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The Problem

Consider the following signal detection problem:

H0 : Yt = Nt

H1 : Yt = Xt +Nt ≡ st + Zt +Nt

where Nt = N (0, σ2

N ), Xt = st + Zt, with st = E{Xt} and Zt is

non-Gaussian i.i.d. (SIN, e.g., echo, mul. noise, jamming, cross-talk).

The likelihood ratio test (LRT) is difficult to implement, in general.

We consider the class of correlation detectors,

n
∑

t=1

wtYt ≶ T ≡ nθ, θ ≥ 0

where the best {wt} are sought for optimum FA/MD tradeoff.
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The Problem (Cont’d)

♠ For Gaussian Zt, w
∗
t ∝ st. What if Zt is non–Gaussian?

♠ What if both {wt} and {st} are subjected to optimization?

♠ Extending the scope to detectors of the class

n
∑

t=1

wtYt + α ·
n
∑

t=1

Y 2
t ≶ nθ

and

n
∑

t=1

wtYt + α ·
n
∑

t=1

|Yt| ≶ nθ
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Related Work

♣ Similar problem for APD: Merhav (’21).

♣ Mismatched detection due to uncertainty:

Gini et al. (’98), Bandiera et al. (’09), Liu et al. (’15, ’19, ’20), ...

♣ Robust detection: Capon (’61), El-Sawy & Vandelinde (’77,’79),

Geraniotis (’85), Kassam et al. (’76,’81,’82,’85),...

♣ Parametric uncertainty and GLRT: Van Trees (’68),

Conte & Ricci (’98), Erez & Feder (’00), Zeitouni et al. (’92) ....
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Probability of False Alarm (FA)

H0 : Yt = Nt

FA Probability:

PFA(θ) = Pr

{

n
∑

t=1

wtNt ≥ θn

}

= Q

(

θn

σN‖w‖

)

·
= exp

{

− θ2n2

2σ2

N
‖w‖2

}

EFA(θ) =
θ2

2σ2

N
· (1/n)‖w‖2

EFA(θ) ≥ E0 −→ 1

n
‖w‖2 ≤ θ2

2σ2

N
E0

△
= Pw.
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Probability of Missed Detection (MD)

H1 : Yt = st + Zt +Nt

MD Probability:

PMD(θ)
·
= inf

λ≥0

exp

{

λ

[

θn−
n
∑

t=1

wtst

]

+
λ2σ2

N‖w‖2
2

+

n
∑

t=1

C(λwt)

}

,

where C(λ)
△
= ln(E{eλZ}).

Assume that {(wt, st)} have an asymptotic empirical density, fWS :

EMD(θ) = sup
λ≥0

{

λ(E{W · S} − θ)−E{C(λW )} − λ2σ2

NE{W 2}
2

}

with (W,S) ∼ fWS .

– p. 6/17



Optimization Problems

♣ Optimal w for a given s: Given fS , Pw, find

max
fW |S

sup
λ≥0

{

λ(E{W · S} − θ)−E{C(λW )} − λ2σ2

NE{W 2}
2

}

s.t. E{W 2} ≤ Pw.

♣ Joint optimization of (w, s): Given Ps, Pw, find

max
fWS

sup
λ≥0

{

λ(E{W · S} − θ)−E{C(λW )} − λ2σ2

NE{W 2}
2

}

s.t. E{W 2} ≤ Pw and E{S2} ≤ Ps.
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Optimal w for a Given s

For a given Chernoff parameter value, λ:

f∗W |S(w|s) = δ(w − g−1(s|ρ, λ))

where ρ is Lagrange multiplier chosen to meet the Pw-constraint, and

g(w|ρ, λ) = Ċ(λw) +
( ρ

λ
+ σ2

Nλ
)

· w,

Ċ(·) being the derivative of C(·). C is convex → Ċ is increasing.

Equivalently,

wt = g−1(st|ρ, λ), t = 1, 2, . . . , n.

Note that g (and hence also g−1) is nonlinear unless Zt is Gaussian.
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4-ASK Signal + Binary Inteference, Zt = ±Z0
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Same + Uniform Inteference, Zt ∼ [−Z0,+Z0]
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Same + Laplacian Interference
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Joint Optimization of w and s

Consider again the problem:

max
fWS

sup
λ≥0

{

λ(E{W · S} − θ)− E{C(λW )} − λ2σ2

NE{W 2}
2

}

.

♠ The optimal w for a given s is a non-linear function of s.

♠ The optimal s for a given w is clearly a linear function of w.

♠ wt and st must taken only values according to the solutions of:

g(w|ρ, λ) = Ċ(λw) +
( ρ

λ
+ σ2

Nλ
)

w = ζ · w
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Joint Optimization of (w, s) (Cont’d)

C(·) is always convex, but C(
√·) - not necessarily.

Theorem:

♥ If C(
√·) is convex, both w

∗ and s
∗ are either DC or bipolar, and

EMD(θ) = sup
λ≥0

sup
P≤Pw

{

λ(
√
PsP − θ)− C

(

λ
√
P
)

− λ2σ2

NP

2

}

.

♥ If C(
√·) is concave, w∗ and s

∗ are all zero,

except one component with the entire energy.

EMD(θ) = sup
λ≥0

sup
P≤Pw

{

λ(
√
PsP − θ)− lim

n→∞

C
(

λ
√
Pn

)

n
− λ2σ2

NP

2

}

.

Note that in some cases (like the binary/uniform interference),

lim
n→∞

C
(

λ
√
Pn

)

n
= 0

which means that the interference has no effect at all.
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Joint Optimization of (w, s) (Cont’d)

C(
√·) may be neither convex nor concave, for example,

fZ(z) = ǫ ·
[1

2
· δ(z − z0) +

1

2
· δ(z + z0)

]

+ (1− ǫ) · q
2
e−q|z|.

Here, the equation

g(w|ρ, λ) = Ċ(λw) +
(

ρ

λ
+ σ2

Nλ
)

w = ζ · w

has more than two (positive) non-zero solutions, which should be

time-shared to achieve LCE{C(λ
√·)}.
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Joint Optimization of (w, s) (Cont’d)
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A Word About Correlation+Energy Detectors

The MD probability

PMD(θ) = Pr

{

n
∑

t=1

wt(st + Zt +Nt) + α

n
∑

t=1

(st + Zt +Nt)
2 < θn

}

·
= inf

λ≥0

E

{

n
∏

t=1

exp
[

−αλ(st + Zt +Nt)
2 + . . .

]

}

The trick is to use the identity

exp{−a(st + Zt +Nt)
2} =

1√
4πa

∫ ∞

−∞
exp

{

−jω(st + Zt +Nt)−
ω2

4a

}

dω

and commute the integrations. Likewise,

exp{−a|st + Zt +Nt|} =
a

π

∫ ∞

−∞

exp{−jω(st + Zt +Nt)}
ω2 + a2

dω.
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Summary

♣ We studied optimal correlation-detection for non-Gaussian noise.

♣ The best w for a given s is non-linear in s.

♣ If (w, s) are optimized jointly, the relation is linear and they are both

discrete-valued.

♣ The form of the solution depends on the convexity/concavity

of C(
√·).

♣ There are extensions to correlation + energy detectors.
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