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Abstract

We investigate the minimum amount of side information about the channel statistics,
that must be provided to the decoder in order to guarantee reliable communication in
the random coding sense, for certain classes of channels.

Index Terms: universal decoding, AEP, channel simulation.

1 Introduction

Consider a rate R, length n block code £ for transmission over a finite alphabet channel
W, and a decoder D. The encoder, that does not know the statistics of the channel, selects
at random (and shares with the decoder) a codebook, where each codeword is generated
independently by some probability distribution @™. The question that we address is: how
many information bits about the statistics of the channel must be provided to the decoder so
as to guarantee reliable communication? Later on, we shall formalize precisely this problem.
Clearly, the question is meaningful only if the channel at hand is ‘good’ in the sense that a
random codebook generated by Q" gives, with high probability, reliable communication at
least for the optimum maximum likelihood (ML) decoder.

It is well-known that for certain parametric families of channels (e.g., memoryless chan-
nels, finite-state channels, etc.) there exist universal decoders that do not require any sta-

tistical side information, and yet, not only maintain reliable communication in the random
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coding sense [3], but also achieve the optimum random coding error exponent [1], [2], [6],
[11]. However, here we do not confine ourselves only to channels that are characterizable by
a parameter set of fixed dimension, but rather to a much wider set of channels that includes
a certain subclass of the class of stationary and ergodic channels. We shall elaborate later
on the relation between earlier work on universal decoding and the present work.
Generally speaking, our main result is that exponentially N = 2H(Y"[X")+nE pitg are
necessary and sufficient for describing the channel to the decoder, where H(Y"|X") is the
nth order conditional output entropy given an input X™ governed by Q". More precisely,
for a given Hy > 0, if N > 2n(Ho+E+0) for some small § > 0, then there is an N-bit
description that enables decoding with small average error probability, w.r.t. the ensemble
of codes, for every ‘good’ channel whose conditional output entropy H(Y"|X"™) does not
exceed nHy. If, however, N < 2MHo+E=0) then regardless of the method of describing
the channel, and the decoder used for this description, there is at least one ‘good’ channel
for which H(Y"|X") < nHy, and yet the average error probability is high. Furthermore,
this argument remains true even if the code is optimized for the given channel and decoder,
rather than chosen at random. The intuition behind this expression of N is that the decoder

must essentially know what are the 2H("IX™)

conditionally typical output sequences given
each one of the 2% channel input messages.

The significance of our results is primarily in characterizing the richness of the class of
channels, or the “effective number of distinct channels” from the viewpoint of decoding,
given certain parameter values R, n, and Q", of the encoder. An important conclusion is
that training by independent output samples for each codeword, is an efficient (randomized)
description of the channel in the sense that it achieves the above minimum description
exponent with small average error probability.

Recently, a few similar problems have been addressed in the context of minimum sta-
tistical description of sources, for tasks like classification [10], lossless compression [5] and
vector quantization [7]. In [5] and [10], the conclusion was that it must take roughly 27~
bits to describe a source, where H,, is a quantity related to the nth order entropy, and
again, the intuition is that the typical sequences of the source must be conveyed in some
way. In [7], however, the behavior appeared to be different: rather than describing the

source itself, it turns out to be more efficient to describe the optimum ‘device’ (in that case,

the vector quantizer) for the given source. This reduces N from 2"H» to essentially 2%



bits that are needed to describe the centroids of the rate R vector quantizer. In the channel
decoding problem considered here, we have a mixed situation. The number N factorizes
into the product of 2#("1X") and 2"E where the former depends only on the channel (and
the random coding distribution), and the latter depends only on the size of the ‘device’,
namely, the encoder-decoder in this case.

Finally, it should be emphasized that, similarly as in [5],[7], and [10], our results are
non-asymptotic in the sense that limits as n — oo are never taken. Rather than that, we
consider a fized and finite block length n, which is assumed to be at least as large as some
integer ng(d, €), where ¢ and € are (arbitrarily small, but prescribed) positive reals, which are
parameters of the problem. This is important since the convergence of {H(Y"|X")/n},>1
(if at all, a limit exists [8, Lemma 1]) might be arbitrarily slow for certain channels and input
processes. Thus, for a certain n > ng(6, €), where our results are already valid, H(Y ™| X")/n
might be still far away from its limit.

The outline of the paper is as follows. In Section 2, the problem is defined along with
notation conventions and the basic assumptions are described and discussed. In Section
3, some examples of channel descriptions are provided and the direct theorem, stating
that 2nH"IX")+nR hitg are sufficient, is formalized and proved. Finally, in Section 4, the
ymxm)

converse theorem, that tells that 27( +tnR hits are necessary, is stated and proved.

