
Fast Algorithms for DCT-Domain Image Down-Sampling andfor Inverse Motion CompensationNeri Merhav� Vasudev BhaskaranyAbstractStraightforward techniques for spatial domain processing of compressed video viadecompression and re-compression are computationally expensive. We describe an al-ternative approach wherein the compressed stream is processed in the compressed, DCTdomain without explicit decompression and spatial domain processing, so that the out-put compressed stream corresponds to the output image and it conforms to the standardsyntax of 8� 8 blocks. We propose computation schemes for down-sampling and for in-verse motion compensation, that are applicable to any DCT-based compression method.Worst-case estimates of computation savings vary between 37% and 50% depending onthe task. For typically sparse DCT blocks, the reduction in computations is more dra-matic. A byproduct of the proposed approach is improvement in arithmetic precision.

�N. Merhav is with the Department of Electrical Engineering and HP Israel Science Center, TechnionCity, Haifa 32000, Israel. He is currently on Sabbatical leave at HP Laboratories, 1501 Page Mill Road, PaloAlto CA 94304, USA.yV. Bhaskaran is with the Visual Computing Department, HP Laboratories, 1501 Page Mill Road, PaloAlto, CA 94304, USA. 1

1 IntroductionMany video compression methods, like MPEG and H.261, use transform domain techniques,in particular, the discrete cosine transform (DCT). Certain applications require real timemanipulation of digital video in order to implement image composition and special e�ects,e.g., down-sampling, modifying contrast and brightness, translating, �ltering, masking, ro-tation, inverse motion compensation, etc. There are two major di�culties encountered inthis class of tasks: the computational complexity of image compression and decompression,and the high rates of the data to be manipulated. These di�culties rule out the possibilityof running, on currently existing workstations, the traditional algorithms that �rst decom-press the data, then perform one of these manipulations in the decompressed domain, and�nally, compress again if necessary. For this reason there has been a great e�ort in recentyears to develop fast algorithms that perform these tasks directly in the transform domain(see e.g., [?], [?], [?] and references therein) and thereby avoid the need of decompressionor at least its computational bottleneck - the inverse DCT (IDCT) which requires 38.7% ofthe execution time on a typical workstation[?].As an example, consider a video conferencing session of several parties, where each oneof them can see everybody else in a separate window on his screen. Every user would liketo have the
exibility to resize windows, move them from one location on the screen toanother, and so on. Since each workstation is capable of handling one video stream only,the server must compose the streams from all parties to a single stream whose architecturedepends on the user's requests. If one user wishes, say, to scale down by a factor of 2a window corresponding to another user and move it to a di�erent place on the screen,this might a�ect the entire image. This simple operation requires at least two processingfunctions to be carried out, one is the down-sampling operation and the other is inversemotion compensation, which removes dependency between successively encoded frames andhence enables the composition of two or more digital video streams. It should be pointed outthat the operation of inverse motion compensation is useful not only in compositing videostreams, but might have other applications as well, such as video editing (e.g., trimming)and transcoding from MPEG to JPEG.1The traditional and expensive approach would be that all compressed video streams are1In this case, the system depicted in Fig. ??(c) would have to be applied to all frames prior to the newstart frame, back to the last intra-coded frame. 2

�rst fully decompressed at the server, then the desired change is translated into a suitablearithmetic operation on the decompressed video streams with the appropriate compositioninto a single stream, and �nally, the composite stream is compressed again and sent to theuser. A great deal of the computational load is in the DCT and IDCT operations and thisdrives us to seek fast algorithms that perform the desired modi�cations directly in the DCTdomain (see Fig. ??).In this work, we focus on speeding up two types of processing operations and compareto the traditional approach. The �rst is down-sampling and the second is inverse motioncompensation. Since both kinds of operations are linear, the overall e�ect in the DCTdomain is linear as well and hence the basic operation can be represented as multiplicationby a �xed matrix. Fast multiplication by a �xed matrix is possible if it can be factorizedinto a product of sparse matrices whose entries are mostly 0, 1 and �1. We will demon-strate that this can be done e�ciently for both tasks of down-sampling and inverse motioncompensation by taking advantage of the factorizations of the DCT and IDCT operationmatrices that correspond to the fast 8-point Winograd DCT/IDCT due to Arai, Agui, andNakajima [?] (see also [?]).The resulting schemes for down-sampling save about 37% of the operations2 for a down-sampling factor of 2, 39% for down-sampling by 3, 50% for a factor of 4, and 47% forinverse motion compensation. These are `worst-case' estimates in the sense that nothing isassumed on sparseness in the DCT domain. Typically, in a considerably large percentageof the DCT blocks all the DCT coe�cients are zero except for the upper left 4�4 quadrantthat corresponds to low frequencies in both vertical and horizontal directions. If this factis taken into account, then computation reductions can reach about 70-80%.Another advantage of the proposed method is that it improves the precision of thecomputations as compared to the traditional approach. The reason for this will becomeapparent later on when we describe the method in detail. The degree of improvement inprecision varies between 1.5-3dB.The outline of the paper is as follows. In Section 2 we provide some preliminaries anddescribe the problems of down-sampling and inverse motion compensation. In Section 3,we provide a detailed derivation of the down-sampling method by a factor of 2, �rst, in2Here the term \operation" corresponds to the basic arithmetic operation of a typical processor which iseither \shift", \add", \shift-one-and-add" (SH1ADD), \shift-two-and-add" (SH2ADD), and \shift-three-andadd" (SH3ADD). 3

