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Abstract

We derive upper and lower bounds on the overall compression ratio of the 1978 Lempel-Ziv
(LZ78) algorithm, applied independently to k-blocks of a finite individual sequence. Both bounds
are given in terms of normalized empirical entropies of the given sequence. For the bounds to
be tight and meaningful, the order of the empirical entropy should be small relative to k in
the upper bound, but large relative to k in the lower bound. Several non-trivial conclusions
arise from these bounds. One of them is a certain form of a chain rule of the Lempel-Ziv (LZ)
complexity, which decomposes the joint LZ complexity of two sequences, say, * and y, into
the sum of the LZ complexity of @ and the conditional LZ complexity of y given & (up to
small terms). The price of this decomposition, however, is in changing the length of the block.
Additional conclusions are discussed as well.

1 Introduction

In the second half of the 1970s, Jacob Ziv and Abraham Lempel introduced a transformative concept
in information theory [8], [9], [12]. Departing from traditional probabilistic frameworks which
typically assumed memoryless sources and channels with well-defined statistical characteristics,
they proposed a novel perspective known as the individual-sequence approach. This approach,
when coupled with models of finite-state (FS) encoders and decoders, opened up a new avenue
for understanding universal data compression and coded communication. Within this innovative
framework, the foundational ideas of what would become the Lempel-Ziv (LZ) algorithms began
to take shape, culminating in the development of the LZ77 and LZ78 algorithms in 1977 and
1978, respectively, as well as quite a few other variants. These algorithms have since become

iconic in the field, celebrated not only for their theoretical elegance, but also for their exceptional



practical utility. The impact of the LZ family of algorithms, including its subsequent variations,
has been far-reaching, deeply embedded in the everyday technologies that rely on digital storage
and communication, from computers and smartphones to virtually every device that handles digital

data.

In subsequent years, the individual-sequence framework was extended along various lines of
study. One notable development appeared in [10], where Ziv examined a fixed-rate coding sce-
nario involving side information, with both the source and the side information sequences being
deterministic (individual) sequences. Along this setting, with both the encoder and decoder be-
ing modeled as finite-state machines, he introduced and rigorously characterized the concept of
fixed-rate conditional complexity. This measure captures the minimum achievable rate for almost-
lossless compression of a source sequence given a side information sequence. Remarkably, echoing
the classical result from Slepian-Wolf coding [6], Ziv demonstrated that access to side information
at the encoder is not necessary in order to attain this conditional complexity. The following year,
n [11], Ziv proposed a variable-rate counterpart to the conditional Lempel-Ziv (LZ) complexity in
a markedly different context, serving as a universal decoding metric for unknown finite-state chan-
nels. This conditional complexity measure later garnered attention for its applicability to source

coding with side information, as explored further in [3], [7], and more recently in [4].

Just as LZ complexity serves as the individual-sequence analogue of the entropy rate in the
probabilistic setting, the conditional LZ complexity naturally parallels the conditional entropy
rate. Following this line of analogy between the probabilistic and individual-sequence frameworks,
a compelling question arises: Does the LZ complexity measure obey a chain rule? That is, can
the joint LZ complexity of a sequence pair, say, («,y), be decomposed into the sum of the LZ

complexity of & and the conditional LZ complexity of y given @, or, symmetrically, the reverse?

On the face of it, a close examination of the mathematical expressions of these three complexity
measures for finite-length sequences offers very little reason to hope for an affirmative answer to
this question. Surprisingly, however, such a chain-rule decomposition was shown to hold at least in
a specific sense of the asymptotic regime of infinitely long sequences [4]. Given the central role that
the chain rule for Shannon entropy plays in classical information theory, it is natural to envision

that an analogous chain rule for LZ complexity could emerge as a foundational principle in the



development of an information theory tailored to individual sequences.

Consider, for instance, the problem of separately compressing almost losslessly and jointly de-
compressing two individual source sequences, in the spirit of Slepian-Wolf coding [6], but with
the limitation that only finite-state encoders are allowed. As explored in [4], characterizing the
achievable rate region in this setting brings forth a fundamental question. In the classical prob-
abilistic framework, for two correlated discrete memoryless sources X and Y, the achievable rate
region is well understood. It is defined by the set of rate pairs, {(R,, R,) : R, > H(X|Y), R, >
H(Y|X), R.+ R, > H(X,Y)}, where the corner points, (H(X),H(Y|X)) and (H(X|Y),H(Y)),
arise naturally due to the chain rule of entropy, i.e., H(X) = H(X,Y) — H(Y|X) and H(Y) =
H(X,Y)— H(X]Y). In the individual-sequence framework, as described in [4], a similar region
can be defined, this time, replacing entropic quantities with their corresponding LZ complexity
counterparts: the conditional complexities of the sequences and their joint complexity. However,
unlike the probabilistic case, it is not immediately clear a-priori whether a chain rule exists that
allows for a decomposition of the joint LZ complexity into unconditional components, such as the
individual complexities of & and y in a manner analogous to the marginal entropy components of
the corner points. In this context, the existence of a chain rule for LZ complexities would be, not
only natural, but also instrumental in shaping a deeper understanding of compression limits for

individual sequences.

