v = z + 0.25u (SH2ADD), afterwards w = v + y (ADD), and finally,
z = w + 0.125y (SH3ADD). Thus, overall 4 basic operations are needed in this example.
The non-trivial multiplications of both the standard spatial domain approach and the al-
gorithm proposed herein were efficiently converted to “operations” by using this type of
implementation method.

When counting the operations, we will also use the fact that multiplications by D and
D! can be ignored because these can be absorbed in the MPEG quantizer and dequantizer,
respectively. The matrices P and P! cause only changes in the order of the components
so they can be ignored as well. Thus we are left with the following (in parentheses, we de-

tail also the number of additions/subtractions and the number of nontrivial multiplications):

Creating X7 + X9 and X1 — X9: 16 operations (16 additions).

Two multiplications by By ': 16 operations (8 additions).

Two multiplications by By, ': 16 operations (8 additions).
Multiplication by F.: 23 operations (5 multiplications + 5 additions).
Multiplication by F_: 28 operations (6 multiplications + 4 additions).
Adding the products: 8 operations (8 additions).

Multiplication by Bs: 4 operations (4 additions).

Multiplication by Bj: 4 operations (4 additions).

Total: 115 operations (11 multiplications + 57 additions).

In the spatial domain approach, on the other hand, if we use the above mentioned Wino-
grad DCT algorithm [?] (which is the fasted known DCT algorithm to date), we have the

following;:

Two IDCT’s: 114 operations (10 multiplications + 58 additions).

10

Down-sampling by two in spatial domain: 8 operations (8 additions).
DCT: 42 operations (5 multiplications + 29 additions).

Total: 164 operations (15 multiplications + 95 additions).

It turns out, as can be seen, that the proposed approach saves about 30% of the opera-
tions in the one-dimensional case. We shall see later on, in the two-dimensional case, that
by using the same ideas, we obtain even greater reductions in complexity.

As a byproduct of the proposed approach, it should be noted that arithmetic precision
is gained. Since in the direct approach, we actually multiply by each one of the matrices on
right hand side of (?7) one at a time, then roundoff errors, associated with finite word length
representations of the elements of these matrices, accumulate in each step. On the other
hand, in the proposed approach, we can precompute F; once and for all to any desired degree
of precision, and then round off each element of these matrices to the allowed precision. The

latter has, of course, better precision. More details will be provided in subsection 3.3.

3.2 The Two-dimensional Case

Let us now return to the two dimensional case. A 2D-DCT is just 1D-DCT applied to every
column and every row of the spatial domain block. Therefore, the very same ideas can be
applied to the two dimensional case as well. In this subsection we describe in detail the
computation schemes for down-sampling by a factor of 2. Similar ideas can be applied to
other down-sampling factors. (See [?] for more detail on factors of 3 and 4.)

Similarly as in the one dimensional case, we have in the spatial domain
2= Q1@ + Qi) + QomsQl + Qi) (16)
and therefore, in the frequency domain,
X = i(UIXIUf + U1 X oUj + Us X 3Uf + Us X 4U3) (17)

Again, we would like to express the right-hand side of (??) in terms of U, = Uy + Uy =
DPB1ByF,By'B;'P 'D ' and U = Uy + Uy = DPBBoF B, 'B;*P'D!. To this
end, let us define

Xy =X1+ X+ X3+ Xy, (18)

X, =X1+X,—-X3— Xa, (19)

11

X . =X;1- X+ X3 Xy, (20)

and

X . =X;—-X,- X3+ Xy (21)

Note that to create all these linear combinations, we need only 8 (and not 12) addi-
tions/subtractions per frequency component: We first compute X; + X9 and X3 + X4
and then (X1 + X9) £ (X34 X4) and (X1 — X9) £ (X3 — X4). Now, eq. (??) can be

rewritten as

1
X = E(U+X+++Ui +U X, UL+ULX U +U X U

1
= —DPB;By-
16 152

(FyBy'By'"P'D'X, , +F B,'B;'"P'D X, D 'P'B/'B,'F! +
(F,B,'B{'P'D'X |, +F B;'B/'P'D'X_ _,)D'P'B;'By'F!].

