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Abstract

We derive a few extended versions of the Kraft inequality for information lossless finite-state
encoders. The main basic contribution is in defining a notion of a Kraft matrix and in estab-
lishing the fact that a necessary condition for information losslessness of a finite-state encoder is
that none of the eigenvalues of this matrix have modulus larger than unity, or equivalently, the
generalized Kraft inequality asserts that the spectral radius of the Kraft matrix cannot exceed
one. For the important special case where the FS encoder is irreducible, we derive several equiv-
alent forms of this inequality, which are based on well known formulas for spectral radius. It also
turns out that in the irreducible case, Kraft sums are bounded by a constant, independent of
the block length, and thus cannot grow even in any subexponential rate. Finally, two extensions
are outlined - one concerns the case of side information available to both encoder and decoder,
and the other is for lossy compression.

1 Introduction

Kraft’s inequality plays a pivotal role in information theory. It provides a complete and elegant

characterization of the feasibility of variable–length uniquely decodable (UD) codes by imposing

a simple constraint on codeword lengths. In 1949, Kraft [1] introduced this inequality for prefix

codes, establishing a condition on codeword lengths necessary for prefix decodability. Seven years

later, McMillan [2] generalized this to UD codes, leading to the Kraft-McMillan inequality, which is

widely used in information theory, first and foremost, to furnish a necessary and sufficient condition

for the existence of a UD code with a given code-length function, and thereby also to prove the

converse to the lossless source coding theorem, asserting that no UD source code can yield a coding

rate below the entropy rate of the source. Once this necessary and sufficient condition is satisfied,
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there exists, not only a general UD code, but also more specifically, a prefix code with that length

function. Beyond its immediate operational meaning, Kraft’s inequality underlies many fundamen-

tal principles in lossless compression, such as the equivalence between lossless source coding and

probability assignment. In general, its importance stems from the fact that it connects combi-

natorial properties of codes with analytical bounds in a precise and tractable manner. Classical

treatments can be found in standard texts such as [3] and [4].

When memory is introduced into the encoder, however, the classical Kraft inequality (CKI)

no longer applies directly. Finite–state encoders constitute a natural and widely studied model

for compression with memory, arising in universal source coding, individual–sequence coding, and

finite–state prediction. In this setting, the encoder’s output depends, not only on the current source

symbol, but also on an internal state that evolves over time in a manner that depends on past inputs.

As a result, the set of admissible codeword length assignments is no longer characterized by a single

scalar inequality, and the extension of Kraft’s condition becomes substantially more subtle.

Early progress in this direction was made by Ziv and Lempel [5], who derived a generalized Kraft

inequality (GKI) for information–lossless (IL) finite–state (FS) encoders by considering blocks over

large super-alphabets, see Lemma 2 in [5]. When reading Ziv and Lempel’s article, the reader is

under the impression is that their GKI was established merely an auxiliary result needed on their

way of proving that the finite-state compressibility of a sequence is lower bounded by its asymptotic

empirical entropy. Their focus was not on the Kraft inequality on its own right. Consequently,

their formulation of Kraft’s inequality suffers from two main limitations: (i) it does not reduce

exactly to the CKI when the encoder has merely one state, and (ii) it is based on super-alphabet

extensions to long blocks rather than being formulated in a single-letter manner, or at the level in

which the encoder is defined in the first place. More precisely, while the inequality remains valid

even for short block lengths, it yields tight results only asymptotically for long blocks.

Subsequent work has explored various aspects of finite–state coding, including irreducibility,

asymptotic equipartition properties, and connections to entropy and prediction. Nevertheless, a

direct, state–level generalization of Kraft’s inequality that mirrors the simplicity and sharpness of

the classical result has remained elusive.

In this paper, we present several new forms of GKI’s for IL FS encoders. Our approach associates
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with every given IL FS encoder a nonnegative matrix, termed the Kraft matrix, whose entries

are determined by the encoder’s single–symbol output lengths and state transitions. We show

that information losslessness imposes a spectral–radius constraint on this matrix, which serves as

a natural analogue of Kraft’s inequality. Unlike Ziv and Lempel’s GKI mentioned above, this

inequality, as well as its several equivalent forms presented herein, reduces exactly to the CKI in

the single–state case and avoids the use of super-alphabet extensions.

We then further refine the analysis for irreducible FS encoders, where Perron–Frobenius theory

yields stronger, uniform bounds on matrix powers. These results lead to transparent lower bounds

on achievable compression rates for both stochastic sources and individual sequences. In addition,

we extend the framework to settings with side information (SI) available at both the encoder and

decoder, where the relevant constraint is expressed in terms of the joint spectral radius (JSR) of

a finite set of Kraft matrices [6]. This extension clarifies the structural limitations imposed by SI

and highlights the role of common sub-invariant vectors. Finally, another extension is associated

with lossy source coding in the spirit of those of [7], [8], and [9].

Overall, the proposed framework provides a unified and exact characterization of feasibility

conditions for FS encoders, sharpening existing results and offering new tools for the analysis of

compression and prediction under finite–memory constraints.

The outline of the remaining part of this article is as follows. In Section 2, we establish notation

conventions, define the setting, and provide some background on the GKI of Ziv and Lempel. In

Section 3, we present our basic GKI asserting that the spectral radius of the Kraft matrix must not

exceed unity for an IL FS encoder. Stronger and more explicit statements are then provided for

irreducible encoders in Section 4. In Section 5, we apply the GKI of Section 4 to obtain converse

bounds on compression and prediction of irreducible machines, both in the probabilistic setting

and for individual sequences. Finally, in Section 6, we extend the GKI to the case of availability of

SI, and in Section 7, we extend it to the lossy case.

2 Notation, Setting and Background

Throughout this paper, scalar random variables (RV’s) will be denoted by capital letters, their

sample values will be denoted by the respective lower case letters, and their alphabets will be
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denoted by the respective calligraphic letters. A similar convention will apply to random vectors

and their sample values, which will be denoted with same symbols superscripted by the dimension.

