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Abstract

We present a family of relatively simple and unified lower bounds on the capacity
of the Gaussian channel under a set of pointwise additive input constraints. Specif-
ically, the admissible channel input vectors x = (x1, . . . , xn) must satisfy k additive
cost constraints of the form

∑n

i=1
φj(xi) ≤ nΓj , j = 1, 2, . . . , k, which are enforced

pointwise for every x, rather than merely in expectation. More generally, we also
consider cost functions that depend on a sliding window of fixed length m, namely,
∑n

i=m φj(xi, xi−1, . . . , xi−m+1) ≤ nΓj , j = 1, 2, . . . , k, a formulation that naturally ac-
commodates correlation constraints as well as a broad range of other constraints of
practical relevance.

We propose two classes of lower bounds, derived by two methodologies that both
rely on the exact evaluation of the volume exponent associated with the set of input vec-
tors satisfying the given constraints. This evaluation exploits extensions of the method
of types to continuous alphabets, the saddle-point method of integration, and basic
tools from large deviations theory. The first class of bounds is obtained via the entropy
power inequality (EPI), and therefore applies exclusively to continuous-valued inputs.
The second class, by contrast, is more general, and it applies to discrete input alpha-
bets as well. It is based on a direct manipulation of mutual information, and it yields
stronger and tighter bounds, though at the cost of greater technical complexity. Nu-
merical examples illustrating both types of bounds are provided, and several extensions
and refinements are also discussed.

Index Terms: Gaussian channel, channel capacity, entropy power inequality, peak-
power constraint, volume exponent, saddle-point method, large deviations.
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1 Introduction

Input-constrained Gaussian channels have been a central topic of study since the earliest

days of information theory [24], and they continue to be addressed in numerous papers

and textbooks (see, e.g., [3] and references therein, as well as those cited here). The most

common constraint is the average power constraint, which reflects the physical power budget

of the transmitter and leads to the classical expression for the Gaussian channel capacity

[24]. Beyond this standard setting, additional constraints capture further limitations of

practical signaling. For instance, the peak-power constraint [26] has yielded fundamental

insights, most notably, the result that the capacity-achieving input distribution for the

discrete-time memoryless Gaussian channel is discrete with finite support.

In practice, discrete input constellations are employed in virtually all communication

systems, regardless of whether they coincide with the true capacity-achieving distribution

(which is Gaussian under an average-power-only constraint). Discrete inputs are also used

to quantify the performance loss due to practical signaling restrictions, even in cases where

Gaussian inputs remain theoretically optimal [19]. From this perspective, the theoretical

results of [26] carry clear practical significance. Moreover, constrained Gaussian input

models play a central role in the study of optical communication channels, where the key

additional constraint is non-negativity of the input signal, imposed by intensity modulation

[1, 16, 25]. Similar constrained models have also been considered in other contexts (see,

e.g., [11, 21]).

Discrete-time Gaussian channels with filtered inputs, which induce inter-symbol interfer-

ence (ISI), provide both a natural and practically significant model for communication sys-

tems under realistic constraints. These channels have been investigated for many decades,

leading to a rich body of results and a variety of bounds, some of which are formulated

in terms of equivalent scalar Gaussian channels [15, 23]. Similarly, continuous-time filtered

Gaussian channels subject to average- and peak-power constraints have also been exten-

sively studied, motivated by the need to accurately model practical systems (see, e.g., [20]

and references therein).

The exact evaluation of capacity under practical constraints, such as peak-power limi-

tations, is notoriously difficult and typically requires intricate numerical procedures. This

challenge motivates the study of simple lower and upper bounds on capacity, a line of work
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well represented in the literature (see [27] and references therein). Capacity bounds un-

der peak-power and related practical constraints have also been extensively investigated

in broader settings, including vector Gaussian channels, multiple-input multiple-output

(MIMO) Gaussian channels, and related models [7, 8, 9] and references therein.

As evidenced by the vast literature on discrete-time Gaussian channel models, exact

capacity characterizations are rarely attainable. This scarcity strongly motivates the de-

velopment of relatively simple lower bounds on Gaussian channel capacity under a broad

class of constraints, extending beyond the classical average- and peak-power limitations.

Examples include, for instance, moment-based constraints studied in [10, 12].

In this work, we present a family of relatively simple and unified lower bounds to the

capacity of the Gaussian channel subject to a set of point-wise additive constraints. Specif-

ically, the allowable channel input vectors, x = (x1, . . . , xn), must comply with a set of k

additive cost constraints of the form,

n
∑

i=1

φj(xi) ≤ nΓj, j = 1, 2, . . . , k, (1)

where {φj(·), j = 1, 2, . . . , k} are given cost functions and {Γj , j = 1, 2, . . . , k} are given

numbers. Note that these constraints are imposed point-wise, for every x, and not merely

in expectation. The most common example is, of course, the average power constraint,

corresponding to k = 1 and φ1(x) = x2 and Γ1 = P . If, in addition, one wishes to add,

for example, a peak-power constraint, this can be addressed in this framework, by defining

k = 2, φ1(x) = x2, and φ2(x) being defined as φ2(x) = 0 for |x| ≤ A and φ2(x) = ∞ for

|x| > A. More generally, we can also allow cost functions that depend on a sliding-window

of a fixed size, m, i.e.,

n
∑

i=m

φj(xi, xi−1, . . . , xi−m+1) ≤ nΓj, j = 1, 2, . . . , k. (2)

These are useful to impose e.g., correlation constraints, where φj(xi, xi−ℓ) = xixi−ℓ, as well

as a variety of many other practically relevant constraints, as will be discussed in the sequel.

We henceforth refer to the constraints of the form (1) as memoryless constraints, and to

constraints of the form (2) for m ≥ 2, as constraints with memory, or as sliding-window

constraints.

The proposed lower bounds, in their basic forms, depend on k parameters over which an

expression should be minimized. In other words, the number of parameters to be optimized
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is equal to the number of constraints. In some of the more sophisticated versions of the

proposed lower bounds, there are additional parameters, but these are parameters for max-

imization, and so, the maximization is not mandatory as an arbitrary choice of the values of

those additional parameters are adequate for the purpose of obtaining a valid lower bound.

We propose two classes of lower bounds, which are derived by two methodologies that

are based on exact evaluation of the volume exponent associated with the set Sn ⊂ IRn of

input vectors that satisfy the constraints (1), or more generally, (2). This evaluation of the

volume exponent is based on extensions of the method of types to continuous alphabets

and on saddle-point integration methods [18, Chapters 2 and 3] (see also [4]) as well as

elementary large deviations theory [5]. Of course, for a finite channel input alphabet, the

ordinary method of types can be used instead, The first class of bounds is based on the

entropy-power inequality (EPI) (see, e.g., [3]) and therefore applies to continuous-valued

inputs only, and the second class applies also to discrete-alphabet inputs. The second class

of bounds, which builds on direct evaluation of the mutual information, is stronger and

tighter, but somewhat more complicated. Several extensions and modifications are also

discussed.

It is important to emphasize that we do not claim that our bounds are tighter than all

bounds reported in the literature for each and every specific model. Our contribution lies

in proposing systematic methodologies for deriving good lower bounds in a rather general

framework of channel input constraints, including sliding-window constraints (constraints

with memory), which are not trivial to handle, in general.

The outline of the remaining part of this article is as follows. In Section 2, we establish

our notation conventions (Subsection 2.1), provide a formal description of the setting (Sub-

section 2.2), and specify our objective (Subsection 2.3). In Section 3, we present the basic

EPI lower bound (Subsection 3.1), provide the volume exponent formula, first, for memory-

less constraints (Subsection 3.2), demonstrate it in a couple of examples (Subsection 3.3),

and finally, extend the scope to constraints with memory (Subsection 3.4) along with some

additional examples (Subsection 3.5). In Section 4, we derive alternative lower bounds by

direct manipulation of the mutual information where the channel input distribution is set

to be uniform across the set of input vectors that comply with all constraints. We do this

mostly for memoryless constraints (Subsection 4.1), but we also outline the basics of a pos-

sible derivation for constraints with memory (Subsection 4.2). For memoryless constraints,
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we also discuss and demonstrate a possible further improvement based on a certain para-

metric family of non-uniform input distributions. Finally, in Section 5, we summarize and

conclude this work, along with an outlook for future work.

2 Notation Conventions, Setup, and Objective

2.1 Notation Conventions

Throughout this paper, random variables are denoted by capital letters, their realizations –

by the corresponding lowercase letters, and their alphabets – by calligraphic letters. Ran-

dom vectors and their realizations are denoted by boldface capital and lowercase letters,

respectively, with their alphabets expressed as Cartesian powers of the underlying single-

letter alphabet. For example, the random vector X = (X1, . . . ,Xn) may take a realization

x = (x1, . . . , xn) in X n, the nth power of the single-letter alphabet, X . For two positive in-

tegers i and j, with i < j, we use the shorthand notation xji to denote (xi, xi+1, . . . , xj) with

the analogous convention for random variables, e.g., Xj
i = (Xi,Xi+1, . . . ,Xj). When i = 1,

the subscript will be omitted, namely, xj and Xj will stand for xj1 and Xj
1 , respectively.