BLBiP!'D" (22)

If we count the the number of operations associated with the implementation of the right-
most side of eq. (?7?) (similarly as in the previous section), we find that the total is 2824. The
traditional approach, on the other hand, requires 4512 operations. This means that 37.4%
of the operations are saved. Similar down-sampling algorithms for factors of 3 and 4 [?] yield
reductions of 39% and 50%, respectively, compared to the spatial domain counterparts.
Additional savings in computations can be made by taking advantage of the fact that in
typical images most of the DCT blocks X ; have only a few nonzero coefficients, normally,
the low frequency coefficients. A reasonable possibility might be to use a mechanism that
operates in two steps. In the first step, DCT blocks are classified as being lowpass or
non-lowpass, where the former is defined as a block where, say, only the upper left 4 x
4 sub-block is nonzero. The second step uses either the computation scheme described
above for non-lowpass blocks, or a faster scheme that utilizes the lowpass assumption for
the precomputation of the above matrix multiplications. It turns out that if Xq,..., X4
are all lowpass blocks, then the reduction in computations is about 80% in the case of
down-sampling by a factor of 2. Of course, these figures correspond to the case where the
competing spatial domain approach is ‘hard-wired’ in the sense that the DCT and IDCT

operations are not allowed to take advantage of the sparseness of the DCT-domain data.

12

In the same manner, one may consider reduced versions of the fast DCT/IDCT algorithm

that take into account sparseness as well.
3.3 Arithmetic Precision

As explained in the last paragraph of Section 3.1, the proposed computation scheme provides
better arithmetic accuracy than the standard approach. To demonstrate this fact we have
tested both schemes for the case of down-sampling by a factor of 2, where each element in
the fixed matrices of eq. (?7) is represented by 8 bits.

In the first experiment, we have the chosen the elements of xi,..., x4 as statistically
independent random integers uniformly distributed in the set {0,1,...,255}. We first com-
puted & (and then X)) directly from @y, ..., 24 for reference. We then computed the DCT’s
X1,..., X4 where all DCT coefficients are quantized and then dequantized according to a
given quantization matrix A. From X7, ..., X4, we have computed X using both the stan-
dard approach and the proposed approach, and compared to the reference version, where the
precision in each approach was measured in terms of the sum of squares of errors (MSE)
in the DCT domain (and hence also in the spatial domain). For the case where A was
an all-one matrix, the MSE of the proposed approach was about 3dB better than that of
the standard approach. For the case where A was the recommended quantization matrix of
JPEG for luminance [?, p. 37], the proposed approach outperformed the standard approach
by 1.2dB. These results are reasonable because when the step sizes of the quantizer increase,
quantization errors associated with the DCT coefficients tend to dominate roundoff errors
associated with inaccurate computations.

The second experiment was similar but that test data that was a real image (“Lenna”)
rather than random data. Now, for the case where A was the all-one matrix, the standard
approach yielded SNR of 46.08dB while the proposed approach gave 49.24dB, which is again
a 3dB improvement. For the case where A was the JPEG default quantizer, the figures
were 36.63dB and 36.84dB, respectively. Here the degree of improvement is less than in
the case of random data because most of the DCT coefficients are rounded to zero in both

techniques.

13

4 Inverse Motion Compensation

We now turn to the problem of inverse motion compensation described earlier in Section
2. This problem as well as its proposed solution are completely independent of the issue of
down-sampling. However, it is definitely possible to combine the down-sampling algorithm
described above and the inverse motion compensation algorithm described below into a

single function which provides both.
4.1 Mathematical Derivation

We mentioned earlier that eq. (??), for calculating the reference block X, can be made
efficient if the data are sparse and or if the motion vectors are aligned at least in one
direction. We now demonstrate that the computation of X can be done even more efficiently

by utilizing two main facts. First, we observe that some of the matrices ¢;; are equal to

i

0 O
612—632—Lw—(I 0)
w

where I}, and I, are identity matrices of dimension kA X h and w X w, respectively. Similarly,

each other for every given w and h. Specifically,

>

ci1 = co1 = Uy,

>

c31 = ca1 = Lg_p,

and

Coo = a2 = Ug_y.

The second observation that helps in saving computations is that rather than fully precom-
puting Cj;, it might be more efficient to leave these matrices factorized into relatively sparse
matrices. In particular, we shall use the factorization of S that was described in subsection
3.1.

