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coding sense [3], but also achieve the optimum random coding error exponent [1], [2], [6],[11]. However, here we do not con�ne ourselves only to channels that are characterizable bya parameter set of �xed dimension, but rather to a much wider set of channels that includesa certain subclass of the class of stationary and ergodic channels. We shall elaborate lateron the relation between earlier work on universal decoding and the present work.Generally speaking, our main result is that exponentially N = 2H(Y njXn)+nR bits arenecessary and su�cient for describing the channel to the decoder, where H(Y njXn) is thenth order conditional output entropy given an input Xn governed by Qn. More precisely,for a given H0 > 0, if N � 2n(H0+R+�), for some small � > 0, then there is an N -bitdescription that enables decoding with small average error probability, w.r.t. the ensembleof codes, for every `good' channel whose conditional output entropy H(Y njXn) does notexceed nH0. If, however, N � 2n(H0+R��), then regardless of the method of describingthe channel, and the decoder used for this description, there is at least one `good' channelfor which H(Y njXn) � nH0, and yet the average error probability is high. Furthermore,this argument remains true even if the code is optimized for the given channel and decoder,rather than chosen at random. The intuition behind this expression of N is that the decodermust essentially know what are the 2H(Y njXn) conditionally typical output sequences giveneach one of the 2nR channel input messages.The signi�cance of our results is primarily in characterizing the richness of the class ofchannels, or the \e�ective number of distinct channels" from the viewpoint of decoding,given certain parameter values R, n, and Qn, of the encoder. An important conclusion isthat training by independent output samples for each codeword, is an e�cient (randomized)description of the channel in the sense that it achieves the above minimum descriptionexponent with small average error probability.Recently, a few similar problems have been addressed in the context of minimum sta-tistical description of sources, for tasks like classi�cation [10], lossless compression [5] andvector quantization [7]. In [5] and [10], the conclusion was that it must take roughly 2Hnbits to describe a source, where Hn is a quantity related to the nth order entropy, andagain, the intuition is that the typical sequences of the source must be conveyed in someway. In [7], however, the behavior appeared to be di�erent: rather than describing thesource itself, it turns out to be more e�cient to describe the optimum `device' (in that case,the vector quantizer) for the given source. This reduces N from 2nHn to essentially 2nR2



bits that are needed to describe the centroids of the rate R vector quantizer. In the channeldecoding problem considered here, we have a mixed situation. The number N factorizesinto the product of 2H(Y njXn) and 2nR, where the former depends only on the channel (andthe random coding distribution), and the latter depends only on the size of the `device',namely, the encoder-decoder in this case.Finally, it should be emphasized that, similarly as in [5],[7], and [10], our results arenon-asymptotic in the sense that limits as n ! 1 are never taken. Rather than that, weconsider a �xed and �nite block length n, which is assumed to be at least as large as someinteger n0(�; �), where � and � are (arbitrarily small, but prescribed) positive reals, which areparameters of the problem. This is important since the convergence of fH(Y njXn)=ngn�1(if at all, a limit exists [8, Lemma 1]) might be arbitrarily slow for certain channels and inputprocesses. Thus, for a certain n � n0(�; �), where our results are already valid, H(Y njXn)=nmight be still far away from its limit.The outline of the paper is as follows. In Section 2, the problem is de�ned along withnotation conventions and the basic assumptions are described and discussed. In Section3, some examples of channel descriptions are provided and the direct theorem, statingthat 2nH(Y njXn)+nR bits are su�cient, is formalized and proved. Finally, in Section 4, theconverse theorem, that tells that 2H(Y njXn)+nR bits are necessary, is stated and proved.2 Notation, Problem Formulation, and AssumptionsWe adopt the following notation conventions. Scalar random variables will be denotedby capital letters (e.g., X), speci�c values they may take will be denoted by the respectivelower case letter (x), and alphabets will be denoted by the respective script letters (X ). Theprobability mass function (PMF) that governs a scalar random variable will be also denotedby a lower case letter (e.g., q). Random vectors will be denoted by capital letters with asuperscript that denotes the dimension, e.g., Xn = (X1; :::;Xn). The same conventionapplies to speci�c vector values (xn = (x1; :::; xn)), and the corresponding superalphabet(X n). The PMF that governs a random vector will be denoted by a capital letter with asuperscript that denotes the dimension (e.g., Qn). Thus, Q1 = q. In a similar manner,processes (or sources) will be denoted by boldface capital letters, e.g., X = (X1;X2; :::),speci�c in�nite strings will be denoted by boldface lower case letters (e.g., x = (x1; x2; :::)),and probability measures that govern processes will be denoted by capital letters (e.g.,3



