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Abstract

We derive upper and lower bounds on the overall compression ratio of the 1978 Lempel-Ziv
(LZ78) algorithm, applied independently to k-blocks of a finite individual sequence. Both bounds
are given in terms of normalized empirical entropies of the given sequence. For the bounds to
be tight and meaningful, the order of the empirical entropy should be small relative to k in
the upper bound, but large relative to k in the lower bound. Several non-trivial conclusions
arise from these bounds. One of them is a certain form of a chain rule of the Lempel-Ziv (LZ)
complexity, which decomposes the joint LZ complexity of two sequences, say, x and y, into
the sum of the LZ complexity of x and the conditional LZ complexity of y given x (up to
small terms). The price of this decomposition, however, is in changing the length of the block.
Additional conclusions are discussed as well.

1 Introduction

In the second half of the 1970s, Jacob Ziv and Abraham Lempel introduced a transformative concept

in information theory [8], [9], [12]. Departing from traditional probabilistic frameworks which

typically assumed memoryless sources and channels with well-defined statistical characteristics,

they proposed a novel perspective known as the individual-sequence approach. This approach,

when coupled with models of finite-state (FS) encoders and decoders, opened up a new avenue

for understanding universal data compression and coded communication. Within this innovative

framework, the foundational ideas of what would become the Lempel-Ziv (LZ) algorithms began

to take shape, culminating in the development of the LZ77 and LZ78 algorithms in 1977 and

1978, respectively, as well as quite a few other variants. These algorithms have since become

iconic in the field, celebrated not only for their theoretical elegance, but also for their exceptional
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practical utility. The impact of the LZ family of algorithms, including its subsequent variations,

has been far-reaching, deeply embedded in the everyday technologies that rely on digital storage

and communication, from computers and smartphones to virtually every device that handles digital

data.

In subsequent years, the individual-sequence framework was extended along various lines of

study. One notable development appeared in [10], where Ziv examined a fixed-rate coding sce-

nario involving side information, with both the source and the side information sequences being

deterministic (individual) sequences. Along this setting, with both the encoder and decoder be-

ing modeled as finite-state machines, he introduced and rigorously characterized the concept of

fixed-rate conditional complexity. This measure captures the minimum achievable rate for almost-

lossless compression of a source sequence given a side information sequence. Remarkably, echoing

the classical result from Slepian-Wolf coding [6], Ziv demonstrated that access to side information

at the encoder is not necessary in order to attain this conditional complexity. The following year,

in [11], Ziv proposed a variable-rate counterpart to the conditional Lempel-Ziv (LZ) complexity in

a markedly different context, serving as a universal decoding metric for unknown finite-state chan-

nels. This conditional complexity measure later garnered attention for its applicability to source

coding with side information, as explored further in [3], [7], and more recently in [4].

Just as LZ complexity serves as the individual-sequence analogue of the entropy rate in the

probabilistic setting, the conditional LZ complexity naturally parallels the conditional entropy

rate. Following this line of analogy between the probabilistic and individual-sequence frameworks,

a compelling question arises: Does the LZ complexity measure obey a chain rule? That is, can

the joint LZ complexity of a sequence pair, say, (x,y), be decomposed into the sum of the LZ

complexity of x and the conditional LZ complexity of y given x, or, symmetrically, the reverse?

On the face of it, a close examination of the mathematical expressions of these three complexity

measures for finite-length sequences offers very little reason to hope for an affirmative answer to

this question. Surprisingly, however, such a chain-rule decomposition was shown to hold at least in

a specific sense of the asymptotic regime of infinitely long sequences [4]. Given the central role that

the chain rule for Shannon entropy plays in classical information theory, it is natural to envision

that an analogous chain rule for LZ complexity could emerge as a foundational principle in the
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development of an information theory tailored to individual sequences.

Consider, for instance, the problem of separately compressing almost losslessly and jointly de-

compressing two individual source sequences, in the spirit of Slepian-Wolf coding [6], but with

the limitation that only finite-state encoders are allowed. As explored in [4], characterizing the

achievable rate region in this setting brings forth a fundamental question. In the classical prob-

abilistic framework, for two correlated discrete memoryless sources X and Y , the achievable rate

region is well understood. It is defined by the set of rate pairs, {(Rx, Ry) : Rx ≥ H(X|Y ), Ry ≥

H(Y |X), Rx + Ry ≥ H(X,Y )}, where the corner points, (H(X), H(Y |X)) and (H(X|Y ), H(Y )),

arise naturally due to the chain rule of entropy, i.e., H(X) = H(X,Y ) − H(Y |X) and H(Y ) =

H(X,Y ) − H(X|Y ). In the individual-sequence framework, as described in [4], a similar region

can be defined, this time, replacing entropic quantities with their corresponding LZ complexity

counterparts: the conditional complexities of the sequences and their joint complexity. However,

unlike the probabilistic case, it is not immediately clear a-priori whether a chain rule exists that

allows for a decomposition of the joint LZ complexity into unconditional components, such as the

individual complexities of x and y in a manner analogous to the marginal entropy components of

the corner points. In this context, the existence of a chain rule for LZ complexities would be, not

only natural, but also instrumental in shaping a deeper understanding of compression limits for

individual sequences.

Another illustrative example involves the concept of successive refinement for individual se-

quences, as explored in [5]. In the system model considered there, the encoder architecture com-

prises two main components: a reproduction encoder and a cascaded finite-state lossless encoder.

The reproduction encoder generates two distorted versions of the source, one providing a coarse

approximation with relatively high distortion, and the other offering a finer, more accurate repre-

sentation with reduced distortion. These two reproduction vectors are then passed to the lossless

encoder, which produces two compressed bit-streams that, taken together, represent both reproduc-

tions without introducing any additional distortion. The first bit-stream corresponds to the coarse

description, and ideally, it alone captures the LZ complexity of the coarse reproduction. Together,

the two bit-streams are expected to match the joint LZ complexity of both reproduction vectors.

