

Optimal Correlators and Waveforms for Mismatched Detection

Neri Merhav

The Viterbi Faculty of Electrical and Computer Engineering
Technion – Israel Institute of Technology
Haifa 3200003, Israel

ITA 2022, San Diego, California, U.S.A., May 2022

The Problem

Consider the following signal detection problem:

$$\mathcal{H}_0 : Y_t = N_t$$

$$\mathcal{H}_1 : Y_t = X_t + N_t \equiv \textcolor{red}{s_t + Z_t} + N_t$$

where $N_t = \mathcal{N}(0, \sigma_N^2)$, $X_t = s_t + Z_t$, with $s_t = \mathbf{E}\{X_t\}$ and Z_t is **non-Gaussian** i.i.d. (SIN, e.g., echo, mul. noise, jamming, cross-talk).

The likelihood ratio test (LRT) is difficult to implement, in general.

We consider the class of **correlation detectors**,

$$\sum_{t=1}^n \textcolor{blue}{w_t} Y_t \leq T \equiv n\theta, \quad \theta \geq 0$$

where the best $\{w_t\}$ are sought for optimum FA/MD tradeoff.

The Problem (Cont'd)

- ♠ For Gaussian Z_t , $w_t^* \propto s_t$. What if Z_t is non-Gaussian?
- ♠ What if both $\{w_t\}$ and $\{s_t\}$ are subjected to optimization?
- ♠ Extending the scope to detectors of the class

$$\sum_{t=1}^n \textcolor{blue}{w_t} Y_t + \textcolor{blue}{\alpha} \cdot \sum_{t=1}^n Y_t^2 \leq n\theta$$

and

$$\sum_{t=1}^n \textcolor{blue}{w_t} Y_t + \textcolor{blue}{\alpha} \cdot \sum_{t=1}^n |Y_t| \leq n\theta$$

Related Work

- ♣ Similar problem for APD: Merhav ('21).
- ♣ Mismatched detection due to uncertainty:
Gini *et al.* ('98), Bandiera *et al.* ('09), Liu *et al.* ('15, '19, '20), ...
- ♣ Robust detection: Capon ('61), El-Sawy & Vandelinde ('77,'79),
Geraniotis ('85), Kassam *et al.* ('76,'81,'82,'85),...
- ♣ Parametric uncertainty and GLRT: Van Trees ('68),
Conte & Ricci ('98), Erez & Feder ('00), Zeitouni *et al.* ('92)

Probability of False Alarm (FA)

$$\mathcal{H}_0 : Y_t = N_t$$

FA Probability:

$$P_{\text{FA}}(\theta) = \Pr \left\{ \sum_{t=1}^n w_t N_t \geq \theta n \right\} = Q \left(\frac{\theta n}{\sigma_N \|\mathbf{w}\|} \right) \doteq \exp \left\{ -\frac{\theta^2 n^2}{2\sigma_N^2 \|\mathbf{w}\|^2} \right\}$$

$$E_{\text{FA}}(\theta) = \frac{\theta^2}{2\sigma_N^2 \cdot (1/n) \|\mathbf{w}\|^2}$$

$$E_{\text{FA}}(\theta) \geq E_0 \quad \longrightarrow \quad \frac{1}{n} \|\mathbf{w}\|^2 \leq \frac{\theta^2}{2\sigma_N^2 E_0} \triangleq P_w.$$

Probability of Missed Detection (MD)

$$\mathcal{H}_1 : Y_t = s_t + Z_t + N_t$$

MD Probability:

$$P_{\text{MD}}(\theta) \doteq \inf_{\lambda \geq 0} \exp \left\{ \lambda \left[\theta n - \sum_{t=1}^n w_t s_t \right] + \frac{\lambda^2 \sigma_N^2 \|\mathbf{w}\|^2}{2} + \sum_{t=1}^n C(\lambda w_t) \right\},$$

where $C(\lambda) \triangleq \ln(\mathbf{E}\{e^{\lambda Z}\})$.