Another illustrative example involves the concept of successive refinement for individual se-
quences, as explored in [5]. In the system model considered there, the encoder architecture com-
prises two main components: a reproduction encoder and a cascaded finite-state lossless encoder.
The reproduction encoder generates two distorted versions of the source, one providing a coarse
approximation with relatively high distortion, and the other offering a finer, more accurate repre-
sentation with reduced distortion. These two reproduction vectors are then passed to the lossless
encoder, which produces two compressed bit-streams that, taken together, represent both reproduc-
tions without introducing any additional distortion. The first bit-stream corresponds to the coarse
description, and ideally, it alone captures the LZ complexity of the coarse reproduction. Together,
the two bit-streams are expected to match the joint LZ complexity of both reproduction vectors.
Since the first stream compresses only the coarse version, it is most natural for the second-stage en-

coder to compress the refined reproduction using the coarse one as side information. Consequently,



achieving the overall joint LZ complexity hinges on the existence of a chain rule for LZ complexity,

at least in an asymptotic sense.

Earlier, we mentioned that in [4] a certain form of an asymptotic chain rule of LZ complexities
was established for infinite individual sequences (more details will be provided in Section 4). Our
main result in this work is another form of a chain rule that applies even to finite sequences, and it
is therefore, stronger, more refined, and more explicit. To this end, we first derive upper and lower
bounds on the overall compression ratio of the LZ algorithm, applied independently to k-blocks of
a finite individual sequence. Both bounds are given in terms of normalized empirical entropies of
the given sequence. For the bounds to be tight and meaningful, the order the empirical entropy
should be small relative to k in the upper bound, but large relative to k in the lower bound. Several
non-trivial conclusions arise from these bounds. One of them is the above mentioned chain rule
of the Lempel-Ziv (LZ) complexity, which decomposes the joint LZ complexity of two sequences
into the sum of the LZ complexity of one sequence and the conditional LZ complexity of the other
sequence given the former (up to small terms). The price of this decomposition, however, is in

changing the length of the block. Additional conclusions are discussed as well.

Finally, it is interesting to point out that the Kolmogorov complexity also obeys a certain
approximate chain rule (up to a certain redundancy term that vanishes as the sequence length

grows), as asserted in the Kolmogorov-Levin theorem [2], [13].

The outline of the remaining part of this work is as follows. In Section 2, we establish notation
conventions and provide some background. In Section 3, we derive upper and lower bounds on the
average LZ complexity of k-blocks of a given individual sequence, in terms of empirical entropies,
and finally, in Section 4, we provide the chain rule results, which are upper and lower bounds
on the average of the LZ complexities of sequence pairs, in terms of the average of the chain-
rule decompositions in a sense that will be made clear in the sequel. We end this paper with a
comparison to the above-mentioned earlier derived chain rule for the LZ complexity which appears

in [4].



2 Notation Conventions and Background

2.1 Notation Conventions

Throughout this article, we adopt the following notational conventions. Scalar random variables
(RVs) will be represented by uppercase letters, their realizations by the corresponding lowercase
letters, and their alphabets by calligraphic letters. The same convention extends to random vectors
and their realizations, which will be denoted using superscripts to indicate dimension. For in-
stance, X, m being a positive integer, denotes the random vector (X1,...,X,,) and (x1,...,2m)
represents a specific realization in X, the m-fold Cartesian power of the alphabet X. Segment
notation will follow accordingly: for positive integers ¢ and j, ¢ < j, xf and X l] denote the substrings
(i, Tig1, ..., xj) and (X, Xiq1,...,X;), respectively. When ¢ = 1 the subscript ‘1’ is omitted for
brevity. If i > j, both a?z and Xl-j refer to the empty string. Unless stated otherwise, all logarithms
and exponentials are taken to base 2. The indicator function of an event £ is denoted by I{€},
that is, I{€} = 1 if £ occurs and I{E} = 0 if not.

In the sequel, 2" = (x1,...,2,) and y™ = (y1,...,ys) and will designate individual sequences.
The components, {x;} of 2", and {y;} of y", all take values in the corresponding finite alphabets,
X and Y, whose cardinalities will be denoted by « and (3, respectively. The infinite sequences

(z1,22,...) and (y1,y2,...) and will be denoted by x and y, respectively.

2.2 Background

2.2.1 Finite-State Encoders

Following the framework introduced in [12], we consider a model for lossless compression based on

a finite-state encoder. Such an encoder is characterized by a quintuple
E - (X7u7 Z’ f?g))

where: X denotes a finite input alphabet of cardinality oo = |X|; U is a finite set of variable-length
binary strings, possibly including the empty string A (of length zero); Z is a finite set of internal
states; f : Z x X — U is the output function, and g : Z x X — Z is the next-state transition
function. Given an infinite input sequence @ = (z1,z2,...) with x; € X', i = 1,2, ..., henceforth

referred to as the source sequence, the encoder E generates a corresponding infinite output sequence



u = (u1,us,...) with u; € U, henceforth termed the compressed bit-stream, while simultaneously
evolving through a sequence of internal states z = (21, 22,...) with z; € Z. The system dynamics

are governed recursively by the equations:

up = f(zi,25), (1)
ziyn = g(2, i), (2)

fori=1,2,..., with a fixed initial state z; = 2z, € Z. If at any step u; = A, no output is produced,
and this corresponds to encoder idling, where only the internal state is updated in response to the

input symbol.