Thus, for example, Xn (n – positive integer) will denote a random n-vector (X1, . . . ,Xn), and

xn = (x1, . . . , xn) is a specific vector value in X n, the n–th Cartesian power of X , which is the

alphabet of each component of xn. For two positive integers, i and j, where i ≤ j, xji and Xj
i will

designate segments (xi, . . . , xj) and (Xi, . . . ,Xj), respectively, where for i = 1, the subscript will

be omitted (as above). For i > j, xji (or Xj
i ) will be understood as the null string. An infinite

sequence (x1, x2, . . .) will be denoted by x. Logarithms and exponents, throughout this paper, will

be understood to be taken to the base 2 unless specified otherwise. The indicator of an event A
will be denoted by I{A}, i.e., I{A} = 1 if A occurs and I{A} = 0 if not.

Following the the finite-state encoding model of [5], an FS encoder is defined by the quintuple,

E = (X ,Y,Z, f, g), whose five ingredients are defined as follows: X is the finite alphabet of each

symbol of the source sequence to be compressed. The cardinality of X will be denoted by α. Y
is a finite collection of binary variable-length strings, which is allowed to consist of empty string,

denoted ‘null’ (whose length is zero); Z is a finite set of s states of the encoder; f : Z × X → Y is

the output function, and g : Z × X → Z is the next-state function.

Given an infinite source sequence to be compressed, x = (x1, x2, . . .), with xi ∈ X , the FS en-

coder E produces an infinite output sequence, y = (y1, y2, . . .) with yi ∈ Y, forming the compressed

bit-stream, while passing through a sequence of states z = (z1, z2, . . .) with zi ∈ Z, i = 1, 2, . . ..

The encoder is governed by the recursive equations:

yi = f(zi, xi), (1)

zi+1 = g(zi, xi), (2)

for i = 1, 2, . . ., with a fixed initial state z1 ∈ Z. If at any step yi = null, this is referred to as idling

as no output is generated, but only the state evolves in response to the input. At each time instant

i, the encoder emits L(yi) = L[f(zi, xi)] bits, and it is understood that L(null) = 0.

An encoder with s states, henceforth called an s-state encoder, is one for which |Z| = s. For the

sake of simplicity, we adopt a few notation conventions from [5]: Given a segment of input symbols

xji , where i and j are positive integers with i ≤ j, and an initial state zi, we use f(zi, x
j
i ) to denote

the corresponding output segment yji produced by E. Similarly, g(zi, x
j
i ) will denote the final state
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zj+1 after processing the inputs xji , beginning from state zi. Thus, in response to an input xn,

the encoder produces a compressed bit string of length L(yn) = L[f(z1, x
n)] =

∑n
i=1 L[f(zi, xi)] =

∑n
i=1 L(yi) bits. An FS encoder E is called information lossless (IL) if, given any initial state

zi ∈ Z, any positive integer n, and any input string, xi+n
i , the triplet (zi, f(zi, x

i+n
i ), g(zi, x

i+n
i ))

uniquely determines the corresponding input string xi+n
i .

For example, a fixed-to-variable block encoder of length k can be viewed as an IL FS encoder

with s =
∑k−1

j=0 α
j = αk−1

α−1 states. The initial state designates the beginning of each block. At each

time instant, the state of the encoder is simply the contents of the part of the current input block

received so far. In general, as long as the input block has not been completed, the encoder idles and

upon receiving the last input symbol of the block, the encoder produces the compressed codeword

for that block and it returns to its initial state, ready to receive the next input block. In some cases,

if there is enough structure, the encoder does not necessarily have to idle until the very end of the

block. For instance, if at a certain time before the end of the block, the contents of the beginning

of the block read so far already determines the beginning of the compressed representation, the

encoder can start to output these compressed bits before the end of the block. As an instance of

such a block code of length k = 2, see Example 1 below.

In Lemma 2 of [5], Ziv and Lempel presented a GKI for IL FS encoders. It asserts that for

every IL encoder with s states and every positive integer ℓ,

∑

xℓ∈X ℓ

2−minz∈Z L[f(z,xℓ)] ≤ s2
[

1 + log

(

1 +
αℓ

s2

)]

. (3)

Ziv and Lempel’s GKI was a perfect tool for their purpose of proving that the compression ratio

achieved by an IL FS encoder cannot be smaller than the asymptotic empirical entropy rate (defined

in [5]) for any infinite source sequence x. However, when examined for finitely long sequences, and

from the perspective of serving as a necessary condition for information losslessness, this inequality

suffers from two main weaknesses.

1. It does not exactly recover the CKI for the special case, s = 1, as in that case, the r.h.s.

becomes 1 + log(1 + αℓ) > 1. Moreover, even if ℓ = 1, the right-hand side (r.h.s.), which is

1+ log2(1+α), is even larger than 2 for every α ≥ 2. On a related note, a close inspection of

the proof of Lemma 2 in [5] reveals that the inequality in eq. (3) is actually a strong inequality

(<), in other words, this inequality is always loose.
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2. It is significant only upon an extension from single symbols into the super-alphabet of ℓ-

strings for large ℓ, unlike the ordinary Kraft inequality, which is asserted in the same level

that code is defined. For example, the CKI for a code that is defined in the level of single

symbols of X is asserted in that level, i.e.,
∑

x∈X 2−L[f(x)] ≤ 1.

Our objective in this work is first and foremost, to establish another GKI for IL FS encoders that

is free of the above mentioned drawbacks. In other words, for the case s = 1, it would recover the

traditional Kraft inequality exactly, and it will be posed in the single-letter level without recourse

to alphabet extensions. The latter property will enable one to verify relatively easily that this

inequality holds in a given situation.

Our first proposed GKI serves as the basis for our subsequent derivations. Having derived it,

we then confine attention to the subclass of irreducible IL FS encoders, namely, FS encoders for

which every state can be reached from every state in a finite number of steps. For this important

subclass of encoders, we provide several alternative formulations of the GKI and provide a stronger

upper bound to the growth rate of the Kraft sum as function of the block length. Again, all these

forms are smooth extensions of the CKI in the sense that in the special case s = 1, they degenerate

to the CKI. Finally, we consider extensions in two directions (one at a time): the first is the case

where SI is available to both encoder and decoder, and the second is the case of lossy compression.