the one-dimensional case and then in the two dimensional case. We also demonstrate howour method improves both computational complexity and arithmetic precision. In Section4, we derive the inverse motion compensation algorithm and evaluate its computationalcomplexity.2 Preliminaries and Problem DescriptionThe 8� 8 2D-DCT transforms a block fx(n;m)g7n;m=0 in the spatial domain into a matrixof frequency components fX(k; l)g7k;l=0 according to the following equationX(k; l) = c(k)2 c(l)2 7Xn=0 7Xm=0x(n;m) cos(2n+ 116 � k�) cos(2m+ 116 � l�) (1)where c(0) = 1=p2 and c(k) = 1 for k > 0. The inverse transform is given byx(n;m) = 7Xk=0 7Xl=0 c(k)2 c(l)2 X(k; l) cos(2n+ 116 � k�) cos(2m+ 116 � l�): (2)In a matrix form, let x = fx(n;m)g7n;m=0 and X = fX(k; l)g7k;l=0. De�ne the 8-point DCTmatrix S = fs(k; n)g7k;n=0, wheres(k; n) = c(k)2 cos(2n+ 116 � k�): (3)Then, X = SxSt (4)where the superscript t denotes matrix transposition. Similarly, let the superscript �tdenote transposition of the inverse. Then,x = S�1XS�t = StXS (5)where the second equality follows from the unitarity of S. We next give a formal descriptionof the problems of down-sampling and inverse motion compensation.Down-sampling: Suppose we are given four adjacent 8 � 8 spatial domain data blocksx1;x2;x3, and x4 that together form a 16� 16 square, where x1 corresponds to northwest,x2 to northeast, x3 to southwest and x4 to southeast. Down-sampling (decimation) by afactor of 2 in each dimension means that every non-overlapping group of 4 pixels forminga small 2� 2 block is replaced by one pixel whose intensity is the average of the 4 original4

pixels.3 As a result, the original blocks x1; :::;x4 are replaced by a single 8�8 output blockx corresponding to the decimation of x1; :::;x4. Our task is to calculate e�ciently X , theDCT of x, directly from the given DCT's of the original blocks X1;X2;X3, and X4. (SeeFigs ??(b) and ??.)Motion compensation of compressed video [?], [?] (see also [?]) means predicting each 8� 8spatial domain block x of the current frame by a corresponding reference block x̂ from aprevious frame 4 and encoding the resulting prediction error block e = x� x̂ by using theDCT. The best matching reference block x̂ may not be aligned to the original 8� 8 blocksof the reference frame (see Figs ??(c) and ??). In general, the reference block may intersectwith four neighboring spatial domain blocks, henceforth denoted x1;x2;x3, and x4, thattogether form a 16� 16 square, where x1 corresponds to northwest, x2 to northeast, x3 tosouthwest and x4 to southeast.Our goal here is to compute the DCT X of the current block x = x̂+ e from the givenDCTE of the prediction error e of the block in the current frame, and the DCT'sX1; :::;X4of the corresponding previous frame blocks, x1; :::;x4, respectively. Since X = X̂ +E, X̂being the DCT of x̂, the main problem that remains is that of calculating X̂ directly fromX1; :::;X4.Let the intersection of the reference block x̂ with x1 form a h�w rectangle (i.e., h rowsand w columns), where 1 � h � 8 and 1 � w � 8. This means that the intersections of x̂with x2 ,x3, and x4 are rectangles of sizes h� (8�w), (8� h)�w, and (8� h)� (8�w),respectively. Following Chang and Messerschmitt [?], it is readily seen that x̂ can beexpressed as a superposition of appropriate windowed and shifted versions of x1; :::x4, i.e.,x̂ = 4Xi=1 ci1xici2; (6)where cij , i = 1; :::; 4, j = 1; 2, are sparse 8 � 8 matrices of zeroes and ones that performwindow and shift operations accordingly. The basic idea behind the the work of Changand Messerschmitt [?] is to use the distributive property of matrix multiplication w.r.t. the3This simple averaging corresponds to a commonly used antialiasing �lter. Other speci�c �lters can beconsidered as well using the same methods that we present below. It is not guaranteed, however, that everyreasonable anti-aliasing �lter implemented by these methods would give a smaller complexity in the DCTdomain than in the spatial domain.4In some of the frames (B-frames) blocks are estimated from both past and future reference blocks. Forthe sake of simplicity, we shall assume here that only the past is used (P -frames). The extension to B-framesis straightforward. 5