Sources and channels will be denoted by the letters p, f , and q, subscripted by the

names of the relevant random variables or vectors, including conditionings when appropri-

ate, following standard conventions (e.g., qX , pY |X , etc.). When no ambiguity arises, these

subscripts will be omitted. The probability of an event A will be denoted by Pr{A}. The

expectation operator with respect to (w.r.t.) a probability distribution p will be written

as Ep{·}, with the subscript dropped whenever the distribution is clear from context. If

the underlying distribution depends on a parameter θ, we will denote the expectation by

Eθ{·}. Likewise, Prθ{A} will denote probability w.r.t. the source parameterized by θ.

Information measures follow the conventional notation of information theory: for example,

h(Y ) is the differential entropy of Y , h(Y |X) the conditional differential entropy of Y given

X, I(X ;Y ) is the mutual information between X and Y , etc. Finally, for a probability

function q(x) (a probability mass function if x is discrete, or a probability density function

if it is continuous), we denote its support by supp{q}, that is, supp{q} = {x : q(x) > 0}.
For two positive sequences, {an}n≥1 and {bn}n≥1, the notation an

·
= bn will stand

for equality in the exponential scale, that is, limn→∞ 1
n log

an
bn

= 0. Similarly, an
·
≤ bn

means that lim supn→∞
1
n log

an
bn

≤ 0, and so on. The indicator function of an event A
will be denoted by I{A}. The notation [x]+ will stand for max{0, x}. Logarithms will be
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understood to be taken to the natural base, e, unless specified otherwise. The Q-function

is defined as

Q(u) =
1√
2π

∫ ∞

u
e−x

2/2dx. (3)

2.2 Setup

Consider the memoryless Gaussian channel,

Yt = Xt + Zt, t = 1, 2, . . . (4)

where {Xt} is a real-valued channel input signal, {Yt} is the channel output signal, and

where {Zt} is an i.i.d., zero-mean Gaussian noise process with variance σ2.

Given a positive integer n, let us define a set Sn ⊂ IRn of allowable channel input vectors

to be:

Sn =

{

x :

n
∑

t=1

φj(xt) ≤ nΓj, j = 1, . . . , k

}

, (5)

where k is a positive integer, φj(·) are certain cost constraint functions and Γj are given

constants, j = 1, . . . , k. Clearly, equality constraints can be formally incorporated by

defining pairs of inequality constraints that differ by their signs, i.e.,

n
∑

t=1

φj(xt) ≤ nΓj (6)

n
∑

t=1

[−φj(xt)] ≤ n · [−Γj ]. (7)

In some of our derivations and results we will allow more general cost constraint functions,

where each φj(·) (or at least one of them) operates on a sliding-window of m channel input

symbols (m - positive integer) rather than on a single symbol. In this case, the constraints

that define Sn would be of form

n
∑

t=m

φj(x
t
t−m+1) ≤ nΓj, j = 1, 2, . . . , k. (8)

For the case m = 1, we refer to the constraints that define Sn as memoryless constraints,

whereas the case m ≥ 2, will be referred to as the case of constraints with memory or as

sliding-window constraints.

The most common example of a memoryless constraint is the average power constraint,

where k = 1 and φ1(x) = x2 and Γ1 = P , the allowed power. Another important example

is the case where, in addition to the average power constraint, a peak-power constraint is
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imposed, i.e., |xt| ≤ A (for a given positive real A) for all t = 1, 2, . . . , n. In this case, k = 2,

φ1 is as above, and the peak-power constraint can be accommodated within our framework

by using the infinite square well (ISW) function,

φ2(x) = w(x)
△
=

{

0 |x| ≤ A
∞ |x| > A

(9)

and Γ2 = 0. Useful examples of cost constraint functions with memory are those associated

with correlation constraints, e.g.,

n
∑

t=ℓ+1

xtxt−ℓ ≤ nRℓ, (10)

where ℓ is a fixed positive integer and Rℓ is a given constant. Other useful examples could

be associated with limitations on the relative frequency of sign changes along the vector x,

i.e.,
n
∑

t=2

I{sgn(xtxt−1) = −1} ≤ nα, (11)

or, for example, a peak-power limitation on a filtered version of x, i.e.,

n
∑

t=m

w

(

m−1
∑

i=0

hixt−i

)

≤ 0, (12)

where {hi}m−1
i=0 is the filter’s impulse response. For binary input channels, sliding-window

constraints can also be used to limit (from above and/or below) the number of successive

repetitions (or run-lengths) of certain channel input symbols (see, e.g., [22]). To this end,

one may define the corresponding cost constraint function to be equal to zero for every

allowable channel input pattern and to be equal to infinity for every forbidden pattern.

Let us denote Γ = (Γ1, . . . ,Γk), and define the channel capacity subject to the given

constraints as

C(Γ)
△
= lim inf

n→∞
sup

I(X ;Y )

n
, (13)

where the supremum is taken over all input distributions, {q}, with supp{q} ⊆ Sn.

2.3 Objective

The objective of this work is to propose two general methodologies for obtaining fairly tight

lower bounds to C(Γ).

The first methodology is based on the entropy power inequality (EPI) and is therefore

applicable only when the channel input vector, X, takes on continuous values within Sn.

7



Since the EPI lower bound to mutual information depends on the input distribution only

via its differential entropy, h(X), it is obvious that the maximizing distribution for the EPI

lower bound is uniform across Sn, namely, q(x) = 1/Vol{Sn} for x ∈ Sn and q(x) = 0

elsewhere. Consequently, the corresponding lower bound to C(Γ) hinges upon our ability

to assess the volume of Sn, or more precisely, the asymptotic exponential rate of Vol{Sn}
as a function of n, namely, the volume exponent of {Sn, n ≥ 1}, defined as

v(Γ)
△
= lim

n→∞
log Vol{Sn}

n
(14)

for the general form of Sn, defined by either memoryless constraints or sliding-window

constraints. Note that the limit of (14) exists due to super-additivity of the sequence

{log Vol{Sn}}n≥1. To this end, we invoke tools associated with the extended method of

types and saddle-point integration [18, Chapters 2 and 3] (see also [4]) as well as elementary

results from large deviations theory [5].

The second methodology is based on direct manipulation of the mutual information,

I(X ;Y ), where instead of maximizing over all input distributions supported by Sn, we
take the input distribution to be uniform across Sn, and once again, the resulting lower

bounds will depend on the volume exponent of Sn. This class of bounds is somewhat more

complicated than the EPI bound, but still reasonably simple and easy to calculate at least for

memoryless constraints. More importantly, it is tighter and stronger than the EPI bound,

as will be demonstrated in numerical examples. It is also applicable for both discrete and

continuous channel inputs, unlike the EPI bound which is valid only for continuous inputs.

Moreover, it is easy to extend and strengthen this class of bounds by allowing optimization

over certain (parametric) classes of non-uniform input distributions across Sn. The caveat,

however, is that in order to handle constraints with memory, there is a need to further give

up on tightness at a certain point, for reasons that will become apparent in the sequel.

3 EPI Volume-Based Bounds

3.1 Elementary Background on EPI Lower Bounds

The idea of deriving lower bounds to the channel capacity by invoking the EPI is simple

and not quite new, see, e.g., [13], [14], [20], [21], [27]. Nonetheless, for the sake of complete-

ness, we begin this section by presenting it, and then combine it with our method [18] for

evaluating the volume exponent, v(Γ), of {Sn}.
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For every channel input distribution, q(·), whose support is within Sn, consider the

following chain of inequalities:

I(X;Y )

n
=

h(Y )− h(Y |X)

n

=
h(Y )

n
− h(Z)

n

≥ 1

2
log
[

e2h(X)/n + e2h(Z)/n
]

− h(Z)

n

=
1

2
log
[

e2h(X)/n + 2πeσ2
]

− 1

2
log(2πeσ2)

=
1

2
log

[

1 +
e2h(X)/n

2πeσ2

]

, (15)

and so,

Cn(Γ)
△
= sup

{q: supp{q}⊆Sn}

I(X ;Y )

n

≥ sup
{q: supp{q}⊆Sn}

1

2
log

[

1 +
e2h(X)/n

2πeσ2

]

=
1

2
log

[

1 +
exp{2 log Vol{Sn}/n}

2πeσ2

]

. (16)

Taking the limit inferior of n→ ∞, we arrive at

C(Γ) ≥ CEPI(Γ)
△
=

1

2
log

[

1 +
exp{2v(Γ)}

2πeσ2

]

. (17)

3.2 Volume Exponents

As mentioned at the very beginning of this section, this generic EPI lower bound is known

for some time. For example, if only an average power constraint is imposed (i.e., k = 1,

φ1(x) = x2, and Γ1 = P ), then Sn is an n-dimensional Euclidean ball of radius
√
nP ,

whose volume is given by Vol{Sn} = πn/2(
√
nP )n/Γ(n/2+1)

·
= (2πeP )n/2 (with Γ(·) being

the Gamma function, not to be confused with the vector Γ or its components), and so,

v(P ) = 1
2 log(2πeP ), leading to the tight lower bound,

CEPI(P ) =
1

2
log

(

1 +
e2v(P )

2πeσ2

)

=
1

2
log

(

1 +
2πeP

2πeσ2

)

=
1

2
log

(

1 +
P

σ2

)

= C(P ). (18)

9



However, for the general case, where Sn is defined by arbitrary sets of cost constraint

functions, the evaluation of v(Γ) seems to be less trivial. This is exactly the point where our

contribution in this section takes place, as we invoke the techniques described in Chapters

2 and 3 of [18].