2 Notation, Problem Formulation, and Assumptions

We adopt the following notation conventions. Scalar random variables will be denoted
by capital letters (e.g., X), specific values they may take will be denoted by the respective
lower case letter (z), and alphabets will be denoted by the respective script letters (X). The
probability mass function (PMF) that governs a scalar random variable will be also denoted
by a lower case letter (e.g., ¢). Random vectors will be denoted by capital letters with a
superscript that denotes the dimension, e.g., X" = (Xi,...,X,;). The same convention
applies to specific vector values (z" = (z1,...,2,)), and the corresponding superalphabet
(X™). The PMF that governs a random vector will be denoted by a capital letter with a
superscript that denotes the dimension (e.g., @*). Thus, Q' = ¢. In a similar manner,
processes (or sources) will be denoted by boldface capital letters, e.g., X = (X1, Xo,...),
specific infinite strings will be denoted by boldface lower case letters (e.g., = (x1, 2, ...)),

and probability measures that govern processes will be denoted by capital letters (e.g.,



Q). The same conventions will apply to conditional measures and conditional probability
distributions associated with channels. The cardinality of a finite set will be denoted by |-|,
e.g., |X| is the size of the alphabet of X. The Cartesian product of two sets A and B will
be denoted by A x B.

The problem is defined as follows. A transmitter wishes to send information across some
finite input-output alphabet channel by using a rate R block encoder £ of block length
n. Since the n-th order transition probabilities of the channel W"(y"|2") = Pr{Y" =
Y| X" = 2"}, 2" € X", y" € Y™, are unknown to the transmitter, the M = 2"% codewords
z"(1),2™(2),..., 2" (M), (z"(i) € X", 1 < ¢ < M), that together form the codebook &,
are randomly drawn independently according to some PMFE Q" on X™. Once chosen, the
codebook is then provided to the decoder D as well.

The decoder operation model is as follows. Given a code £ = {z"(7)},;2; and a received
vector y”, the decoder estimates the transmitted message as the integer which minimizes
over i a certain function D(x"(7),y™), henceforth referred to as the decoding metric, where
ties are broken arbitrarily and counted as errors.

For a given code £ of block length n, a channel W", and a decoding metric D, let
P.(£,WW™ D) denote the probability of error, where the prior probability distribution over
the message set is uniform, i.e.,

1 M
Pe(€,W",D) = MZ > Wy |2"(3), (1)
i=1 yneAS
and where A{ is complementary to the ith decision region
A ={y": D(a"(),y") < min D(a"(5),4™)} (2)
For a random code £ drawn according to Q", the average probability of error P.(Q"™, W™, D)
is the expectation of P.(£, W™, D) w.r.t. the product measure [[, Q™ (z"(i)).

Obviously, ML decoding can be carried out if the channel W™ is perfectly known to
the decoder. Suppose that the decoder is provided with partial knowledge of W™, which is
summarized in an N-bit binary string z"V. This description of W™ by 2V may take on many
forms, e.g., finite precision approximations of the transition probabilities {WW"(y"|z"™)},
training samples of the channel output for certain inputs, and so on. Quite clearly, if NV is
very large, there are many ways to describe W™ sufficiently accurately such that the average

error probability can be made essentially as small as that of the optimal ML decoder for W™.



On the other extreme, it is also obvious that if IV is too small, then regardless of the method
of the describing W, the vector 2" cannot contain enough information about W" so as
to guarantee small error probability for every channel in a large class (even if the encoder
is optimized). The questions that we investigate here are: Where is the transition between
these two situations? What is the minimum N such that there still exists a description of
W™ that keeps the average error probability small?

More precisely, let R, n, and Q" be the parameters of the random code, and let C,, be
a certain class of conditional PMF’s {W" : X" — Y"}. An N-bit description for C, is a
deterministic mapping F : C, — {0,1}"V. Associated with every 2V € {0,1}¥, there is a
decoding metric D, ~(-,-). For a given € > 0, let N(n) be the smallest positive integer N
for which there exists an N-bit description 2V = F(W™) for C,, and a set of 2 decoding

metrics {D,~, 2V € {0,1}V} such that for every W" € C,,
Po(Q", W™, Dpgwn)) < Po(Q", W™, D) + ¢, (3)

where DW" is the optimal ML decoding metric for W™, i.e., DW" (2", y") = — log W"(y"|z").

Clearly, the problem is meaningful only for classes of good channels in the sense that
P,(Q", W™, DW") is small for the given choice of R, n, and Q™. For such classes of channels,
we will be interested in characterizing the exponential growth rate of the function N(n) for
large n.

We next describe and discuss the basic assumptions. Consider a channel W with a
finite input alphabet A and a finite output alphabet ). For a given channel input process
X governed by @, let P = @ x W denote the probability measure that governs the joint
input-output process (X,Y) = {(X;,Y;)}s>1, and let V denote the marginal probability
measure corresponding to the output process Y. For a given positive integer n, let Q7,
P" and V"™ denote the respective nth order marginals associated with (X", Y™), and let
W"(y"|z™) = P™(z",y")/Q"(z") denote the nth order restriction of W w.r.t. @, where
wWn(y"™|z") 20 for Q"(z™) = 0. The nth order conditional output entropy is defined as

HY"X") =~ ) > P'"y")logW"(y"|z"), (4)
greX™ yneYn
and the nth order output entropy is defined as

H(Y") =— Y V'(y")logV"(y"). (5)
yneyn



Finally, let I(X™;Y") = H(Y") — H(Y"|X").
For given § > 0 and e > 0, a positive integer n, and an input process () with an nth

order marginal Q", let W,,(Q", §, €) denote the class of conditional PMF’s W" such that
Pr{(a",y") : log W"(y"a") < —H(Y"|X") — nd} < e, (6)

and

Pr{y": logV"(y") > —H(Y") + né} <e, (7)

where the probabilities are defined w.r.t. P".