DCT. Speci�cally, since StS = I, eq. (??) may be rewritten asx̂ = 4Xi=1 ci1StSxiStSci2: (7)Next, by pre-multiplying both sides of (??) by S, and post-multiplying by St, one obtainsX̂ = 4Xi=1Ci1X iCi2: (8)where Cij is the DCT of cij. Chang and Messerscmitt [?] proposed to precompute the�xed matrices Cij for every possible combination of w and h, and to compute X̂ directlyin the DCT domain using eq. (??). Although most of the matrices Cij are not sparse,computations can still be saved on the basis of typical sparseness of fX ig, and due to thefact the reference block might be aligned in one direction (either w = 8 or h = 8), whichmeans that the right-hand side of eq. (??) contains two terms only, or in both directions(w = h = 8), in which case x̂ = x1 and hence no computations at all are needed. InSection 4, we develop an algorithm that is e�cient even when the sparseness or alignmentconstraints are not satis�ed.3 Down-sampling3.1 The Basic IdeaFor the sake of simplicity, let us con�ne attention �rst to the one dimensional case and adown-sampling factor of 2. The two dimensional case will be a repeated application for everyrow and then for every column of each block. In this case, we are given two 8-dimensionalvectors X1 and X2 of DCT coe�cients corresponding to adjacent time domain vectors oflength 8, x1 = S�1X1 and x2 = S�1X2, and we wish to calculate X , the DCT of the 8-dimensional vector x, whose each component is the average of the two appropriate adjacentcomponents in x1 or x2.It is convenient to describe the decimation operation in a matrix form as follows.x = 12(Q1x1 +Q2x2) (9)
6

where Q1 = 0BBBBBBBBBBBB@
1 1 0 0 0 0 0 00 0 1 1 0 0 0 00 0 0 0 1 1 0 00 0 0 0 0 0 1 10 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 0

1CCCCCCCCCCCCAand Q2 = 0BBBBBBBBBBBB@
0 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 01 1 0 0 0 0 0 00 0 1 1 0 0 0 00 0 0 0 1 1 0 00 0 0 0 0 0 1 1

1CCCCCCCCCCCCATherefore, X = 12(SQ1S�1X1 + SQ2S�1X2): (10)We shall now focus on e�cient factorizations of the matrices U1 = SQ1S�1 and U2 =SQ2S�1. To this end, we shall use a factorization of S that corresponds to the fastestexisting algorithm for 8-point DCT due to Arai, Agui, and Nakajima [?] (see also [?]),which is based on the Winograd algorithm. According to this factorization S is representedas follows. S = DPB1B2MA1A2A3 (11)where D is a diagonal matrix given byD = diagf0:3536; 0:2549; 0:2706; 0:3007; 0:3536; 0:4500; 0:6533; 1:2814g; (12)P is a permutation matrix given by
P = 0BBBBBBBBBBBB@

1 0 0 0 0 0 0 00 0 0 0 0 1 0 00 0 1 0 0 0 0 00 0 0 0 0 0 0 10 1 0 0 0 0 0 00 0 0 0 1 0 0 00 0 0 1 0 0 0 00 0 0 0 0 0 1 0
1CCCCCCCCCCCCA