Q). The same conventions will apply to conditional measures and conditional probabilitydistributions associated with channels. The cardinality of a �nite set will be denoted by j � j,e.g., jX j is the size of the alphabet of X. The Cartesian product of two sets A and B willbe denoted by A� B.The problem is de�ned as follows. A transmitter wishes to send information across some�nite input-output alphabet channel by using a rate R block encoder E of block lengthn. Since the n-th order transition probabilities of the channel W n(ynjxn) = PrfY n =ynjXn = xng, xn 2 X n, yn 2 Yn, are unknown to the transmitter, the M = 2nR codewordsxn(1); xn(2); :::; xn(M), (xn(i) 2 X n, 1 � i � M), that together form the codebook E ,are randomly drawn independently according to some PMF Qn on X n. Once chosen, thecodebook is then provided to the decoder D as well.The decoder operation model is as follows. Given a code E = fxn(i)gMi=1 and a receivedvector yn, the decoder estimates the transmitted message as the integer which minimizesover i a certain function D(xn(i); yn), henceforth referred to as the decoding metric, whereties are broken arbitrarily and counted as errors.For a given code E of block length n, a channel W n, and a decoding metric D, letPe(E ;W n;D) denote the probability of error, where the prior probability distribution overthe message set is uniform, i.e.,Pe(E ;W n;D) = 1M MXi=1 Xyn2�ci W n(ynjxn(i)); (1)and where �ci is complementary to the ith decision region�i = fyn : D(xn(i); yn) < minj 6=i D(xn(j); yn)g: (2)For a random code E drawn according to Qn, the average probability of error �Pe(Qn;W n;D)is the expectation of Pe(E ;W n;D) w.r.t. the product measure QMi=1Qn(xn(i)).Obviously, ML decoding can be carried out if the channel W n is perfectly known tothe decoder. Suppose that the decoder is provided with partial knowledge of W n, which issummarized in an N -bit binary string zN . This description ofW n by zN may take on manyforms, e.g., �nite precision approximations of the transition probabilities fW n(ynjxn)g,training samples of the channel output for certain inputs, and so on. Quite clearly, if N isvery large, there are many ways to describeW n su�ciently accurately such that the averageerror probability can be made essentially as small as that of the optimal ML decoder forW n.4



On the other extreme, it is also obvious that if N is too small, then regardless of the methodof the describing W n, the vector zN cannot contain enough information about W n so asto guarantee small error probability for every channel in a large class (even if the encoderis optimized). The questions that we investigate here are: Where is the transition betweenthese two situations? What is the minimum N such that there still exists a description ofW n that keeps the average error probability small?More precisely, let R, n, and Qn be the parameters of the random code, and let Cn bea certain class of conditional PMF's fW n : X n ! Yng. An N -bit description for Cn is adeterministic mapping F : Cn ! f0; 1gN . Associated with every zN 2 f0; 1gN , there is adecoding metric DzN (�; �). For a given � > 0, let N(n) be the smallest positive integer Nfor which there exists an N -bit description zN = F (W n) for Cn, and a set of 2N decodingmetrics fDzN ; zN 2 f0; 1gN g such that for every W n 2 Cn,�Pe(Qn;W n;DF (Wn)) � �Pe(Qn;W n;DWn) + �; (3)whereDWn is the optimal ML decoding metric forW n, i.e., DWn(xn; yn) = � logW n(ynjxn).Clearly, the problem is meaningful only for classes of good channels in the sense that�Pe(Qn;W n;DWn) is small for the given choice of R, n, and Qn. For such classes of channels,we will be interested in characterizing the exponential growth rate of the function N(n) forlarge n.We next describe and discuss the basic assumptions. Consider a channel W with a�nite input alphabet X and a �nite output alphabet Y. For a given channel input processX governed by Q, let P = Q �W denote the probability measure that governs the jointinput-output process (X ;Y ) = f(Xt; Yt)gt�1, and let V denote the marginal probabilitymeasure corresponding to the output process Y . For a given positive integer n, let Qn,P n, and V n denote the respective nth order marginals associated with (Xn; Y n), and letW n(ynjxn) = P n(xn; yn)=Qn(xn) denote the nth order restriction of W w.r.t. Q, whereW n(ynjxn) �= 0 for Qn(xn) = 0. The nth order conditional output entropy is de�ned asH(Y njXn) = � Xxn2Xn Xyn2Yn P n(xn; yn) logW n(ynjxn); (4)and the nth order output entropy is de�ned asH(Y n) = � Xyn2Yn V n(yn) log V n(yn): (5)5