Since the first stream compresses only the coarse version, it is most natural for the second-stage en-

coder to compress the refined reproduction using the coarse one as side information. Consequently,
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achieving the overall joint LZ complexity hinges on the existence of a chain rule for LZ complexity,

at least in an asymptotic sense.

Earlier, we mentioned that in [4] a certain form of an asymptotic chain rule of LZ complexities

was established for infinite individual sequences (more details will be provided in Section 4). Our

main result in this work is another form of a chain rule that applies even to finite sequences, and it

is therefore, stronger, more refined, and more explicit. To this end, we first derive upper and lower

bounds on the overall compression ratio of the LZ algorithm, applied independently to k-blocks of

a finite individual sequence. Both bounds are given in terms of normalized empirical entropies of

the given sequence. For the bounds to be tight and meaningful, the order the empirical entropy

should be small relative to k in the upper bound, but large relative to k in the lower bound. Several

non-trivial conclusions arise from these bounds. One of them is the above mentioned chain rule

of the Lempel-Ziv (LZ) complexity, which decomposes the joint LZ complexity of two sequences

into the sum of the LZ complexity of one sequence and the conditional LZ complexity of the other

sequence given the former (up to small terms). The price of this decomposition, however, is in

changing the length of the block. Additional conclusions are discussed as well.

Finally, it is interesting to point out that the Kolmogorov complexity also obeys a certain

approximate chain rule (up to a certain redundancy term that vanishes as the sequence length

grows), as asserted in the Kolmogorov-Levin theorem [2], [13].

The outline of the remaining part of this work is as follows. In Section 2, we establish notation

conventions and provide some background. In Section 3, we derive upper and lower bounds on the

average LZ complexity of k-blocks of a given individual sequence, in terms of empirical entropies,

and finally, in Section 4, we provide the chain rule results, which are upper and lower bounds

on the average of the LZ complexities of sequence pairs, in terms of the average of the chain-

rule decompositions in a sense that will be made clear in the sequel. We end this paper with a

comparison to the above-mentioned earlier derived chain rule for the LZ complexity which appears

in [4].
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2 Notation Conventions and Background

2.1 Notation Conventions

Throughout this article, we adopt the following notational conventions. Scalar random variables

(RVs) will be represented by uppercase letters, their realizations by the corresponding lowercase

letters, and their alphabets by calligraphic letters. The same convention extends to random vectors

and their realizations, which will be denoted using superscripts to indicate dimension. For in-

stance, Xm, m being a positive integer, denotes the random vector (X1, . . . , Xm) and (x1, . . . , xm)

represents a specific realization in Xm, the m-fold Cartesian power of the alphabet X . Segment

notation will follow accordingly: for positive integers i and j, i ≤ j, xji and Xj
i denote the substrings

(xi, xi+1, . . . , xj) and (Xi, Xi+1, . . . , Xj), respectively. When i = 1 the subscript ‘1’ is omitted for

brevity. If i > j, both xji and Xj
i refer to the empty string. Unless stated otherwise, all logarithms

and exponentials are taken to base 2. The indicator function of an event E is denoted by I{E},

that is, I{E} = 1 if E occurs and I{E} = 0 if not.

In the sequel, xn = (x1, . . . , xn) and yn = (y1, . . . , yn) and will designate individual sequences.

The components, {xi} of xn, and {yi} of yn, all take values in the corresponding finite alphabets,

X and Y, whose cardinalities will be denoted by α and β, respectively. The infinite sequences

(x1, x2, . . .) and (y1, y2, . . .) and will be denoted by x and y, respectively.

2.2 Background

2.2.1 Finite-State Encoders

Following the framework introduced in [12], we consider a model for lossless compression based on

a finite-state encoder. Such an encoder is characterized by a quintuple

E = (X ,U ,Z, f, g),

where: X denotes a finite input alphabet of cardinality α = |X |; U is a finite set of variable-length

binary strings, possibly including the empty string λ (of length zero); Z is a finite set of internal

states; f : Z × X → U is the output function, and g : Z × X → Z is the next-state transition

function. Given an infinite input sequence x = (x1, x2, . . .) with xi ∈ X , i = 1, 2, . . ., henceforth

referred to as the source sequence, the encoder E generates a corresponding infinite output sequence
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u = (u1, u2, . . .) with ui ∈ U , henceforth termed the compressed bit-stream, while simultaneously

evolving through a sequence of internal states z = (z1, z2, . . .) with zi ∈ Z. The system dynamics

are governed recursively by the equations:

ui = f(zi, xi), (1)

zi+1 = g(zi, xi), (2)

for i = 1, 2, . . ., with a fixed initial state z1 = z⋆ ∈ Z. If at any step ui = λ, no output is produced,

and this corresponds to encoder idling, where only the internal state is updated in response to the

input symbol.

An encoder with s distinct internal states, henceforth referred to as an s-state encoder, is one

for which |Z| = s. For convenience, we adopt a few notational conventions from [12]: Given a

segment of input symbols xji with i ≤ j and an initial state zi, the notation f(zi, x
j
i ) denotes the

corresponding segment of outputs uji generated by the encoder E. Likewise, g(zi, x
j
i ) denotes the

resulting state zj+1 after processing the input segment xji starting from state zi.

A finite-state encoder E is said to be information lossless (IL) if, for every initial state zi ∈ Z,

every positive integer n, and any input segment xi+n
i , the triplet (zi, f(zi, x

i+n
i ), g(zi, x

i+n
i )) uniquely

determines the original input segment xi+n
i . In other words, the combination of the starting state,

the resulting output sequence, and the final state after encoding is sufficient to fully reconstruct

the input. Given an encoder E and an input sequence xn, the compression ratio achieved by E on

xn is defined as

ρE(x
n)

∆
=

L(un)

n
=

1

n

n∑
i=1

l(ui) =
1

n

n∑
i=1

l[f(zi, xi)] (3)

where L(un) denotes the total length (in bits) of the encoded binary string un, and l(ui) represents

the length of the binary string ui = f(zi, xi) at each step i.