3 The Basic Generalized Kraft Inequality

For a given IL FS encoder E with s states, let us define an s × s Kraft matrix K, whose (z, z′)

entry is given by

Kzz′ =
∑

{x: g(z,x)=z′}

2−L[f(z,x)], (z, z′) ∈ Z2, (4)

where the summation over an empty set is understood as zero. Since K is a non-negative matrix,

then according to Theorem 8.3.1 in [10], the spectral radius of K, ρ(K), is an eigenvalue of K. Our

first form of a GKI is the following.

Theorem 1. For every IL FS encoder,

ρ(K) ≤ 1. (5)
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As can be seen, this GKI has the two desired properties we mentioned above:

1. The case s = 1 obviously recovers the CKI, since in this case, K degenerates to a scalar, which

is nothing but the Kraft sum,
∑

x∈X 2−L[f(x)], and then eq. (5) asserts that
∑

x∈X 2−L[f(x)] ≤
1, as desired.

2. The matrix K is defined in terms of the functions f and g only. These functions are defined

in the level of the single symbols and states.

The first property sets the stage of establishing the condition ρ(K) ≤ 1 as a necessary condition

for information losslessness of a given FS encoder, in analogy to the fact that ordinary Kraft

inequality is a necessary (and sufficient) condition for the existence of unique decodability in the

case s = 1. Since there is no involvement of summations over super-alphabets of long vectors, this

condition is relatively easy to check, similarly as the CKI, which is a necessary condition for the

unique decodability (UD) property of ordinary lossless source codes.

Proof. Let Lmax
∆
= maxz,xL[f(z, x)]. For every positive integer ℓ, the (z, z′) entry of the ℓ-th order

power, Kℓ, is given by

[Kℓ]zz′ =
∑

z2∈Z

∑

z3∈Z

· · ·
∑

zℓ∈Z

ℓ
∏

i=1





∑

{xi: g(zi,xi)=zi+1}

2−L[f(zi,xi)]





=
∑

{xℓ: g(z,xℓ)=z′}

2−L[f(z,xℓ)]

=

ℓ·Lmax
∑

l=0

2−l · |{xℓ : L[f(z, xℓ)] = l, g(z, xℓ) = z′}|

≤
ℓ·Lmax
∑

l=0

2−l · 2l

= 1 + ℓ · Lmax, (6)

where in the first line, z1 = z and zℓ+1 = z′, and the inequality is due to the postulated IL property

(as z and z′ are fixed). Alternatively, we can also bound [Kℓ]zz′ by 1 + log(1 + αℓ) using the same

considerations as in the proof of Lemma 2 in [5], except that the factor s2 is missing since z and z′

are fixed. Which bound is tighter depends on Lmax. In any case, both expressions are essentially

7



linear in ℓ. Continuing with the first bound, it follows that

∑

z′∈S

[Kℓ]zz′ =
∑

xℓ∈X ℓ

2−L[f(z,xℓ)] ≤ s(1 + ℓ · Lmax). (7)

Let ez be a column vector of dimension s whose entries are all zero except the entry corresponding

to state z, which is 1, and let 1 denote the all-one column vector of dimension s. Then, eq. (7) can

be rewritten as

e⊤z K
ℓ1 ≤ s(1 + ℓ · Lmax). (8)

To prove that ρ(K) ≤ 1, assume conversely, that λ
∆
= ρ(K) > 1. Since K has non-negative

entries, the Perron–Frobenius theorem (see again Theorem 8.3.1 in [10]) guarantees that the right

eigenvector v corresponding to λ has non-negative components and at least one strictly positive

component. Since 1 = (1, . . . , 1)T has strictly positive components, there exists a constant δ > 0

such that 1 ≥ δv component-wise. Multiplying by Kℓ from the left and using the non-negativity

of K, we obtain

Kℓ1 ≥ δKℓv = δλℓv. (9)

Taking the z-th component yields

e⊤z K
ℓ1 ≥ δλℓvz. (10)

For any index z with vz > 0, the r.h.s. grows exponentially in ℓ since λ > 1, but this contradicts

eq. (8) which establishes an upper bound that grows only linearly in ℓ. Therefore the postulate

ρ(K) > 1 cannot hold true, and we conclude that ρ(K) ≤ 1, which completes the proof.

Since ρ(K) ≤ 1, it is clear that for every natural ℓ, ρ(Kℓ) = [ρ(K)]ℓ ≤ ρ(K) ≤ 1. In other

words, the spectral radius of

Kℓ =







∑

{xℓ: g(z,xℓ)=z′}

2−L[f(z,xℓ)]







z,z′∈Z

(11)

is also never larger than unity, which is an extension of our GKI to super-alphabets, which is again,

a smooth extension that degenerates to the CKI for s = 1.

Example 1. Consider a binary source sequence and a block code of length 2, which maps the source

strings 00, 01, 10, and 11, into 0, 10, 110, and 111, respectively. This code can be implemented by
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a FS encoder with s = 3 states, labeled ‘S’, ‘O’, and ‘I’, using the following functions, f and g (see

also Fig. 1):

g(S, 0) = O,

g(S, 1) = I,

g(O, 0) = g(O, 1) = g(I, 0) = g(I, 1) = S,

and

f(S, 0) = null,

f(S, 1) = 11,

f(O, 0) = 0,

f(O, 1) = 10,

f(I, 0) = 0,

f(I, 1) = 1.