Finally, let I(Xn;Y n) = H(Y n)�H(Y njXn).For given � > 0 and � > 0, a positive integer n, and an input process Q with an nthorder marginal Qn, let Wn(Qn; �; �) denote the class of conditional PMF's W n such thatPr f(xn; yn) : logW n(ynjxn) < �H(Y njXn)� n�g � �; (6)and Pr fyn : log V n(yn) > �H(Y n) + n�g � �; (7)where the probabilities are de�ned w.r.t. P n.We assume that the channel W at hand is a member of the class W(Q; �; �) of allchannels, such that for some n � n0(�; �), we have W n 2 Wn(Qn; �; �). It should be stressedthat n0(�; �) is a certain function that depends solely on � and � and not on the particularchannel withinW(Q; �; �). We next discuss the relationship between conditions (6), (7) andcertain asymptotic properties of channels that are commonly assumed.Conditions (6) and (7) guarantee that �Pe(Qn;W n;DWn) is small for all R � I(Xn;Y n)�O(�), provided that � is small and n � n0(�; �). At �rst glance, eqs. (6) and (7) seemsimilar to the asymptotic equipartition property (AEP). However, a more careful inspectionreveals a few di�erences. First, while the common de�nition of a stationary ergodic channel(that satis�es the AEP) requires a stationary ergodic input-output process (X;Y ) for anystationary and ergodic input X, here the parallel requirement applies only to a process Qwhose nth order marginal Qn serves as the selected random coding distribution. Secondly,in contrast to the AEP, the deviations of the random variables n�1 logW n(Y njXn) andn�1 log V n(Y n) are de�ned w.r.t. the normalized nth order entropies H(Y njXn)=n andH(Y n)=n, and not their limits as n ! 1, namely, the entropy rates �H(Y jX) and �H(Y ),respectively. This is an important di�erence since the convergence of the sequences ofnormalized entropies might be arbitrarily slow, if at all these sequences converge. Therefore,for every given n � n0(�; �), there exist channels that satisfy (6) and (7), yet the probabilitiesof the events f(xn; yn) : logW n(ynjxn) < �n �H(Y jX) � n�g and fyn : log V n(yn) >�n �H(Y ) + n�g are still large even if the AEP is eventually satis�ed. As an example,consider a memoryless channel W n(ynjxn) = Qni=1wi(yijxi) where wi(�jx) is uniform onYi(x) � Y (depending on i and x), with jYi(x)j = Ki, and fKigi�1 is an arbitrary sequenceof integers in f1; :::; jYjg. Clearly, this channel satis�es (6) for all n, even for � = � = 0.However, H(Y njXn)=n = n�1Pni=1 logKi may converge arbitrarily slowly to �H(Y jX), or6



may not converge at all.Obviously, this does not mean that conditions (6) and (7) are more general than theAEP. It demonstrates, however, that some situations allowed by these conditions are notcovered by the AEP. Of course, the AEP is not the most general condition for the fea-sibility of reliable communication at positive rates. In [9], it has been shown the codingcapacity is always given by I(X;Y ), de�ned as the liminf in probability1 of the sequenceof normalized information densities fn�1 logW n(Y njXn)=V n(Y n)gn�1. Again, this meansthat for every given n, there are channels that satisfy (6) and (7), yet the probability thatflogW n(ynjxn)=V n(yn) � n(I(X;Y )� �)g is still large, and so might be the probability oferror (see [9, eq. (2.1)]). This concludes our discussion regarding eqs. (6) and (7).Finally, we describe our assumptions on the coding rate R. We mentioned earlier thateq. (3) would be interesting only for good channels in the sense that given R, Qn, and n, theaverage error probability is small. As mentioned earlier, this is the case when I(Xn;Y n) >n(R + O(�)). Also, since we expect the description length of a channel to increase withH(Y njXn) (see Introduction), then it will be natural to restrict Cn to channels for whichH(Y njXn) is uniformly upper bounded by nH0 for some constant H0 > 0. Therefore, wede�ne the class of channels asCn = Cn(Qn; R;H0; �; �)= Wn(Qn; �; �) \ fW n : I(Xn;Y n) � n(R+ 5�); H(Y njXn) � nH0g; (8)where the factor of 5 in front of � is immaterial and introduced for technical reasons only.Note, that a necessary condition for I(Xn;Y n) � n(R + 5�) to hold uniformly for everyW n 2 Cn, is that R � log jYj�H0�5�, where H0 < log jYj�5�. Also, since I(Xn;Y n) neverexceeds n log jX j, it is also necessary that R � log jX j � 5�. Thus, from the combination ofthese two requirements, it will be assumed that R � minflog jX j; log jYj �H0g � 5�.3 E�cient Channel Descriptions and the Direct TheoremIn the Introduction, we mentioned that 2H(Y njXn)+nR bits are su�cient for describing achannel without much loss in average error probability. Before we establish this claimformally, let us begin with two informal examples of deterministic descriptions, and thenturn to a randomized description for which we prove achievability.1The liminf in probability A of a sequence of random variables fAng is de�ned [9] as A =supfa : lim supn!1 PrfAn � ag = 0g. 7