The class of all IL encoders {E} with no more than s states is denoted by E(s). We next define

the s-state compressibility of xn by

ρs(x
n) = min

E∈E(s)
ρE(x

n), (4)

the asymptotic s-state compressibility of x by

ρs(x) = lim sup
n→∞

ρs(x
n), (5)
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and finally, the finite–state compressibility of x by

ρ(x) = lim
s→∞

ρs(x). (6)

2.2.2 Empirical Distributions and Induced Information Measures

We define three types of empirical distributions of d-vectors (d – positive integer).

1. Assuming that d divides n, the empirical distribution pertaining to non-overlapping blocks of

length d is defined as

P̂nob(z, w
d)

∆
=

d

n

n/d−1∑
i=0

I{zid+1 = z, xid+d
id+1 = wd}, z ∈ Z, wd = (w1, . . . , wd) ∈ X d. (7)

2. The empirical distribution associated with a sliding window of length d is defined as

P̂sw(z, w
d)

∆
=

1

n− d+ 1

n−d∑
i=0

I{zi+1 = z, xi+d
i+1 = wd}, z ∈ Z, wd ∈ X d. (8)

3. The empirical distribution associated with a cyclic sliding window of length d is defined as

P̂csw(z, w
d)

∆
=

1

n

n−1∑
i=0

I{zi+1 = z, x
[(i−1)⊕d]+1
i+1 = wd}, z ∈ Z, wd ∈ X d, (9)

where ⊕ denotes modulo-n addition.

Information measures associated with these empirical distributions will be denoted according

to the conventional notation rules of the information theory literature, but with ‘hats’, with sub-

scripts that indicate the type of the empirical distribution, and with notation of dependence on the

data sequence xn from which the statistics were gathered (using square brackets). For example,

Ĥnob(X
d)[xn] will denote the empirical entropy of an auxiliary random vector Xd that is governed

by the empirical distribution, P̂nob(·) extracted from xn.1 Likewise, Ĥsw(X
d|Z)[xn] will denote the

empirical conditional entropy of an auxiliary random vector Xd given a random state variable Z

that are drawn by the empirical distribution, P̂sw(·, ·), Îcsw(Xd;Z)[xn] will denote the empirical

mutual information between the auxiliary random variables Xd and Z that are jointly disributed

according to the empirical distribution, P̂csw(·), and so on.

1Note that there is no need to denote the dependence on zn too since zn is dictated by xn for a given next-state
function, g.
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For the infinite sequence x = (x1, x2, . . .), we define

Ĥcsw(X
d)[x] = lim sup

n→∞
Ĥcsw(X

d)[xn]. (10)

Similarly as shown in [12], for every x, the sequence {Ĥcsw(X
d)[x]}d≥1 is sub-additive as

Ĥcsw(X
d1+d2)[xn] = Ĥcsw(X

d1)[xn] + Ĥcsw(X
d1+d2
d1+1 |Xd1)[xn]

≤ Ĥcsw(X
d1)[xn] + Ĥcsw(X

d1+d2
d1+1 )[xn]

= Ĥcsw(X
d1)[xn] + Ĥcsw(X

d2)[xn], (11)

and so, taking the limit superior of the left-most- and the right-most side, we have

Ĥcsw(X
d1+d2)[x] = lim sup

n→∞
Ĥcsw(X

d1+d2)[xn]

≤ lim sup
n→∞

{Ĥcsw(X
d1)[xn] + Ĥcsw(X

d2)[xn]}

≤ lim sup
n→∞

Ĥcsw(X
d1)[xn] + lim sup

n→∞
Ĥcsw(X

d2)[xn]

= Ĥcsw(X
d1)[x] + Ĥcsw(X

d2)[x]. (12)

Consequently, the sequence { Ĥcsw(Xd)[x]
d }d≥1 is convergent, and we shall denote

H̄csw[x] = lim
d→∞

Ĥcsw(X
d)[x]

d
. (13)

Returning to finite n, whenever the underlying sequence xn is clear from the context, we will omit

the explicit notation that indicates the dependence upon xn. In this case, the above-mentioned

examples of information measures will be denoted more simply by Ĥnob(X
d), Ĥsw(X

d|Z), and

Îcsw(X
d;Z), respectively.

2.2.3 LZ Compression and its Properties

The incremental parsing procedure used in the LZ78 algorithm is a sequential method for processing

an input sequence xn drawn from a finite alphabet. At each step, the procedure identifies the

shortest substring that has not yet appeared as a complete phrase in the current parsed set except

possibly for the final (incomplete) phrase. For instance, applying this parsing method to the

sequence

x15 = abbabaabbaaabaa
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yields

a,b,ba,baa,bb,aa,ab,aa.

Let c(xn) denote the total number of distinct phrases generated by this procedure (in this example,

c(x15) = 8). Additionally, let LZ(xn) represent the length in bits of the binary string produced by

the LZ78 encoding of xn. According to Theorem 2 of [12], the following inequality holds:

LZ(xn) ≤ [c(xn) + 1] log{2α[c(xn) + 1]} (14)

which can easily be shown to be further upper bounded by

LZ(xn) ≤ c(xn) log c(xn) + n · ϵ1(n), (15)

where ϵ1(n) tends to zero uniformly as n → ∞. In other words, the LZ78 code length for a sequence

xn is upper bounded by an expression whose leading term is c(xn) log c(xn). Remarkably, the very

same quantity also appears as the dominant term in a lower bound (see Theorem 1 of [12]) on the

shortest code length achievable by any IL finite-state encoder with no more than s states, assuming

that log(s2) is negligible in comparison to log c(xn). More precisely, Theorem 1 in [12] asserts that:

ρs(x
n) ≥ c(xn) + s2

n
· log

(
c(xn) + s2

4s2

)
+

2s2

n
, (16)

which can readily be further lower bounded by

ρs(x
n) ≥ c(xn) log c(xn)

n
− ϵ2(n, s), (17)

where ϵ2(n, s) → 0 uniformly as n → ∞ for fixed s. Motivated by this connection, we shall refer to

the quantity c(xn) log c(xn) as the unnormalized LZ complexity of xn The normalized LZ complexity

is then defined as

ρLZ(x
n)

∆
=

c(xn) log c(xn)

n
, (18)

which represents the LZ complexity per input symbol.