We assume that the channel W at hand is a member of the class W(Q, d,€) of all
channels, such that for some n > ng(d, €), we have W" € W,,(Q", 4, €). It should be stressed
that ng(d, €) is a certain function that depends solely on § and € and not on the particular
channel within W(Q, 4, €). We next discuss the relationship between conditions (6), (7) and
certain asymptotic properties of channels that are commonly assumed.

Conditions (6) and (7) guarantee that P,(Q", W™, D" ) is small for all R < I(X™; Y")—
O(6), provided that € is small and n > ng(d,e). At first glance, eqs. (6) and (7) seem
similar to the asymptotic equipartition property (AEP). However, a more careful inspection
reveals a few differences. First, while the common definition of a stationary ergodic channel
(that satisfies the AEP) requires a stationary ergodic input-output process (X,Y") for any
stationary and ergodic input X, here the parallel requirement applies only to a process @
whose nth order marginal Q" serves as the selected random coding distribution. Secondly,
in contrast to the AEP, the deviations of the random variables n~!log W"(Y"|X") and
n 'logV"(Y") are defined w.r.t. the normalized nth order entropies H(Y™|X™)/n and
H(Y™)/n, and not their limits as n — oo, namely, the entropy rates H(Y|X) and H(Y),
respectively. This is an important difference since the convergence of the sequences of
normalized entropies might be arbitrarily slow, if at all these sequences converge. Therefore,
for every given n > ng (6, €), there exist channels that satisfy (6) and (7), yet the probabilities
of the events {(z",y") : logW"(y"|2") < —nH(Y|X) — né} and {y" : logV"™(y") >
~nH(Y) + nd} are still large even if the AEP is eventually satisfied. As an example,
consider a memoryless channel W"(y"|z") = [[i—; wi(y;|x;) where w;(-|z) is uniform on
Yi(z) C Y (depending on i and z), with |V;(z)| = Kj, and {K;};>1 is an arbitrary sequence
of integers in {1,...,|)|}. Clearly, this channel satisfies (6) for all n, even for § = € = 0.
However, H(Y"|X")/n = n"! 3" | log K; may converge arbitrarily slowly to H(Y|X), or



may not converge at all.

Obviously, this does not mean that conditions (6) and (7) are more general than the
AEP. Tt demonstrates, however, that some situations allowed by these conditions are not
covered by the AEP. Of course, the AEP is not the most general condition for the fea-
sibility of reliable communication at positive rates. In [9], it has been shown the coding
capacity is always given by I(X;Y), defined as the liminf in probability! of the sequence
of normalized information densities {n~'log W™(Y"|X")/V™(Y")},>1. Again, this means
that for every given n, there are channels that satisfy (6) and (7), yet the probability that
{log W"(y™|z™)/V™(y") < n(L(X;Y)—4)} is still large, and so might be the probability of
error (see [9, eq. (2.1)]). This concludes our discussion regarding eqs. (6) and (7).

Finally, we describe our assumptions on the coding rate R. We mentioned earlier that
eq. (3) would be interesting only for good channels in the sense that given R, Q™, and n, the
average error probability is small. As mentioned earlier, this is the case when I(X™;Y") >
n(R + O(d)). Also, since we expect the description length of a channel to increase with
H(Y"™|X™) (see Introduction), then it will be natural to restrict C, to channels for which
H(Y™X") is uniformly upper bounded by nHj for some constant Hy > 0. Therefore, we

define the class of channels as

Cn, = Cn(Q",R,Hy,d¢)
— Wa(Q",8,6) N{WT: I(X™Y™) > n(R+56), H(Y"|X™) < nHo},  (8)

where the factor of 5 in front of § is immaterial and introduced for technical reasons only.
Note, that a necessary condition for I(X";Y") > n(R + 56) to hold uniformly for every
W" € Cp, is that R <log|Y|—Hy—56, where Hy < log|Y|—56. Also, since I(X";Y™) never
exceeds nlog|X|, it is also necessary that R < log|X| — 5. Thus, from the combination of

these two requirements, it will be assumed that R < min{log |X|,log|Y| — Ho} — 5.

3 Efficient Channel Descriptions and the Direct Theorem

Y*|X")+nR hits are sufficient for describing a

In the Introduction, we mentioned that 27(
channel without much loss in average error probability. Before we establish this claim
formally, let us begin with two informal examples of deterministic descriptions, and then

turn to a randomized description for which we prove achievability.