An encoder with s distinct internal states, henceforth referred to as an s-state encoder, is one
for which |Z| = s. For convenience, we adopt a few notational conventions from [12]: Given a
segment of input symbols x‘Z with ¢ < j and an initial state z;, the notation f(z;, x‘Z ) denotes the
corresponding segment of outputs uf generated by the encoder E. Likewise, g(z;, :BZ ) denotes the
resulting state zj;1 after processing the input segment xf starting from state z;.

A finite-state encoder E is said to be information lossless (IL) if, for every initial state z; € Z,
every positive integer n, and any input segment xfr", the triplet (z;, f(zi, x?“"), 9(zi, :cf”)) uniquely
determines the original input segment xz+” In other words, the combination of the starting state,
the resulting output sequence, and the final state after encoding is sufficient to fully reconstruct

the input. Given an encoder E and an input sequence =", the compression ratio achieved by E on

2™ is defined as

2 W) LS ) = 23 1G] g
=1 =1

where L(u™) denotes the total length (in bits) of the encoded binary string ", and [(u;) represents

pE(z")

the length of the binary string u; = f(z;,x;) at each step 1.

The class of all IL encoders { E} with no more than s states is denoted by £(s). We next define

the s-state compressibility of z™ by

s ") = i n, 4
ps(x™) Elglé)ma(m ) (4)

the asymptotic s-state compressibility of x by

ps(@) = limsup py(2"), ()

n—oo



and finally, the finite—state compressibility of @ by

p(z) = lim p(x). (6)

5—00

2.2.2 Empirical Distributions and Induced Information Measures
We define three types of empirical distributions of d-vectors (d — positive integer).

1. Assuming that d divides n, the empirical distribution pertaining to non-overlapping blocks of
length d is defined as

n/d—1

A A d
Py (z,w?) = - Z I{zid41 = 2, zgif wl}, z€Z, wl=(wy,...,wg) € X4 (7)
1=0

2. The empirical distribution associated with a sliding window of length d is defined as

. A 1

P (z,w?) il ZI{ZH-I =z, xii‘f =wl}, zez wlexd ()

3. The empirical distribution associated with a cyclic sliding window of length d is defined as

. é 1

Po(z, ZI{Zerl—Z 2TV — iy 2 e 2wl e ad, 9)

n

where @ denotes modulo-n addition.

Information measures associated with these empirical distributions will be denoted according
to the conventional notation rules of the information theory literature, but with ‘hats’, with sub-
scripts that indicate the type of the empirical distribution, and with notation of dependence on the
data sequence z" from which the statistics were gathered (using square brackets). For example,
H,,, (X%)[2z™] will denote the empirical entropy of an auxiliary random vector X¢ that is governed
by the empirical distribution, P,.,(-) extracted from z".! Likewise, H., (X%|Z)[z"] will denote the
empirical conditional entropy of an auxiliary random vector X¢ given a random state variable Z
that are drawn by the empirical distribution, P, (-,-), L.(X% Z)[z"] will denote the empirical
mutual information between the auxiliary random variables X% and Z that are jointly disributed

according to the empirical distribution, P, (-), and so on.

'Note that there is no need to denote the dependence on z" too since z" is dictated by " for a given next-state
function, g.



For the infinite sequence x = (z1,x9,...), we define
H,.. (XY [x] = limsup H_,, (X?)[z"]. (10)
n—0o0

Similarly as shown in [12], for every z, the sequence {H.,,(X%)[x]}4>1 is sub-additive as

Hoo(XBHE) 2" = Ho (X)) [2") 4+ He (X2 X)) 2]

IN

(X" + He (X 2]

H. (X)) [z"] + H..., (X%)[z"], (11)

and so, taking the limit superior of the left-most- and the right-most side, we have

H. (XB+2)[z] = limsup H., (X%7%)[z"]

n—o0

< limsup{ A, (X)) [z"] + H..,(X%)[z"]}

n—o0

< limsup H,... (X)) [z"] + limsup H..,,(X%)[z"]

n—o0 n—oo

Heo (X)) + Hooo (X)) (12)

Hcsw(

d
Consequently, the sequence {%}dzl is convergent, and we shall denote

H,,[z] = lim w.