3 Bounds on the Average LZ Complexity of k-Blocks

In this section, we derive lower and upper bounds on the average LZ complexity over blocks of

length k, that is, on the quantity

k

n

n/k−1∑
i=0

ρLZ(x
ik+k
ik+1) =

1

n

n/k−1∑
i=0

c(xik+k
ik+1) log c(x

ik+k
ik+1), (19)
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where k is a positive integer that divides n. Both the upper bound and the lower bound are given

in terms of the empirical entropy Ĥcsw(·), but to make certain redundancy terms negligibly small,

the order of this empirical entropy should be much larger than k in the lower bound and much

smaller than k in the upper bound.

The reason for our interest in the average LZ complexity of blocks, rather than in the LZ

complexity of the entire sequence, ρLZ(x
n), is that in any practical application of the LZ78 algorithm,

one must reset and start over after each and every block of finite size, as otherwise, the amount of

memory and computational effort grows without bound. Also, from the theoretical point of view

(see [12, Corollary 2]), the gap between the upper bound and the lower bound to the finite-state

complexity of x is closed in the limit of s → ∞, in terms of the double limit

ρ(x) = lim sup
k→∞

lim sup
n→∞

k

n

n/k−1∑
i=0

ρLZ(x
ik+k
ik+1). (20)

One of the conclusions from our bounds in this section is that, in fact, the outer limit superior over

k can be always safely replaced by an ordinary limit, because the sequence

ρk(x)
∆
= lim sup

n→∞

k

n

n/k−1∑
i=0

ρLZ(x
ik+k
ik+1), k ∈ N , (21)

turns out to be convergent thanks to the convergence of the sequence { Ĥcsw(Xd)[x]
d }d≥1, which plays

a role both in the upper bound and in the lower bound, as described above.

3.1 Lower Bound

The following theorem provides our lower bound to the average of the LZ complexities over k-blocks

in terms of the cyclic sliding-window empirical entropy.

Theorem 1 For every positive integer k, every n that is an integer multiple of k, every xn ∈ X n,

and every positive integer ℓ,

k

n

n/k−1∑
i=0

ρLZ(x
ik+k
ik+1) ≥

Ĥcsw(X
ℓ)

ℓ
−∆ℓ(α

k, α)− ℓ logα

n
− αℓ

n
log

n

ℓ
− ϵ1(k), (22)

where ϵ1(·) is as in (15) and

∆ℓ(s, α)
∆
=

1

ℓ
log

{
s2 ·

[
1 + log

(
1 +

αℓ

s

)]}
. (23)
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Since the left-hand side of (22) does not depend on ℓ, in principle, one could maximize the

right-hand side over ℓ to obtain the tightest lower bound. But perhaps a more natural point of

view is to consider the regime n ≫ ℓ ≫ k ≫ 1, where the leading term of the lower bound is the

empirical entropy term and all other four terms are negligibly small. In particular, taking the limit

superior n → ∞, followed by the limit ℓ → ∞, and finally, the limit inferior k → ∞, we obtain the

following asymptotic inequality as a consequence of eq. (22):

lim inf
k→∞

ρk(x) ≥ H̄csw[x]. (24)

For later use, we point out that the lower bound of Theorem 1 can also be expressed in terms of

the empirical entropy associated with non-overlapping blocks, in the following manner:

k

n

n/k−1∑
i=0

ρLZ(x
ik+k
ik+1) ≥

Ĥnob(X
ℓ)

ℓ
−∆ℓ(α

k, α)− ϵ1(k), (25)

whose proof is very similar to (and even slightly simpler than) the proof of Theorem 1 below. This

will be used in Section 4.

The remaining part of this subsection is devoted to the proof of Theorem 1.

Proof of Theorem 1. We commence by providing a generalized version of Kraft’s inequality that

applies to any s-state IL encoder. It is similar but somewhat different (and slightly tighter) than

the generalized Kraft inequality of [12, Lemma 2].

Lemma 1 For every IL encoder with s states and every z ∈ Z,

K(z)
∆
=

∑
wℓ∈X ℓ

2−L[f(z,wℓ)] ≤ s ·
[
1 + log

(
1 +

αℓ

s

)]
. (26)

The proof of Lemma 1 is identical to the proof of Lemma 2 of [12] except that since the initial

state z is given and fixed, the number kj of different {wℓ} with L[f(z, wℓ)] = j cannot exceed s · 2j

(rather than s22j in [12]), which is the number of combinations of final states and binary output

sequences of length j.

Next, observe that

s ·
[
1 + log

(
1 +

αℓ

s

)]
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≥
∑

wℓ∈X ℓ

2−L[f(z,wℓ)]

=
∑

wℓ∈X ℓ

P̂sw(w
ℓ|z) · 2−L[f(z,wℓ)]−log P̂sw(wℓ|z)

≥ exp2

−
∑

wℓ∈X ℓ

P̂sw(w
ℓ|z) · L[f(z, wℓ)]−

∑
wℓ

P̂sw(w
ℓ|z) log P̂sw(w

ℓ|z)


= exp2

Ĥsw(X
ℓ|Z = z)−

∑
wℓ∈X ℓ

P̂sw(w
ℓ|z) · L[f(z, wℓ)]

 , (27)

where in the second inequality we have used Jensen’s inequality and the convexity of the exponential

function, F (u) = 2u. This implies that∑
wℓ∈X ℓ

P̂sw(w
ℓ|z) · L[f(z, wℓ)] ≥ Ĥsw(X

ℓ|Z = z)− log

{
s ·

[
1 + log

(
1 +

αℓ

s

)]}
. (28)

Averaging both sides w.r.t. P̂sw(z), z ∈ Z, we end up with∑
(z,wℓ)∈Z×X ℓ

P̂sw(z, w
ℓ) · L[f(z, wℓ)] ≥ Ĥsw(X

ℓ|Z)− log

{
s ·

[
1 + log

(
1 +

αℓ

s

)]}
. (29)

We next apply this inequality in a chain of inequalities that would lead to a lower bound to ρE(x
n).