!The liminf in probability A of a sequence of random variables {A,} is defined [9] as A =
sup{a : limsup,_,  Pr{4, <a} =0}.



Example 1 - description of conditional type classes. For each codeword z"(7), let
T(x"(i)) = {y": logWn(y"|z"(i)) > —H(Y"|X"™) — né}, for some small § > 0, and let 2V
consist of the binary representations of all y™ € T'(z"(¢)) using n log | Y| bits per vector. Since
|T(2" ()] < 2HO"IX™)416 "N is upper bounded by M, |T(z"(i))| - nlog|Y| < nlog|Y| -
oH(Y™X")+nR+nd which has the desired exponential order. Consider now a decoder that
estimates ¢ as the transmitted message if ™ (i) is the only codeword for which y™ € T'(z"(i)),
and declares an error otherwise. This decoder gives small error average error probability
as long as the ML decoder does so. The intuition is that in view of eq. (6), the average
probability that Y™ would fall outside T'(z" (7)) given that i is the transmitted message, is
small. Thus, the error probability can be large only for codebooks with large intersections
among {T'(z" (7))}, but then the error probability would be large even for the ML decoder.
Example 2 - description via channel simulation. The channel description problem
is intimately related to the following simulation problem [8]: Given an input process @, a
realization X" of Q™, and a channel W, construct yn = #(X™, U*), where ¢ is a determin-
istic map, and U* = (Uy, ..., Uy) is an independent vector of k purely random bits, such that
the PMF P" = Q" x W™ of (X", f’") would be close to P* = Q™ x W™ for large n. What
is the minimum number of random bits k so that such a mapping ¢ exists? The answer in
[8] is given in full generality for arbitrary channels. Confining it to stationary and ergodic

channels, it tells that for large enough n, essentially k = H(Y™|X™) bits suffice to keep

AP, P = | max P"(4) — P"(4) (9)

arbitrarily small. Now, define 2V

as a description of ¢ in the following manner: For each one
of the 2" x 2% possible input pairs (X™, U¥), use nlog || bits to describe the corresponding
value of ¢(X™,U¥). Thus, N is again, exponentially 2" IX")+nE hits  As a decoding
metric, we shall use DWn, i.e., the ML decoder w.r.t. W™. Following eq. (9) and the

optimality of DW" wort. wn,

P.(Q" W™ D™") < P W7, D"") 4 3
S pe(QnaWnaDW")_i_%
< P(Q", W™, D7)+, (10)

which is equivalent to (3).
These two deterministic description methods suffer from the same problem: In reality, it

is inconceivable that while the channel is unknown, one would have full information about



all the conditionally typical sequences or the optimum channel simulator. In practice, a
common way to learn an unknown channel is carried out using random training examples.
Intuitively, if we have sufficiently many independent channel-output training examples for
each input z"(i), 1 < ¢ < M, such that the conditional output type classes are ‘well-
covered’; then this should suffice for reasonably good training of the decoder. Another
reason for confining attention to description by training examples (see also, [5],[7],[10]) is
that it is a stronger setting for proving achievability. To see this, note that the N-bit
description corresponding to (a binary representation of) a training database is given by a
random rather than a deterministic mapping F. Nonetheless, if we can show the existence
of a good random mapping as such, this would imply that a good deterministic mapping
also exists, by a simple ‘random coding’ argument: If the average error probability over the
ensemble of training databases of length IV is small, there must be a deterministic database
of the same length, whose performance is at least as good.

For these two reasons, stating the achievability result in terms of random training data
is more desirable, although it does not provide a constructive description strategy. Indeed,
we next show that if one has at least 28" IX")4+n¢ jndependent random training examples
for each code word (and thus a training database of total size N exponentially at least

QH (Y™ X")+n(R+20) bits), then the average error probability, w.r.t. both the ensemble of

codes and training data, is small for every good channel.

Theorem 1 Let § and € be fized positive reals. Let n > ng(d), where ng(d) is an integer
depending only on 6. Let Q" be an arbitrary PMF on X", let Hy € (0,log|Y| — 56),
R € (0, min{log |X|,log | Y| — Ho} — 50], and let C,, be defined in eq. (8). Let € be a rate R,
length n, random block code with M = 2"E codewords drawn independently w.r.t. Q™. For a
given randomly chosen codebook & = {x"™(1),...,x" (M)}, let ZME = Y5, i=1,.,M, j=
1,..., K}, (K positive integer) be a training set of random vectors in Y", where each Y} is
drawn, independently according to W™(-|z"(i)). Let Dyux (z"(i),y") = — log W™ (y"|z"(i))
be the decoding metric associated with ZMX | where W (y"|2"(i)) = K Z]K:l Y} = y"},
I{} being the indicator function. If K > 2"(Ho+3%) then for every W" € C,,

E{P.(£,W,Dyux)} < 2 + 27" + exp,[nR — 2], (11)

where the expectation is taken w.r.t. the ensemble of random codebooks £ and the ensemble

s ZMK

of training set given &.