1

Returning to finite n, whenever the underlying sequence ™ is clear from the context, we will omit
the explicit notation that indicates the dependence upon x™. In this case, the above-mentioned
examples of information measures will be denoted more simply by ﬁmb(X 4, ﬁsw(X 47), and

I.. (X% Z), respectively.
2.2.3 LZ Compression and its Properties

The incremental parsing procedure used in the LZ78 algorithm is a sequential method for processing
an input sequence xz™ drawn from a finite alphabet. At each step, the procedure identifies the
shortest substring that has not yet appeared as a complete phrase in the current parsed set except
possibly for the final (incomplete) phrase. For instance, applying this parsing method to the
sequence

2 = abbabaabbaaabaa



yields
a,b,ba,baa,bb,aa,ab,aa.
Let ¢(z™) denote the total number of distinct phrases generated by this procedure (in this example,

c(z'%) = 8). Additionally, let LZ(x™) represent the length in bits of the binary string produced by

the LZ78 encoding of z". According to Theorem 2 of [12], the following inequality holds:
LZ(z") < [c(z™) + 1] log{2a[c(z") + 1]} (14)
which can easily be shown to be further upper bounded by
LZ(z™) < c(z™)loge(z™) +n - e1(n), (15)

where €1(n) tends to zero uniformly as n — co. In other words, the LZ78 code length for a sequence
2™ is upper bounded by an expression whose leading term is ¢(z")log c(z™). Remarkably, the very
same quantity also appears as the dominant term in a lower bound (see Theorem 1 of [12]) on the
shortest code length achievable by any IL finite-state encoder with no more than s states, assuming

that log(s?) is negligible in comparison to log c¢(x™). More precisely, Theorem 1 in [12] asserts that:

c(x™) + s c(z") + 52 252
J(am) > DT o (AR L 2 1
pela) 2 SEVEE o (AL 4 2 (16)
which can readily be further lower bounded by
c(x™)log c(x™
po(am) > TN ), (17)

n
where €2(n, s) — 0 uniformly as n — oo for fixed s. Motivated by this connection, we shall refer to
the quantity c(z™) log ¢(z™) as the unnormalized LZ complexity of ™ The normalized LZ complexity

is then defined as

11>

prz(z™) W’ (18)

which represents the LZ complexity per input symbol.

3 Bounds on the Average LZ Complexity of k-Blocks

In this section, we derive lower and upper bounds on the average LZ complexity over blocks of

length k, that is, on the quantity

n/k 1 1 n/k—1
k k k+k k+k
- Z pra( Zkil " Z c(x sz)lOgC( :1;1)» (19)
i=0



where k is a positive integer that divides n. Both the upper bound and the lower bound are given
in terms of the empirical entropy H’CSW(-), but to make certain redundancy terms negligibly small,
the order of this empirical entropy should be much larger than k in the lower bound and much

smaller than k in the upper bound.

The reason for our interest in the average LZ complexity of blocks, rather than in the LZ
complexity of the entire sequence, p;,(x"), is that in any practical application of the LZ78 algorithm,
one must reset and start over after each and every block of finite size, as otherwise, the amount of
memory and computational effort grows without bound. Also, from the theoretical point of view
(see [12, Corollary 2]), the gap between the upper bound and the lower bound to the finite-state
complexity of @ is closed in the limit of s — o0, in terms of the double limit

n/k 1

p(x) = limsup hmsup— Z prz(x zsz (20)

k—oo n—oo T

One of the conclusions from our bounds in this section is that, in fact, the outer limit superior over
k can be always safely replaced by an ordinary limit, because the sequence
k n/k—1
pr(x) = hmsup - prz(x ;I,sz), keN, (21)

n—»00
=0

turns out to be convergent thanks to the convergence of the sequence {M}dzl, which plays

a role both in the upper bound and in the lower bound, as described above.

3.1 Lower Bound

The following theorem provides our lower bound to the average of the LZ complexities over k-blocks

in terms of the cyclic sliding-window empirical entropy.

Theorem 1 For every positive integer k, every n that is an integer multiple of k, every ™ € X",

and every positive integer £,

n/k 1 ~ )

i Hcsw X* lloga « n
- Z pLZ zllzi]f g() - Af(akv Ct) - n - g log Z - 61(]{:)a (22)

where € (-) is as in (15) and
) ® Lo o142} -

10



Since the left-hand side of (22) does not depend on ¢, in principle, one could maximize the
right-hand side over ¢ to obtain the tightest lower bound. But perhaps a more natural point of
view is to consider the regime n > £ > k > 1, where the leading term of the lower bound is the
empirical entropy term and all other four terms are negligibly small. In particular, taking the limit
superior n — oo, followed by the limit £ — oo, and finally, the limit inferior k¥ — oo, we obtain the

following asymptotic inequality as a consequence of eq. (22):

liminf pg(x) > H.,,[z]. (24)

k—00
For later use, we point out that the lower bound of Theorem 1 can also be expressed in terms of
the empirical entropy associated with non-overlapping blocks, in the following manner:
LS N

o Hoo (X
v 2 puleth = B - A 0) — ) (25)

whose proof is very similar to (and even slightly simpler than) the proof of Theorem 1 below. This
will be used in Section 4.

The remaining part of this subsection is devoted to the proof of Theorem 1.

Proof of Theorem 1. We commence by providing a generalized version of Kraft’s inequality that
applies to any s-state IL encoder. It is similar but somewhat different (and slightly tighter) than
the generalized Kraft inequality of [12, Lemma 2].