Similarly as in eq. (33) of [12]

ρE(x
n) =

1

n

n∑
i=1

l[f(zi, xi)]

=
1

nℓ

n∑
i=1

ℓ · l[f(zi, xi)]

≥ 1

nℓ

n−ℓ∑
i=0

ℓ∑
j=1

l[f(zi+j , xi+j)]

=
1

nℓ

n−ℓ∑
i=0

L[f(zi+1, x
i+ℓ
i+1)]

=
1

ℓ

(
1− ℓ− 1

n

)
·
∑
z,wℓ

P̂sw(z, w
ℓ) · L[f(z, wℓ)]

≥
(
1− ℓ

n

)
· Ĥsw(X

ℓ|Z)

ℓ
− 1

ℓ
log

{
s ·

[
1 + log

(
1 +

αℓ

s

)]}
=

(
1− ℓ

n

)
· Ĥsw(X

ℓ)− Îsw(Z;Xℓ)

ℓ
− 1

ℓ
log

{
s ·

[
1 + log

(
1 +

αℓ

s

)]}
≥

(
1− ℓ

n

)
· Ĥsw(X

ℓ)− Ĥsw(Z)

ℓ
− 1

ℓ
log

{
s ·

[
1 + log

(
1 +

αℓ

s

)]}

12



≥
(
1− ℓ

n

)
· Ĥsw(X

ℓ)− log s

ℓ
− 1

ℓ
log

{
s ·

[
1 + log

(
1 +

αℓ

s

)]}
≥ Ĥsw(X

ℓ)

ℓ
− ℓ logα

n
− 1

ℓ
log

{
s2 ·

[
1 + log

(
1 +

αℓ

s

)]}
. (30)

We would now like to modify this lower bound to be given in terms of the empirical entropy

Ĥcsw(X
ℓ). It is easy to verify that |P̂csw(w

ℓ)− P̂sw(w
ℓ)| ≤ ℓ

n for all wℓ ∈ X ℓ, and so, the variational

distance between P̂csw(·) and P̂sw(·) cannot exceed θ
∆
= ℓαℓ/n. Thus, by [1, Lemma 2.7, p. 19],

Ĥsw(X
ℓ) ≥ Ĥcsw(X

ℓ)− ℓαℓ

n
log

n

ℓ
, (31)

and so, we have proved that

ρs(x
n) ≥ Ĥcsw(X

ℓ)

ℓ
−∆ℓ(s, α)−

ℓ logα

n
− αℓ

n
log

n

ℓ
. (32)

Consider now the application of the LZ78 algorithm along blocks of length k, where after each

such block the LZ algorithm is restarted independently of previous blocks. Since this is actually

a block code of block length k and a block code can be implemented using a finite-state encoder

with s = αk states, then we have:

1

n

n/k−1∑
i=0

LZ(xik+k
ik+1) ≥ ραk(xn)

≥ Ĥcsw(X
ℓ)

ℓ
−∆ℓ(α

k, α)− ℓ logα

n
− αℓ

n
log

n

ℓ
. (33)

On the other hand,

1

n

n/k−1∑
i=0

LZ(xik+k
ik+1) =

k

n

n/k−1∑
i=0

LZ(xik+k
ik+1)

k

≤ k

n

n/k−1∑
i=0

ρLZ(x
ik+k
ik+1) + ϵ1(k), (34)

and so,

k

n

n/k−1∑
i=0

ρLZ(x
ik+k
ik+1) ≥

Ĥcsw(X
ℓ)

ℓ
−∆ℓ(α

k, α)− ℓ logα

n
− αℓ

n
log

n

ℓ
− ϵ1(k), (35)

thus completing the proof of Theorem 1.
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3.2 Upper Bound

Theorem 2 below provides an upper bound to

k

n

n/k−1∑
i=0

ρLZ(x
ik+k
ik+1).

Theorem 2 For every positive integer k, every n that is an integer multiple of k, every xn ∈ X n,

and every positive integer m,

k

n

n/k−1∑
i=0

ρLZ(x
ik+k
ik+1) ≤

Ĥcsw(X
m)

m
+

1

m
+

2(m+ 1)αm+1

n
log

n

m
+ ϵ2(k, α

2m), (36)

where ϵ2(·, ·) is as in eq. (17).

Similarly as in the discussion after Theorem 1, since the left-hand side does not depend on m,

in principle, one could minimize the right-hand side over m to obtain the tightest upper bound, but

it may be more instructive to consider the regime n ≫ m ≫ 1 and k ≫ m, where the leading term

of the upper bound is the empirical entropy term and all other three terms are negligibly small. In

particular, taking the limit superior n → ∞, followed by the limit superior of k → ∞, and finally,

the limit m → ∞, we obtain the following asymptotic inequality as a consequence of eq. (36):

lim sup
k→∞

ρk(x) ≤ H̄csw[x], (37)

which together with eq. (24), yields

lim sup
k→∞

ρk(x) = lim inf
k→∞

ρk(x) = lim
k→∞

ρk(x) = H̄csw[x], (38)

in agreement with Theorem 3 of [12], but with the stronger statement that the limit superior over

k is actually an ordinary limit, as the sequence {ρk(x)}k≥1 is convergent.

Similarly as before, the upper bound of Theorem 2 can also be expressed in terms of the

empirical entropy associated with non-overlapping blocks, in the following manner:

k

n

n/k−1∑
i=0

ρLZ(x
ik+k
ik+1) ≤

Ĥnob(X
m)

m
+

1

m
+ ϵ2(k, α

2m), (39)

and once again, the proof is almost identical to the proof of Theorem 2 below. This result too will

be used in Section 4.
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The remaining part of this subsection is devoted to the proof of Theorem 2.