7

and the remaining matrices are de�ned as follows:
B1 = 0BBBBBBBBBBBB@

1 0 0 0 0 0 0 00 1 0 0 0 0 0 00 0 1 0 0 0 0 00 0 0 1 0 0 0 00 0 0 0 1 0 0 10 0 0 0 0 1 1 00 0 0 0 0 1 �1 00 0 0 0 �1 0 0 1
1CCCCCCCCCCCCA

B2 = 0BBBBBBBBBBBB@
1 0 0 0 0 0 0 00 1 0 0 0 0 0 00 0 1 1 0 0 0 00 0 �1 1 0 0 0 00 0 0 0 1 0 0 00 0 0 0 0 1 0 10 0 0 0 0 0 1 00 0 0 0 0 �1 0 1

1CCCCCCCCCCCCA
M = 0BBBBBBBBBBBB@

1 0 0 0 0 0 0 00 1 0 0 0 0 0 00 0 0:7071 0 0 0 0 00 0 0 1 0 0 0 00 0 0 0 �0:9239 0 �0:3827 00 0 0 0 0 0:7071 0 00 0 0 0 �0:3827 0 0:9239 00 0 0 0 0 0 0 1
1CCCCCCCCCCCCA

A1 = 0BBBBBBBBBBBB@
1 1 0 0 0 0 0 01 �1 0 0 0 0 0 00 0 1 1 0 0 0 00 0 0 1 0 0 0 00 0 0 0 1 0 0 00 0 0 0 0 1 0 00 0 0 0 0 0 1 00 0 0 0 0 0 0 1

1CCCCCCCCCCCCA
A2 = 0BBBBBBBBBBBB@

1 0 0 1 0 0 0 00 1 1 0 0 0 0 00 1 �1 0 0 0 0 01 0 0 �1 0 0 0 00 0 0 0 �1 �1 0 00 0 0 0 0 1 1 00 0 0 0 0 0 1 10 0 0 0 0 0 0 1
1CCCCCCCCCCCCA

8

A3 = 0BBBBBBBBBBBB@
1 0 0 0 0 0 0 10 1 0 0 0 0 1 00 0 1 0 0 1 0 00 0 0 1 1 0 0 00 0 0 1 �1 0 0 00 0 1 0 0 �1 0 00 1 0 0 0 0 �1 01 0 0 0 0 0 0 �1

1CCCCCCCCCCCCAThus, for i = 1; 2 we haveUi = SQiS�1 = DPB1B2MA1A2A3QiA�13 A�12 A�11 M�1B�12 B�11 P�1D�1 (13)The proposed decimation algorithm is based on the observation that the productsFi =MA1A2A3QiA�13 A�12 A�11 M�1 i = 1; 2 (14)are fairly sparse matrices, and most of the corresponding elements are the same, sometimeswith a di�erent sign. This means that their sum F+ = F1 + F2 and their di�erence F� =F1 � F2 are even sparser. These matrices are given as follows.
F+ = 0BBBBBBBBBBBB@

2 0 0 0 0 0 0 00 0 2:8285 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 �0:7071 0 �1:7071 00 0 0 0 0 0 0 00 0 0 0 0:2929 0 0:7071 00 0 0 0 �0:3827 0 0:9239 0
1CCCCCCCCCCCCA

F� = 0BBBBBBBBBBBB@
0 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0:7653 0 1:8477 00 0 0 0 �0:7653 0 1:8477 00:5412 0 0 0 0 0 0 00:7071 0 �1 0 0 0 0 01:3066 0 0 0 0 0 0 00:5000 0 0:7071 0 0 0 0 0

1CCCCCCCCCCCCAFinally, we use the following simple relation:X = 12(U1X1 + U2X2)= 14[(U1 + U2)(X1 +X2) + (U1 � U2)(X1 �X2)]= 14DPB1B2[F+B�12 B�11 P�1D�1(X1 +X2) +F�B�12 B�11 P�1D�1(X1 �X2)] (15)9