Assume that $\{(w_t, s_t)\}$ have an asymptotic empirical density, f_{WS} :

$$E_{\text{MD}}(\theta) = \sup_{\lambda \geq 0} \left\{ \lambda(\mathbf{E}\{W \cdot S\} - \theta) - \mathbf{E}\{C(\lambda W)\} - \frac{\lambda^2 \sigma_N^2 \mathbf{E}\{W^2\}}{2} \right\}$$

with $(W, S) \sim f_{WS}$.

Optimization Problems

- ♣ Optimal \mathbf{w} for a given \mathbf{s} : Given f_S , P_w , find

$$\max_{f_{W|S}} \sup_{\lambda \geq 0} \left\{ \lambda(\mathbf{E}\{W \cdot S\} - \theta) - \mathbf{E}\{C(\lambda W)\} - \frac{\lambda^2 \sigma_N^2 \mathbf{E}\{W^2\}}{2} \right\}$$

$$\text{s.t. } \mathbf{E}\{W^2\} \leq P_w.$$

- ♣ Joint optimization of (\mathbf{w}, \mathbf{s}) : Given P_s , P_w , find

$$\max_{f_{WS}} \sup_{\lambda \geq 0} \left\{ \lambda(\mathbf{E}\{W \cdot S\} - \theta) - \mathbf{E}\{C(\lambda W)\} - \frac{\lambda^2 \sigma_N^2 \mathbf{E}\{W^2\}}{2} \right\}$$

$$\text{s.t. } \mathbf{E}\{W^2\} \leq P_w \text{ and } \mathbf{E}\{S^2\} \leq P_s.$$

Optimal w for a Given s

For a given Chernoff parameter value, λ :

$$f_{W|S}^*(w|s) = \delta(w - g^{-1}(s|\rho, \lambda))$$

where ρ is Lagrange multiplier chosen to meet the P_w -constraint, and

$$g(w|\rho, \lambda) = \dot{C}(\lambda w) + \left(\frac{\rho}{\lambda} + \sigma_N^2 \lambda \right) \cdot w,$$