We begin from the case of memoryless constraints, and later discuss the extension to

constraints with memory. Let θ = (θ1, . . . , θk), where θi > 0 for all i = 1, 2, . . . , k, and

define the function

Z(θ)
△
=

∫ ∞

−∞
exp







−
k
∑

j=1

θjφj(x)







dx, (19)

and assume that Z(θ) < ∞ for some subset Θ of IRk+, which is the set of all k-vectors, θ,

with strictly positive components. In the discrete case, the integration over IR is replaced by

a summation over X , the alphabet of x. For shorthand notation, in the sequel, we define the

vector function φ(x) = (φ1(x), . . . , φk(x)), and the inner product θ •φ(x) =∑k
j=1 θjφj(x),

so that we can write Z(θ)
△
=
∫∞
−∞ exp{−θ • φ(x)}dx. We also denote the inner product

θ • Γ =
∑k

j=1 θjΓj. Let us define

ψ(θ)
△
= logZ(θ), (20)

ψ̇(θ)
△
= ∇ψ(θ) =

(

∂ψ(θ)

∂θ1
, . . . ,

∂ψ(θ)

∂θk

)

, (21)

ψ̈(θ)
△
= ∇2ψ(θ), (22)

where ∇2ψ(θ) is the k× k Hessian matrix whose (i, j)-th element is given by ∂2ψ(θ)
∂θi∂θj

, i, j =

1, . . . , k. Finally, define

ω(Γ)
△
= inf

θ∈IRk
+

{θ • Γ+ ψ(θ)}. (23)

The following lemma, whose proof appears in the Appendix A, establishes the result that

under certain regularity conditions, the volume exponent, v(Γ), is equal to the function ω(Γ)

defined above.

Lemma 1 Let φ(·) be defined such that Z(θ) <∞ for all θ ∈ Θ ∈ IRk+. Then,

1. v(Γ) ≤ ω(Γ).

2. Assume, in addition, that for the given Γ, there exists θ such that ψ̇(θ) = −Γ and

that ψ̈(θ) is a positive definite matrix with finite diagonal entries. Then,

v(Γ) ≥ ω(Γ), (24)
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and therefore, following part 1,

v(Γ) = ω(Γ). (25)

Since Lemma 1 plays a central role in our derivations, it is useful to pause and discuss

both its significance and technical aspects before applying it to obtain capacity bounds.

1. Maximum-entropy representation. As discussed in [18, pp. 40-41], it is not difficult to

show that an equivalent expression for v(Γ) is given by the maximum-entropy variational

representation as the supermum of the differential entropy, h(X), of a random variable X

subject to the simultaneous constraints, E{φj(X)} ≤ Γj, j = 1, 2, . . . , k.

2. Equality constraints. As mentioned earlier, an equality constraint can be accommodated

by a pair of inequality constraints with the same cost function and cost limit, but with

opposite signs (see eqs. (6) and (7) above). This amounts to allowing the corresponding

parameter θj to take on any real value, not just positive values, exactly as in constrained

optimization using Lagrangians.

3. Convex optimization. It is easy to see that ψ(θ) is a convex function by observing that its

Hessian, ψ̈(θ), is non-negative definite due to the fact that it can be viewed as a covariance

matrix of the random vector φ(X) under fθ, the probability density function (pdf) that

is proportional to e−θ•φ(x). Therefore, the minimization associated with the calculation

of v(Γ) is a convex program, and hence can be calculated using standard tools of convex

programming.

4. Redundant constraints and their removal. Part 2 of Lemma 1 assumes that we can

find θ such that ψ̇(θ) = −Γ. It might happen, however, that this condition is violated at

certain instances of the problem. This may be the case when either Sn is empty (which is

the case when the constraints are contradictory), or when there are redundant constraints,

namely, inactive constraints, which are superfluous in the presence of other constraints.

Such constraints are characterized by holding with strict inequalities, i.e.,
∑n

i=1 φj(xi) < Γi.

As an example of a redundant constraint, consider the case k = 2, φ1(x) = |x|, and

φ2(x) = x2. Since
(

1
n

∑n
i=1 |xi|

)2
cannot exceed 1

n

∑n
i=1 x

2
i , it is obvious that the con-

straint 1
n

∑n
i=1 |xi| ≤ Γ1 becomes redundant whenever Γ1 >

√
Γ2. In general, a redundant
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constraint,
∑n

i=1 φj(xi) < Γj, can be formally removed simply by the assigning θj = 0.

5. Alternative methods. In the appendix, we prove Lemma 1 by using standard probabilistic

arguments. One alternative technique involves the saddle-point integration method (see [18,

Chapter 3] and references therein). In this approach, one first expresses the volume of Sn
as

Vol{Sn} =

∫

IRn
dx

k
∏

ℓ=1

U

(

nΓℓ −
n
∑

i=1

φℓ(xi)

)

, (26)

where U(t) is the unit step function. Then, one represents each factor, U (nΓℓ −
∑n

i=1 φℓ(xi)),

of the integrand as the inverse Laplace transform of 1/s, computed at the point nΓj −
∑n

i=1 φj(xi), i.e.,

U

(

nΓℓ −
n
∑

i=1

φℓ(xi)

)

= lim
T→∞

1

2πj

∫ c+jT

c−jT

ds

s
exp

{

s

(

nΓℓ −
n
∑

i=1

φℓ(xi)

)}

, (27)

where j
△
=

√
−1 and c is any positive real. Finally, after substituting (27) into (26) and

interchanging the order of integrations, one applies the saddle-point approximation to the

resulting integral in the (multivariate) complex plane (see Section 3.4 of [18]).

Another technique, that is sometimes applicable, is inspired by large deviations theory

(see, e.g., [5]). Suppose, for example, that one of the constraints that define Sn involves the

ISW function w(·) defined in (9), which means that Sn ⊆ [−A,A]n, as will be the case in

many of our examples in the sequel. Then, one may imagine an auxiliary random vector

X = (X1, . . . ,Xn), uniformly distributed within [−A,A]n, and then assess the probability,

Pr{X ∈ Sn} ≡ Vol{Sn}/(2A)n, using the Chernoff bound, which is exponentially tight un-

der rather general conditions. Then, the estimated volume of Sn would be (2A)n times the

estimated probability of Sn, and so, v(Γ) = log(2A)−I(Γ), I(Γ) being the large-deviations

rate function of the event Sn.

6. Analogy with statistical physics. Readers familiar with elements of statistical physics

(others may skip this comment without loss of continuity), may recognize the resemblance

between the formula,

v(Γ) = inf
θ∈IRk

+

{θ • Γ+ ψ(θ)} (28)

and the Legendre-Fenchel relationship between the so called specific entropy of the micro-

canonical ensemble, associated with a system of n particles subjected to the constraints
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that define Sn, and the corresponding specific free energy, −ψ(θ), of the equivalent canon-

ical (or Gibbs) ensemble, whose partition function is Z(θ). Each component, θj, of the

parameter vector θ has the physical significance of a certain external force (one of them

being the inverse temperature) that is conjugate to the corresponding macroscopic quan-

tity,
∑n

i=1 φj(xi). This external force is applied to the canonical physical system in order to

control the expectation of
∑n

i=1 φj(xi), so as to keep it in compliance with the constraints

of Sn (with high probability for large n). For more details regarding these relations, see the

discussion in the last paragraph of Section 2.2 (page 44) in [17].

3.3 Some Examples

In this subsection, we consider a few simple examples.