State ‘S’ designates the start of a block. State ‘O’ remembers that the first input of the block was

‘0’ and state ‘I’ remembers that the first input was ‘1’. Upon moving to state ‘I’, the encoder can

already output ‘11’, because the entire codeword will be either ‘110’ or ‘111’ if the first source symbol

is ‘1’, so the first two coded bits are ‘11’ in either case. After state ‘I’, the encoder can complete

the codeword according to the second input in the block. After state ‘O’, outputs are generated only

upon receiving the second symbol. After both states ‘O’ and ‘I’, the encoder must return to state ‘S’

in order to start the next block. The corresponding Kraft matrix (with row and column indexing in

the order of (S,O,I)) is given by:

K =





0 2−0 2−2

2−1 + 2−2 0 0
2−1 + 2−1 0 0



 =





0 1 0.25
0.75 0 0
1 0 0



 (12)

whose eigenvalues are 1, 0, and −1, and so the spectral radius is ρ(K) = 1. As can be seen, the

sums of the second and third rows do not exceed unity, so when the initial state is either ‘O’ or

‘I’, the Kraft sum does not exceed 1. On the other hand, the Kraft sum corresponding to the first

row (pertaining to ‘S’) exceeds unity. This demonstrates an important observation: The model

of a general IL FS encoder is broader and more general than a model of a FS encoder for which

9



given every state, the encoder implements a certain prefix (or UD) code for the variety of incoming

symbols. For ℓ = 100, we find that

K100 =





1 0 0
0 0.75 0.1875
0 1 0.25





with eigenvalues are 0, 1, and 1. Here, the sums of the first and the second rows do not exceed

unity, so when the initial state is either ‘S’ or ‘O’, the Kraft sum does not exceed 1. On the other

hand, the Kraft sum corresponding to the third row exceeds unity, and so, the above comment with

regard to K applies here too. This concludes the Example 1.

SO I1/110/null

0/0

1/1

0/0

1/10

Figure 1: State transition diagram of the encoder in Example 1. The various state transitions are
labeled in a form x/y, where x denotes the input and y = f(z, x) denotes the output.

Earlier we said that ρ(K) ≤ 1 is a necessary condition for a given code with next-state function

g and code-lengths {L[f(z, x)]} to be IL. One might naturally wonder whether it is also a sufficient

condition. This question is open in general, but we have two comments related to this issue.

The first is that the answer is obviously affirmative for the subclass of IL encoders, which satisfies

the CKI for each and every state, i.e.,
∑

z′∈Z Kzz′ =
∑

x∈X 2−L[f(z,x)] ≤ 1: Simply construct a

separate prefix code with length function {L[f(z, x)], x ∈ X} for each z ∈ Z. However, in general,

an IL code does not necessarily satisfy the ordinary Kraft inequality for each z. Indeed, in Example

1, the sum of the first row of K is larger than 1.

The second comment is that we can give an affirmative answer in the level of longer blocks. Let

z1 ∈ Z be an arbitrary initial state and consider the lengths, l(z1, x
n) =

∑n
i=1 L[f(zi, xi)]. Then,
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as we have seen in (6):
∑

xn

2−L[f(z1,xn)] ≤ s(1 + nLmax), (13)

where the factor of s stems from taking the sum of Kzz′ over z
′ ∈ Z. Equivalently,

∑

xn

2−[l[f(z1,xn)]+log[s(1+nLmax)] ≤ 1, (14)

and so, there exists a prefix code with lengths l′(xn) = l(z1, x
n) + log[s(1 + nLmax)] + log s, which

are relatively only slightly longer than those of the original code. Here, the additional log s term is

a header that notifies z1.

4 Irreducible FS Encoders

IL FS encoders for which the next-state function g allows transition from every state to every state

within a finite number of steps, are henceforth referred to as irreducible FS encoders. Equivalently,

defining the s×s adjacency matrix A such that Azz′ = 1 whenever ∃x ∈ X such that g(z, x) = z′ and

Azz′ = 0 otherwise, then an IL FS encoder is irreducible iff the matrix A is irreducible. Likewise,

an IL FS encoder is irreducible iff the matrix K is irreducible. For an irreducible FS encoder, the

shortest path from every state z to every state z′ lasts no longer than s−1 steps, because any longer

path must visit a certain state z′′ at least twice, meaning that this path contains a loop starting

and ending at z′′, which can be eliminated. Clearly, the encoder of Example 1 is irreducible.

Intuitively, it makes sense to use irreducible encoders, because for reducible ones, once the

machine leaves a certain subset of transient states, it can never return, and so, effectively, a reducible

encoders uses eventually a smaller number of states after finite time. Specifically, given a reducible

machine and an infinite individual sequence x1, x2, . . ., suppose the machine starts at a transient

state. Then, there are two possibilities: either the machine quits the subset of transient states

after finite time, or it stays in that subset forever. In the former case, the transient states are

in use for finite time only and then never used again. In the latter case, the recurrent states

are never used. In either case, asymptotically, only a subset of the available states are used, and

so, effectively, the number of states actually used is smaller than s. Let Z∞ denote the set of

states visited infinitely many times along the sequence. This set is necessarily closed and induces a

strongly connected subgraph. Consequently, the asymptotic behavior of the encoder along the given
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sequence is governed entirely by its restriction to Z∞, which constitutes an irreducible finite-state

encoder with strictly fewer than s states. Therefore, reducible encoders cannot offer asymptotic

advantages over irreducible ones, even for individual sequences.