Let us count the number of basic arithmetic operations on a typical processor (e.g., PA-RISC [?]) that are needed to implement the right-most side of (??) and compare it to thespatial domain approach. As explained earlier, here the term \operation" corresponds tothe elementary arithmetic computation of such a processor which is either either \shift",\add", or \shift and add" (SH1ADD, SH2ADD, and SH3ADD). For example, the compu-tation z = 1:375x + 1:125y is implemented as follows: First, we compute u = x + 0:5x(SH1ADD), then v = x + 0:25u (SH2ADD), afterwards w = v + y (ADD), and �nally,z = w + 0:125y (SH3ADD). Thus, overall 4 basic operations are needed in this example.The non-trivial multiplications of both the standard spatial domain approach and the al-gorithm proposed herein were e�ciently converted to \operations" by using this type ofimplementation method.When counting the operations, we will also use the fact that multiplications by D andD�1 can be ignored because these can be absorbed in the MPEG quantizer and dequantizer,respectively. The matrices P and P�1 cause only changes in the order of the componentsso they can be ignored as well. Thus we are left with the following (in parentheses, we de-tail also the number of additions/subtractions and the number of nontrivial multiplications):Creating X1 +X2 and X1 �X2: 16 operations (16 additions).Two multiplications by B�11 : 16 operations (8 additions).Two multiplications by B�12 : 16 operations (8 additions).Multiplication by F+: 23 operations (5 multiplications + 5 additions).Multiplication by F�: 28 operations (6 multiplications + 4 additions).Adding the products: 8 operations (8 additions).Multiplication by B2: 4 operations (4 additions).Multiplication by B1: 4 operations (4 additions).Total: 115 operations (11 multiplications + 57 additions).In the spatial domain approach, on the other hand, if we use the above mentioned Wino-grad DCT algorithm [?] (which is the fasted known DCT algorithm to date), we have thefollowing:Two IDCT's: 114 operations (10 multiplications + 58 additions).10

Down-sampling by two in spatial domain: 8 operations (8 additions).DCT: 42 operations (5 multiplications + 29 additions).Total: 164 operations (15 multiplications + 95 additions).It turns out, as can be seen, that the proposed approach saves about 30% of the opera-tions in the one-dimensional case. We shall see later on, in the two-dimensional case, thatby using the same ideas, we obtain even greater reductions in complexity.As a byproduct of the proposed approach, it should be noted that arithmetic precisionis gained. Since in the direct approach, we actually multiply by each one of the matrices onright hand side of (??) one at a time, then roundo� errors, associated with �nite word lengthrepresentations of the elements of these matrices, accumulate in each step. On the otherhand, in the proposed approach, we can precompute Fi once and for all to any desired degreeof precision, and then round o� each element of these matrices to the allowed precision. Thelatter has, of course, better precision. More details will be provided in subsection 3.3.3.2 The Two-dimensional CaseLet us now return to the two dimensional case. A 2D-DCT is just 1D-DCT applied to everycolumn and every row of the spatial domain block. Therefore, the very same ideas can beapplied to the two dimensional case as well. In this subsection we describe in detail thecomputation schemes for down-sampling by a factor of 2. Similar ideas can be applied toother down-sampling factors. (See [?] for more detail on factors of 3 and 4.)Similarly as in the one dimensional case, we have in the spatial domainx = 14(Q1x1Qt1 +Q1x2Qt2 +Q2x3Qt1 +Q2x4Qt2) (16)and therefore, in the frequency domain,X = 14(U1X1U t1 + U1X2U t2 + U2X3U t1 + U2X4U t2) (17)Again, we would like to express the right-hand side of (??) in terms of U+ = U1 + U2 =DPB1B2F+B�12 B�11 P�1D�1 and U� = U1 + U2 = DPB1B2F�B�12 B�11 P�1D�1. To thisend, let us de�ne X+++ =X1 +X2 +X3 +X4; (18)X+�� =X1 +X2 �X3 �X4; (19)11