Proof of Theorem 2. Consider a scenario of compressing xn by a finite-state encoder with s states

that is allowed to vary from one k-block to another. According to eq. (17) (applied to k-blocks),

the corresponding compression ratio, which is k
n

∑n/k−1
i=0 ρs(x

ik+k
ik+1), is lower bounded by

k

n

n/k−1∑
i=0

ρs(x
ik+k
ik+1) ≥

k

n

n/k−1∑
i=0

ρLZ(x
ik+k
ik+1)− ϵ2(k, s). (40)

On the other hand, the best time-varying finite-state encoder with s = α2m states (m- positive

integer) cannot be worse than the best time-invariant finite-state encoder with the same number

of states. Let m divide n and consider block encoding of non-overlapping blocks of length m using

a Shannon code with a conditional length function defined by

L(xim+m
im+1 |xim(i−1)m+1) =

⌈
− log

[ m∏
j=1

Q(xim+j |xim+j−1
(i−1)m+j)

]⌉
, i = 0, 1, 2, . . . ,

n

m
− 1 (41)

where for i = 0, xm1 is understood to be encoded with fixed arbitrary conditioning on x0−(m−1) ∈ Xm.

Next, observe that

L(xn|x0−(m−1))
∆
=

n/m−1∑
i=0

L(xim+m
im+1 |xim(i−1)m+1)

=

n/m−1∑
i=0

⌈
− log

[ m∏
j=1

Q(xim+j |xim+j−1
(i−1)m+j)

]⌉

≤ −
n/m−1∑
i=0

log

 m∏
j=1

Q(xim+j |xim+j−1
(i−1)m+j)

+
n

m

= −
n/m−1∑
i=0

m∑
j=1

logQ(xim+j |xim+j−1
(i−1)m+j) +

n

m

= −
n∑

i=1

logQ(xi|xi−1
i−m) +

n

m

= −n ·
∑

wm+1∈Xm+1

P̃sw(w
m+1) logQ(wm+1|wm) +

n

m
, (42)

where

P̃sw(w
m+1) =

1

n

n∑
i=1

I{xii−m = wm+1}, wm+1 ∈ Xm+1, (43)
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and in the sequel, we denote the induced entropy by H̃sw(·). Thus,

k

n

n/k−1∑
i=0

ρα2m(xik+k
ik+1) ≤ −

∑
wm+1∈Xm+1

P̃sw(w
m+1) logQ(wm+1|wm) +

1

m
, (44)

and since this holds for every Q(·|·), it also holds for the minimizing Q(·|·), which yields

k

n

n/k−1∑
i=0

ρα2m(xik+k
ik+1) ≤ H̃sw(Xm+1|Xm) +

1

m
. (45)

At this point, we wish to pass from H̃sw(Xm+1|Xm) to Ĥcsw(Xm+1|Xm), as before. To this end,

we first present H̃sw(Xm+1|Xm) as H̃sw(X
m+1)− H̃sw(X

m) and then apply again Lemma 2.7 of [1]

to each term separately. Since |P̃sw(w
m)− P̂csw(w

m)| ≤ m
n for all wm ∈ Xm then,

∑
wm |P̃sw(w

m)−

P̂csw(w
m)| ≤ mαm

n , and so, by Lemma 2.7 of [1],

|H̃sw(X
m)− Ĥcsw(X

m)| ≤ mαm

n
log

n

m
(46)

and a similar inequality holds also for |H̃sw(X
m+1)− Ĥcsw(X

m+1)|. It follows that

H̃sw(Xm+1|Xm) = H̃sw(X
m+1)− H̃sw(X

m)

≤ Ĥcsw(X
m+1) +

(m+ 1)αm+1

n
log

n

m+ 1
−
[
Ĥcsw(X

m)− mαm

n
log

n

m

]
≤ Ĥcsw(Xm+1|Xm) +

2(m+ 1)αm+1

n
log

n

m
, (47)

and so,

k

n

n/k−1∑
i=0

ρα2m(xik+k
ik+1) ≤ Ĥcsw(Xm+1|Xm) +

1

m
+

2(m+ 1)αm+1

n
log

n

m

≤ 1

m

m∑
q=1

Ĥcsw(Xq|Xq−1) +
1

m
+

2(m+ 1)αm+1

n
log

n

m

=
Ĥcsw(X

m)

m
+

1

m
+

2(m+ 1)αm+1

n
log

n

m
, (48)

which yields

k

n

n/k−1∑
i=0

ρLZ(x
ik+k
ik+1) ≤

Ĥcsw(X
m)

m
+

1

m
+

2(m+ 1)αm+1

n
log

n

m
+ ϵ2(k, α

2m), (49)

thus completing the proof of Theorem 2.
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4 Chain Rule

Before presenting the chain-rule results, we first need to provide some additional background, which

is associated with conditional LZ compression.

4.1 Background on Conditional LZ Compression

In [11], the concept of LZ complexity was extended to account for finite-state lossless compression

with side information, leading to the conditional version of LZ complexity. Given sequences xn

and yn, we apply the incremental parsing procedure of the LZ algorithm to the paired sequence

((x1, y1), (x2, y2), . . . , (xn, yn)). As previously noted, this procedure ensures that all parsed phrases

are distinct, except possibly for the final phrase, which may be incomplete. Let c(xn, yn) denote

the resulting number of distinct phrases. For instance,2 if

x6 = 0 | 1 | 0 1 | 0 1|

y6 = 0 | 1 | 0 0 | 0 1| (50)

we have c(x6, y6) = 4. Let us denote by c(xn) the resulting number of different phrases of xn, and

denote by x(l) the l-th different x–phrase, l = 1, 2, . . . , c(xn). In the running example, c(x6) = 3.