Assume next that the next-state function g induces an irreducible matrix Kℓ, where ℓ be an

arbitrary positive integer. Since Kℓ is non-negative and irreducible, the Collatz-Wielandt formulas

[11], [12] for the spectral radius of Kℓ hold true. These are given by

ρ(Kℓ) = max
w∈W+

min
{z: wz>0}

[Kℓw]z
wz

= min
w∈W+

max
{z: wz>0}

[Kℓw]z
wz

. (15)

where w is an s-dimensional column vector and W+ is the set of all such vectors with non-negative

components not all of which are zero. These lead to the two following GKI’s:

∀ w ∈ W+ ∃ z such that wz > 0 and
∑

z′∈S

wz′ ·
∑

{xℓ: g(z,xℓ)=z′}

2−L[f(z,xℓ)] ≤ wz, (16)

and

∃ w ∈ W+ ∀ z such that wz > 0:
∑

z′∈S

wz′ ·
∑

{xℓ: g(z,xℓ)=z′}

2−L[f(z,xℓ)] ≤ wz, (17)

The first formulation can be simplified at the price of a possible loss of tightness, by selecting w to

be the all-one vector and thereby bounding ρ(Kℓ) from below. This results in the conclusion that

an IL FS encoder always satisfies yet another GKI:

∃z ∈ S
∑

xℓ∈X ℓ

2−L[f(z,xℓ)] ≤ 1. (18)

In words, for every given irreducible FS encoder, (f, g), and for every natural ℓ, there is at least

one initial state, z ∈ Z, for which the Kraft sum is less than unity, but again, not all states must

satisfy this condition (as we saw in Example 1, the Kraft sum exceeds unity when the initial state

is ‘S’). All these are also smooth extensions of the CKI in the sense that for s = 1 we are back to

the CKI.

But there is an even stronger GKI that applies to irreducible encoders. It asserts that in the

irreducible case, Kn does not even grow linearly as in (6), but is rather bounded by a constant,

independent of n. For s = 1, this constant is 1, again in agreement with the CKI.

Theorem 2. Let K be an irreducible Kraft matrix. Then, for all z, z′ ∈ Z and for every natural

n,

(Kn)zz′ =
∑

{xn: g(z,xn)=z′}

2−L[f(z,xn)] ≤ 2(s−1)Lmax . (19)
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Consequently, for every z ∈ S,
∑

xn∈Xn

2−L[f(z,xn)] ≤ s · 2(s−1)Lmax , (20)

and
∑

z∈S

∑

xn∈Xn

2−L[f(z,xn)] ≤ s2 · 2(s−1)Lmax . (21)

Proof. It is sufficient to prove the first inequality, as the two other ones will follow trivially by

a summation over z′ ∈ Z and then also over z ∈ Z, respectively. Since K is non-negative and

irreducible, the Perron-Frobenius theorem applies. This theorem asserts that the spectral radius,

ρ(K), is positive and simple, with left and right eigenvectors, u and v, respectively, that have only

strictly positive components. In Theorem 1 we have already proved that ρ(K) ≤ 1. Assume first

that ρ(K) = 1. Then, uTKn = uT , or, equivalently,

∑

z∈S

uz(K
n)zz′ = uz′ ∀ z′ ∈ Z. (22)

Since all terms are non-negative, the left-hand side is lower bound by uz(K
n)zz′ for any z ∈ Z.

This implies for every z, z′ ∈ Z

(Kn)zz′ ≤
uz′

uz
≤ maxz∈Z uz

minz∈Z uz
. (23)

Let z⋆ ∈ Z and z⋆ ∈ Z be achievers of minz∈Z uz and maxz∈Z uz, respectively. Then, for every

z, z′ ∈ Z,

(Kn)zz′ ≤
uz⋆

uz⋆
. (24)

Since K is irreducible, the exists a path of length ℓ ≤ s − 1 from z⋆ to z⋆, say, z
⋆ → z1 → · · · →

zℓ−1 → z⋆ such that

(Kℓ)z⋆z⋆ ≥ Kz⋆z1 ·Kz1z2 · · ·Kzℓ−1z⋆ > 0. (25)

Since all positive entries of K are at least as large as 2−Lmax , this product is at least as large as

2−ℓLmax ≥ 2−(s−1)Lmax . It follows then that

(Kℓ)z⋆z⋆ ≥ 2−(s−1)Lmax . (26)

Now,

uz⋆ =
∑

z∈S

uz(K
ℓ)zz⋆ ≥ uz⋆(K

ℓ)z⋆z⋆ ≥ uz⋆2
−(s−1)Lmax , (27)
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which implies that

2(s−1)Lmax ≥ uz⋆

uz⋆
≥ (Kn)zz′ , (28)

for every z, z′ ∈ S. This completes the proof for the case ρ(K) = 1. The case ρ(K) < 1 is obtained

from the case ρ(K) = 1 by simply defining K̂ = K/ρ(K) and using the fact that all non-negative

entries of K̂ are lower bounded by 2−Lmax/ρ(K). Since K̂ is also irreducible and since ρ(K̂) = 1,

we now have

(K̂n)zz′ ≤ [ρ(K)2Lmax ]s−1. (29)

But K̂n = Kn/[ρ(K)]n, and so,

(Kn)zz′ ≤ [ρ(K)]n+s−1 · 2(s−1)Lmax < 2(s−1)Lmax . (30)

This completes the proof of Theorem 2.

5 Converse Bounds Derived from the GKI

In this section, we demonstrate how the GKI of Section 4 can be used to obtain lower bounds

on the performance of irreducible machines in compression and in prediction problems. For com-

pression, both probabilistic sources and individual sequences are considered. For prediction, only

the individual sequence version is presented, but the probabilistic counterpart can also be derived

straightforwardly using the same ideas.

Let {P (z, xℓ), z ∈ Z, xℓ ∈ X ℓ} be a joint probability distribution of random variables Z and

Xℓ. Then,

s2 · 2(s−1)Lmax ≥
∑

z∈Z

∑

xℓ∈X ℓ

2−L[f(z,xℓ)]

=
∑

z∈Z

∑

xℓ∈X ℓ

P (z, xℓ) · 2−L[f(z,xℓ)]−logP (z,xℓ)

≥ exp2







−
∑

z∈Z

∑

xℓ∈X ℓ

P (z, xℓ)L[f(z, xℓ)] +H(Z,Xℓ)







= exp2

[

−E{L[f(Z,Xℓ)]} +H(Z,Xℓ)
]

, (31)

where the inequality follows from Jensen’s inequality and the convexity of the exponential function.
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By taking logarithms of both sides, rearranging terms, and normalizing by ℓ, we get

R =
E{L[f(Z,Xℓ)]}

ℓ

≥ H(Z,Xℓ)

ℓ
− log2

(

s2 · 2(s−1)Lmax
)

ℓ

≥ H(Xℓ)