X�+� =X1 �X2 +X3 �X4; (20)and X��+ =X1 �X2 �X3 +X4: (21)Note that to create all these linear combinations, we need only 8 (and not 12) addi-tions/subtractions per frequency component: We �rst compute X1 �X2 and X3 �X4and then (X1 +X2) � (X3 +X4) and (X1 �X2) � (X3 �X4). Now, eq. (??) can berewritten asX = 116(U+X+++U t+ + U�X+��U t+ + U+X�+�U t� + U�X��+U t�)= 116DPB1B2 �[(F+B�12 B�11 P�1D�1X+++ + F�B�12 B�11 P�1D�1X+��)D�tP�tB�t1 B�t2 F t+ +(F+B�12 B�11 P�1D�1X�+� + F�B�12 B�11 P�1D�1X��+)D�tP�tB�t1 B�t2 F t�] �Bt2Bt1P tDt: (22)If we count the the number of operations associated with the implementation of the right-most side of eq. (??) (similarly as in the previous section), we �nd that the total is 2824. Thetraditional approach, on the other hand, requires 4512 operations. This means that 37.4%of the operations are saved. Similar down-sampling algorithms for factors of 3 and 4 [?] yieldreductions of 39% and 50%, respectively, compared to the spatial domain counterparts.Additional savings in computations can be made by taking advantage of the fact that intypical images most of the DCT blocks Xi have only a few nonzero coe�cients, normally,the low frequency coe�cients. A reasonable possibility might be to use a mechanism thatoperates in two steps. In the �rst step, DCT blocks are classi�ed as being lowpass ornon-lowpass, where the former is de�ned as a block where, say, only the upper left 4 �4 sub-block is nonzero. The second step uses either the computation scheme describedabove for non-lowpass blocks, or a faster scheme that utilizes the lowpass assumption forthe precomputation of the above matrix multiplications. It turns out that if X1; :::;X4are all lowpass blocks, then the reduction in computations is about 80% in the case ofdown-sampling by a factor of 2. Of course, these �gures correspond to the case where thecompeting spatial domain approach is `hard-wired' in the sense that the DCT and IDCToperations are not allowed to take advantage of the sparseness of the DCT-domain data.12

In the same manner, one may consider reduced versions of the fast DCT/IDCT algorithmthat take into account sparseness as well.3.3 Arithmetic PrecisionAs explained in the last paragraph of Section 3.1, the proposed computation scheme providesbetter arithmetic accuracy than the standard approach. To demonstrate this fact we havetested both schemes for the case of down-sampling by a factor of 2, where each element inthe �xed matrices of eq. (??) is represented by 8 bits.In the �rst experiment, we have the chosen the elements of x1; :::;x4 as statisticallyindependent random integers uniformly distributed in the set f0; 1; :::; 255g. We �rst com-puted x (and then X) directly from x1; :::;x4 for reference. We then computed the DCT'sX1; :::;X4 where all DCT coe�cients are quantized and then dequantized according to agiven quantization matrix �. From X1; :::;X4, we have computed X using both the stan-dard approach and the proposed approach, and compared to the reference version, where theprecision in each approach was measured in terms of the sum of squares of errors (MSE)in the DCT domain (and hence also in the spatial domain). For the case where � wasan all-one matrix, the MSE of the proposed approach was about 3dB better than that ofthe standard approach. For the case where � was the recommended quantization matrix ofJPEG for luminance [?, p. 37], the proposed approach outperformed the standard approachby 1.2dB. These results are reasonable because when the step sizes of the quantizer increase,quantization errors associated with the DCT coe�cients tend to dominate roundo� errorsassociated with inaccurate computations.The second experiment was similar but that test data that was a real image (\Lenna")rather than random data. Now, for the case where � was the all-one matrix, the standardapproach yielded SNR of 46.08dB while the proposed approach gave 49.24dB, which is againa 3dB improvement. For the case where � was the JPEG default quantizer, the �gureswere 36.63dB and 36.84dB, respectively. Here the degree of improvement is less than inthe case of random data because most of the DCT coe�cients are rounded to zero in bothtechniques.
13

4 Inverse Motion CompensationWe now turn to the problem of inverse motion compensation described earlier in Section2. This problem as well as its proposed solution are completely independent of the issue ofdown-sampling. However, it is de�nitely possible to combine the down-sampling algorithmdescribed above and the inverse motion compensation algorithm described below into asingle function which provides both.4.1 Mathematical DerivationWe mentioned earlier that eq. (??), for calculating the reference block X̂, can be madee�cient if the data are sparse and or if the motion vectors are aligned at least in onedirection. We now demonstrate that the computation of X̂ can be done even more e�cientlyby utilizing two main facts. First, we observe that some of the matrices cij are equal toeach other for every given w and h. Speci�cally,c11 = c21 = Uh �= 0 Ih0 0 !c12 = c32 = Lw �= 0 0Iw 0 !where Ih and Iw are identity matrices of dimension h�h and w�w, respectively. Similarly,c31 = c41 = L8�h;and c22 = c42 = U8�w:The second observation that helps in saving computations is that rather than fully precom-puting Cij, it might be more e�cient to leave these matrices factorized into relatively sparsematrices. In particular, we shall use the factorization of S that was described in subsection3.1.The best way we have found to use the two observations mentioned above is the following:First, we precompute the �xed matricesJi �= Ui(MA1A2A3)t; i = 1; 2; :::; 8and Ki �= Li(MA1A2A3)t; i = 1; 2; :::; 814