Lemma 1 For every IL encoder with s states and every z € Z,

O/
22 FEwh)] < . [1+log<1+)} (26)
wlex?t 5

The proof of Lemma 1 is identical to the proof of Lemma 2 of [12] except that since the initial
state z is given and fixed, the number k; of different {w*} with L[f(z,w")] = j cannot exceed s - 27
(rather than s?27 in [12]), which is the number of combinations of final states and binary output

sequences of length j.

Next, observe that
l
S - [1+log <1+a>}
s

11



> 3 ot

wlext
= Bu(wl]) - 2 M -los P (w]e)

wlext
> expy{ — Y Pu(w'lz)- Lif(z,0)] = Y P (w'|2)log P, (w']z)

wlex!t w?’
= expy{ Ho(X|Z=2)— > PB.(w'l2)- L[f(zw");, (27)
wlext

where in the second inequality we have used Jensen’s inequality and the convexity of the exponential
function, F'(u) = 2%. This implies that
l
S Buwl]e) - LIf (5w > Hou(XY)Z = 2) — log { - [1 + log (1 " a)] } )
wtex?t 5
Averaging both sides w.r.t. P, (z), z € Z, we end up with
¢
S Bz u) Lif(ewt) 2 Ha(X'|Z) ~ log { - [1 t log (1 n ‘“)] } @)
(z,wt)eZx Xt 5
We next apply this inequality in a chain of inequalities that would lead to a lower bound to pg(z™).

Similarly as in eq. (33) of [12]

=1

= i)
n—~{ ¢

nﬂzzl Zz-i-jaxl'f‘] ]

=0 j=1
n—~¢

1 .
= my Z L{f(zit1, $;i€)]

_ 2(1_5—1) >~ Py uf) - LIF(z, 0]

n

v

zwt

SR CR )
_ (1_fb> H,,(XY —KIASW(Z;Xe) _ilog{s_ [1—|—log (”Ojﬂ}
N (1_£>.H (XZ)E H..(2) _Elog{s. {Hlog <1+05>H

12




2 N i
> (1- . Ao (XT) 1Ogs—llog s-|1+log 1+ &
n l L S

H,.(XY 0 1 ¢
> SWE ) _ Oga—glog{SQ-[l—i—log(l—i—o;)}}. (30)

n

We would now like to modify this lower bound to be given in terms of the empirical entropy
H...(XY). It is easy to verify that |P.,, (w’) — P, (w')| < £ for all w’ € X%, and so, the variational
distance between P, (-) and P, (-) cannot exceed 6 2 ¢a’/n. Thus, by [1, Lemma 2.7, p. 19],

ot n

H. (X" > H., (X" - —log ., (31)
and so, we have proved that
H... (X% lloga ot n
s(x") > —=——2 — Ay(s,a) — — —log—. 2
pola™) 2 ) = A(s,0) - —BE - Loy T (32)

Consider now the application of the LZ78 algorithm along blocks of length k, where after each
such block the LZ algorithm is restarted independently of previous blocks. Since this is actually
a block code of block length £ and a block code can be implemented using a finite-state encoder

with s = o states, then we have:

1 n/k—1
=Y L2 2 para)
i=0
ﬁcsw(XZ) k ﬁloga O/ n
> ——-A - — —log .
= 7 o(a”, ) " - log 5 (33)
On the other hand,
~ D L2yt = —Z Z+
i=0
kn/k 1
= 5 Z pra(xy ) + k), (34)
=0
and so,
e Y HCSW(XZ) K lloga o', n
n Z Tir1) 2 — 5 — Aele,a) = — == — —log 5 —e1(k), (35)

thus completing the proof of Theorem 1.

13



3.2 Upper Bound

Theorem 2 below provides an upper bound to

n/k 1
zk—i—k
- Z prz(Tipi1)

Theorem 2 For every positive integer k, every n that is an integer multiple of k, every x™ € X",
and every positive integer m,
n/k 1 ~

Hcsw Xxm 1 2(m+1)amt!
*ZﬂLz ity ( )+7+( n)

n
) log po- + e3(k, ™), (36)

where €3(-,-) is as in eq. (17).

Similarly as in the discussion after Theorem 1, since the left-hand side does not depend on m,
in principle, one could minimize the right-hand side over m to obtain the tightest upper bound, but
it may be more instructive to consider the regime n > m > 1 and k > m, where the leading term
of the upper bound is the empirical entropy term and all other three terms are negligibly small. In
particular, taking the limit superior n — oo, followed by the limit superior of k& — oo, and finally,

the limit m — oo, we obtain the following asymptotic inequality as a consequence of eq. (36):

limsup py(x) < He [x], (37)
k—oo
which together with eq. (24), yields
limsup pg(x) = liminf pg(x) = lim py(z) = Hel2], (38)
k—00 k—o0 k—o0

in agreement with Theorem 3 of [12], but with the stronger statement that the limit superior over

k is actually an ordinary limit, as the sequence {py(x)}r>1 is convergent.