Since 27(Ho+3%) training vectors per code word are sufficient for the assertion of the

theorem to hold, and since each training vector Y;? can be described by nlog|)Y| bits, then

n
J
the theorem tells us that for C, defined as above, N(n) < nlog|Y| - 2n(Ho+E+3%) hrovided
that n is sufficiently large.

The remaining part of this section is devoted to the proof of Theorem 1.
Proof of Theorem 1. For a given W™ € Cp,, let A, = H(Y™X"™)4+2nd, G = {y": logV"(y") <
—H(Y™) 4+ né}, Gi = {y™ : logW"(y"|z"(i)) > —An}, and consider an auxiliary threshold

decoder D’ZMK that operates as follows.
1. Ify” € G° or y" € ﬂf\ilgf or y" € G; for two or more indices ¢, then declare an error.

2. If an error was not declared in Step 1 and hence y™ € G; for exactly one index ¢, then

declare that ¢ was the index of the transmitted message.

Obviously, one must know V"(-), H(Y"|X"), and H(Y") (which are not assumed to
be known) in order to implement this threshold decoder. Nevertheless, this is not an
obstacle for the purpose of deriving an upper bound on EP, (£, W", D), from the following
consideration: Whenever the threshold decoder D’ZMK does not declare an error (that is, it
reaches Step 2), it estimates the same transmitted message as the decoder corresponding to
D uxk, defined in Theorem 1. Therefore, the error probability of the decoder of Theorem 1 is
upper bounded by the error probability of the threshold decoder for every given codebook
£ and training set ZM¥_  A-fortiori, this inequality relation is maintained after taking
ensemble averages over £ and ZMK . It will therefore suffice to upper bound the average
error probability E{P,(€,W", D’ )} of the threshold decoder.

By symmetry of the random coding mechanism, we may assume without loss of gen-
erality, that the transmitted message is ¢ = 1, and hence the average error probability

associated with the threshold decoder is bounded as follows.

M
B{P.(£, W™, Dlyur)} = Pr{GCUGEU[U g]}
M
< Pr{G} +Pr{Gi} + X Pr{G:(\9}
< e+ Pr{Gf}+ (M 1)-Pr{G:(G}, (12)

where the first inequality follows from the union bound, and the second inequality follows

from the fact that W™ € W,,(Q™, 4, ¢), and the fact that the average probability of G; NG is

10



the same for all ¢ > 2, provided that ¢ = 1 is the transmitted message. Let us focus on the

term Pr{G, N G} first.

Pr{g:N¢}

> QM@ (@)V" (y")Pr {log W"(y"|2"(2)) > —Aalz"(2), 4" }

X" xG
= Y Qe"@)v"(y")P { Zl{ng =y"} > 2 Ma"(2),y }(,13)
X" xG j=1

where Pr{:|z"(2),y"} is w.r.t. the distribution of {Y3} j = 1,..., K}, whereas z"(2) and y"
are held fixed. Let us classify the pairs (z"(2),y") in X" X G into two complementary subsets
T and T°, where T = {(z"(2),y") : W™ (y"|z"(2)) < 2-*» ™}, For every (z"(2),y") € T,
the event % Zszl 1{Y2']‘- = y"} > 27 henceforth denoted by F, is a large deviations event
associated with the empirical mean of i.i.d. Bernoulli random variables being significantly

larger than their expectation. Thus, the probability of F is upper bounded by [1]

Pr{F|2"(2),y"} <expy [ KD |24 ™), (a"(2),y") €T,  (14)
where
“An[jg—An— - 27 A _ 12
D@2 |27 ) = 2 A”logmﬂl—? A’L)logm
> (né —loge)2 M (15)

and where we have used the fact that logz > (1 — 1/z)loge. Thus,
Pr{F|2"(2),y"} < expy |[K(nd —loge)2 ™|, (a"(2),y") €T. (16)
We then have
Pr{GNG} = > Q""(2)V"(y")Pr{Flz"(2),y"} +

(X xg)nT

Y. QUE"@)V (y")Pr{F|z"(2),y"}
(XmxG)NTe
< ey [Kmi—loge2 ™+ Y QU@ (17)

(X7 xG)NTe

As for the second term on the right-most side of eq. (17), we have

Z Qn( n( )) n( n) _ Z Qn( ”(2))W"(yn‘3;”(2))2108[V"(y”)/wn(y”\$"(2))
(Xmxg)nTe (Xnxg)nTe
< Y QMEM@IWT(Y|an(2)2 O HOT g
(Xmxg)nTe
< Z Qn n Wn(y |a7 ( )) —[I(X™;Y™)—4nd]
xnxyn
_ o lI(xXMY™)—ans] (18)

11



In a similar manner, it is readily seen that

Pr{Gi} < epr[—KD(zfnz\n|‘2f>\n+n5)]+

Pr{(2"(1),y") : W"(y"[2"(1)) < 27 M+n0}, (19)

where Pr{-} is w.r.t. P" = Q™ x W". Since the second term is less than e (by definition of

Wh(Q", 6, €)) and since A, > 2nd, this can be further upper bounded for n > ngy(4) by
Pr{GS} < expy[—0.125K2 *Hn9] 4 ¢, (20)
Combining egs. (12), (17), (18), and (20), we get, for all large n
EP.(E,W", Dy« ) < 2¢ + 2" exp, [ K27 2] 4 onf-I(X"5Y")+4nd (21)

Now, since K > 2H0+30) > 9Antnd for every W € C,, the second term in (21) is upper
bounded by expy[nR — 2™], and since I(X™;Y™) > n(R 4+ 56), the last term in (21) does

not exceed 2", This completes the proof of the Theorem 1.