Example 1 - simultaneous average power and peak power constraints. Let k = 2,

φ1(x) = x2, Γ1 = P , φ2(x) = w(x), and Γ2 = 0. Then,

Z(θ) =

∫ ∞

−∞
exp{−θ1x2 − θ2w(x)}dx =

∫ A

−A
e−θ1x

2
dx =

√

π

θ1
· [1− 2Q(A

√

2θ1)]. (29)

and so, the volume exponent is

v(P ) = inf
θ1>0

{

θ1P +
1

2
log

π

θ1
+ log[1− 2Q(A

√

2θ1)]

}

= inf
s>0

{

s

2
+

1

2
log

(

2πP

s

)

+ log

[

1− 2Q

(
√

A2s

P

)]}

, (30)

where in the second line we have changed the optimization variable according to s = 2θ1P ,

with the benefit that in the resulting expression of v(P )) the dependence upon A2/P appears

more explicitly. It follows that the corresponding EPI lower bound is given by

CEPI(P,A) =
1

2
log

[

1 +
e2v(P )

2πeσ2

]

(31)

=
1

2
log



1 +
P

σ2
· inf
s>0







es−1

s
·
[

1− 2Q

(
√

A2s

P

)]2










△
=

1

2
log

[

1 +
P

σ2
· λ
(

A2

P

)]

. (32)

The factor

λ

(

A2

P

)

= inf
s>0







es−1

s
·
[

1− 2Q

(
√

A2s

P

)]2






, (33)

which clearly depends only on the ratio A2/P , can be viewed as the effective factor of loss

in signal-to-noise ratio (SNR) due to the peak-power constraint, relative to the ordinary

13



Gaussian channel with average power constraint only. Indeed, it is easy to see that λ(u)

never exceeds unity (by setting s = 1 instead of minimizing over s) and that limu→∞ λ(u) =

1.
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Figure 1: CEPI(P,A) as a function of P/σ2 (with σ2 = 1) for A = 1, A = 3, A = 5 (blue
curves) and A = ∞ (red curve).
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Figure 2: CEPI(P,A) as a function of A for σ2 = 1, P/σ2 = 1, P/σ2 = 3, and P/σ2 = 5.
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In Figures 1 and 2, we display plots of CEPI(P,A) as functions of P (in units of σ2)

for various values of A and of CEPI(P,A) as functions of A for various values of P/σ2,

respectively. It is interesting to compare the EPI bound with the exact capacity results due

to Smith [26] for this model. In Fig. 4 of [26], Smith plots a curve of the exact capacity

for A =
√
2P as a function of SNR = P/σ2 in dB. Upon reading this curve, one finds

that for P/σ2 = 10dB, the real capacity is in the vicinity of 1.1 nats/channel-use, whereas

our EPI bound is 0.8688. Likewise, for P/σ2 = 6dB, the true capacity is approximately

0.802 nats/channel-use, while the EPI bound is 0.5262. Finally, for P/σ2 = 12dB, Smith’s

capacity is nearly 1.412 nats/channel-use, and the EPI bound is 1.0655. It should be stressed

that any loss of tightness in the EPI bound is solely due to the EPI, as the volume exponent

is exact. Later on we shall suggest several improved lower bounds, which yield results much

closer to the exact capacity of Smith’s model.

An interesting two-dimensional version of this example concerns the quadrature channel.

In this case, suppose that n is even, divide the components of x into n/2 pairs (x2i−1, x2i),

i = 1, 2, . . . , n/2, and instead of the peak-power constraint on each xi, consider the con-

straints x22i−1 + x22i ≤ A2 for all i = 1, 2 . . . , n/2. The global average power constraint
∑n

i=1 x
2
i ≤ nP remains intact. In this case, the partition function becomes

Z(θ) =

∫

{(x1,x2): x21+x22≤A2}
e−θ(x

2
1+x

2
2)dx1dx2

=

∫ 2π

0

∫ A

0
e−θr

2
rdrdϑ

= 2π ·
∫ A

0
e−θr

2
rdr

= 2π ·
∫ A2/2

0
e−2θr2/2d

(

r2

2

)

= 2π ·
∫ A2/2

0
e−2θudu

=
π

θ
· (1− e−θA

2
). (34)

The volume exponent is then

v(P ) = inf
θ≥0

{θP + log
(π

θ

)

+ log(1− e−θA
2
)}, (35)

and similarly as above,

CEPI(P,A) =
1

2
log

[

1 +
P

σ2
· inf
s>0

es−1

s
·
(

1− exp

{

−sA
2

2P

})]

. (36)
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Note that whenever P ≥ A2/2, the infimum is approached for s → 0, which yields

CEPI(P,A) = 1
2 log(1 + A2

2eσ2
) = 1

2 log(1 + πA2

2πeσ2
), independent of P , as expected, since the

average power constraint becomes slack. The “volume” at the numerator, πA2, is nothing

but the area of a circle of radius A. This concludes Example 1. �

Example 2 - absolute value constraint. In this example, we demonstrate that, in

contrast to the true channel capacity function, C(Γ), the lower bound, CEPI(Γ), may not

necessarily be a concave function. Consider the case k = 1 with φ1(x) = |x|. In this case,

Z(θ) = 2/θ, and so,

v(Γ) = inf
θ>0

{

θΓ + log

(

2

θ

)}

= log(2eΓ), (37)

and so,

CEPI(Γ) =
1

2
log

(

1 +
4e2Γ2

2πeσ2

)

=
1

2
log

(

1 +
2eΓ2

πσ2

)

=
1

2
log

(

1 + 1.7305
Γ2

σ2

)

, (38)

which is obviously not concave, as for small Γ it is nearly quadratic (to the first order

approximation):

CEPI(Γ) ≈
e

πσ2
· Γ2, Γ ≪ σ. (39)

More precisely, while the function log(1 + αx2) (α > 0 being a parameter) is concave in

x > 0 across the range x ≥ 1/
√
α, it is actually convex elsewhere. Therefore the lower

bound can be tightened by applying the upper concave envelope (UCE) operator, namely,

C̄EPI(Γ) = UCE{CEPI(Γ)} △
= sup

{

k+1
∑

i=1

αiCEPI(Γi)

}

, (40)

where the supremum is over all assignments of (Γ1, . . . ,Γk+1) (Γi being a k-vector for all

i = 1, 2, . . . , k+1) and vectors α = (α1, . . . , αk+1) with non-negative components such that
∑k+1

i=1 αi = 1 and
∑k+1

i=1 αiΓi = Γ. The UCE, C̄EPI(Γ), can be achieved by time-sharing. In

this example, the UCE is obtained by replacing CEPI(Γ) for small Γ by a linear function,

starting at the origin and ending at the point (Γ⋆, CEPI(Γ⋆)), where its corresponding straight

line is tangential to the curve of CEPI(Γ), namely, the point pertaining to the non-zero

solution to the equation ΓC ′
EPI(Γ) = CEPI(Γ), C

′
EPI(Γ) being the derivative of CEPI(Γ). The

result is

C̄EPI(Γ) =

{

0.5293 · Γ
σ Γ ≤ 1.5054σ

1
2 log

(

1 + 1.7305 · Γ2

σ2

)

Γ ≥ 1.5054σ
(41)
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3.4 Constraints with Memory

The EPI lower bound, CEPI (as well as its UCE, if applicable), can also be extended to

handle constraints with memory, or, sliding-window constraints of the form (2), such as

(10), (11), (12) as well as many others, where each constraint function, φj, manifests a

certain limitation on the local behavior of the channel input signal, for example, no more

than r sign changes within each sliding window of lengthm (r < m), or any other reasonable

criterion concerning the signal variability in the time domain.

First and foremost, we need an extended version of Lemma 1 to the case where at least

one of the constraint functions has memory m ≥ 2. Similarly as in Subsection 3.2, it is

useful to define a parametric exponential family of densities, fθ(·), except that here these

densities would no longer be i.i.d., but densities derived from a Markov process of order

m− 1, defined by

fθ(x) =
exp

{

−θ •∑n
i=m φ(xii−m+1)

}

Zn(θ)
=

∏n
i=m exp

{

−θ • φ(xii−m+1)
}

Zn(θ)
, (42)

where

Zn(θ)
△
=

∫

IRn

exp

{

−θ •
n
∑

i=m

φ(xii−m+1)

}

dx. (43)

As before, assume that Zn(θ) < ∞ for every θ ∈ Θ ⊆ IRk+ and every positive integer n.

Assume further that the limit, limn→∞
logZn(θ)

n , exists and extend the definition of the

function ψ(θ) to be

ψ(θ)
△
= lim

n→∞
logZn(θ)

n
. (44)

Now, part 1 of Lemma 1 extends straightforwardly under the new definition of ψ(θ). For

part 2 of Lemma 1 to extend as well, we need to assume that: (i) ψ(θ) is twice differentiable,

(ii) for the given Γ, there exists θ such that ψ̇(θ)
△
= ∇ψ(θ) = −(Γ− ǫ), for every sufficiently

small ǫ > 0, and (iii) the underlying Markov process corresponding to fθ is (asymptotically)

stationary and ergodic, so that by the ergodic theorem, for every sufficiently small ǫ > 0,

lim
n→∞

Prθ

k
⋂

j=1

{

n(Γj − 2ǫ) ≤
n
∑

i=1

φj(Xi) ≤ nΓj

}

= 1, (45)

where Prθ{·} denotes probability under fθ(·), θ being the point where ψ̇(θ) = −(Γ− ǫ). In
this case, the proof of the second part of Lemma 1 readily generalizes to allow cost functions

with memory, except that instead of using the central limit theorem, we use (45).
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The main challenge here is to how calculate ψ(θ), which is required for the calculation

of the volume exponent, v(Γ), according to (28), but under the new definition of ψ(θ).