Similarly as before, the upper bound of Theorem 2 can also be expressed in terms of the
empirical entropy associated with non-overlapping blocks, in the following manner:

n/k 1 ~
f[HO xm 1
. Z purtaith) < T Lk 0, (39)

and once again, the proof is almost identical to the proof of Theorem 2 below. This result too will

be used in Section 4.

14



The remaining part of this subsection is devoted to the proof of Theorem 2.

Proof of Theorem 2. Consider a scenario of compressing z™ by a finite-state encoder with s states

that is allowed to vary from one k-block to another. According to eq. (17) (applied to k-blocks),

the corresponding compression ratio, which is * Zn/ k=l ps(z Ziff) is lower bounded by
i n/k—1 n/k 1
k k
o Z ps( zkil > — Z prz(T zk—i—l ) — ea(k, s). (40)
i=0

On the other hand, the best time-varying finite-state encoder with s = o™ states (m- positive
integer) cannot be worse than the best time-invariant finite-state encoder with the same number
of states. Let m divide n and consider block encoding of non-overlapping blocks of length m using
a Shannon code with a conditional length function defined by

im4+m im 1 . n
L(l‘lmil ’.’L‘(Z 1)m+1) |7 log |:H Q xlm+]|I (i —Bm_w)}“ ’ 1= 0) 1) 2) ceey T T 1 (41)

m

where for i = 0, 27" is understood to be encoded with fixed arbitrary conditioning on 2 (m—-1) € XM,

Next, observe that

n/m—1
A .
L(l‘n|x[i(m—1)) = Z L(‘Z‘izigﬂxz 1)m+1)
1=0
n/m—1 m
im+j—1
= Z {—log[HQ(xz‘mH’@"?lgmﬂ)H
i=0 j=1
n/m—1 m
i1 n
< Z log H xzm-&-j"rz(;n_lgm_y.j) +E
J=1
n/m—1 m
1 n
S S ok +
=0 =1
n
= —ZlogQ zilzi L) + -
= e Y P log Qi |w™) + (42)
w7rL+1 eX'rrH»l m
where
P, (w™™) Zl{azl m=w"T) W™t e xm (43)

15



and in the sequel, we denote the induced entropy by H.,(-). Thus,

n/k 1
- 1
D S R D e I T (a1

wm+1 eX'm+1
and since this holds for every Q(-|-), it also holds for the minimizing Q(-|-), which yields

n/k; 1 1
- Z Paem (2 1Y) € Hao(Xim1 |X™) + — (45)

At this point, we wish to pass from FISW(XmH]Xm) to JEICSW(XmH]Xm), as before. To this end,
we first present H,, (X, 1|X™) as H,,(X™) — H,_,(X™) and then apply again Lemma 2.7 of [1]
to each term separately. Since |P.,(w™) — P., (w™)| < ™ for all w™ € X™ then, ), n | P, (w™) —

Pcsw(wm)\ < mgm, and so, by Lemma 2.7 of [1],

- N m
|st(Xm) - Hcsw(Xm)| S ma ].Og % (46)
and a similar inequality holds also for |H,, (X™1) — H,..(X™t1)|. It follows that
Ho(Xims1]X™) = Ho (X™) — H, (X™)
m—+1 m
< f(xmrtyg D ey - Y g
— csw( ) n Og m + 1 CSW( ) n Og m
R 2 +1 m+1
< (XX 4 2Dy (47)
n m
and so,
n/k 1
N 1 2(m+1)amt? n
bty
w2 pen ) S A (X7 o SR g
1 & 1 2(m+1)am™tt  n
< = q—1 -
< ) Ha (X[ X7 - lo
q=1
Ho.(X™) 1 2 a1
_ s ( )+f (m+1) ogﬁ, (48)
m n
which yields
n/k 1 ~
H..(X™) 1 2(m+1)amH!
PIECE W L 2 DT U k), (49)

thus completing the proof of Theorem 2.
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4 Chain Rule

Before presenting the chain-rule results, we first need to provide some additional background, which

is associated with conditional LZ compression.

4.1 Background on Conditional LZ Compression

In [11], the concept of LZ complexity was extended to account for finite-state lossless compression
with side information, leading to the conditional version of LZ complexity. Given sequences x"
and y", we apply the incremental parsing procedure of the LZ algorithm to the paired sequence
((x1,9y1), (x2,Y2)s - -+, (Tn,yn)). As previously noted, this procedure ensures that all parsed phrases
are distinct, except possibly for the final phrase, which may be incomplete. Let ¢(x™, y™) denote

the resulting number of distinct phrases. For instance,? if

0 0]1/01]01]

y* = 0]1]00]01] (50)

we have c(2%,9%) = 4. Let us denote by c(2™) the resulting number of different phrases of 2™, and
denote by z(l) the [-th different x—phrase, [ = 1,2,...,¢(z"). In the running example, c¢(z%) = 3.
Next, let us denote the number of times x(l) appears in the parsing of z™ by ¢;(y™|z™). Then,
obviously, Zlcgn) c(y™|z") = c(x™, y™). In our example, x(1) =0, 2(2) =1, 2(3) = 01, ¢ (y%|2%) =
c2(y%]2%) = 1, and c3(y%|2%) = 2. Now, the conditional LZ complexity of y" given z" is defined as

c(z™)

||l>
S|

prz(y"x") a(y"|=")logc(y"™|="). (51)