The best way we have found to use the two observations mentioned above is the following:

First, we precompute the fixed matrices

1>

Ji = U;(M Ay As As), i=1,2,..,8

and

These matrices are very structured and therefore, pre-multiplication by K; or J; can be
implemented very efficiently as we shall demonstrate shortly. Next, we compute X by
using the expression

X = S[JyBLB!P'D(X1DPB;ByJ. + XoaDPBBoKE) +

Kg »BiB!P'D(X3DPB,ByJ! + X4DPB;ByKL ,)]S" (23)
which can easily be obtained from eqs. (??) and (?7), or by its dual form
X = S[(JyBiBIP'DX, + Kg_,B{B!P'DX3)DPB,ByJ. +
(JnBLB!P'DX, + Ky 1, BiBIP'DX,)DPB,ByK}]S, (24)

depending on which one of these expressions requires less computations for the given w and

h.

4.2 Implementation and Computational Complexity

We now demonstrate how to implement fast multiplication by J; and K;, which is the bottle
neck of the computation load. As an example, we shall examine Jg. The other matrices are

handled in a similar fashion. The matrix Jg is the following:

1 -1 —a 0 b a c 0
1 1 —a -1 b 0 c 0
1 1 —a -1 —b 0 —c 0
Js = 1 -1 —a 0 -b —a -c 0
1 -1 a 0 c —a —b 0
1 1 a 1 c 0 —-b -1
0 0 0 0 o0 0 0 0
0 0 0 0 0 0 0 0

where a = 0.7071, b = 0.9239, and ¢ = 0.3827. To compute u = Jgv, where u = (uy, ..., ug)?

and v = (v1,...,v8)%, we calculate according to the following steps:
Yy = v+ (25)
Y2 = U1 — V2 (26)
ys = avs (27)
Yys = avg (28)
Ys = Y1— Y3 (29)
Y6 = Ys— 4 (30)

15

Yyr. = Y3 — Ya (31)

ys = Yst+ua (32)
yo = (b+c)(vs +v7) (33)
Yo = Cus (34)
yir = by (35)
Yyi2 = Y9 — Y0 — Y11 (36)
Y13 = Yo — Y11 (37)
up = Y2 — Y7+ Y12 (38)
uz = Y+ Y12 (39)
uz = Y — Y12 (40)
Us = Y2 —Ys — Y12 (41)
us = Y2 +yr +yis (42)
ug = Y1 +Y3+vs+yiz —vs (43)
ug = 0 (44)
ug = 0. (45)

This implementation requires 5 multiplications and 22 additions, which is equivalent to 43
elementary processor operations in our above model. By developing similar implementation
schemes of matrix multiplication for all matrices Jp, ..., Js, we find that the numbers {N;}
of operations required to multiply by {J;}, 1 < i < 8, are given by Ny = 18, Ny = 24,
N3 = 38, Ny = 39, N5 = 40, Ng = 43, N7 = 44, and Ng = 46. Since the matrix K; has
a structure similar to that of J; for every 1 < ¢ < 8, multiplication by K; costs also N;
operations. Thus, for a general position reference block (ie., 1 <w < 7,1 < h <7), we
have the following:

1. Six multiplications by B; or Bf: 6 x 32 = 192 operations.

2. Six multiplications by Bs or Bi: 6 x 32 = 192 operations.

3. Two multiplications by J,, and Kg_, and one by J, and Kg_p, or vice versa: 8- (Np, +
Ng_p + Ny + Ng_yy + min{ Ny, + Ng_p, Ny, + Ng_,,} operations.

4. One 2D-DCT (using eq. (?7)): 42 x 16 = 672 operations.

Total: 1056 + 8 - (N + Ng_p + Ny + Ng_ypy + min{ Ny + Ng_, Ny + Ng_}) operations.

16

Note that we have not counted additions of the products in eqs. (??) and (??) because
the different summands are nonzero on disjoint subsets of indices of matrix elements. When
the reference block is aligned in the vertical direction only, i.e., h =8 and 1 < w < 7, then
Kg p, = Ko = Lo(MA;A45A43) = 0, and therefore eqs. (??) and (??) contain two terms
only. Furthermore, since J, = Jg = Ug(M A1 A3 A3)t = (M A1 A3A3)t, eq. (??7) degenerates
to

X = (X DPB1ByJ!, + X,DPB B K} ,)S! (46)

which requires the following steps:

1. Two multiplications by Bj: 2 x 32 = 64 operations.

2. Two multiplications by By: 2 x 32 = 64 operations.

3. One multiplication by .J,, and one by Kg_,: 8(N, + Ng_,,) operations.
4. One multiplication by S*: 8 x 42 = 336 operations.