Example 1 - description of conditional type classes. For each codeword xn(i), letT (xn(i)) = fyn : logW n(ynjxn(i)) � �H(Y njXn)� n�g, for some small � > 0, and let zNconsist of the binary representations of all yn 2 T (xn(i)) using n log jYj bits per vector. SincejT (xn(i))j � 2H(Y njXn)+n�, N is upper bounded by PMi=1 jT (xn(i))j � n log jYj � n log jYj �2H(Y njXn)+nR+n� , which has the desired exponential order. Consider now a decoder thatestimates i as the transmitted message if xn(i) is the only codeword for which yn 2 T (xn(i)),and declares an error otherwise. This decoder gives small error average error probabilityas long as the ML decoder does so. The intuition is that in view of eq. (6), the averageprobability that Y n would fall outside T (xn(i)) given that i is the transmitted message, issmall. Thus, the error probability can be large only for codebooks with large intersectionsamong fT (xn(i))g, but then the error probability would be large even for the ML decoder.Example 2 - description via channel simulation. The channel description problemis intimately related to the following simulation problem [8]: Given an input process Q, arealization Xn of Qn, and a channel W , construct Ŷ n = �(Xn; Uk), where � is a determin-istic map, and Uk = (U1; :::; Uk) is an independent vector of k purely random bits, such thatthe PMF P̂ n = Qn � Ŵ n of (Xn; Ŷ n) would be close to P n = Qn �W n for large n. Whatis the minimum number of random bits k so that such a mapping � exists? The answer in[8] is given in full generality for arbitrary channels. Con�ning it to stationary and ergodicchannels, it tells that for large enough n, essentially k = H(Y njXn) bits su�ce to keepd(P n; P̂ n) = maxA�Xn�Yn jP n(A)� P̂ n(A)j (9)arbitrarily small. Now, de�ne zN as a description of � in the following manner: For each oneof the 2nR�2k possible input pairs (Xn; Uk), use n log jYj bits to describe the correspondingvalue of �(Xn; Uk). Thus, N is again, exponentially 2H(Y njXn)+nR bits. As a decodingmetric, we shall use DŴn , i.e., the ML decoder w.r.t. Ŵ n. Following eq. (9) and theoptimality of DŴn w.r.t. Ŵ n,�Pe(Qn;W n;DŴn) � �Pe(Qn; Ŵ n;DŴn) + �2� �Pe(Qn; Ŵ n;DWn) + �2� �Pe(Qn;W n;DWn) + �; (10)which is equivalent to (3).These two deterministic description methods su�er from the same problem: In reality, itis inconceivable that while the channel is unknown, one would have full information about8



all the conditionally typical sequences or the optimum channel simulator. In practice, acommon way to learn an unknown channel is carried out using random training examples.Intuitively, if we have su�ciently many independent channel-output training examples foreach input xn(i), 1 � i � M , such that the conditional output type classes are `well-covered', then this should su�ce for reasonably good training of the decoder. Anotherreason for con�ning attention to description by training examples (see also, [5],[7],[10]) isthat it is a stronger setting for proving achievability. To see this, note that the N -bitdescription corresponding to (a binary representation of) a training database is given by arandom rather than a deterministic mapping F . Nonetheless, if we can show the existenceof a good random mapping as such, this would imply that a good deterministic mappingalso exists, by a simple `random coding' argument: If the average error probability over theensemble of training databases of length N is small, there must be a deterministic databaseof the same length, whose performance is at least as good.For these two reasons, stating the achievability result in terms of random training datais more desirable, although it does not provide a constructive description strategy. Indeed,we next show that if one has at least 2H(Y njXn)+n� independent random training examplesfor each code word (and thus a training database of total size N exponentially at least2H(Y njXn)+n(R+2�) bits), then the average error probability, w.r.t. both the ensemble ofcodes and training data, is small for every good channel.Theorem 1 Let � and � be �xed positive reals. Let n � n0(�), where n0(�) is an integerdepending only on �. Let Qn be an arbitrary PMF on X n, let H0 2 (0; log jYj � 5�),R 2 (0;minflog jX j; log jYj �H0g � 5�], and let Cn be de�ned in eq. (8). Let E be a rate R,length n, random block code with M = 2nR codewords drawn independently w.r.t. Qn. For agiven randomly chosen codebook E = fxn(1); :::; xn(M)g, let ZMK = fY nij ; i = 1; :::;M; j =1; :::;Kg, (K positive integer) be a training set of random vectors in Yn, where each Y nij isdrawn independently according to W n(�jxn(i)). Let DZMK (xn(i); yn) = � log Ŵ n(ynjxn(i))be the decoding metric associated with ZMK, where Ŵ n(ynjxn(i)) = K�1PKj=1 IfY nij = yng,If�g being the indicator function. If K � 2n(H0+3�), then for every W n 2 Cn,EfPe(E ;W;DZMK )g � 2�+ 2�n� + exp2[nR� 2n�]; (11)where the expectation is taken w.r.t. the ensemble of random codebooks E and the ensembleof training sets ZMK given E. 9