=

—

In [11] it was shown that prz(2"|y") is the main term of the compression ratio achieved by the
conditional version of the LZ algorithm described therein (see also [7]), i.e., the length function,

Z(z"|y™), of the coding scheme proposed therein is upper bounded (in parallel to (14)) by
Z(y"|z") < nprz(y"|a") + nes(n), (52)

where e3(n) is a certain sequence that tends to zero uniformly as n — oo. On the other hand,

analogously to [12, Theorem 1], it was shown in [3], that prz(y"|«") is also the main term of a

2This example is taken from [11].
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lower bound to the compression ratio that can be achieved by any finite-state encoder with side
information at both ends, provided that the number of states is not too large, similarly as described

above for the unconditional version, i.e.,

ps(y"|2") = pra(y”]z”) — ea(n, ), (53)

where €4(n, s) tends to zero uniformly as n — oo for fixed s, and ps(y™|z™) is the s-state compress-
ibility of y™ given the side information 2™ (available to both encoder and decoder), which is defined
in the same manner as the unconditional s-state compressibility, but under an encoder model where
the output function f and the next-state function g are fed by both z; and y; (in addition to the

current state z;) at each time instant i — see [3] for details.

The results of the previous section can be readily extended to the conditional case. In particular,
we will be interested in the relations to the conditional entropy induced by statistics of non-

overlapping blocks:

H,,(Y™X™) ¢ v
b(mH < D paiglilegiD) + es(o) + An(a?87, ), (54)
=0
and /
-1
Hooo (YP|XP) 7 C A A 1
b(p uitp ~ D Py dileiin) — 5~ calro?Br), (55)
=0

where m, p, ¢ and r are positive integers, r and ¢ being divisors of n.

4.2 Chain Rule Theorem

Our main result in this section is the following.

Theorem 3 For every three positive integers k, q and r, every positive integer n that is a multiple

of k, ¢ and r, and every (x",y") € X™ x Y", we have:

1. Upper bound:

i n/k—1 q n/q—1
ik+k | ik+k iq+ iq+ iq+
" E : pLZ(mékipy:‘kIl) < o § {PLZ(%Z#{) +PLZ(y;Z+§’x;Z+?) +
1=0 i=0

An(at,a) + €5(a) + A5, 8) + - + ea(k, a™5").(56)
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2. Lower bound:

n/k—1

Jr—1
ﬁ E pLZ(l'zkilay;kil) > E [pLZ(l'z:iq{)+pLZ(yZ;1;|$Z:iD] B
=0

=0

— eg(r,al) — eq(r,a?pP) — Ap(ozk/@’k, af) — e (k). (57)

DIN 33

For the upper bound, the integer parameters m and ¢ (¢ being a divisor of n) are free and can
be chosen so as to minimize the right-hand side. In particular, to make all redundancy terms at
the second line of eq. (56) small, the regime should be k& > m > ¢ > 1, which means that we
may upper bound the average joint LZ complexity in terms of its decomposition, provided that
the block length ¢ of the blocks after the decomposition is very small relative to the original block
length, k. Likewise, for the lower bound, the integer parameters p and r (r being a divisor of n)
are free and can be chosen so as to maximize the right-hand side. To make all redundancy terms
at the second line of eq. (57) small, the regime should be r > p > k > 1, which means that we
can lower bound the average joint LZ complexity in terms of its decomposition, provided that the
block length r of the blocks after the decomposition is very large relative to k. Combining both
parts of Theorem 3, the relevant regime is therefore r > p > k > m > ¢ > 1. In view of this,
consider eq. (57), take the limit superior of n — oo, then the limit superior of r — oo, afterwards

the limit of p — oo and finally, the limit of £ — oo, to get

n/r—1
. . r ; i i
pla,y) > limsuplimsup — > [pua(af ) + puz (i {1125 30)] - (58)
r—oo mn—oo N =0

On the other hand, consider eq. (56), take the limit superior of n — oo, then the limit of k — oo,

afterwards the limit of m — oo, and finally the limit inferior of ¢ — oo, to get

n/q—1
.. . q iq+q iq+q),.19+q
p(x,y) < lim inf h:ln_) sup ; [pLz(w,-qH) + prz(Yigid ISE,-qH)} : (59)
It follows that
n/k—1
ok(x,y) = limsup " Z [pLZ(x;Zi’f) + prz (y;’]zi]ﬂm;sz)} ) ke N (60)

is a convergent sequence whose limit o(x,y) is equal to p(x,y).
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Proof of Theorem 3. Let (z™,y™) € X™ x Y™ be a given pair of individual sequences. Then, using

the results of the previous section, we have the following relations. For the upper bound,
n/k 1
zk—i—k ik+k
. Z pLZ ik+1> Y zk—l—l)

o (X™ Y™ 1
(X717 +— +ealk,amG")
m m

X™) | Hap(Y™MX™) 1
— )+ b( | )—f—f—l-ﬁg(k,(aﬁ)Qm)
m m

IA

afl
=

[}

o
—

3
ey
3
L

IA
3
'M

s
Il
=)

pra(@l i) + e1(q) + Am(a?,a) +

3
i
A

Pz T2 T]) + e3(q) + Am(a?B7, B) +

s
Il
=)

ea(k,a™ ™)