These matrices are very structured and therefore, pre-multiplication by Ki or Ji can beimplemented very e�ciently as we shall demonstrate shortly. Next, we compute X̂ byusing the expressionX̂ = S[JhBt2Bt1P tD(X1DPB1B2J tw +X2DPB1B2Kt8�w) +K8�hBt2Bt1P tD(X3DPB1B2J tw +X4DPB1B2Kt8�w)]St (23)which can easily be obtained from eqs. (??) and (??), or by its dual formX̂ = S[(JhBt2Bt1P tDX1 +K8�hBt2Bt1P tDX3)DPB1B2J tw +(JhBt2Bt1P tDX2 +K8�hBt2Bt1P tDX4)DPB1B2Kt8�w]St; (24)depending on which one of these expressions requires less computations for the given w andh.4.2 Implementation and Computational ComplexityWe now demonstrate how to implement fast multiplication by Ji and Ki, which is the bottleneck of the computation load. As an example, we shall examine J6. The other matrices arehandled in a similar fashion. The matrix J6 is the following:
J6 = 0BBBBBBBBBBBB@

1 �1 �a 0 b a c 01 1 �a �1 b 0 c 01 1 �a �1 �b 0 �c 01 �1 �a 0 �b �a �c 01 �1 a 0 c �a �b 01 1 a 1 c 0 �b �10 0 0 0 0 0 0 00 0 0 0 0 0 0 0
1CCCCCCCCCCCCAwhere a = 0:7071, b = 0:9239, and c = 0:3827. To compute u = J6v, where u = (u1; :::; u8)tand v = (v1; :::; v8)t, we calculate according to the following steps:y1 = v1 + v2 (25)y2 = v1 � v2 (26)y3 = av3 (27)y4 = av6 (28)y5 = y1 � y3 (29)y6 = y5 � v4 (30)15

y7 = y3 � y4 (31)y8 = y3 + y4 (32)y9 = (b+ c)(v5 + v7) (33)y10 = cv5 (34)y11 = bv7 (35)y12 = y9 � y10 � y11 (36)y13 = y10 � y11 (37)u1 = y2 � y7 + y12 (38)u2 = y6 + y12 (39)u3 = y6 � y12 (40)u4 = y2 � y8 � y12 (41)u5 = y2 + y7 + y13 (42)u6 = y1 + y3 + v4 + y13 � v8 (43)u7 = 0 (44)u8 = 0: (45)This implementation requires 5 multiplications and 22 additions, which is equivalent to 43elementary processor operations in our above model. By developing similar implementationschemes of matrix multiplication for all matrices J1; :::; J8, we �nd that the numbers fNigof operations required to multiply by fJig, 1 � i � 8, are given by N1 = 18, N2 = 24,N3 = 38, N4 = 39, N5 = 40, N6 = 43, N7 = 44, and N8 = 46. Since the matrix Ki hasa structure similar to that of Ji for every 1 � i � 8, multiplication by Ki costs also Nioperations. Thus, for a general position reference block (i.e., 1 � w � 7, 1 � h � 7), wehave the following:1. Six multiplications by B1 or Bt1: 6� 32 = 192 operations.2. Six multiplications by B2 or Bt2: 6� 32 = 192 operations.3. Two multiplications by Jw and K8�w, and one by Jh and K8�h, or vice versa: 8 � (Nh +N8�h +Nw +N8�w +minfNh +N8�h; Nw +N8�wg operations.4. One 2D-DCT (using eq. (??)): 42� 16 = 672 operations.Total: 1056 + 8 � (Nh +N8�h +Nw +N8�w +minfNh +N8�h; Nw +N8�wg) operations.16