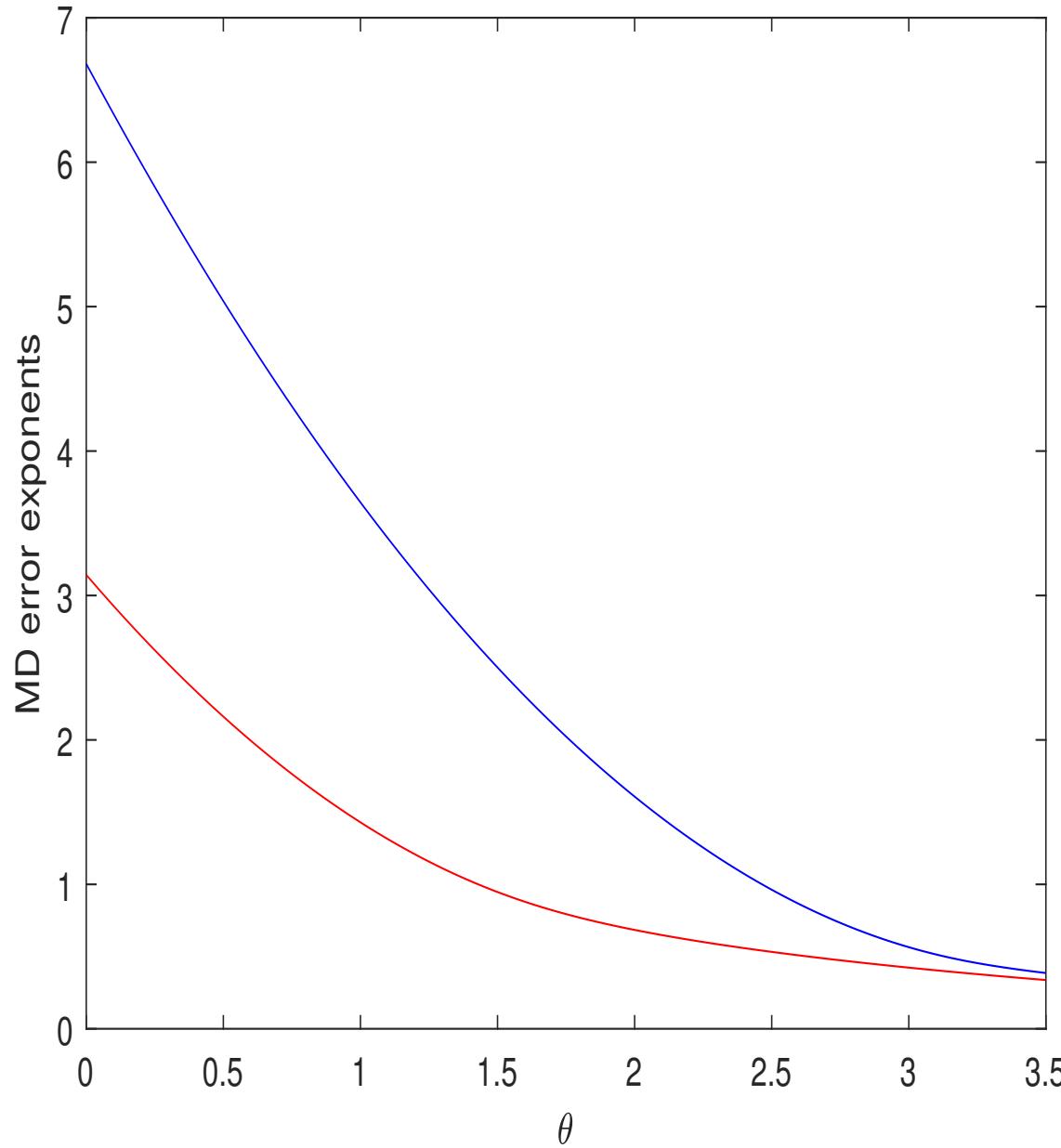
$\dot{C}(\cdot)$ being the derivative of $C(\cdot)$. C is convex $\rightarrow \dot{C}$ is increasing.