Se 3= 3Ie
S
s
L

™

-
Il
o

+q| g+
[PLZ( zq+1) =+ PLZ(yzZ+(1]‘$zZ+({)] +

P

Q
Q

n(a%,0) + es(a) + Am(aT59,5) + - + ea(k,a"B™). (o1

For the lower bound,
n/k 1
zk—i—k ik+k
- Z pLZ ik+1> yzk+1)

Hmﬂo();’y) — Ap(0F B, ap) — € (k)

H,p(XP) | H,o(YP|XP
— b( ) + b( ‘ ) —Ap(akﬂk,aﬁ) —61(]{3)
p p
n/r—1

1
Z puaefi D) — - — ealr.a?) +

n/rfl 1
D Py tileith) - - —alr o) -

(048, a8) — ()

n/r—1

> lpealin D) + pualy D)) -
=0

—eg(r,af) — eq(r,a?pP) — Ap(akﬁk, af) — e (k). (62)

v

v
SH

31

g

TN 3=

This completes the proof of Theorem 3.
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4.3 Comparison to an Earlier Derived Chain Rule

In [4], the following chain-rule theorem was asserted and proved.

Theorem 4 Define

pz_z(xk7 Z/k) = maX{pLZ<$k7 yk)7 pLZ(xk) + pLZ(yk’xk)v
pLz(yk) + pLZ(xk‘yk)}u (63)
p;z(xkayk) = min{pLZ(xk)yk)7pLZ(xk)+pLZ(yk|xk)7
PLz(yk) + PLZ(ﬂfk|yk)}- (64)
Given x and vy, let
n/k—1
pt(x,y) = limsuplimsup — Z pjz(xz’,:i]f,yflgif)
k—oo n—oo TN i—0
n/k—1
p~(x,y) = limsuplimsup = > pp, (2l i,y ).
k—oo n—oo TN i—0
Then,
pt(x,y) = p (2, y) = p(z,y). (65)

This theorem tells that upon dividing the infinite sequence into non-overlapping k-blocks, then

for the infinite sequence pair, it does not matter if on each such block we apply LZ78 compression

ik+k | ik+k

ik+k
k410 Yik41

ik+1

tk+k
ik+1

ik+k

iht1s OF vice versa, the ultimate

on (x ) jointly, or first on = and then on y given x
compression ratio will be always the same. However, in contrast to the chain-rule theorem presented
here, which applies for finite sequences (with clearly characterized redundancy terms), this theorem

of [4] applies to infinite sequences only. Hence, the chain-rule theorem presented here is more refined.

A natural question that may arise at this point is what can be said about the relationship
between p(x,y) and the pair (p(x), p(y|x)) (or (p(y), p(x]y))). On the one hand, it is readily seen
that

p(x,y)
= p (z,y)
n/k—1

fimsuplimsup £ 3™ (pua@it) + puauik 4ol
k—oo n—oo TN i—0

IN

21



n/k—1
< limsup lim sup — Z pLz(CUZ:];ii’f)‘F

n
k—o0 n— 00 i—0

n/k—1
: . ik+k) ik-tk
lim sup lim sup — Z Prz(Yipit | Tigt1)

n
k—o0 n—00 i—0

p(x) + p(y|z). (66)

However, the reverse inequality, p(x,y) > p(x) + p(y|z), may not? hold true in general, and so,
there is no apparent chain rule in that sense. As a counterexample, consider the following. Let
no = 0 and {n;, ¢ > 1} be a sequence of positive integers with the property that for all i > 1,
n; > Z;;ll n; and consider an infinite binary sequence x, defined as follows: For i even and all
ni+1 <t < nipq, 2 =0. For ¢ odd and all n; +1 <t < mi41, a4 is obtained by random coin
tossing. Since n; > 23;11 n;, the compression rate of the last segment always dominates, and so,
the compression rate of ™ oscillates forever between 0 and 1, as n grows without bound, which
results in a limit superior of p(x) = 1 almost surely. Next, let y be defined as follows. For i
even and all n; +1 <t < m;y1, y; is obtained by independent random coin tossing. For ¢ odd
and all n; +1 <t < m;y1, we set yy = x¢. Then, p(y|x) is the limit superior of a sequence of
conditional compression rates that oscillates between 0 and 1, and hence p(y|z) = 1, implying
that p(x) 4+ p(y|x) = 2. On the other hand, when compressing (x,y) jointly, in each segment the
required compression ratio is essentially one bit per symbol pair, (x¢, y;), in all segments. Therefore,
p(x,y) = 1. Tt is therefore apparent that the inequality between p(x,y) and p(x) + p(y|x) stems
mainly from the limit superior operation and the possibility that p(x) and p(y|x) may be attained

by different subsequences.
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