ℓ
− 2 log2 s+ (s− 1)Lmax

ℓ
, (32)

and if the source P is stationary, H(Xℓ)/ℓ can be further lower bounded by H(Xℓ|Xℓ−1), to obtain

R ≥ H(Xℓ|Xℓ−1)− 2 log2 s+ (s − 1)Lmax

ℓ
. (33)

Since this bound applies to every positive integer ℓ, we may maximize the lower bound over ℓ, and

obtain

R ≥ sup
ℓ≥1

{

H(Xℓ|Xℓ−1)− 2 log2 s+ (s− 1)Lmax

ℓ

}

. (34)

We see that thanks to Theorem 2, the vanishing term subtracted from the entropy decays at the

rate of 1/ℓ as opposed to the (log ℓ)/ℓ rate that stems from Lemma 2 of [5] as well as from the

more general inequality of 1 + ℓ · Lmax, that is obtained when reducible machines are allowed.

In the context of individual sequences, we can arrive at an analogous lower bound, provided that

we define a shift-invariant empirical distribution. Specifically, let xn be a given individual sequence,

let ℓ be a positive integer smaller than n, and let z1 be a given initial state of the encoder. We

assume that xn cyclic with respect to (w.r.t.) g in the sense that g(zn, xn) = z1. If this is not the

case, consider an extension of xn by concatenating a suffix xn+m
n+1 such that the extended sequence

would be cyclic w.r.t. g. Since g is assumed irreducible, this is always possible and the length m of

the extension need not be larger than s−1. To avoid cumbersome notation, we redefine xn to be the

sequence after the cyclic extension (if needed), and we shall keep in mind that this cyclic extension

adds no more than m · Lmax ≤ (s − 1)Lmax bits to the compressed description, or equivalently,

(s − 1)Lmax/n to the compression ratio, and so, this extra rate should be subtracted back upon

returning to the original sequence before the cyclic extension. For every wℓ ∈ X ℓ and z ∈ S, let

δ(zi, x
((i−1)⊕(ℓ−1))+1
i ; z, wℓ) =

{

1 zi = z and x
((i−1)⊕(ℓ−1))+1
i = wℓ

0 elsewhere
(35)

where ⊕ denotes modulo-n addition. Next, define the empirical distribution

P̂ (z, wℓ) =
1

n

n
∑

i=1

δ(zi, x
((i−1)⊕(ℓ−1))+1
i ; z, wℓ), (36)
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Now,

1

n

n
∑

i=1

L[f(zi, xi)] =
1

nℓ

n
∑

i=1

ℓ · L[f(zi, xi)]

=
1

nℓ

n
∑

i=1

ℓ−1
∑

j=0

L[f(zi, x((i−1)⊕j)+1)]

=
1

nℓ

n
∑

i=1

L[f(zi, x
((i−1)⊕(ℓ−1))+1
i )]

=
1

nℓ

n
∑

i=1

∑

z∈S

∑

wℓ∈X ℓ

δ(zi, x
((i−1)⊕(ℓ−1))+1
i ; z, wℓ)L[f(z, wℓ)]

=
1

nℓ

∑

z∈S

∑

wℓ∈X ℓ

n
∑

i=1

δ(zi, x
((i−1)⊕(ℓ−1))+1
i ; z, wℓ)L[f(z, wℓ)]

=
1

ℓ

∑

z∈S

∑

wℓ∈X ℓ

P̂ (z, wℓ)L[f(z, wℓ)]

≥ Ĥ(Xℓ|Xℓ−1)− 2 log2 s+ (s− 1)Lmax

ℓ
, (37)

where Ĥ(Xℓ|Xℓ−1) is the empirical conditional entropy derived from the shift-invariant distribution

P̂ . Using the fact that this is true for every natural ℓ < n and returning to the original sequence

before the cyclic extension, we find that

1

n

n
∑

i=1

L[f(zi, xi)] ≥ max
1≤ℓ<n

{

Ĥ(Xℓ|Xℓ−1)− 2 log s+ (s− 1)Lmax

ℓ

}

− (s− 1)Lmax

n
. (38)

Furthermore, invoking Ziv’s inequality (see eq. (13.125) in [4]), this can be further lower bounded in

terms of the LZ complexity. Specifically, according to eq. (13.125) in [4], for every Markov source,

Qℓ−1, of order ℓ− 1 and every xn ∈ X n,

c(xn) log c(xn) ≤ − logQℓ−1(x
n|x0−(ℓ−2)) + ǫℓ(n), (39)

where c(xn) is the maximum number of distinct phrases whose concatenation forms xn, and where

ǫℓ(n) tends to zero at the rate of O(log(log n)/ log n) for every fixed ℓ. By minimizing the r.h.s.

w.r.t. Qℓ−1, we get

c(xn) log c(xn) ≤ nĤ(Xℓ|Xℓ−1
0 ) + n · ǫℓ(n), (40)

and so,

1

n

n
∑

i=1

L[f(zi, xi)] ≥
c(xn) log c(xn)

n
−min

ℓ

[

ǫℓ(n) +
2 log s+ (s− 1)Lmax

ℓ

]

− (s− 1)Lmax

n
. (41)
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The minimizing ℓ can be found to be proportional to
√
n, but the dominant term of ǫℓ(n) remains

of the order of log(logn)
logn .

We next derive a lower bound to the prediction error of any FS predictor that is based on

an irreducible FS machine. Consider a finite-state (FS) predictor with q states, defined by the

following recursion, for i = 1, 2, . . .

x̂i+1 = u(xi, σi),

σi+1 = v(xi, σi), (42)

where σ = (σ1, σ2, . . .), σi ∈ Σ, i = 1, 2, . . ., is a corresponding infinite state sequence, whose

alphabet, Σ, is a finite set of states of cardinality q, and x̂ = (x̂1, x̂2, . . .), x̂i ∈ X , i = 1, 2, . . ., is the

resulting predictor output sequence. Without loss of generality, the initial state, σ1, and the initial

prediction, x̂1, are assumed fixed members, σ⋆ ∈ Σ and x̂⋆ ∈ X , respectively. Here, u : X ×Σ → X
is the predictor output function and v : X × Σ → Σ is the next-state function.