Since 2n(H0+3�) training vectors per code word are su�cient for the assertion of thetheorem to hold, and since each training vector Y nij can be described by n log jYj bits, thenthe theorem tells us that for Cn de�ned as above, N(n) � n log jYj � 2n(H0+R+3�), providedthat n is su�ciently large.The remaining part of this section is devoted to the proof of Theorem 1.Proof of Theorem 1. For a givenW n 2 Cn, let �n �= H(Y njXn)+2n�, G = fyn : log V n(yn) ��H(Y n) + n�g, Gi = fyn : log Ŵ n(ynjxn(i)) � ��ng, and consider an auxiliary thresholddecoder D0ZMK that operates as follows.1. If yn 2 Gc or yn 2 \Mi=1Gci or yn 2 Gi for two or more indices i, then declare an error.2. If an error was not declared in Step 1 and hence yn 2 Gi for exactly one index i, thendeclare that i was the index of the transmitted message.Obviously, one must know V n(�), H(Y njXn), and H(Y n) (which are not assumed tobe known) in order to implement this threshold decoder. Nevertheless, this is not anobstacle for the purpose of deriving an upper bound on EPe(E ;W n;D), from the followingconsideration: Whenever the threshold decoder D0ZMK does not declare an error (that is, itreaches Step 2), it estimates the same transmitted message as the decoder corresponding toDZMK , de�ned in Theorem 1. Therefore, the error probability of the decoder of Theorem 1 isupper bounded by the error probability of the threshold decoder for every given codebookE and training set ZMK . A-fortiori, this inequality relation is maintained after takingensemble averages over E and ZMK. It will therefore su�ce to upper bound the averageerror probability EfPe(E ;W n;D0ZMK )g of the threshold decoder.By symmetry of the random coding mechanism, we may assume without loss of gen-erality, that the transmitted message is i = 1, and hence the average error probabilityassociated with the threshold decoder is bounded as follows.EfPe(E ;W n;D0ZMK )g = Pr(Gc[Gc1["M[i=2Gi#)� PrfGcg+ PrfGc1g+ MXi=2 PrnGi\Go� �+ PrfGc1g+ (M � 1) � PrnG2\Go ; (12)where the �rst inequality follows from the union bound, and the second inequality followsfrom the fact that W n 2 Wn(Qn; �; �), and the fact that the average probability of Gi \G is10



the same for all i � 2, provided that i = 1 is the transmitted message. Let us focus on theterm PrfG2 \ Gg �rst.PrnG2\Go = XXn�GQn(xn(2))V n(yn)Prnlog Ŵ n(ynjxn(2)) � ��njxn(2); yno= XXn�GQn(xn(2))V n(yn)Pr8<: 1K KXj=1 1fY n2j = yng � 2��n jxn(2); yn9=; ;(13)where Prf�jxn(2); yng is w.r.t. the distribution of fY n2j j = 1; :::;Kg, whereas xn(2) and ynare held �xed. Let us classify the pairs (xn(2); yn) in X n�G into two complementary subsetsT and T c, where T = f(xn(2); yn) : W n(ynjxn(2)) < 2��n�n�g. For every (xn(2); yn) 2 T ,the event 1K PKj=1 1fY n2j = yng > 2��n henceforth denoted by F , is a large deviations eventassociated with the empirical mean of i.i.d. Bernoulli random variables being signi�cantlylarger than their expectation. Thus, the probability of F is upper bounded by [1]PrfFjxn(2); yng � exp2 h�KD(2��n jj2��n�n�)i ; (xn(2); yn) 2 T; (14)where D(2��n jj2��n�n�) = 2��n log 2��n2��n�n� + (1� 2��n) log 1� 2��n1� 2��n�n�� (n� � log e)2��n (15)and where we have used the fact that log x � (1� 1=x) log e. Thus,PrfFjxn(2); yng � exp2 hK(n� � log e)2��ni ; (xn(2); yn) 2 T: (16)We then havePrfG2 \ Gg = X(Xn�G)\T Qn(xn(2))V n(yn)PrfFjxn(2); yng+X(Xn�G)\T cQn(xn(2))V n(yn)PrfFjxn(2); yng� exp2 hK(n� � log e)2��ni+ X(Xn�G)\T cQn(xn(2))V n(yn): (17)As for the second term on the right-most side of eq. (17), we haveX(Xn�G)\T cQn(xn(2))V n(yn) = X(Xn�G)\T cQn(xn(2))W n(ynjxn(2))2log[V n(yn)=Wn(yn jxn(2))� X(Xn�G)\T cQn(xn(2))W n(ynjxn(2))2H(Y njXn)�H(Y n)+4n�� XXn�YnQn(xn(2))W n(ynjxn(2))2�[I(Xn;Y n)�4n�]= 2�[I(Xn;Y n)�4n�]: (18)11