4 The Converse Theorem

In this section, we state and prove the converse theorem, which tells us that under the
conditions of Theorem 1, if N < 2{Ho+E=0) the average probability of error must be large
for some W € C,, and so, N(n) is at least as large as 2*(Ho+E~-9),

Our converse theorem is slightly more restrictive than the direct theorem in that it is
confined to the definition of C, w.r.t. the uniform? random coding distribution Q™ on &A™ or
on an arbitrary subset A4,, of X". On the other hand, it is stronger than the strict converse
to Theorem 1 in two important aspects. First, it is stated for deterministic rather than
randomized channel descriptions. Clearly, the nonexistence of a good deterministic mapping
F for small N, implies that a good randomized mapping (whose performance is given by
the expectation over deterministic ones) cannot exist either. Secondly, it claims that if N is
not large enough, then not only the average error probability (w.r.t. the ensemble of codes)
must be large for some W" € C,,, but moreover, the error probability for any deterministic

code (including the one optimized to the actual channel and a given decoder) must be large

as well.

2In the absence of knowledge of W™ at the transmitter side, this is a natural choice of Q™.
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Theorem 2 Let § and € be arbitrary positive reals, and let n > ng(d,€), where ng(d,€) is
an integer that depends only on & and €. Let Q™ be the uniform distribution on A, C X",
where |A,| = 24, A <log|X|. Fiz Hy € (0,log|Y|—60), R € (0,min{A, log |V|— Hq}—66],
and let Cy, be as in eq. (8). If N < on(Ho+B=0) then for any rate R block code & of block
length n, any N-bit description z¥ = F(W™), and any set of 2V decoding metrics {D,~},
there exists W™ € Cp, such that Pe(£,W", Dpwn)) > 1 — €.

Discussion

Before we turn to the formal proof of Theorem 2, we discuss the intuition behind this
result. We make an attempt to explain why there are ‘complicated’ channels whose descrip-
tion is so long, and what is the difference between these channels and the channels in [1],
[2], [6], and [11], for which statistical side information is not needed, as explained in the
Introduction.

The first important point is that the description length N is not due to the complexity
of the actual channel W™, but due to the richness of the class of allowed channels C,,. A
rich class corresponds to little prior knowledge on the variety of channels to be encountered.
Obviously, if C,, contains one channel only, there is no need for statistical side information
since the decoder can be designed optimally for this channel.

On the other hand, a rich class of channels might contain also ‘simple’ channels, yet the
full price of description must be payed if it is not known in advance that the underlying
channel is such. Consider the class of conditional PMF’s defined by

9—nHo yn c B(xn)

W(y"[a") = { 0 (22)

elsewhere

where B(z™), 2" € X™, are subsets of Y™, with [B(z")| = 2"H0 for all . This can be
thought of as an idealization of a certain stationary and ergodic channel that distributes
evenly all the probability on the set of conditionally typical sequences B(z™). Specifically,
had we known ahead of time that the channel at hand is memoryless, then B(z") would
be the set of all channel-output sequences for which the relative frequencies {p(z,y),z €
X,y € Y} are close to the joint probabilities {p(x,y)}. Because of this simple structure of
B(z™), if the decoder knew p within a reasonable accuracy, then all conditionally typical sets
B(z™(i)) would have been essentially available by the appropriate permutations. Thus, in
our context, N(n) is some constant, and so the exponential order of N(n) is zero. Moreover,

as it turns out from [1] and [3], N(n) = 0 for the class of memoryless channels, because
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universal decoders for memoryless channels are implicitly jointly estimating the channel and
the transmitted message from y™ and £.

This remains essentially true even for wider parametric families of channels, such as
finite-state channels [11]. Feder and Lapidoth [2] show that for general parametric families,
the price of universality is in multiplying P.(Q", W™, D¥") by the ‘effective number of
distinct channels’ in the class. This is because universal decoding can be carried out by
interlacing optimum decoders of finitely many ‘representative’ channels in the class, and in
the parametric case, the number of such channels is fairly small.

In contrast, as will be shown in the proof of Theorem 2 below, if C, contains the set
of all channels of the form (22) with arbitrary subsets B(z™), then N(n) must be at least
of the exponential order of 2"(Ho+R) gince for most of the channels in this class, there is
no simple structure that is explainable in a short message. This is because the number of
degrees of freedom of this class of channels grows rapidly with n.