It is assumed that X is a group with well-defined addition and subtraction operations. For

example, if X = {0, 1, . . . , α − 1} then it is natural to equip X with addition and subtraction

modulo α. Let ρ : X → IR+ denote a given loss function. Then, the performance of a predictor

across the time range, 1 ≤ t ≤ n is measured in terms of the time-average,

1

n

n
∑

i=1

ρ(xi − x̂i). (43)

Given an arbitrary irreducible FS predictor (u, v) as defined above, consider the auxiliary condi-

tional probability distribution,

Qθ(xi+1|xi, σi) =
e−ρ(xi+1−u(xi,σi))/θ

Z(θ)
, θ ≥ 0, (44)

where

Z(θ) =
∑

x∈X

e−ρ(x)/θ. (45)

Define also the function

∆(R) = sup
θ≥0

θ · [R − logZ(θ)], R ≥ 0. (46)

Now, define

Qθ(x
n) =

n
∏

i=1

Qθ(xi|xi−1, σi−1) (47)
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where σ0 and x0 are arbitrary members of Σ and X , respectively, such that σ1 = v(x0, σ0) = s⋆,

and σ2, σ3, . . . , σn−1 are generated from x1, x2, . . . , xn−1 as in (42).

Let k divide n and consider the lossless compression of xn−1
0 in blocks of length k, xj =

xjk+k
jk+1, j = 0, 1, . . . , n/k − 1, by using the Shannon code, whose length function for a vector xk

is ⌈− logQθ(x
k)⌉. This is equivalent to predictive coding, where the prediction error signal, zn =

xn − f(xn−1, sn−1) is compressed losslessly under a model of a memoryless source with a marginal

Qθ(z) (see Fig. 2 for illustration). In this case, since the ceiling operation is carried over k-blocks,

and there are n/k such k-blocks, the upper bound to L(xn) becomes

L(xn) =

n/k−1
∑

i=0

⌈− logQθ(x
ik+k
ik+1)⌉ ≤

1

θ
·

n
∑

i=1

ρ(xi − u(xi−1, σi−1)) + n logZ(θ) +
n

k
. (48)

On the other hand, the corresponding encoder of Fig. 2 can be viewed as an encoder with q ·Mk

states, where Mk = (αk − 1)/(α − 1), since this is the number of combinations of a state of the

q-state predictor and a state of the lossless block encoder, whose number of states is
∑k−1

j=0 α
j = Mk.

Thus,
L(xn)

n
≥ Ĥ(Xℓ|Xℓ−1)− 2 log(qMk) + (qMk − 1)Lmax

ℓ
− Lmax

n
(49)

where it should be kept in mind that Lmax is expected to grow linearly with k. Thus, by comparing

the upper bound and the lower bound to L(xn), we have

1

nθ
·

n
∑

i=1

ρ(xi − u(xi−1, σi−1)) + logZ(θ) +
1

k

≥ Ĥ(Xℓ|Xℓ−1)− 2 log(qMk) + (qMk − 1)Lmax

ℓ
− Lmax

n
. (50)

or, equivalently,

1

n

n
∑

i=1

ρ(xi − u(xi−1, σi−1))

≥ θ

[

Ĥ(Xℓ|Xℓ−1)− 2 log(qMk) + (qMk − 1)Lmax

ℓ
− Lmax

n
− 1

k
− logZ(θ)

]

. (51)

Maximizing the r.h.s over θ ≥ 0, we get

1

n

n
∑

i=1

ρ(xi+1 − u(xi, σi)) ≥ ∆

(

Ĥ(Xℓ|Xℓ−1)− 2 log(qMk) + (qMk − 1)Lmax

ℓ
− Lmax

n
− 1

k

)

. (52)

The bound is meaningful if k ≫ 1 and ℓ ≫ qMk, so that the two subtracted terms in the argument

of the function ∆(·) are small compared to the main term, Ĥ(Xℓ|Xℓ−1). It is tight essentially for
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sequences of the form xi = u(xi−1, σi−1) + zi, i = 1, 2, . . ., where zn = (z1, . . . , zn) is typical to an

i.i.d. source and where the marginal empirical distribution of each zi is close to e−ρ(z)/θ/Z(θ) for

some θ ≥ 0.

xn

x̂n

−

+

D

D

σnpredictor

FS

lossless

decompression

01000110...

zn

xnzn

FS

predictor

D
x̂n

D

σn−1

lossless

compression

σn−1

xn−1

σn

xn−1

+ +

01000110...

Figure 2: Auxiliary predictive encoder and decoder. The upper block diagram depicts the encoder
that losslessly compresses the prediction error signal, zn, which is the difference between the input
signal, xn, and its prediction, x̂n obtained using a FS predictor. The lower block diagram stands
for the corresponding decoder.

6 GKI in the Presence of Side Information

We now discuss briefly an extension of the GKI for IL FS encoders in the case where SI is available

at both the encoder and the decoder. The resulting condition is expressed in terms of the joint

spectral radius (JSR) of a finite set of nonnegative matrices indexed by the various side–information
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symbols. We identify verifiable sufficient conditions for subexponential growth of Kraft sums and

discuss the limitations inherent in the presence of SI.

Let X be the source alphabet as before and let W denote the finite alphabet of the SI sequence,

w1, w2, . . ., whose symbols are synchronized with the corresponding source symbols. As before, let

Z be the finite set of states with |Z| = s. An FS encoder with SI is specified by an output function

f : Z × X ×W → Y, (Y being defined as a subset of {0, 1}∗, similarly as before) and a next–state

function g : Z × X ×W → Z. Given an initial state, z1 = z, a source sequence, x = (x1, x2, . . .),

and a SI sequence, w = (w1, w2, . . .), the encoder implements the equations:

yi = f(zi, xi, wi),

zi+1 = g(zi, xi, wi), (53)

for i = 1, 2, . . ., and the total code-length produced by the encoder after n steps is

L[f(z, xn, wn)] =
n
∑

i=1

L
(

f(zi, xi, wi)
)

. (54)

Definition 1. An FS encoder is said to be information–lossless with side information if for every

n, the quadruple (z1, y
n, wn, zn+1) ∈ Z × Yn ×Wn ×Z dictates xn ∈ X n.