Equivalently,

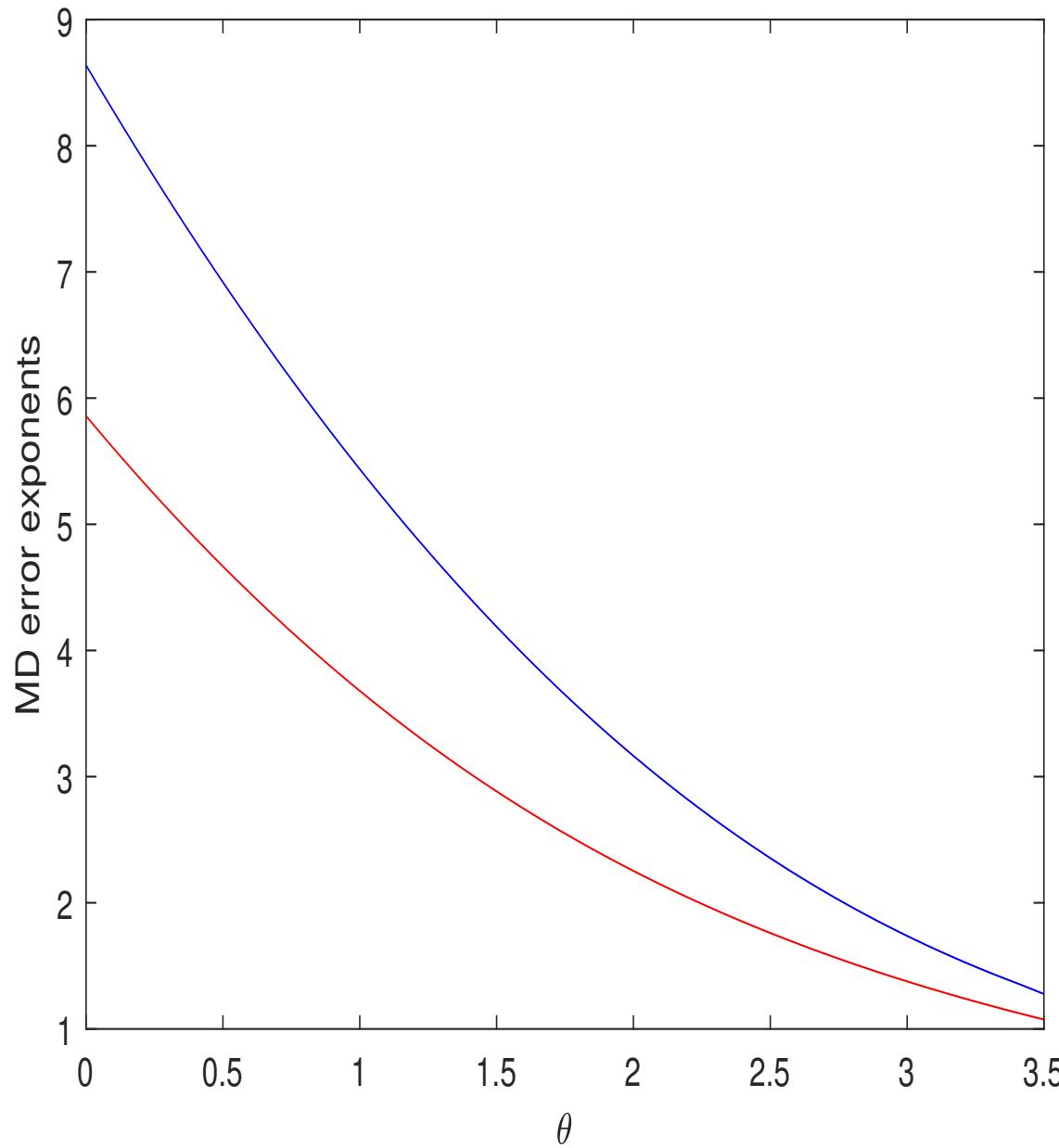
$$w_t = g^{-1}(s_t|\rho, \lambda), \quad t = 1, 2, \dots, n.$$

Note that g (and hence also g^{-1}) is **nonlinear** unless Z_t is Gaussian.