At this point, there is again a relation with channel simulation. In the proof of Theorem
2 below, we show that if N is not large enough, then for most of the channels of the form
(22) the probability of error must be larger than 1 — e. Note that the channels of the form
(22) can be represented as Y = ¢(X" U*) for some ¢, where U* is a vector of k < nHy
independent fair coin tosses. This is exactly the set of all channel simulators with at most
Hy random bits per symbol as discussed in Example 2 above. In other words, the set
of channels given in (22) covers, within variational distance less than €, the class of all
channels for which H(Y™|X™) is essentially less than nHjy, and hence covers also C,,. Note
that for every representative channel (22) with average error probability larger than 1 — e,
all channels in the e-neighborhood of this representative would yield average probability of
error larger than 1 — 2e. This follows again from the fact that small variational distance
corresponds to uniform closeness of probabilities of events. Thus, in a certain sense we can
say that the converse it strong in that it holds for ‘most’ channels in C,, at the same time.

In summary, while in Example 2 we have demonstrated that essentially N = 27(Ho+E)
are sufficient for describing channels that are simulateable by Hy bits per symbol, here we
see that this description length is also necessary for these channels.

The remaining part of this section is devoted to the proof of Theorem 2.

Proof of Theorem 2. Similarly as in [5], [7], and [10], the proof employs a ‘sphere covering’

argument. Since there are finitely many possible encoders and a finitely decoders {D,~},
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the number of encoder-decoder pairs is obviously finite as well. We will first show that
almost all channels of the form (22) are in C,. Then, we upper bound the number of
such channels that can be ‘covered’ by a single encoder-decoder pair in the sense that the
probability of error is less than 1 — e. Finally, we show that if IV is not large enough then
the overall number of covered channels is smaller than the total number of channels (22) in
Cp. Therefore, there must be channels for which the probability of error is larger than 1 —e.

Let B 2 log|Y|, fix e >0, >0, Hy € (0,B —55), R € (0,min{A, B — Hy} — 64],
let n > ng(d, €), and consider the class L, of all channels of the form (22). Clearly, every
channel in £,, satisfies H(Y"|X") = nHy as well as eq. (6). Thus, for such a channel to be

in C,, the only additional requirements are eq. (7) and
I(X™;Y"™) > n(R+59). (23)

Although not all channels in £, satisfy these requirements, we now demonstrate that for
large n, most of them do, and so they are members of C,.
First, observe that for every channel in £,,, I(X™;Y") = H(Y") — nHy, where H(Y™)

is defined w.r.t. the uniform input distribution Q™ over A,. Thus, eq. (23) is equivalent to
H(Y"™) > n(Hy+ R + 50). (24)

To show that most channels of £, satisfy eqs. (7) and (24), we consider the uniform
probability distribution on £,, and show that a randomly chosen W" € L,, satisfies both
requirements with high probability. At this point, we make a distinction between two cases
according to (i) Hy > B —~ A —d/4 or (ii) Hy< B — A — §/4.

Consider case (i) first. We will show that for large n, most channels of L£,, satisfy
Vi(yn) < 2-(B=0/2) simultaneously for all y® € Y. Since R < B — Hy — 64, this implies
that eq. (24) holds, and since H(Y") < nB, it would guarantee also that eq. (7) is met.
For a given W" € L,,, it is straightforward to see that V" (y") = 2~ ™A+Ho) Jou. (y7)  where
Jw (y™) is the number of input vectors ™ € A,, for which B(z") includes y™. Thus, it will be
sufficient to show that for most channels of £,, Jw (y") < 2n(A+Ho—B+0/2) simultaneously
for all y™ € Y". Let Jy (2", y") denote the indicator function of the event {WW" € L, : y" €

B(mn)}a and S0, JW(yn) - ZE"EAn JW(xn,yn) Clearly,

2TLH(]

Pr{W" € Lo: y" € B@")} = Blw(a" y") = 2.y =2 "B H0) (25)

2nB
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for every 2™ and y”. Since the subsets {B(z")} are drawn independently and equiprob-
ably under the above defined probability distribution on L,, then Jy (y") is the sum of
ii.d. Bernoulli random variables {Jw (z",y™)}. Thus, the event {W" € L,, : Jw(y") >
2"(A+H0*B+5/2)} for a given y”, is a large deviations event whose probability is upper

bounded by
Pr{W™: Jy(y) > 2"ATH- B/}« exp,[—onA D (2 (B Homd/2)|g7n(B—H) )] (96)

which decays double-exponentially rapidly like exp,[—2m(A+Ho+0/2-B)] < exp,[—2m9/4] un-
der the assumption of case (i) (see egs. (14), (15) for a similar derivation). Because of this
double-exponential decay rate and by the union bound, the probability continues to go to
zero, even if the above event is extended and defined for some y™ € Y" rather than for a
fized y". Thus, we have shown that most channels in £, give Jy (y") < 2MA+Ho—B+0/2)
simultaneously for all y™.