Note that we have not counted additions of the products in eqs. (??) and (??) becausethe di�erent summands are nonzero on disjoint subsets of indices of matrix elements. Whenthe reference block is aligned in the vertical direction only, i.e., h = 8 and 1 � w � 7, thenK8�h = K0 = L0(MA1A2A3)t = 0, and therefore eqs. (??) and (??) contain two termsonly. Furthermore, since Jh = J8 = U8(MA1A2A3)t = (MA1A2A3)t, eq. (??) degeneratesto X̂ = (X1DPB1B2J tw +X2DPB1B2Kt8�w)St (46)which requires the following steps:1. Two multiplications by B1: 2� 32 = 64 operations.2. Two multiplications by B2: 2� 32 = 64 operations.3. One multiplication by Jw and one by K8�w: 8(Nw +N8�w) operations.4. One multiplication by St: 8� 42 = 336 operations.Total: 464 + 8(Nw +N8�w) operations.Similarly, for the horizontally aligned case, where w = 8 and 1 � h � 7, the number ofcomputations is 464+8(Nh+N8�h). As mentioned earlier, when w = h = 8 no computationsare required at all since X̂ =X1 and hence already given.By using the above expressions, we �nd that the number of computations for the worstcase values of h and w is 2928, and the average number, assuming a uniform distributionon the pairs f(w; h) : 1 � w � 8; 1 � h � 8g, is 2300:5. On the other hand, the brute-forceapproach of performing IDCT to X1; :::;X4, cutting the appropriate reference block in thespatial domain, and transforming it back, requires a total of 4320 operations. This meansthat the reduction in computational complexity, in comparison to the brute-force method,is 32% for the worst case and 46:8% for the average.So far we have not assumed that the input DCT matrices are sparse. Typically, aconsiderable percentage of the DCT blocks have only a few nonzero elements, normally,those corresponding to low spatial frequencies in both directions. For simplicity, we shallrefer to a DCT block as sparse if only the top left 4 � 4 quadrant (corresponding to lowfrequencies) is nonzero.We have redesigned the implementation of multiplication by Ji and Ki, 1 � i � 8,when X1; :::;X4 are assumed sparse in the above sense, and found that the number of17

computations is 672 + 8 � (N 0w + N 08�w + N 0h + N 08�h) for 1 � w � 7 and 1 � h � 7,336 + 4 � (N 0w + N 08�w) for h = 8 and 1 � w � 7, 336 + 4 � (N 0h + N 08�h) for w = 8 and1 � h � 7, and zero when w = h = 8, where N 01 = 15, N 02 = 20, N 03 = 26, N 04 = 33, N 05 = 36,N 06 = 40, N 07 = 41, and, N 08 = 42. This means that the are 1728 computations in the worstcase and 1397:2 on the average, corresponding to reductions of 60% and 68%, respectively,compared to the brute force approach.For comparison with earlier results, Chang and Messerschmitt [?] have shown compu-tation savings only if the DCT matrices are sparse enough and if a large percentage of thereference blocks are aligned at least in one direction. Speci�cally, these authors introducedthree parameters: the reciprocal of the fraction of nonzero coe�cients �, the fraction �1of reference blocks aligned in one direction, and the fraction �2 of completely unalignedreference blocks.Let us consider �rst the worst case situation in terms of block alignment, i.e., �1 = 0and �2 = 1. Our above de�nition of sparseness corresponds to � = 4. Chang et al.provide exact formulas for the number multiplications and additions associated with theirapproach in terms of �1, �2, � and the block size N (N = 8 in MPEG). According to theseformulas, their approach require in this case 16 multiplications per pixel and 19 additionsper pixel. To compare with typical processor operations, let us assume that on the averageevery multiplication requires up to 4 SHIFTs and 3 ADDs and that SHIFTs and ADDs canbe done simultaneously. This means that a conservative estimate of the total number ofoperations per block is (16�3+19)�64 = 4288, which is much larger than 1728 operations(see above) in the proposed approach under the same circumstances.As another point of comparison, note that a uniform distribution over w and h in ourcase corresponds to �1 = 14=64 = 0:219 and �2 = 49=64 = 0:766, which is more pessimisticthan the upper curve in Fig. 5 of [?], where �1 = 0:2 and �2 = 0:1. Nevertheless, for � = 1we are able to speedup the computations by a factor of 4320=2300:5 = 1:87 compared to0:6 in [?], and for � = 4 our speedup is 4320=1397:2 = 3:13 compared to approximately2:0 in [?]. Furthermore, if we assume �1 = 0:2 and �2 = 0:1 as in [?] we obtain speedupfactors of 9:06 for � = 1 and about 15 for � = 4, which means an improvement by an orderof magnitude compared to [?].
18