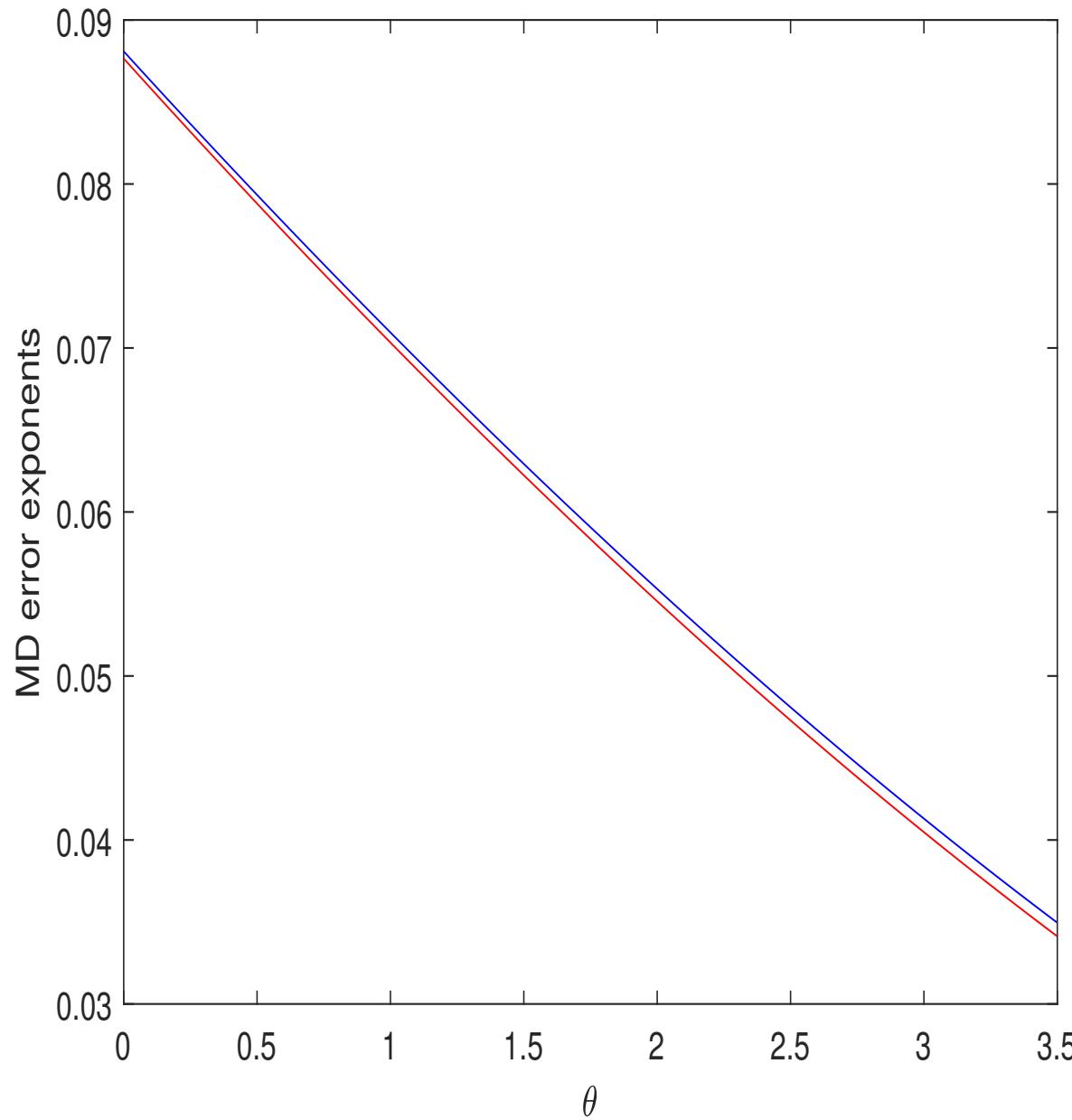
4-ASK Signal + Binary Interference, $Z_t = \pm Z_0$



Same + Uniform Inteference, $Z_t \sim [-Z_0, +Z_0]$



Same + Laplacian Interference



Joint Optimization of w and s

Consider again the problem:

$$\max_{\mathbf{f}_{\mathbf{W} \cdot \mathbf{S}}} \sup_{\lambda \geq 0} \left\{ \lambda(\mathbf{E}\{\mathbf{W} \cdot \mathbf{S}\} - \theta) - \mathbf{E}\{C(\lambda \mathbf{W})\} - \frac{\lambda^2 \sigma_N^2 \mathbf{E}\{\mathbf{W}^2\}}{2} \right\}.$$

- ♠ The optimal w for a given s is a **non-linear** function of s .
- ♠ The optimal s for a given w is clearly a **linear** function of w .
- ♠ w_t and s_t **must** take only values according to the solutions of:

$$g(w|\rho, \lambda) = \dot{C}(\lambda w) + \left(\frac{\rho}{\lambda} + \sigma_N^2 \lambda \right) w = \zeta \cdot w$$

Joint Optimization of (w, s) (Cont'd)

$C(\cdot)$ is always convex, but $C(\sqrt{\cdot})$ - not necessarily.