In a similar manner, it is readily seen thatPrfGc1g � exp2[�KD(2�n�n jj2��n+n�)] +Prn(xn(1); yn) : W n(ynjxn(1)) < 2��n+n�o ; (19)where Prf�g is w.r.t. P n = Qn �W n. Since the second term is less than � (by de�nition ofWn(Qn; �; �)) and since �n � 2n�, this can be further upper bounded for n � n0(�) byPrfGc1g � exp2[�0:125K2��n+n�] + �: (20)Combining eqs. (12), (17), (18), and (20), we get, for all large nEPe(E ;W n;D0ZMK ) � 2�+ 2nR exp2[�K2��n ] + 2nR�I(Xn ;Y n)+4n�: (21)Now, since K � 2n(H0+3�) � 2�n+n� for every W n 2 Cn, the second term in (21) is upperbounded by exp2[nR � 2n�], and since I(Xn;Y n) � n(R + 5�), the last term in (21) doesnot exceed 2�n�. This completes the proof of the Theorem 1.4 The Converse TheoremIn this section, we state and prove the converse theorem, which tells us that under theconditions of Theorem 1, if N < 2n(H0+R��) the average probability of error must be largefor some W 2 Cn, and so, N(n) is at least as large as 2n(H0+R��).Our converse theorem is slightly more restrictive than the direct theorem in that it iscon�ned to the de�nition of Cn w.r.t. the uniform2 random coding distribution Qn on X n oron an arbitrary subset An of X n. On the other hand, it is stronger than the strict converseto Theorem 1 in two important aspects. First, it is stated for deterministic rather thanrandomized channel descriptions. Clearly, the nonexistence of a good deterministic mappingF for small N , implies that a good randomized mapping (whose performance is given bythe expectation over deterministic ones) cannot exist either. Secondly, it claims that if N isnot large enough, then not only the average error probability (w.r.t. the ensemble of codes)must be large for some W n 2 Cn, but moreover, the error probability for any deterministiccode (including the one optimized to the actual channel and a given decoder) must be largeas well.2In the absence of knowledge of Wn at the transmitter side, this is a natural choice of Qn.12



Theorem 2 Let � and � be arbitrary positive reals, and let n � n0(�; �), where n0(�; �) isan integer that depends only on � and �. Let Qn be the uniform distribution on An � X n,where jAnj = 2nA, A � log jX j. Fix H0 2 (0; log jYj�6�), R 2 (0;minfA; log jYj�H0g�6�],and let Cn be as in eq. (8). If N � 2n(H0+R��), then for any rate R block code E of blocklength n, any N -bit description zN = F (W n), and any set of 2N decoding metrics fDzN g,there exists W n 2 Cn, such that Pe(E ;W n;DF (Wn)) � 1� �.DiscussionBefore we turn to the formal proof of Theorem 2, we discuss the intuition behind thisresult. We make an attempt to explain why there are `complicated' channels whose descrip-tion is so long, and what is the di�erence between these channels and the channels in [1],[2], [6], and [11], for which statistical side information is not needed, as explained in theIntroduction.The �rst important point is that the description length N is not due to the complexityof the actual channel W n, but due to the richness of the class of allowed channels Cn. Arich class corresponds to little prior knowledge on the variety of channels to be encountered.Obviously, if Cn contains one channel only, there is no need for statistical side informationsince the decoder can be designed optimally for this channel.On the other hand, a rich class of channels might contain also `simple' channels, yet thefull price of description must be payed if it is not known in advance that the underlyingchannel is such. Consider the class of conditional PMF's de�ned byW n(ynjxn) = ( 2�nH0 yn 2 B(xn)0 elsewhere (22)where B(xn), xn 2 X n, are subsets of Yn, with jB(xn)j = 2nH0 for all xn. This can bethought of as an idealization of a certain stationary and ergodic channel that distributesevenly all the probability on the set of conditionally typical sequences B(xn). Speci�cally,had we known ahead of time that the channel at hand is memoryless, then B(xn) wouldbe the set of all channel-output sequences for which the relative frequencies fp̂(x; y); x 2X ; y 2 Yg are close to the joint probabilities fp(x; y)g. Because of this simple structure ofB(xn), if the decoder knew p̂ within a reasonable accuracy, then all conditionally typical setsB(xn(i)) would have been essentially available by the appropriate permutations. Thus, inour context, N(n) is some constant, and so the exponential order of N(n) is zero. Moreover,as it turns out from [1] and [3], N(n) = 0 for the class of memoryless channels, because13



universal decoders for memoryless channels are implicitly jointly estimating the channel andthe transmitted message from yn and E .This remains essentially true even for wider parametric families of channels, such as�nite-state channels [11]. Feder and Lapidoth [2] show that for general parametric families,the price of universality is in multiplying �Pe(Qn;W n;DWn) by the `e�ective number ofdistinct channels' in the class. This is because universal decoding can be carried out byinterlacing optimum decoders of �nitely many `representative' channels in the class, and inthe parametric case, the number of such channels is fairly small.In contrast, as will be shown in the proof of Theorem 2 below, if Cn contains the setof all channels of the form (22) with arbitrary subsets B(xn), then N(n) must be at leastof the exponential order of 2n(H0+R), since for most of the channels in this class, there isno simple structure that is explainable in a short message. This is because the number ofdegrees of freedom of this class of channels grows rapidly with n.At this point, there is again a relation with channel simulation. In the proof of Theorem2 below, we show that if N is not large enough, then for most of the channels of the form(22) the probability of error must be larger than 1� �. Note that the channels of the form(22) can be represented as Y n = �(Xn; Uk) for some �, where Uk is a vector of k � nH0independent fair coin tosses. This is exactly the set of all channel simulators with at mostH0 random bits per symbol as discussed in Example 2 above. In other words, the setof channels given in (22) covers, within variational distance less than �, the class of allchannels for which H(Y njXn) is essentially less than nH0, and hence covers also Cn. Notethat for every representative channel (22) with average error probability larger than 1� �,all channels in the �-neighborhood of this representative would yield average probability oferror larger than 1 � 2�. This follows again from the fact that small variational distancecorresponds to uniform closeness of probabilities of events. Thus, in a certain sense we cansay that the converse it strong in that it holds for `most' channels in Cn at the same time.In summary, while in Example 2 we have demonstrated that essentially N = 2n(H0+R)are su�cient for describing channels that are simulateable by H0 bits per symbol, here wesee that this description length is also necessary for these channels.The remaining part of this section is devoted to the proof of Theorem 2.Proof of Theorem 2. Similarly as in [5], [7], and [10], the proof employs a `sphere covering'argument. Since there are �nitely many possible encoders and a �nitely decoders fDzN g,14