For each SI symbol, w ∈ W, define the corresponding Kraft matrix

[K(w)]zz′ =
∑

{x∈X : g(z,x,w)=z′}

2−L[f(z,x,w)], z, z′ ∈ Z. (55)

Each K(w) is a nonnegative s× s matrix. For a given SI sequence, wn, define the product matrix

K(wn) = K(w1) ·K(w2) · · ·K(wn). (56)

Now, let K = {K(w), w ∈ W}. The growth rate of the Kraft products, K(wn), over arbitrary SI

sequences, {wn}, is governed by the JSR of K, which is defined as follows.

Definition 2. The JSR of K is defined as

ρJSR(K) = lim
n→∞

max
wn∈Wn

‖K(wn)‖1/n, (57)

where ‖ · ‖ is any matrix norm.
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It is a classical result that this limit exists and is independent of the chosen norm. The GKI in

the presence of SI can be formulated as follows.

Theorem 3. For an IL FS encoder with SI,

ρJSR(K) ≤ 1. (58)

Proof. Fix an arbitrary SI sequence, wn ∈ Wn and states z, z′ ∈ Z. The (z, z′) entry of K(wn) is

given by
∑

{xn: g(z,xn,wn)=z′}

2−L[f(z,xn,wn)]. (59)

Since the encoder is IL for the fixed sequence wn, the mapping between xn and (z, xn, wn, z′)

is injective over all paths from z to z′. Grouping sequences according to their total code-length

(similarly as before) and using a standard counting argument yields a linear upper bound (in n)

on each matrix entry of K(wn), uniformly over wn. Exponential growth of ‖K(wn)‖ is therefore

impossible, and the JSR must satisfy ρJSR(K) ≤ 1.

The following proposition can sometimes help.

Proposition 1. If there exists a vector v ∈ R
s with strictly positive components such that K(w)v ≤

v for every w ∈ W, then for every SI sequence wn, K(wn)v ≤ v, and hence the family {K(wn)} is

uniformly bounded.

Proof. The claim follows by induction on n. Since v > 0, uniform boundedness of all products

implies ρJSR(K) ≤ 1.

For example, if v = 1 satisfies proposition 1, this means that the Kraft sum is less than or

equal to unity for every initial state and every SI sequence. In such a case, one can simply design

a separate prefix code for every combination of initial state and SI sequence.

In contrast to the case without SI, bounding the spectral radius of each individual Kraft matrix

K(w) is necessary but insufficient to control the growth rate of arbitrary products. In other words,

even if ρ[K(w)] ≤ 1 for every w ∈ W individually, the JSR may exceed unity, and in fact, may
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be arbitrarily large. As an example, let ǫ be an arbitrarily small positive real and consider the

matrices

A =

(

ǫ 1
ǫ

0 ǫ

)

and B = AT . While ρ(A) = ρ(B) = ǫ, which is arbitrarily small, it turns out that ρ(A · B) =

ǫ2 + 1
2ǫ2 +

√

1 + 1
4ǫ4 ≈ 1

ǫ2 , which is accordingly, arbitrarily large. The JSR is therefore the correct

quantity governing feasibility.

Exact computation of the JSR is undecidable in general, even for nonnegative rational matrices.

Consequently, the above result should be interpreted as a structural constraint rather than a com-

putational criterion. Nonetheless, there is a plethora of upper and lower bounds to the JSR. Also,

as mentioned earlier, the existence of a common positive sub-invariant vector provides a meaningful

and verifiable sufficient condition for subexponential growth.

7 GKI for Lossy Compression

For lossy compression, we adopt a simple encoder model, where each source vector xℓ ∈ X ℓ is first

mapped into a reproduction vector x̂ℓ = Q(xℓ) ∈ X̂ ℓ within distortion ℓD and then x̂ℓ is losslessly

compressed by an IL FS encoder with s states exactly as before. The latter may work in the level

of single letters or in the level of ℓ-blocks. Let us define B(x̂ℓ) = {xℓ ∈ X ℓ : d(xℓ, x̂ℓ) ≤ ℓD} and

let Bℓ = maxx̂ |B(x̂)|. Now,

Kzz′
∆
=

∑

{xℓ: g(z,Q(xℓ))=z′}

2−L[f(z,Q(xℓ))]

=
∑

{x̂ℓ: g(z,x̂ℓ))=z′}

∑

{xℓ: Q(xℓ)=x̂ℓ}

2−L[f(z,x̂ℓ)]

≤
∑

{x̂ℓ: g(z,x̂ℓ))=z′}

|B(x̂ℓ)| · 2−L[f(z,x̂ℓ)]

≤ Bℓ ·
∑

{x̂ℓ: g(z,x̂ℓ))=z′}

2−L[f(z,x̂ℓ)]

∆
= Bℓ · K̂zz′ , (60)
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and so, K ≤ Bℓ · K̂ entry-wise. Now, K̂ has all the properties that we have proved for the lossless

case, it is just defined in the super-alphabet of ℓ-blocks. Since ρ(K̂) ≤ 1, we readily have:

ρ(K) = ρ(Bℓ · K̂) = Bℓ · ρ(K̂) ≤ Bℓ. (61)

For additive distortion measures, the quantity Bℓ can be estimated using the method of types [13],

or the Chernoff bound, or saddle-point integration [14], [15]. It is is upper bounded by 2ℓΦ(D),

where

Φ(D) = max
{P

XX̂
: d(X,X̂)≤D}

H(X|X̂). (62)

Thus, the corresponding GKI reads

ρ(K) ≤ 2ℓΦ(D). (63)
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