Theorem:

♥ If $C(\sqrt{\cdot})$ is convex, both w^* and s^* are either DC or bipolar, and

$$E_{\text{MD}}(\theta) = \sup_{\lambda \geq 0} \sup_{P \leq P_w} \left\{ \lambda(\sqrt{P_s P} - \theta) - C(\lambda\sqrt{P}) - \frac{\lambda^2 \sigma_N^2 P}{2} \right\}.$$

♥ If $C(\sqrt{\cdot})$ is concave, w^* and s^* are all zero, except one component with the entire energy.

$$E_{\text{MD}}(\theta) = \sup_{\lambda \geq 0} \sup_{P \leq P_w} \left\{ \lambda(\sqrt{P_s P} - \theta) - \lim_{n \rightarrow \infty} \frac{C(\lambda\sqrt{Pn})}{n} - \frac{\lambda^2 \sigma_N^2 P}{2} \right\}.$$

Note that in some cases (like the binary/uniform interference),

$$\lim_{n \rightarrow \infty} \frac{C(\lambda\sqrt{Pn})}{n} = 0$$

which means that the interference has no effect at all.

Joint Optimization of (w, s) (Cont'd)

$C(\sqrt{\cdot})$ may be neither convex nor concave, for example,

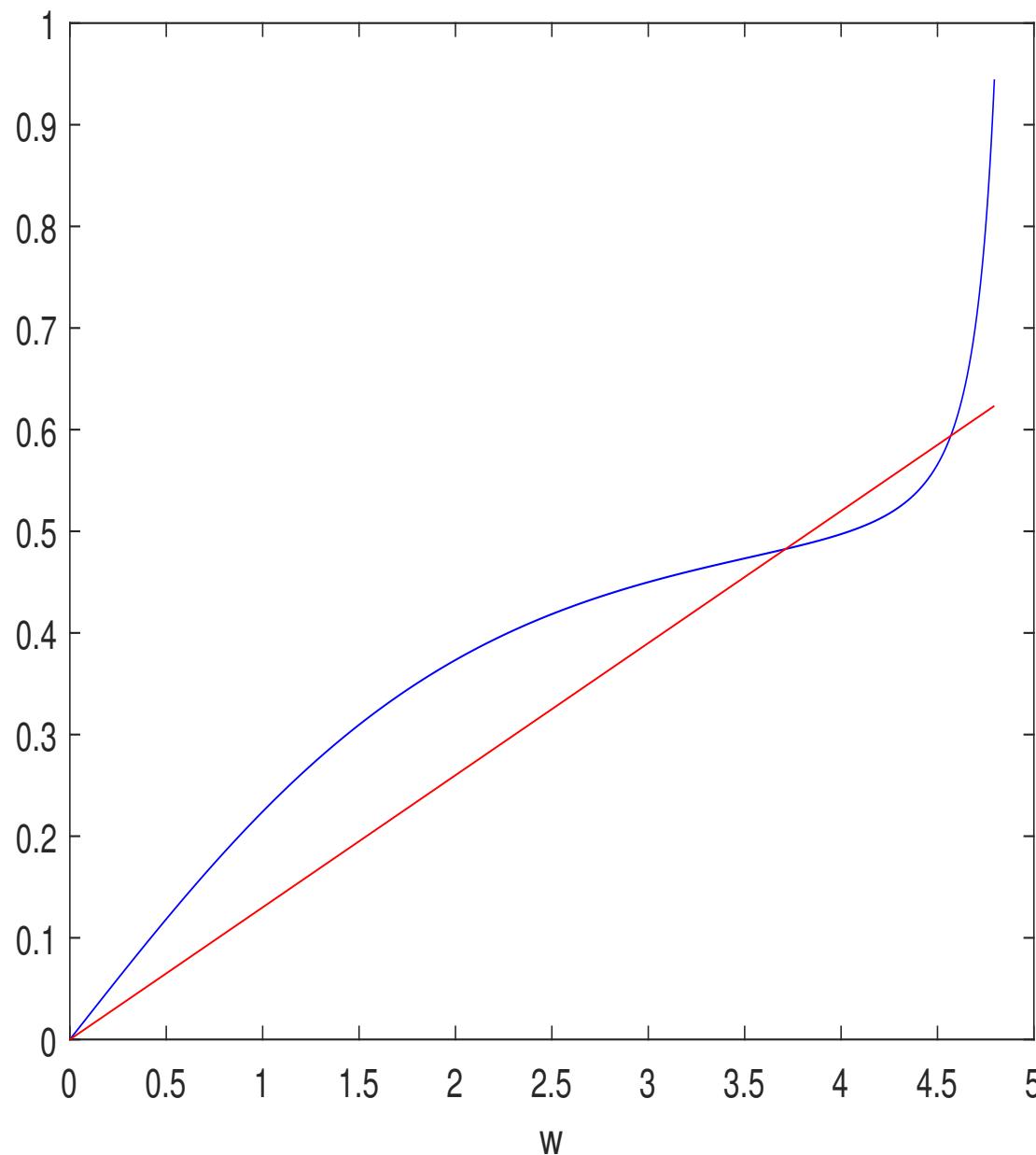
$$f_Z(z) = \epsilon \cdot \left[\frac{1}{2} \cdot \delta(z - z_0) + \frac{1}{2} \cdot \delta(z + z_0) \right] + (1 - \epsilon) \cdot \frac{q}{2} e^{-q|z|}.$$