Clearly, in the simple special case, where there are only autocorrelation constraints, such as

in (10), without an additional peak-amplitude constraint, the calculation of Zn(θ) involves

a multivariate Gaussian integral (with correlations) and CEPI =
1
2 log(1 + σ2u

σ2
)}, where σ2u

is the innovation variance of an autoregressive process whose of order m− 1 whose first m

autocorrelations are R0, . . . , Rℓ−1 (see [18], Section 2.6). However, the general case of cost

functions with memory is more involved.

We now present two general methods for calculating ψ(θ).

1. Integral operators and their spectral radius. According to this approach, we observe that

the calculation of Zn(θ) involves an assessment of the exponential order of a multidimen-

sional integral of the form:

In =

∫ ∞

−∞
· · ·
∫ ∞

−∞

n
∏

i=m

K(xii−m+1)dx, (46)

where each factor of the integrand is the same kernel function K(xii−m+1) = exp{−θ •
φ(xii−m+1)} applied to a sliding window of m variables, and where m remains fixed as

n → ∞. The calculation of In can be viewed as a succession of iterated applications of a

sliding-window integral operator of the form

(Lg)(xm2 ) =

∫ ∞

−∞
K(xm) · g(xm−1)dx1. (47)

Accordingly, under mild regularity conditions, one may invoke the Collatz-Wielandt formu-

las [2], [29] in order to assess the spectral radius of the operator L, which coincides with

eψ(θ). These formulas are:

eψ(θ) = inf
g

sup
xm−1

(Lg)(xm−1)

g(xm−1)
= sup

g
inf
xm−1

(Lg)(xm−1)

g(xm−1)
. (48)

These expressions can be viewed as continuous-alphabet counterparts of similar formulas

for the Perron-Frobenius eigenvalue for finite dimensional positive matrices in the finite-

alphabet case. The second formula is somewhat more appealing in the sense that for the

purpose of obtaining a lower bound, it is legitimate to select an arbitrary function g rather

than taking the supremum. Moreover, we have the freedom to choose a parametric family

of functions, say {gα}, which are convenient to work with (like multivariate Gaussian func-

tions), and maximize only w.r.t. the parameter α. A similar comment applies w.r.t. xm−1
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in the first formula, but optimization over a finite dimensional vector is less problematic

than optimization over a function, which involves, in general, calculus of variations.

It should be noted that in the case m = 2, if K(·, ·) is a symmetric kernel, that is,

K(x, x′) = K(x′, x) for all x and x′, then an alternative formula for the spectral radius is

the Rayleigh quotient formula,

eψ(θ) = sup
u(·)

∫∞
−∞

∫∞
−∞ u(x)K(x, x′)u(x′)dxdx′

∫∞
−∞ u2(x)dx

(49)

= sup
{u(·): ‖u‖2=1}

∫ ∞

−∞

∫ ∞

−∞
u(x)K(x, x′)u(x′)dxdx′. (50)

Once again, for the purpose of obtaining a valid lower bound, it is not mandatory to cal-

culate the supremum, and it is legitimate to pick an arbitrary u(·) or to maximize within a

parametric family, {uα(·)}.

2. The Donsker-Varadhan variational formula. Another possible characterization of the

spectral radius, eψ(θ), is via the Donsker-Varadhan formula. Consider the Markov process

of order m− 1, whose transition density is given by

fθ(xm|xm−1) =
K(xm)

∫∞
−∞K(xm)dxm

△
=

K(xm)

exp{S(xm−1)} . (51)

Then, neglecting edge effects for n≫ m,

Zn(θ) =

∫

IRn

n
∏

i=m

K(xii−m+1)dx

=

∫

IRn

n
∏

i=m

fθ(xi|xi−1
i−m+1) exp{S(xi−1

i−m+1)}dx

= Eθ

{

exp

[

n
∑

i=m

S(Xi−1
i−m+1)

]}

(a)
= exp

{

n sup
g

Eg

[

S(Xm−1)−D(g(·|Xm−1)‖fθ(·|Xm−1))
]

}

(b)
= exp

[

n sup
g

(

Eg{logK(Xm)}+ hg(Xm|Xm−1)
)

]

= exp

{

n sup
g

[

−θ •Eg{φ(Xm)}+ hg(Xm|Xm−1)
]

}

, (52)

where (a) is due to the Donsker-Varadhan variational formula [6], (b) is by the definition

of S(·), and hg(Xm|Xm−1) is the conditional differential entropy of Xm given Xm−1 under

g. Consequently,

ψ(θ) = sup
g

[−θ •Eg{φ(Xm)}+ hq(Xm|Xm)] , (53)
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where for a given auxiliary (m − 1)-th order Markov process g, the expectation, Eg{·}, is
w.r.t. the stationary state distribution associated with g. Once again, for the purpose of

obtaining a lower bound to ψ(θ), one may pick a particular g or maximize within a para-

metric family, {gα} to facilitate the calculation at the possible expense of losing tightness.

For example, consider the conditional pdf,

g⋆(xm|xm−1) =
exp {−θ • φ(xm)}

Z(θ, xm−1)
, (54)

where

Z(θ, xm−1) =

∫ ∞

−∞
exp {−θ • φ(xm)} dxm. (55)

Then,

ψ(θ) ≥ E logZ(θ,Xm−1), (56)

where the expectation is w.r.t. the stationary distribution associated with the Markov pro-

cess defined by g⋆. The reason that this is just a lower bound is that g⋆ may not be

the maximizer as its derivation does not take into account the complicated dependence of

the stationary distribution upon the conditional densities of the underlying Markov process.

3.5 More Examples

We now provide a few examples for the case of cost functions with memory.

Example 3 – Peak-power limitation combined with a correlation constraint.

Consider the case of peak-power limitation combined with a specified one-lag empirical au-

tocorrelation
∑n

t=2 xtxt−1 = nR1. In this case, m = 2 and the partition function pertaining

to the volume exponent is given by

Zn(θ) =

∫

IRn

exp[−φ1(x1)]
n
∏

t=2

exp{−w(xt)− θxtxt−1}dx

=

∫

[−A,A]n

n
∏

t=2

e−θxtxt−1dx, (57)

The exponential growth rate of Zn(θ) is according to the largest eigenvalue of the kernel

K(x, x′) = e−θxx
′
defined on the square (x, x′) ∈ [−A,A]2. Since the kernel K(x, x′) is

symmetric, the largest eigenvalue can be calculated using the Rayleigh quotient formula,

eψ(θ) = sup
{u: ‖u‖2=1}

∫ A

−A

∫ A

−A
u(x)e−θxx

′
u(x′)dxdx′. (58)
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To estimate eψ(θ), we evaluate the Rayleigh quotient for the constant test function u(x) =

1√
2A

, x ∈ [−A,A], which is normalized in L2([−A,A]). Thus,

eψ(θ) ≥
∫ A

−A

∫ A

−A

1√
2A

e−θxx
′ 1√

2A
dxdx′ =

1

2A

∫ A

−A

∫ A

−A
e−θxx

′
dxdx′. (59)

To evaluate the double integral

I =

∫ A

−A

∫ A

−A
e−θxx

′
dxdx′, (60)

we can simplify it to a single integral as

∫ A

−A

∫ A

−A
e−θxx

′
dxdx′ =

4

|θ|

∫ A2|θ|

0

sinhu

u
du, (61)

as can be shown by carrying out explicitly one of the two integrations of the exponential

function, and then changing the other integration variable. Substituting into our earlier

inequality, we find:

eψ(θ) ≥ 1

2A
· 4

|θ|

∫ A2|θ|

0

sinhu

u
du =

2

A|θ|

∫ A2|θ|

0

sinhu

u
du. (62)

We conclude that

eψ(θ) ≥ 2

A|θ| · Shi(A
2|θ|), (63)

where Shi(z) =
∫ z
0

sinhu
u du is the hyperbolic sine integral function. This approximation is

expected to be tight due to the positivity and symmetry of the kernel, and the choice of the

constant function as a good candidate for the leading eigenfunction. The resulting lower

bound to the capacity is then given by

CEPI =
1

2
log

[

1 +
infθ∈IR e2R1θ 2

A|θ| · Shi(A2|θ|)
2πeσ2

]

. (64)

More generally, we may bound the spectral radius of K from below by considering the

parametric family

uα(x) =

√

α

sinh(2αA)
· e−αx, |x| ≤ A, (65)

and then

eψ(θ) ≥ sup
α∈IR

2α

sinh(2αA)

∫ A

−A

sinh(θx+ α)

θx+ α
dx. (66)

The above example can easily be extended to accommodate also an additional average

power constraint (thus extending Example 1). In this case, the kernel becomes K(x, x̂) =
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exp{−θ1(x2 + x̂2)/2 − θ2xx̂}, which is still symmetric. This concludes Example 3. �

Example 4 - Average power constraint combined with a correlation constraint,

Consider the case m = k = 2 with φ1(x1, x2) =
x21+x

2
2

2 , Γ1 = P , φ2(x1, x2) = x1x2, and

Γ2 = ρP , where |ρ| < 1. In this case, denoting s = θ2/θ1, we have

Z(θ.x1) =

∫ ∞

−∞
exp

{

−θ1(x21 + x22)/2 − θ2x1x2
}

=

√

2π

θ1
· exp{−θ1(1− s2)x21/2}. (67)

Taking the natural logarithm, then the expectation, and finally exponentiating again, we

obtain:

exp [E{logZ(θ,X1)}] ≥
√

2π

θ1
· exp{−θ1(1− s2)P/2}, (68)

where we have used the fact that Eg{X2
1} ≤ P (combined with the conditions θ1 ≥ 0 and

s2 ≤ 1), since g must satisfy the moment constraints, as can be deduced from the equivalent

maximin problem of supg infθ{·}. Thus, by standard optimization methods,

lim
n→∞

[Vol{Sn}]2/n ≥ inf
θ1>0,s

2π

θ1
·exp{−θ1(1−s2)P}·exp{2θ1P+2θ1sρP} = 2πeP (1−ρ2), (69)

and so, CEPI ≥ 1
2 log

[

1 + P (1−ρ2)
σ2

]

, which is in fact, the exact capacity under these constraints.�

Example 5 - Peak amplitude limitation at the output of a linear system. Consider

the case where the transmitter includes a linear filter just before the antenna, and then the

peak-amplitude limitation applies to the filter output, namely, one the constraints is (12).

In this case the body defined by the constraints in the channel input space is linearly

transformed into an image body that resides in the filter output signal space, and so the

uniform distribution within the input body is transformed into a uniform distribution across

the image body. The volume of the image body is given by the volume of the input body,

multiplied by the Jacobian of the transformation matrix. For a causal filter, this Jacobian

is given by |h0|n. Consequently, since the body at the filter output space is the hypercube

[−A,A]n, whose volume is (2A)n, then the volume of its inverse image, at the filter input

space is (2A)n/|h0|n = (2A/|h0|)n. Note that, if this causal filter is also minimum phase,

then an alternative expression for the Jacobian, in the frequency domain, is given by

exp

{

n

2π

∫ π

−π
log |H(ejω)|dω

}

. (70)

22



4 Direct Manipulation of the Mutual Information

The EPI lower bounds are relatively simple and easy to calculate, provided that the cal-

culation of the volume exponent is reasonably easy. Lemma 1 proposes a simple formula

for the volume exponent, v(Γ), which once computed, it can be simply substituted into the

expression 1
2 log

(

1 + e2v(Γ)

2πeσ2

)

and the tightness of this bound depends solely on the tight-

ness of the EPI. However, the EPI is not always tight, especially not in the range of low

and moderate SNR. Furthermore, one of the severe limitations of the EPI is that it applies

merely to continuous-valued input vectors, and not to discrete ones.

In this section, we derive alternative families of lower bounds, which are not based

on the EPI, but rather on direct manipulation of the mutual information, I(X ;Y ). The

calculations of these bounds are somewhat more involved than that of the EPI bound, but

it has the following advantages compared to the EPI bound: (i) it is typically tighter, (ii) it

applies to both continuous and discrete channel inputs (with integrations over the channel

input space simply being replaced by summations), and (iii) it is easy to extend to Gaussian

channels with memory as well as to memoryless non-Gaussian channels.

4.1 Memoryless Constraints

As in Section 3, we start from the case of memoryless cost functions. Consider the following

analysis of the mutual information, where instead of maximizing the channel input pdf over

the support Sn, we set the uniform input pdf across Sn.

I(X ;Y ) = h(Y )− n

2
log(2πeσ2) (71)

= −E

{

log

[

1

Vol(Sn)

∫

Sn

p(Y |x)dx
]}

− n

2
log(2πeσ2) (72)

= −E

{

log

[
∫

Sn

p(Y |x)dx
]}

+ log Vol(Sn)−
n

2
log(2πeσ2). (73)
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Now, applying the Chernoff bounding technique, we have

E

{

log

[
∫

Sn

p(Y |x)dx
]}

≤ inf
θ∈IRk

+

E

{

log

[

∫

IRn
exp

{

n[θ • Γ− θ •
n
∑

i=1

φ(xi)

}

p(Y |x)dx
]}

= inf
θ∈IRk

+

E

{

log

[

∫

IRn

exp

{

n[θ • Γ− θ •
n
∑

i=1

φ(xi)

}

exp
{

−‖Y − x‖2/(2σ2)
}

(2πσ2)n/2
dx

]}

= inf
θ∈IRk

+

[

nθ • Γ+E

{

log

(

n
∏

i=1

[

∫

IR

exp
{

−θ • φ(x)− (Yi − x)2/(2σ2)
}

√
2πσ2

dx

])}]

△
= inf

θ∈IRk

[

nθ • Γ+E

{

log

(

n
∏

i=1

ζθ(Yi)

)}]

= n · inf
θ∈IRk

+

(

θ • Γ+E
{

log ζθ(Y )
})

, (74)

and so,

I(X ;Y ) ≥ log Vol(Sn)−
n

2
log(2πeσ2)− n · inf

θ∈IRK

(

θ • Γ+E
{

log ζθ(Y )
})

=
n

2
log

P

σ2
− n · inf

θ∈IR+

(

θ • Γ+E
{

log ζθ(Y )
})

. (75)

We have therefore arrived at the following lower bound:

C(Γ) ≥ v(Γ)− 1

2
log(2πeσ2)− inf

θ∈IRk
+

(

θ • Γ+E
{

log ζθ(Y )
})

, (76)

where

ζθ(y) =

∫

IR

exp
{

−θ • φ(x)− (y − x)2/(2σ2)
}

√
2πσ2

dx. (77)

Note that the second term of the lower bound to C(Γ) requires knowledge of the asymp-

totic marginal pdf of a single channel output symbol, Y , which is given by the convolution

between the pdf of a single noise variable, namely, N (0, σ2), and the marginal of a single

component of the vector X, induced from the uniform pdf of X across Sn (for n → ∞).

We will address this issue in the sequel through examples.

Example 6 - Example 1 revisited. Consider again the case where there is both an

average power constraint, P , and a peak-power constraint, |xi| ≤ A, i = 1, 2, . . . , n. As we

showed in Example 1,

v(P ) =
1

2
log



2πeP · inf
s>0







es−1

s

[

1− 2Q

(

s

√

A2

P

)]2








 =
1

2
log

[

2πeP · λ
(

A2

P

)]

. (78)
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Now, after a straightforward algebraic manipulation, we obtain

log ζθ(y) = log

(

1√
2πσ2

∫ A

−A
dx exp

{

−θx2 − (y − x)2

2σ2

})

= −1

2
log(1 + 2θσ2)− θ(σ2X + σ2)

1 + 2θσ2
+

log

[

1−Q

(

A−m(y)

s

)

−Q

(

A+m(y)

s

)]

, (79)

where

s =
σ√

1 + 2θσ2
(80)

m(y) =
y

1 + 2θσ2
(81)

σ2X =

∫ A
−A x

2e−x
2/(2P )dx

∫ A
−A e

−x2/(2P )dx
. (82)

Thus,

C(Γ) ≥ 1

2
log

[

P

σ2
· λ
(

A2

P

)]

−

inf
θ>0

{

θP − 1

2
log(1 + 2θσ2)− θ(σ2X + σ2)

1 + 2θσ2
+

E log

[

1−Q

(

A−m(Y )

s

)

−Q

(

A+m(Y )

s

)]}

, (83)

and the expectation is over the randomness of a single symbol, Y , given by the convolution

between the pdf of a single symbol X and N (0, σ2). To determine the asymptotic marginal

pdf of a single component, X, consider the following line of thought (which is similar to

the derivation of the Boltzmann distribution in statistical mechanics): Given that X = x

(|x| ≤ A), the marginal pdf is proportional to the volume of the body formed by the

intersection between the hypercube [−A,A]n−1 and the hyper-ball Bn−1(
√
nP − x2), which

is given exponentially by

exp

{

inf
θ≥0

[

θ(nP − x2) + n log

∫ A

−A
e−θξ

2
dξ

]}

,

which in turn, is proportional to exp{−θ⋆x2}, where θ⋆ is the minimizer of θP+log
∫ A
−A e

−θξ2dξ.