the number of encoder-decoder pairs is obviously �nite as well. We will �rst show thatalmost all channels of the form (22) are in Cn. Then, we upper bound the number ofsuch channels that can be `covered' by a single encoder-decoder pair in the sense that theprobability of error is less than 1 � �. Finally, we show that if N is not large enough thenthe overall number of covered channels is smaller than the total number of channels (22) inCn. Therefore, there must be channels for which the probability of error is larger than 1� �.Let B �= log jYj, �x � > 0, � > 0, H0 2 (0; B � 5�), R 2 (0;minfA;B � H0g � 6�],let n � n0(�; �), and consider the class Ln of all channels of the form (22). Clearly, everychannel in Ln satis�es H(Y njXn) = nH0 as well as eq. (6). Thus, for such a channel to bein Cn, the only additional requirements are eq. (7) andI(Xn;Y n) � n(R+ 5�): (23)Although not all channels in Ln satisfy these requirements, we now demonstrate that forlarge n, most of them do, and so they are members of Cn.First, observe that for every channel in Ln, I(Xn;Y n) = H(Y n) � nH0, where H(Y n)is de�ned w.r.t. the uniform input distribution Qn over An. Thus, eq. (23) is equivalent toH(Y n) � n(H0 +R+ 5�): (24)To show that most channels of Ln satisfy eqs. (7) and (24), we consider the uniformprobability distribution on Ln, and show that a randomly chosen W n 2 Ln satis�es bothrequirements with high probability. At this point, we make a distinction between two casesaccording to (i) H0 � B �A� �=4 or (ii) H0 < B �A� �=4.Consider case (i) �rst. We will show that for large n, most channels of Ln satisfyV n(yn) � 2�n(B��=2) simultaneously for all yn 2 Yn. Since R � B �H0 � 6�, this impliesthat eq. (24) holds, and since H(Y n) � nB, it would guarantee also that eq. (7) is met.For a given W n 2 Ln, it is straightforward to see that V n(yn) = 2�n(A+H0)JW (yn), whereJW (yn) is the number of input vectors xn 2 An for which B(xn) includes yn. Thus, it will besu�cient to show that for most channels of Ln, JW (yn) � 2n(A+H0�B+�=2) simultaneouslyfor all yn 2 Yn. Let JW (xn; yn) denote the indicator function of the event fW n 2 Ln : yn 2B(xn)g, and so, JW (yn) =Pxn2An JW (xn; yn). Clearly,PrfW n 2 Ln : yn 2 B(xn)g = EJW (xn; yn) = 2nH02nB = 2�n(B�H0) (25)15



for every xn and yn. Since the subsets fB(xn)g are drawn independently and equiprob-ably under the above de�ned probability distribution on Ln, then JW (yn) is the sum ofi.i.d. Bernoulli random variables fJW (xn; yn)g. Thus, the event fW n 2 Ln : JW (yn) �2n(A+H0�B+�=2)g for a given yn, is a large deviations event whose probability is upperbounded byPrfW n : JW (y) � 2n(A+H0�B+�=2)g � exp2[�2nAD(2�n(B�H0��=2)jj2�n(B�H0))];(26)which decays double-exponentially rapidly like exp2[�2n(A+H0+�=2�B)] � exp2[�2n�=4] un-der the assumption of case (i) (see eqs. (14), (15) for a similar derivation). Because of thisdouble-exponential decay rate and by the union bound, the probability continues to go tozero, even if the above event is extended and de�ned for some yn 2 Yn rather than for a�xed yn. Thus, we have shown that most channels in Ln give JW (yn) � 2n(A+H0�B+�=2)simultaneously for all yn.Turning now to case (ii), observe that only subsets of size 2n(H0+A) can be obtainedat the channel output space. Using the same technique, it is su�cient to prove and easyto see, that with high probability w.r.t. the random choice of W n 2 Ln, each one of thenonzero-probability output vectors yn satis�es V n(yn) � 2�n(H0+A��=2), and so, H(Y n) �n(H0 +A� �=2) > n(H0 +R+ 5�). At the same time, since H(Y n) � n(A+H0), eq. (7)is again satis�ed.We have seen that in both case (i) and case (ii), most of the channels in jLnj, are in Cnfor large n. A conservative estimate in either case would bejCn \ Lnj � jLnj2 = 12S2nA1 (27)where S1 �=  2nB2nH0 ! : (28)We next upper bound the number of channels NW in Ln for which a given encoder-decoderpair provides error probability less than 1 � �. Fix an encoder E = fxn(1); :::; xn(M)g,and a decoder D that corresponds to a certain partition of Yn into M = 2nR decisionregions �1; :::;�M . For Pe(E ;W n;D) to be less than 1� �, at least 0:5�2nR decision regionsf�ig must satisfy Prf�ci jxn(i)g � 1 � �=2, where Prf�g is de�ned w.r.t. W n. Also, sincePMi=1 j�ij = 2nB , the number of decision regions for which j�ij � 2n(B��) is at least 2nR�2n�.It follows that the number of decision regions that satisfy both Prf�ci jxn(i)g � 1� �=2 and16