Here, the equation

$$g(w|\rho, \lambda) = \dot{C}(\lambda w) + \left(\frac{\rho}{\lambda} + \sigma_N^2 \lambda \right) w = \zeta \cdot w$$

has more than two (positive) non-zero solutions, which should be time-shared to achieve $\text{LCE}\{C(\lambda\sqrt{\cdot})\}$.

Joint Optimization of (w, s) (Cont'd)



A Word About Correlation+Energy Detectors

The MD probability

$$\begin{aligned} P_{\text{MD}}(\theta) &= \Pr \left\{ \sum_{t=1}^n w_t (\textcolor{red}{s_t + Z_t + N_t}) + \alpha \sum_{t=1}^n (\textcolor{red}{s_t + Z_t + N_t})^2 < \theta n \right\} \\ &\doteq \inf_{\lambda \geq 0} \mathbf{E} \left\{ \prod_{t=1}^n \exp \left[-\alpha \lambda (\textcolor{red}{s_t + Z_t + N_t})^2 + \dots \right] \right\} \end{aligned}$$

The trick is to use the identity

$$\exp \{ -a (s_t + Z_t + N_t)^2 \} = \frac{1}{\sqrt{4\pi a}} \int_{-\infty}^{\infty} \exp \left\{ -j\omega (\textcolor{blue}{s_t + Z_t + N_t}) - \frac{\omega^2}{4a} \right\} d\omega$$

and commute the integrations. Likewise,

$$\exp \{ -a |\textcolor{red}{s_t + Z_t + N_t}| \} = \frac{a}{\pi} \int_{-\infty}^{\infty} \frac{\exp \{ -j\omega (\textcolor{blue}{s_t + Z_t + N_t}) \}}{\omega^2 + a^2} d\omega.$$

Summary

- ♣ We studied optimal correlation-detection for non-Gaussian noise.
- ♣ The best w for a given s is **non-linear** in s .
- ♣ If (w, s) are optimized jointly, the relation is **linear** and they are both **discrete-valued**.
- ♣ The form of the solution depends on the convexity/concavity of $C(\sqrt{\cdot})$.
- ♣ There are extensions to **correlation + energy** detectors.