Ho+4) can be obtained

Turning now to case (ii), observe that only subsets of size 2"(
at the channel output space. Using the same technique, it is sufficient to prove and easy
to see, that with high probability w.r.t. the random choice of W™ € L,, each one of the
nonzero-probability output vectors y” satisfies V" (y") < 2 "(Ho+A4-0/2) "and so, H(Y™) >
n(Hy+ A —46/2) > n(Hy + R+ 55). At the same time, since H(Y") < n(A + Hy), eq. (7)
is again satisfied.

We have seen that in both case (i) and case (ii), most of the channels in |£,|, are in C,

for large n. A conservative estimate in either case would be

= =57 (27)

where

52 ( . ) . (25)
We next upper bound the number of channels Ny in £,, for which a given encoder-decoder
pair provides error probability less than 1 — e. Fix an encoder £ = {2"(1),...,2" (M)},
and a decoder D that corresponds to a certain partition of Y" into M = 2"% decision
regions Ay, ..., Apr. For P,(E£, W™, D) to be less than 1 — ¢, at least 0.5¢2™F decision regions
{A;} must satisfy Pr{Af|z"(i)} < 1 — €/2, where Pr{-} is defined w.r.t. W". Also, since
M |A;] = 2"B, the number of decision regions for which |A;] < 2*(B~€) is at least 2% —2n€,

It follows that the number of decision regions that satisfy both Pr{A§|z"(i)} <1 —¢€/2 and
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|A;] < 27(B=€) is at least 0.5e2"F — 27¢ > 0.5¢(1 — €)2" for all large enough n. Since
the channels in £ induce a uniform distribution on each B(z") given 2", the requirement
Pr{A§|z"(i)} <1 —€/2 is equivalent to the requirement that a fraction at least as large as
€/2 of the vectors in B(z"(i)) would fall in A;. Now, for every decision region A; of size less
than 27(B~¢) the number of combinations Ss of choosing an output subset B(z"(i)) with a
fraction of vectors at least €/2 in A;, is upper bounded by

2nH0
on(B—e) onB
AR

i=0.5e2"Ho

onHy on(B—e) onB
0.5e2nHo (1 — 0.5¢)2nHo

< 20 exp,{0.5e2" 0 [n(B — € — Hy) + loge]} expy{(1 — 0.5¢)2"H0[n(B — Hy) + log e]}

IN

IN

= expy{nHy + 2"70[n(B — Hy — 0.5¢%) + log €]}, (29)

where for the second inequality we have used the fact that for large n, the greatest summand

corresponds to i = 0.5¢2"H0 and the following step follows from the inequality (see, e.g.,

[7])
log ( :1 ) < mlog (%) . (30)

2nR

For each one of the remaining 2"4 — 0.5¢(1 — ¢) channel input vectors that are not

corresponding to decision regions of cardinality less than 27(B—¢)

and conditional probability
of error less than 1 — €¢/2, we allow free choice of the output subset, resulting in at most
S7 combinations, where S; is defined as in eq. (28). Finally, the total number of channels
Nyw that satisfy the necessary conditions for error probability less than 1 — ¢, for a given

encoder-decoder pair is upper bounded by

onk 0.56(1—€)2nR (24 _(.5¢(1—¢)2n R
Nw < ( 0.5¢(1 — €)2nR ) 52 il

n e(l—e nR nA*.E*E nR
< 9 RSg.5(1 )2 -Sf 0.5¢(1—€)2 , (31)

where for an upper bound we have ignored the fact that the counted channels should be
restricted to C, N L,. Let Ng = 9n 42" Jenote the number of different encoders and let

on(Hg+R-9)

Np=2N <2 denote the number of different decoders. Clearly, if we show that
Ly, N Cr| > Ny - expy [2HFE=0) L expo (nA2"F) > Ny NgNp (32)

this will imply that there must be channels that are not ‘covered’ by any encoder-decoder

pair in the sense of yielding error probability less than 1—¢, and hence for these channels the
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error probability must be larger than 1 — e. This follows from the following consideration.

1
‘[:n N Cn‘ - eXp2[—(TLA2nR + 2n(Hg+R75) + 2nR)] . [

S, 0.5¢(1—¢)2nF
NwNgNp — 2 ] (33)

S5
But following the inequality

< n ) > 2m10g(n/m), (34)

m
we have
2nB nH _
S1 = ( onHg ) = 22" 7on(B HO), (35)
and therefore by eq. (29)
S
S_l > expy[2™7(0.5¢2n — loge) — nH), (36)
2

which in turn implies that

expy [(0.5¢%n — log €)0.5¢(1 — e)2nHot ) gn(HotBo0) (A 4 nHy + 1)2""] .
(37)

1
NwNgNp — 2

Not only the last expression is larger than 1 for large enough n, it grows double-exponentially

22"(H0+R)

as fast as . In other words, not only there exists a channel in £,, N C,,, but for most

members of £, N C,, the probability of error is larger than 1 — e. This completes the proof
of Theorem 2.
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