j�ij � 2n(B��) is at least 0:5�2nR � 2n� � 0:5�(1 � �)2nR for all large enough n. Sincethe channels in L induce a uniform distribution on each B(xn) given xn, the requirementPrf�ci jxn(i)g � 1� �=2 is equivalent to the requirement that a fraction at least as large as�=2 of the vectors in B(xn(i)) would fall in �i. Now, for every decision region �i of size lessthan 2n(B��) the number of combinations S2 of choosing an output subset B(xn(i)) with afraction of vectors at least �=2 in �i, is upper bounded byS2 � 2nH0Xi=0:5�2nH0  2n(B��)i ! 2nB2nH0 � i !� 2nH0  2n(B��)0:5�2nH0 ! 2nB(1� 0:5�)2nH0 !� 2nH0 exp2f0:5�2nH0 [n(B � ��H0) + log e]g exp2f(1 � 0:5�)2nH0 [n(B �H0) + log e]g= exp2fnH0 + 2nH0 [n(B �H0 � 0:5�2) + log e]g; (29)where for the second inequality we have used the fact that for large n, the greatest summandcorresponds to i = 0:5�2nH0 and the following step follows from the inequality (see, e.g.,[7]) log nm ! � m log�enm� : (30)For each one of the remaining 2nA � 0:5�(1 � �)2nR channel input vectors that are notcorresponding to decision regions of cardinality less than 2n(B��) and conditional probabilityof error less than 1 � �=2, we allow free choice of the output subset, resulting in at mostS1 combinations, where S1 is de�ned as in eq. (28). Finally, the total number of channelsNW that satisfy the necessary conditions for error probability less than 1 � �, for a givenencoder-decoder pair is upper bounded byNW �  2nR0:5�(1 � �)2nR !S0:5�(1��)2nR2 � S2nA�0:5�(1��)2nR1� 22nRS0:5�(1��)2nR2 � S2nA�0:5�(1��)2nR1 ; (31)where for an upper bound we have ignored the fact that the counted channels should berestricted to Cn \ Ln. Let NE = 2nA2nR denote the number of di�erent encoders and letND = 2N � 22n(H0+R��) denote the number of di�erent decoders. Clearly, if we show thatjLn \ Cnj > NW � exp2[2n(H0+R��)] � exp2(nA2nR) � NWNEND (32)this will imply that there must be channels that are not `covered' by any encoder-decoderpair in the sense of yielding error probability less than 1��, and hence for these channels the17



error probability must be larger than 1� �. This follows from the following consideration.jLn \ CnjNWNEND � 12 exp2[�(nA2nR + 2n(H0+R��) + 2nR)] � �S1S2 �0:5�(1��)2nR : (33)But following the inequality  nm ! � 2m log(n=m); (34)we have S1 =  2nB2nH0 ! � 22nH0n(B�H0); (35)and therefore by eq. (29) S1S2 � exp2[2nH0(0:5�2n� log e)� nH0]; (36)which in turn implies thatjLn \ CnjNWNEND � 12 exp2 h(0:5�2n� log e)0:5�(1 � �)2n(H0+R) � 2n(H0+R��) � (nA+ nH0 + 1)2nRi :(37)Not only the last expression is larger than 1 for large enough n, it grows double-exponentiallyas fast as 22n(H0+R) . In other words, not only there exists a channel in Ln\Cn, but for mostmembers of Ln \ Cn, the probability of error is larger than 1� �. This completes the proofof Theorem 2.AcknowledgementThe very useful comments of the reviewers are greatly appreciated.References[1] I. Csisz�ar and J. K�orner, Information Theory: Coding Theorems for Discrete Memo-ryless Systems, New York, Academic Press, 1981.[2] M. Feder and A. Lapidoth, \Universal decoders for channels with memory," preprint1996.[3] V. D. Goppa, \Nonprobabilistic mutual information without memory," Probl. Contr.Inform. Theory, vol. 4, pp. 97-102, 1975.[4] R. M. Gray, Entropy and Information Theory, Springer Verlag 1990.18
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