Next, let us denote the number of times x(l) appears in the parsing of xn by cl(y
n|xn). Then,

obviously,
∑c(xn)

l=1 cl(y
n|xn) = c(xn, yn). In our example, x(1) = 0, x(2) = 1, x(3) = 01, c1(y

6|x6) =

c2(y
6|x6) = 1, and c3(y

6|x6) = 2. Now, the conditional LZ complexity of yn given xn is defined as

ρLZ(y
n|xn) ∆

=
1

n

c(xn)∑
l=1

cl(y
n|xn) log cl(yn|xn). (51)

In [11] it was shown that ρLZ(x
n|yn) is the main term of the compression ratio achieved by the

conditional version of the LZ algorithm described therein (see also [7]), i.e., the length function,

LZ(xn|yn), of the coding scheme proposed therein is upper bounded (in parallel to (14)) by

LZ(yn|xn) ≤ nρLZ(y
n|xn) + nϵ3(n), (52)

where ϵ3(n) is a certain sequence that tends to zero uniformly as n → ∞. On the other hand,

analogously to [12, Theorem 1], it was shown in [3], that ρLZ(y
n|xn) is also the main term of a

2This example is taken from [11].
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lower bound to the compression ratio that can be achieved by any finite-state encoder with side

information at both ends, provided that the number of states is not too large, similarly as described

above for the unconditional version, i.e.,

ρs(y
n|xn) ≥ ρLZ(y

n|xn)− ϵ4(n, s), (53)

where ϵ4(n, s) tends to zero uniformly as n → ∞ for fixed s, and ρs(y
n|xn) is the s-state compress-

ibility of yn given the side information xn (available to both encoder and decoder), which is defined

in the same manner as the unconditional s-state compressibility, but under an encoder model where

the output function f and the next-state function g are fed by both xi and yi (in addition to the

current state zi) at each time instant i – see [3] for details.

The results of the previous section can be readily extended to the conditional case. In particular,

we will be interested in the relations to the conditional entropy induced by statistics of non-

overlapping blocks:

Ĥnob(Y
m|Xm)

m
≤ q

n

n/q−1∑
i=0

ρLZ(y
iq+q
iq+1|x

iq+q
iq+1) + ϵ3(q) + ∆m(αqβq, β), (54)

and

Ĥnob(Y
p|Xp)

p
≥ r

n

n/r−1∑
i=0

ρLZ(y
ir+r
ir+1|x

ir+r
ir+1)−

1

p
− ϵ4(r, α

pβp), (55)

where m, p, q and r are positive integers, r and q being divisors of n.

4.2 Chain Rule Theorem

Our main result in this section is the following.

Theorem 3 For every three positive integers k, q and r, every positive integer n that is a multiple

of k, q and r, and every (xn, yn) ∈ X n × Yn, we have:

1. Upper bound:

k

n

n/k−1∑
i=0

ρLZ(x
ik+k
ik+1, y

ik+k
ik+1 ) ≤ q

n

n/q−1∑
i=0

[
ρLZ(x

iq+q
iq+1) + ρLZ(y

iq+q
iq+1|x

iq+q
iq+1)

]
+

∆m(αq, α) + ϵ3(q) + ∆m(αqβq, β) +
1

m
+ ϵ2(k, α

mβm).(56)
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2. Lower bound:

k

n

n/k−1∑
i=0

ρLZ(x
ik+k
ik+1, y

ik+k
ik+1 ) ≥ r

n

n/r−1∑
i=0

[
ρLZ(x

ir+r
ir+1) + ρLZ(y

ir+r
ir+1|x

ir+r
ir+1)

]
−

2

p
− ϵ2(r, α

p)− ϵ4(r, α
pβp)−∆p(α

kβk, αβ)− ϵ1(k). (57)

For the upper bound, the integer parameters m and q (q being a divisor of n) are free and can

be chosen so as to minimize the right-hand side. In particular, to make all redundancy terms at

the second line of eq. (56) small, the regime should be k ≫ m ≫ q ≫ 1, which means that we

may upper bound the average joint LZ complexity in terms of its decomposition, provided that

the block length q of the blocks after the decomposition is very small relative to the original block

length, k. Likewise, for the lower bound, the integer parameters p and r (r being a divisor of n)

are free and can be chosen so as to maximize the right-hand side. To make all redundancy terms

at the second line of eq. (57) small, the regime should be r ≫ p ≫ k ≫ 1, which means that we

can lower bound the average joint LZ complexity in terms of its decomposition, provided that the

block length r of the blocks after the decomposition is very large relative to k. Combining both

parts of Theorem 3, the relevant regime is therefore r ≫ p ≫ k ≫ m ≫ q ≫ 1. In view of this,

consider eq. (57), take the limit superior of n → ∞, then the limit superior of r → ∞, afterwards

the limit of p → ∞ and finally, the limit of k → ∞, to get

ρ(x,y) ≥ lim sup
r→∞

lim sup
n→∞

r

n

n/r−1∑
i=0

[
ρLZ(x

ir+r
ir+1) + ρLZ(y

ir+r
ir+1|x

ir+r
ir+1)

]
. (58)

On the other hand, consider eq. (56), take the limit superior of n → ∞, then the limit of k → ∞,

afterwards the limit of m → ∞, and finally the limit inferior of q → ∞, to get

ρ(x,y) ≤ lim inf
q→∞

lim sup
n→∞

q

n

n/q−1∑
i=0

[
ρLZ(x

iq+q
iq+1) + ρLZ(y

iq+q
iq+1|x

iq+q
iq+1)

]
. (59)

It follows that

ϱk(x,y) = lim sup
n→∞

k

n

n/k−1∑
i=0

[
ρLZ(x

ik+k
ik+1) + ρLZ(y

ik+k
ik+1 |x

ik+k
ik+1)

]
, k ∈ N (60)

is a convergent sequence whose limit ϱ(x,y) is equal to ρ(x,y).
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Proof of Theorem 3. Let (xn, yn) ∈ X n × Yn be a given pair of individual sequences. Then, using

the results of the previous section, we have the following relations. For the upper bound,

k

n

n/k−1∑
i=0

ρLZ(x
ik+k
ik+1, y

ik+k
ik+1 )

≤ Ĥnob(X
m, Y m)

m
+

1

m
+ ϵ2(k, α

mβm)

=
Ĥnob(X

m)

m
+

Ĥnob(Y
m|Xm)

m
+

1

m
+ ϵ2(k, (αβ)

2m)