Total: 464 + 8(N,, + Ng_,,) operations.

Similarly, for the horizontally aligned case, where w = 8 and 1 < h < 7, the number of
computations is 464+8(Np+ Ng_p). As mentioned earlier, when w = h = 8 no computations
are required at all since X = X, and hence already given.

By using the above expressions, we find that the number of computations for the worst
case values of h and w is 2928, and the average number, assuming a uniform distribution
on the pairs {(w,h) : 1 <w < 8,1 < h < 8}, is 2300.5. On the other hand, the brute-force
approach of performing IDCT to X, ..., X4, cutting the appropriate reference block in the
spatial domain, and transforming it back, requires a total of 4320 operations. This means
that the reduction in computational complexity, in comparison to the brute-force method,
is 32% for the worst case and 46.8% for the average.

So far we have not assumed that the input DCT matrices are sparse. Typically, a
considerable percentage of the DCT blocks have only a few nonzero elements, normally,
those corresponding to low spatial frequencies in both directions. For simplicity, we shall
refer to a DCT block as sparse if only the top left 4 x 4 quadrant (corresponding to low
frequencies) is nonzero.

We have redesigned the implementation of multiplication by J; and K;, 1 < ¢ < 8,

when Xq,..., X4 are assumed sparse in the above sense, and found that the number of

17

computations is 672 + 8 - (N, + Ng_,, + N; + Ng_,) for 1 < w < 7and 1 < h <7,
336 +4- (N, +Ng_,) forh=8and 1< w <7, 33 +4-(N; +N§ ,) for w= 8 and
1 < h <7, and zero when w = h = 8, where N; = 15, Nj = 20, N3 = 26, Ny = 33, N{ = 36,
Ng =40, N; = 41, and, Ng = 42. This means that the are 1728 computations in the worst
case and 1397.2 on the average, corresponding to reductions of 60% and 68%, respectively,
compared to the brute force approach.

For comparison with earlier results, Chang and Messerschmitt [?] have shown compu-
tation savings only if the DCT matrices are sparse enough and if a large percentage of the
reference blocks are aligned at least in one direction. Specifically, these authors introduced
three parameters: the reciprocal of the fraction of nonzero coefficients 3, the fraction a3
of reference blocks aligned in one direction, and the fraction as of completely unaligned
reference blocks.

Let us consider first the worst case situation in terms of block alignment, i.e., a3 = 0
and as = 1. Our above definition of sparseness corresponds to § = 4. Chang et al.
provide exact formulas for the number multiplications and additions associated with their
approach in terms of aj, as, 8 and the block size N (N = 8 in MPEG). According to these
formulas, their approach require in this case 16 multiplications per pixel and 19 additions
per pixel. To compare with typical processor operations, let us assume that on the average
every multiplication requires up to 4 SHIFTs and 3 ADDs and that SHIFTs and ADDs can
be done simultaneously. This means that a conservative estimate of the total number of
operations per block is (16 x 3+ 19) x 64 = 4288, which is much larger than 1728 operations
(see above) in the proposed approach under the same circumstances.

As another point of comparison, note that a uniform distribution over w and h in our
case corresponds to a; = 14/64 = 0.219 and ay = 49/64 = 0.766, which is more pessimistic
than the upper curve in Fig. 5 of [?], where a; = 0.2 and a3 = 0.1. Nevertheless, for § =1
we are able to speedup the computations by a factor of 4320/2300.5 = 1.87 compared to
0.6 in [?], and for 8 = 4 our speedup is 4320/1397.2 = 3.13 compared to approximately
2.0 in [?]. Furthermore, if we assume o; = 0.2 and ay = 0.1 as in [?] we obtain speedup
factors of 9.06 for 8 = 1 and about 15 for 8 = 4, which means an improvement by an order

of magnitude compared to [?].

18