This minimizer is θ⋆ = 0 if P ≥ A2/3, and the unique positive solution to the equation

∫ A
A x2e−θx

2
dx

∫ A
A e−θx2dx

= P
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if P < A2/3. Consequently, the asymptotic marginal of X is uniform across [−A,A] when-
ever P ≥ A2/3 and

pX(x) =

{

e−θ⋆x
2√

π/θ⋆[1−2Q(A
√
2θ⋆)]

|x| ≤ A

0 elsewhere
(84)

whenever P < A2/3. Thus, defining P ′ = 1
2θ⋆

, the asymptotic marginal of Y is given by

pY (y) =
exp

{

− y2

2(P ′+σ2)

}

√

2π(P ′ + σ2)[1− 2Q(A/
√
P ′)]

·
[

Q

(

ζy −A

σe

)

−Q

(

ηy +A

σe

)]

, (85)

with η = P ′

P ′+σ2
and σe =

√

P ′σ2

P ′+σ2
. In other words, the last term is given by

E log

[

1−Q

(

A−m(Y )

s

)

−Q

(

A+m(Y )

s

)]

=

∫ ∞

−∞
dyPY (y) · log

[

1−Q

(

A−m(y)

s

)

−Q

(

A+m(y)

s

)]

.
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Figure 3: Exact capacity of A = ∞ (green), EPI-based bound (red), and present bound
(blue), both for A = 5 and σ2 = 1.

As can be seen in Fig. 3, the present bound is better than the EPI bound, and the

gap becomes visible especially as SNR grows. Note that in the blue graph there is a phase

transition at P = A2/3 = 52/3 = 8.333... beyond which the power constraint becomes slack

given the amplitude constraint.

Let us also revisit the comparison Smith [26], but this time, also with numerical results

on the present bound. As mentioned earlier, Fig. 4 of his paper displays plots of the
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capacity as function of the the SNR for A =
√
2P . For P/σ2 = 10dB, the exact capacity is

approximately 1.1 nats/channel-use, the EPI bound is 0.8688 and the present bound gives

0.9743. Likewise, for P/σ2 = 6dB, the true capacity is nearly 0.802 nats/channel-use, the

EPI bound is 0.5262 and the new bound gives 0.6316. Finally, for P/σ2 = 12dB, Smith’s

capacity is approximately 1.412 nats/channel-use, but the EPI bound is 1.0655 and the

current bound gives 1.1626.

Returning to the case P/σ2 = 10dB, we also extended our present lower bound to corre-

spond to q(x) ∝ eα‖x‖2 within Sn and zero elsewhere (see derivation in Appendix B), and

as expected, α > 0 improves on the uniform pdf within Sn (α = 0), since higher energy

input vectors are preferred. This improved our lower bound from 0.9743 of α = 0 up to

1.0393 for α = 0.1, as can seen in Fig. 4. This concludes Example 6.
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Figure 4: Present bound for A =
√
20, P = 10 and σ2 = 1 as a function of α.

4.2 Constraints with Memory

When dealing with constraint functions with memory, our above derivation is supposed to

involve evaluation of an expression of the form

∫

IRn
exp

{

−θ •
n
∑

i=1

φ(xii−m+1)

}

p(y|x)dx =

∫

IRn

n
∏

i=m

[

exp
{

−θ • φ(xii−m+1)
}

p(yi|xi)
]

dx.
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Unfortunately, since the sliding-window kernel depends here on yi, and therefore, not fixed

as before, there is no apparent single-letter characterization of its exponential growth rate,

to the best knowledge of the authors. In order to proceed, it seems necessary to give up

on some tightness and to bound the corresponding quantity using manageable expressions.

Here we only outline the starting point of the derivation and the continuation will be

deferred to future work.

We begin by applying the Jensen inequality:

E

{

log

[
∫

Sn

p(Y |x)dx
]}

≤ logE

{
∫

Sn

p(Y |x)dx
}

= log

[
∫

Sn

dx′

Vol(Sn)

∫

IRn
dyp(y|x′)

∫

Sn

p(y|x)dx
]

= log

[

∫

S2
n

dxdx′
∫

IRn
dyp(y|x)p(y|x′)

]

− log Vol(Sn)

= log

[

∫

S2
n

dxdx′ exp{−‖x− x′‖2/(4σ2)
(4πσ2)n/2

]

− log Vol(Sn)

= log

[

∫

S2
n

dxdx′ exp

{

−‖x− x′‖2
4σ2

}

]

− log Vol(Sn)−
n

2
log(4πσ2)

≤ log

[

inf
θ1,θ2∈IRk

+

∫

IR2n
dx1dx2 exp{n(θ1 + θ2) • Γ− θ1 • φ(x1)− θ2 • φ(x2)} ×

exp

{

−‖x1 − x2‖2
4σ2

}]

− log Vol(Sn)−
n

2
log(4πσ2)

= inf
θ1,θ2∈IRk

+

(

n(θ1 + θ2) • Γ+ n log

[
∫

IR2
dx1dx2 exp

{

− θ1 • φ(x1)− θ2 • φ(x2)−

(x1 − x2)
2

4σ2

}])

− log Vol(Sn)−
n

2
log(4πσ2)

△
= n · inf

θ1,θ2∈IRk
+

[(θ1 + θ2) • Γ+ logZ(θ1,θ2)]− log Vol(Sn)−
n

2
log(4πσ2). (86)

For a possible further improvement, one may execute a change of measures, using the

following well-known inequality for a positive random variable, U :

Ep{logU} ≤ logEq{U}+D(p‖q), (87)

where q is an arbitrary distribution and equality is achieved for q(u) = p(u)/u
∫∞
0 p(u′)du′/u′

. In

our case, p(y) = 1
Vol(Sn)

∫

Sn
p(y|x)dx. We will take the auxiliary distribution to be q(y) =

1
Vol(Sn)

∫

Sn
q(y|x)dx. where q(y|x) = N (x, s2In) (other possibilities will be considered in
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the sequel). Now,

E

{

log

[
∫

Sn

p(Y |x)dx
]}

≤ logEq

{
∫

Sn

p(Y |x)dx
}

+D(pY ‖qY )

≤ logEq

{
∫

Sn

p(Y |x)dx
}

+D(pXY ‖qXY )

≤ logEQ

{
∫

Sn

p(Y |x)dx
}

+
n

2

(

σ2

s2
− log

σ2

s2
− 1

)

= log

{

∫

S2
n

dxdx′
∫

IRn

p(y|x)q(y|x′)dy

}

− log Vol(Sn) +
n

2

(

σ2

s2
− log

σ2

s2
− 1

)

= log

{

∫

S2
n

dxdx′(2πσ2)−n/2(2πs2)−n/2
∫

IRn

exp

[

−‖y − x‖2
2σ2

− ‖y − x′‖2
2s2

]

dy

}

−

log Vol(Sn) +
n

2

(

σ2

s2
− log

σ2

s2
− 1

)

= log

{

∫

S2
n

dxdx′[2π(σ2 + s2)]−n/2 exp

[

− ‖x− x′‖2
2(σ2 + s2)

]

}

−

log Vol(Sn) +
n

2

(

σ2

s2
− log

σ2

s2
− 1

)

= log

{

∫

S2
n

dxdx′n
2

(

σ2

s2
− log

σ2

s2
− 1

)

}

= log

{

∫

S2
n

dxdx′ exp

[

− ‖x− x′‖2
2(σ2 + s2)

]

}

−

−n
2
log[2π(σ2 + s2)]− log Vol(Sn) +

n

2

(

σ2

s2
− log

σ2

s2
− 1

)

. (88)

Finally, the first term is handled as before, except that in the definition of Z(θ1,θ2), the

denominator of the exponent, 4σ2, is replaced by 2(σ2 + s2). Somewhat more generally, if

we define q(y|x) = N (αx, s2In), we end up with

log

{

∫

S2
n

dxdx′ exp

[

−‖x− αx′‖2
2(σ2 + s2)

]

}

−

−n
2
log[2π(σ2 + s2)]− log Vol(Sn) +

n

2

(

σ2

s2
− log

σ2

s2
− 1

)

+
1

2s2
E‖X − αX‖2,(89)

where the last term is n(1−α)2E{X2}
2s2

, which requires the marginal of X (e.g., the variance

σ2X of the truncated Gaussian RV in Smith’s model).
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5 Summary and Conclusion

In this work, we have addressed the classical problem of assessing the capacity of the

discrete-time Gaussian memoryless channel, focusing on a general framework of pointwise

channel input constraints, which are relevant in a wide spectrum of theoretical and practi-

cal scenarios, including peak-power constraints, correlation constraints, limitations on the

relative frequency of sign changes in the channel input signal, and many others. Our main

contribution is in proposing systematic methodologies for deriving good lower bounds to

the channel capacity in this general framework.

Two classes of lower bounds are derived based on the precise evaluation of the asymptotic

exponential behavior of the volume (that is, the volume exponent) of the set of legitimate

input vectors, namely, those that satisfy the aforementioned constraints. As mentioned, the

mathematical analysis technique is based on extensions of the method of types to continuous

alphabets [18], which can be presented also on the basis of the saddle-point integration

method [4] and large deviations theory [5]. The first class of lower bounds applies to

continuous-valued channel inputs and relies on the classical entropy-power inequality [3].

The second class provides tighter results at the expense of more complicated expressions to

be optimized.

The quality and generality of the bounds is demonstrated in several examples, including

the classical peak- and average power constraints, absolute value constraints, correlation

constraints, both separate and combined. Also the combination of a linear operation and a

peak power constraint is mentioned.

For future work along the same line of thought, several directions seem to be interesting:

1. Further development of the second class of bounds for constraints with memory (see

the end of Subsection 4.2).