≤ q

n

n/q−1∑
i=0

ρLZ(x
iq+q
iq+1) + ϵ1(q) + ∆m(αq, α) +

q

n

n/q−1∑
i=0

ρLZ(y
iq+q
iq+1|x

iq+q
iq+1) + ϵ3(q) + ∆m(αqβq, β) +

1

m
+ ϵ2(k, α

mβm)

=
q

n

n/q−1∑
i=0

[
ρLZ(x

iq+q
iq+1) + ρLZ(y

iq+q
iq+1|x

iq+q
iq+1)

]
+

∆m(αq, α) + ϵ3(q) + ∆m(αqβq, β) +
1

m
+ ϵ2(k, α

mβm). (61)

For the lower bound,

k

n

n/k−1∑
i=0

ρLZ(x
ik+k
ik+1, y

ik+k
ik+1 )

≥ Ĥnob(X
p, Y p)

p
−∆p(α

kβk, αβ)− ϵ1(k)

=
Ĥnob(X

p)

p
+

Ĥnob(Y
p|Xp)

p
−∆p(α

kβk, αβ)− ϵ1(k)

≥ r

n

n/r−1∑
i=0

ρLZ(x
ir+r
ir+1)−

1

p
− ϵ2(r, α

p) +

r

n

n/r−1∑
i=0

ρLZ(y
ir+r
ir+1|x

ir+r
ir+1)−

1

p
− ϵ4(r, α

pβp)−

∆p(α
kβk, αβ)− ϵ1(k)

=
r

n

n/r−1∑
i=0

[
ρLZ(x

ir+r
ir+1) + ρLZ(y

ir+r
ir+1|x

ir+r
ir+1)

]
−

2

p
− ϵ2(r, α

p)− ϵ4(r, α
pβp)−∆p(α

kβk, αβ)− ϵ1(k). (62)

This completes the proof of Theorem 3.
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4.3 Comparison to an Earlier Derived Chain Rule

In [4], the following chain-rule theorem was asserted and proved.

Theorem 4 Define

ρ+LZ(x
k, yk) = max{ρLZ(x

k, yk), ρLZ(x
k) + ρLZ(y

k|xk),

ρLZ(y
k) + ρLZ(x

k|yk)}, (63)

ρ−LZ(x
k, yk) = min{ρLZ(x

k, yk), ρLZ(x
k) + ρLZ(y

k|xk),

ρLZ(y
k) + ρLZ(x

k|yk)}. (64)

Given x and y, let

ρ+(x,y) = lim sup
k→∞

lim sup
n→∞

k

n

n/k−1∑
i=0

ρ+LZ(x
ik+k
ik+1, y

ik+k
ik+1 )

ρ−(x,y) = lim sup
k→∞

lim sup
n→∞

k

n

n/k−1∑
i=0

ρ−LZ(x
ik+k
ik+1, y

ik+k
ik+1 ).

Then,

ρ+(x,y) = ρ−(x,y) = ρ(x,y). (65)

This theorem tells that upon dividing the infinite sequence into non-overlapping k-blocks, then

for the infinite sequence pair, it does not matter if on each such block we apply LZ78 compression

on (xik+k
ik+1, y

ik+k
ik+1 ) jointly, or first on xik+k

ik+1 and then on yik+k
ik+1 given xik+k

ik+1, or vice versa, the ultimate

compression ratio will be always the same. However, in contrast to the chain-rule theorem presented

here, which applies for finite sequences (with clearly characterized redundancy terms), this theorem

of [4] applies to infinite sequences only. Hence, the chain-rule theorem presented here is more refined.

A natural question that may arise at this point is what can be said about the relationship

between ρ(x,y) and the pair (ρ(x), ρ(y|x)) (or (ρ(y), ρ(x|y))). On the one hand, it is readily seen

that

ρ(x,y)

= ρ−(x,y)

≤ lim sup
k→∞

lim sup
n→∞

k

n

n/k−1∑
i=0

[ρLZ(x
ik+k
ik+1) + ρLZ(y

ik+k
ik+1 |x

ik+k
ik+1)]
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≤ lim sup
k→∞

lim sup
n→∞

k

n

n/k−1∑
i=0

ρLZ(x
ik+k
ik+1) +

lim sup
k→∞

lim sup
n→∞

k

n

n/k−1∑
i=0

ρLZ(y
ik+k
ik+1 |x

ik+k
ik+1)

= ρ(x) + ρ(y|x). (66)

However, the reverse inequality, ρ(x,y) ≥ ρ(x) + ρ(y|x), may not3 hold true in general, and so,

there is no apparent chain rule in that sense. As a counterexample, consider the following. Let

n0 = 0 and {ni, i ≥ 1} be a sequence of positive integers with the property that for all i > 1,

ni ≫
∑i−1

j=1 nj and consider an infinite binary sequence x, defined as follows: For i even and all

ni + 1 ≤ t ≤ ni+1, xt = 0. For i odd and all ni + 1 ≤ t ≤ ni+1, xt is obtained by random coin

tossing. Since ni ≫
∑i−1

j=1 nj , the compression rate of the last segment always dominates, and so,

the compression rate of xn oscillates forever between 0 and 1, as n grows without bound, which

results in a limit superior of ρ(x) = 1 almost surely. Next, let y be defined as follows. For i

even and all ni + 1 ≤ t ≤ ni+1, yt is obtained by independent random coin tossing. For i odd

and all ni + 1 ≤ t ≤ ni+1, we set yt = xt. Then, ρ(y|x) is the limit superior of a sequence of

conditional compression rates that oscillates between 0 and 1, and hence ρ(y|x) = 1, implying

that ρ(x) + ρ(y|x) = 2. On the other hand, when compressing (x,y) jointly, in each segment the

required compression ratio is essentially one bit per symbol pair, (xt, yt), in all segments. Therefore,

ρ(x,y) = 1. It is therefore apparent that the inequality between ρ(x,y) and ρ(x) + ρ(y|x) stems

mainly from the limit superior operation and the possibility that ρ(x) and ρ(y|x) may be attained

by different subsequences.
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