2. Extending the results for colored Gaussian channels.

3. Extending the results for memoryless channels that are not necessarily Gaussian.

4. Further development of the improved bounds for non-uniform inputs, in continuation

to the last part of Subsection 4.1.

5. Dual upper bounds for the rate-distortion function of the Gaussian source subject to

multiple constraints on the reproduction vector.
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6. Applying similar techniques to the timely problem of Integrated Sensing and Com-

munications (ISAC) [28], [30]. Here the bounds could apply to both sensing and

communication: the mutual information is relevant for users that decode the trans-

mitted message, while those who merely know the statistics of the transmitted signal

and attempt to estimate it, under say, the minimum mean square error (MMSE)

performance measure (considering interesting bounds related to MMSE).

Appendix A

Proof of Lemma 1. Define the exponential family,

fθ(xi) =
exp{−θ • φ(xi)}

Z(θ)
, (A.1)

and let fθ(x) =
∏n
i=1 fθ(xi). Now, for every θ ∈ IRk+,

1 ≥
∫

Sn

fθ(x)dx

=

∫

Sn

exp{−θ •∑n
i=1φ(xi)}

[Z(θ)]n
dx

≥
∫

Sn

exp{−nθ • Γ}
[Z(θ)]n

dx

=
Vol{Sn} exp{−nθ • Γ}

[Z(θ)]n
, (A.2)

and so,

Vol{Sn} ≤ exp{nθ • Γ} · [Z(θ)]n. (A.3)

Taking logarithms of both sides, dividing by n, and finally, passing to the limit of n → ∞,

yields

v(Γ) ≤ θ • Γ+ ψ(θ), (A.4)

and since the left-hand side does not depend on θ, we may minimize the right-hand side

over θ ∈ IRk+, and obtain

v(Γ) ≤ ω(Γ). (A.5)

This completes the proof of part 1.

Moving on to part 2, select θ such that Eθ{φ(X)} ≡ −ψ̇(θ) = Γi, where Eθ{·} denotes

expectation under fθ. This is possible by one of the postulates of part 2. Let c > 0 be an
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arbitrary constant, and consider the set

S ′
n =

{

x : nΓj − c
√
n ≤

n
∑

i=1

φj(xi) ≤ nΓj j = 1, 2, . . . , k

}

=

{

x : 0 ≤ 1√
n

n
∑

i=1

[Γj − φj(xi)] ≤ c j = 1, 2, . . . , k

}

. (A.6)

Now, by the multivariate version of the central limit theorem, as n → ∞, the probability

of S ′
n tends to the probability of the hypercube [0, c]k under the zero-mean multivariate

Gaussian distribution with covariance matrix {Covθ{φi(X), φj(X)}, i, j = 1, . . . , k} =

ψ̈(θ), where Covθ{·, ·} denotes covariance under fθ. Let us denote this probability by

Πc(θ). Thus, for every ǫ > 0, and large enough n,

∫

S′
n

fθ(x)dx ≥ Πc(θ) · (1− ǫ). (A.7)

On the other hand, consider the following chain of inequalities:

∫

S′
n

fθ(x)dx =

∫

S′
n

exp {−θ •∑n
i=1 φ(xi)}

[Z(θ)]n
dx

≤
∫

S′
n

exp{−nθ • (Γ− c/
√
n)}

[Z(θ)]n
dx

=
Vol{S ′

n} · exp{−nθ • (Γ− c/
√
n)}

[Z(θ)]n

≤ Vol{Sn} · exp{−nθ • (Γ− c/
√
n)}

[Z(θ)]n
, (A.8)

where c is the k-dimensional vector whose components are equal to c, and the last step is

due to the fact that S ′
n ⊆ Sn. Combining this with eq. (A.7), we have

Vol{Sn} ≥ [Z(θ)]n · exp{nθ • (Γ− c/
√
n)} · Πc(θ)(1 − ǫ). (A.9)

Taking logarithms of both sides, dividing by n, and passing to the limit of n→ ∞, we get

v(Γ) ≥ ψ(θ) + θ • Γ ≥ inf
θ∈IRk

+

{ψ(θ) + θ • Γ} = ω(Γ), (A.10)

completing the proof of part 2.

Appendix B

Derivation of Example 6 for q(x) ∝ exp{α‖x‖2}.
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Consider Smith’s model, where

q(x) =

{

eα‖x‖2

Zn(α,A)
x ∈ Sn

0 elsewhere
(B.1)

where

Zn(α,A) =

∫

Sn

eα‖x‖2dx (B.2)

and Sn = [−A,A]n⋂Bn(
√
nP ) with Bn(r) = {x : ‖x‖2 ≤ r2}. Let us denote

J(a, b)
△
=

∫ A

−A
eax

2+bxdx. (B.3)

The mutual information is given by

I(X;Y ) = h(Y )− n

2
log(2πeσ2) (B.4)

= −E

{

log

[
∫

Sn

q(x)p(Y |x)dx
]}

− n

2
log(2πeσ2) (B.5)

= −E

{

log

[
∫

Sn

exp

{

α‖x‖2 − ‖Y − x‖2
2σ2

}

dx

]}

+ logZn(α,A) +

n

2
log(2πσ2)− n

2
log(2πeσ2)

= −E

{

log

[
∫

Sn

exp

{

α‖x‖2 − ‖Y − x‖2
2σ2

}

dx

]}

+ logZn(α,A) −
n

2

△
= −An +Bn −

n

2
. (B.6)

Now,

Bn = logZn(α,A)

= log

[
∫

Sn

exp{α‖x‖2}dx
]

= inf
θ≥0

log

[

∫

[−A,A]n
exp{nθP + (α− θ)‖x‖2}dx

]

= n · inf
θ≥0

{

θP + log

(
∫ A

−A
e(α−θ)x

2
dx

)}

= n · inf
θ≥0

{θP + log J(α− θ, 0)}. (B.7)
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and

An = E

{

log

[
∫

Sn

exp

{

α‖x‖2 − ‖Y − x‖2
2σ2

}

dx

]}

≤ inf
θ≥0

(

nθP +E

{

log

[

∫

[−A,A]n
exp

{

(α− θ)‖x‖2 − ‖Y − x‖2
2σ2

}

dx

]})

= inf
θ≥0

(

nθP +E

{

log

[

n
∏

i=1

∫ A

−A
exp

{

(α− θ)x2 − (Yi − x)2

2σ2

}

dx

]})

= inf
θ≥0

(

nθP +

n
∑

i=1

E

{

− Y 2
i

2σ2
+ log

[
∫ A

−A
exp

{(

α− 1

2σ2
− θ

)

x2 +
xYi
σ2

}

dx

]}

)

= n · inf
θ≥0

[

θP − E{Y 2}
2σ2

+E

{

log J

(

α− 1

2σ2
− θ,

Y

σ2

)}]

= n · inf
θ≥0

[

θP − E{X2}+ σ2

2σ2
+E

{

log J

(

α− 1

2σ2
− θ,

Y

σ2

)}]

= n · inf
θ≥0

[

θP − E{X2}
2σ2

+E

{

log J

(

α− 1

2σ2
− θ,

Y

σ2

)}]

− n

2
, (B.8)

where the expectations are w.r.t. the asymptotic marginals of the single symbols X and Y ,

respectively. Let θ⋆ denote the minimizing θ in the definition of Bn. Then, pX(x) is given

by

pX(x) =
e(α−θ⋆)x

2I{|x| ≤ A}
J(α− θ⋆, 0)

(B.9)

where θ⋆ = 0 whenever P ≥
∫A

−A
x2eαx2dx

∫ A

−A
eαx2dx

= ∂ log J(α,0)
∂α . The marginal of Y is given by the

convolution between pX and N (0, σ2), namely,

pY (y) =

∫ A

−A

e(α−θ⋆)x
2

J(α− θ⋆, 0)
· e

−(y−x)2/(2σ2)
√
2πσ2

dx

=
exp{−y2/(2σ2)}
J(α − θ⋆, 0)

√
2πσ2

∫ A

−A
exp

{(

α− 1

2σ2
− θ⋆

)

x2 +
xy

σ2

}

dx

=
exp{−y2/(2σ2)}
J(α − θ⋆, 0)

√
2πσ2

· J
(

α− 1

2σ2
− θ⋆,

y

σ2

)

. (B.10)

To summarize, C(Γ) ≥ C1, where

C1 = inf
θ≥0

{θP + log J(α− θ, 0)}+
∫ A
−A x

2e(α−θ⋆)x
2
dx

2σ2J(α − θ⋆, 0)
− inf
ϑ≥0

{

ϑP +

∫ ∞

−∞
dy

exp{−y2/(2σ2)}
J(α− θ⋆, 0)

√
2πσ2

· J
(

α− 1

2σ2
− θ⋆,

y

σ2

)

×

log J

(

α− 1

2σ2
− ϑ,

y

σ2

)}

. (B.11)

where θ⋆ is the minimizing θ in the first minimization.
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